
Introducing the Concept of Activation and
Blocking of Rules in the General Framework for
Regulated Rewriting in Sequential Grammars⋆

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23 Boulevard de France, 91025, Évry, France
sergiu.ivanov@univ-evry.fr

Summary. We introduce new possibilities to control the application of rules based on
the preceding application of rules which can be defined for a general model of sequential
grammars and we show some similarities to other control mechanisms as graph-controlled
grammars and matrix grammars with and without applicability checking as well as gram-
mars with random context conditions and ordered grammars. Using both activation and
blocking of rules, in the string and in the multiset case we can show computational com-
pleteness of context-free grammars equipped with the control mechanism of activation
and blocking of rules even when using only two nonterminal symbols.

1 Introduction

Nearly thirty years ago, the monograph on regulated rewriting by Jürgen Dassow
and Gheorghe Păun [2] already gave a first comprehensive overview on many con-
cepts of regulated rewriting, especially for the string case. Yet as it turned out later,
many of the mechanisms considered there for guiding the application of produc-
tions/rules can also be applied to other objects than strings, e.g., to n-dimensional
arrays [4]. Even in the emerging field of P systems [10, 14] where mostly multisets
are considered, such regulating mechanisms were used [1]. As exhibited in [6], for
comparing the generating power of grammars working in the sequential derivation

⋆ The work is supported by National Natural Science Foundation of China (61320106005,
61033003, and 61772214) and the Innovation Scientists and Technicians Troop Con-
struction Projects of Henan Province (154200510012).

2 A. Alhazov, R. Freund, S. Ivanov

mode, many relations between various regulating mechanisms can be established
in a very general setting without any reference to the underlying objects the rules
are working on, using a general model for graph-controlled, programmed, random-
context, and ordered grammars of arbitrary type based on the applicability of
rules.

In the second section, we recall some notions from formal language theory as
well as the main definitions of the general framework for sequential grammars
elaborated in [6]. Then we define the new concept of activation and blocking of
rules based on the applicability of rules within this general framework for regulated
rewriting. In Section 3 some general results for sequential grammars using the
control mechanism of activation or activation and blocking of rules are established.
Specific results on computational completeness for strings, multisets, and arrays as
underlying objects then are shown in Section 4. In Section 5 we establish our main
results for strings and multisets showing that context-free (string and multiset)
grammars with activation and blocking of rules are computationally complete even
when only two non-terminal symbols are used, which establishes a sharp border
as one non-terminal symbol is not sufficient. Finally, a summary of the results
obtained in this paper and some future research topics extending the notions and
results obtained in this paper are given in Section 6.

2 Definitions

After some preliminaries from formal language theory, we define our general model
for grammars and recall some notions for string, array, and multiset grammars and
languages in the general setting of this paper. Then we formulate the models of
graph-controlled, programmed, matrix grammars with and without appearance
checking, as well as random-context grammars, based on the applicability of rules.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N0, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the elements of V ∗ are called
strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let
{a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol ai in
x is denoted by |x|ai

; the Parikh vector associated with x with respect to a1, ..., an
is

(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L over {a1, ..., an} is the set

of all Parikh vectors of strings in L, and we denote it by Ps (L). For a family
of languages FL, the family of Parikh images of languages in FL is denoted by
PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, ..., an}, is a mapping
f : V −→ N0 and represented by ⟨f (a1) , a1⟩ ... ⟨f (an) , an⟩ or by any string x the

Activation and Blocking of Rules in Sequential Grammars 3

Parikh vector of which with respect to a1, ..., an is (f (a1) , ..., f (an)). In the fol-
lowing we will not distinguish between a vector (m1, ...,mn) , its representation by
a multiset ⟨m1, a1⟩ ... ⟨mn, an⟩ or its representation by a string x having the Parikh
vector

(
|x|a1

, ..., |x|an

)
= (m1, ...,mn). Fixing the sequence of symbols a1, ..., an in

the alphabet V in advance, the representation of the multiset ⟨m1, a1⟩ ... ⟨mn, an⟩
by the string am1

1 ...amn
n is unique. The set of all finite multisets over an alphabet

V is denoted by V ◦.
For more details of formal language theory the reader is referred to the mono-

graphs and handbooks in this area [2, 12].

2.2 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [6], grammars generating a set of terminal objects by derivations
where in each derivation step exactly one rule is applied to exactly one object.
This does not cover rules involving more than one object – as, for example, splicing
rules – or other derivation modes – as, for example, the maximally parallel mode
considered in many variants of P systems [10].

