ON THE EFFICIENT SIMULATION OF POLARIZATIONLESS P SYSTEMS WITH ACTIVE MEMBRANES

Zsolt Gazdag
Institute of Informatics
University of Szeged

Gábor Kolonits
Faculty of Informatics,
Eötvös Loránd University

17th BWMC, February 5, 2018 - February 8, 2018, Seville, Spain
MOTIVATION

- Paun's conjecture:
 - Active membranes without polarization and non-elementary division characterise the class \mathbf{P}.

- Challenging to prove even if just division or dissolution rules are allowed
 - Proved in [2009, Woods, Murphy, Pérez-Jiménez, Riscos-Núñez]
 - Object division graphs are used
 - A particular computation is simulated
 - Only "important" membranes are explicitly simulated

- Our aim is a representation with which we can answer the following question efficiently:
 - Which and how many objects are released to the parent membrane by the elementary membranes during a particular step of the system?
PRELIMINARIES

- We consider restricted P systems with active membranes:
 - no polarization
 - the membrane structure is linearly nested,
 - only division and dissolution rules are employed,
 - the computations are confluent, and
 - no object can divide and dissolve the same membrane
 - E.g. \([a]_h \rightarrow [b]_h[c]_h\) and \([a]_h \rightarrow d\) is not possible

- We simulate a particular computation:
 - division has priority over dissolution
 - E.g. \([a]_h \rightarrow [b]_h[c]_h\), \([e]_h \rightarrow f\) implies \([a e]_h \Rightarrow [b e]_h[c e]_h \Rightarrow b f c f\)
 - similar rules are lexicographically ordered
 - E.g. \([a]_h \rightarrow [b]_h[c]_h\) and \([e]_h \rightarrow [f]_h[g]_h\) implies \([a e]_h \Rightarrow [b e]_h[c e]_h \Rightarrow [b f]_h[b g]_h[c f]_h[c g]_h\)
PRELIMINARIES

- Object division graph (odg)
 - Example:
 - Rules: \[a \rightarrow [b][c], \ b \rightarrow [e][f], \ c \rightarrow [f][i], \ [e] \rightarrow [g][h] \]
 - No division by the rest of the objects

- Can generalised odg’s be efficiently calculated?
Notice: Labels of inner nodes are not needed to give the polynomial.

The divisions: \([a] \Rightarrow [b][c] \Rightarrow [e][f] [f][i] \Rightarrow [g][h][f] [f][i]

Object division polynomial (odp)

Depth of 2f in the generalised odg

\(gx^3 + hx^3 + 2fx^2 + ix^2\)
THE POLYNOMIAL REPRESENTATION

Notice: Labels of inner nodes are not needed to give the polynomial

The divisions: \[a \Rightarrow [b][c] \Rightarrow [e][f][f][i] \Rightarrow [g][h][f][f][i] \]

The two \([f]’s\) are created in two steps

We can learn this also from the polynomial

\(gx^3 + hx^3 + 2fx^2 + ix^2 \)
Let's multiply the odp's

\[
(f x + g x^2 + f x^2) \cdot 2 g x = 2 f g x^2 + 2 g g x^3 + 2 f g x^3
\]
THE POLYNOMIAL REPRESENTATION

- $2fgx^2 + 2ggx^3 + 2fgx^3$ describes
 - all the elementary membranes created by all divisions
 - their multiset contents, and
 - the number of the corresponding computation steps

- Let’s see:
We are not ready
- We cannot calculate the product of all the odp's in polynomial time
- But we can calculate efficiently the answer to the following question:
 - How many copies of an object are in those elementary membranes that are created at the \(n \)th step of the system and cannot be further divided?

Consider the previous example and the object \(f \)
- Substitute 1 for each variable that is neither \(f \) nor \(x \) in
 - \((fx + gx^2 + fx^2) \cdot 2gx\)
 - \((fx + x^2 + fx^2) \cdot 2x = 2fx^2 + 2x^3 + 2fx^3\)
 - Two copies of \(f \) were created at the 2\(^{\text{nd}}\) step
 - Two copies of \(f \) were created at the 3\(^{\text{rd}}\) step
Consider now the previous example and the object g

Substitute 1 for each variable that is neither g nor x in

- $(fx + gx^2 + fx^2) \cdot 2gx$
- $(x + gx^2 + x^2) \cdot 2gx$
- $= 2gx^2 + 2g^2x^3 + 2gx^3$
- $= 2gx^2 + (2g^2 + 2g)x^3$

Two copies of g were created at the 2nd step.

Six copies of g were created at the 3rd step.

Can we really calculate this product efficiently in general?
Using this we can answer the following question now efficiently:

- Which and how many objects are released to the parent membrane by the elementary membranes during a particular step of the system?

We can build a polynomial time algorithm to simulate all membranes

We can calculate efficiently:
- How many steps are needed to dissolve the all elementary membranes
- What objects get to the parent
- What happens with the rest of the system
Using this we can answer the following question now efficiently:

- **Which and how many objects** are released to the parent membrane by the elementary membranes during a particular step of the system?

We can build a polynomial time algorithm to simulate all membranes.

Can we deal with that this membrane can contain exponentially many objects?
What do we expect?

- The answers to the red questions are positive
- We can extend the method to out-communication rules
- Maybe we can extend it to unit evolution rules (seems to be not so easy)
- Maybe this method suits for implementations
- We have no idea yet how to extend this method to arbitrary polarizationless P systems