A (sequential) grammar G is a construct (O,OT , w, P,=⇒G) where

• O is a set of objects;
• OT ⊆ O is a set of terminal objects;
• w ∈ O is the axiom (start object);
• P is a finite set of rules;
• =⇒G⊆ O ×O is the derivation relation of G.

We assume that each of the rules p ∈ P induces a relation =⇒p⊆ O ×O with
respect to =⇒G fulfilling at least the following conditions: (i) for each object
x ∈ O, (x, y) ∈ =⇒p for only finitely many objects y ∈ O; (ii) there exists a
finitely described mechanism as, for example, a Turing machine, which, given
an object x ∈ O, computes all objects y ∈ O such that (x, y) ∈ =⇒p. A rule
p ∈ P is called applicable to an object x ∈ O if and only if there exists at
least one object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The
derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The

reflexive and transitive closure of =⇒G is denoted by
∗

=⇒G.

In the following we shall consider different types of grammars depending on
the components of G (where the set of objects O is infinite, e.g., V ∗, the set of
strings over the alphabet V), especially with respect to different types of rules
(e.g., context-free string rules). Some specific conditions on the elements of G,
especially on the rules in P , may define a special type X of grammars which then
will be called grammars of type X.

The language generated by G is the set of all terminal objects (we also assume
v ∈ OT to be decidable for every v ∈ O) derivable from the axiom, i.e.,

L (G) =
{
v ∈ OT | w ∗

=⇒G v
}
.

4 A. Alhazov, R. Freund, S. Ivanov

The family of languages generated by grammars of type X is denoted by L (X).

Let G = (O,OT , w, P,=⇒G) be a grammar of type X. If for every G of type
X we have OT = O, then X is called a pure type, otherwise it is called extended ;
X is called strictly extended if for any grammar G of type X, w /∈ OT and for all
x ∈ OT , no rule from P can be applied to x.

In many cases, the type X of the grammar allows for (one or even both of) the
following features:

A type X of grammars is called a type with unit rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (+),=⇒G′

)
of type X exists such that =⇒G ⊆ =⇒G′ and

• P (+) =
{
p(+) | p ∈ P

}
,

• for all x ∈ O, p(+) is applicable to x if and only if p is applicable to x, and
• for all x ∈ O, if p(+) is applicable to x, the application of p(+) to x yields x

back again.

A type X of grammars is called a type with trap rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (−),=⇒G′

)
of type X exists such that =⇒G ⊆ =⇒G′ and

• P (−) =
{
p(−) | p ∈ P

}
,

• for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
• for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

2.3 Specific Types of Objects

String grammars

In the general notion as defined above, a string grammar GS is represented as(
(N ∪ T)

∗
, T ∗, w, P,=⇒P

)
where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩T = ∅, w ∈ (N ∪ T)

+
, P is a finite set of rules of the form u → v with

u ∈ V ∗ (for generating grammars, u ∈ V +) and v ∈ V ∗ (for accepting grammars,
v ∈ V +), with V := N ∪ T ; the derivation relation for u → v ∈ P is defined by
xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known derivation relation
=⇒GS

for the string grammar GS . In the following, we shall also use the common
notation GS = (N,T,w, P) instead, too. We remark that, usually, the axiom w
is supposed to be a non-terminal symbol, i.e., w ∈ V \ T , and is called the start
symbol.

As special types of string grammars we consider string grammars with arbitrary
rules and context-free rules of the form A → v with A ∈ N and v ∈ V ∗. The

Activation and Blocking of Rules in Sequential Grammars 5

corresponding types of grammars are denoted by ARB an CF , thus yielding the
families of languages L (ARB), i.e., the family of recursively enumerable languages
(also denoted by RE), as well as L (CF), i.e., the familiy of context-free languages,
respectively.

Observe that the types ARB and CF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F /∈ T
is a new symbol – the trap symbol).

We refer to [6] where some examples for string grammars of specific types
illustrating the expressive power of this general framework are given.

Array grammars

We now introduce the basic notions for n-dimensional arrays and array grammars,
for example, see [4, 11, 13].

Let d ∈ N. Then a d-dimensional array A over an alphabet V is a func-
tion A : Zd → V ∪ {#}, where shape (A) =

{
v ∈ Zd | A (v) ̸= #

}
is finite

and # /∈ V is called the background or blank symbol. We usually write A =
{(v,A (v)) | v ∈ shape (A)}.

The set of all d-dimensional arrays over V is denoted by V ∗d. The empty array
in V ∗d with empty shape is denoted by Λd. Moreover, we define V +d = V ∗d\{Λd}.

Let v ∈ Zd, v = (v1, . . . , vd). The translation τv : Zd → Zd is defined by
τv (w) = w + v for all w ∈ Zd, and for any array A ∈ V ∗d we define τv (A), the
corresponding d-dimensional array translated by v, by (τv (A)) (w) = A (w − v)
for all w ∈ Zd. The vector (0, . . . , 0) ∈ Zd is denoted by Ωd.

A d-dimensional array rule p over V is a triple (W,A1,A2), where W ⊆ Zd is a
finite set and A1 and A2 are mappings from W to V ∪{#} such that shape (A1) ̸=
∅. We say that the array B2 ∈ V ∗d is directly derivable from the array B1 ∈ V ∗d

by the d-dimensional array rule (W,A1,A2), i.e., B1 =⇒p B2, if and only if there
exists a vector v ∈ Zd such that B1 (w) = B2 (w) for all w ∈ Zd \ τv (W) as well
as B1 (w) = A1 (τ−v (w)) and B2 (w) = A2 (τ−v (w)) for all w ∈ τv (W), i.e., the
subarray of B1 corresponding to A1 is replaced by A2, thus yielding B2. In the
following, we shall also write A1 → A2, because W is implicitly given by the finite
arrays A1,A2.

A d-dimensional array grammar GA is represented as(
(N ∪ T)

∗d
, T ∗d, {(v0, S)} , P,=⇒GA

)
where

• N is the alphabet of non-terminal symbols;
• T is the alphabet of terminal symbols, N ∩ T = ∅;
• {(v0, S)} is the start array (axiom) with S ∈ N and v0 ∈ Zd;
• P is a finite set of d-dimensional array rules over V , V := N ∪ T ;
• =⇒GA

is the derivation relation induced by the array rules in P according to
the explanations given above, i.e., for arbitrary B1,B2 ∈ V ∗d, B1 =⇒GA

B2 if

6 A. Alhazov, R. Freund, S. Ivanov

and only if there exists a d-dimensional array rule p = (W,A1,A2) in P such
that B1 =⇒p B2.

A d-dimensional array rule p = (W,A1,A2) in P is called #-context-free, if
shape (A1) = {Ωd}. A d-dimensional array grammar is said to be of type d-ARBA,
d-#-CFA if every array rule in P is of the corresponding type, i.e., an arbitrary and
#-context-free d-dimensional array rule, respectively. The corresponding families
of d-dimensional array languages of typeX are denoted by L (X), i.e., L (d-ARBA)
and L (d-#-CFA) are the families of recursively enumerable and #-context-free
d-dimensional array languages, respectively.

Observe that the types d-ARBA and d-#-CFA are types with unit rules and
trap rules – for p = (W,A1,A2), we can take p(+) = (W,A1,A1) and p(−) =
(W,A1,AF) with AF (v) = F for v ∈ W , where F is a new non-terminal symbol
– the trap symbol.

Multiset grammars

Gm =
(
(N ∪ T)

◦
, T ◦, w, P,=⇒Gm

)
is called amultiset grammar ;N is the alphabet

of non-terminal symbols, T is the alphabet of terminal symbols, N ∩ T = ∅, w is a
non-empty multiset over V , V := N ∪ T , and P is a (finite) set of multiset rules
yielding a derivation relation =⇒Gm

on the multisets over V ; the application of the
rule u → v to a multiset x has the effect of replacing the multiset u contained in x
by the multiset v. For the multiset grammar Gm we also write (N,T,w, P,=⇒Gm

).
As special types of multiset grammars we consider multiset grammars with

arbitrary rules as well as context-free (non-cooperative) rules of the form A → v
with A ∈ N and v ∈ V ◦; the corresponding types X of multiset grammars are
denoted by mARB and mCF , thus yielding the families of multiset languages
L (X). Observe that mARB and mCF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F
is a new symbol – the trap symbol). Even with arbitrary multiset rules, it is not
possible to get Ps (L (ARB)) [8]:

L (mCF) = Ps (L (CF)) ⫋ L (mARB) ⫋ Ps (L (ARB)) .

2.4 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps (L (ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n,LM , RM , p0, h) where n, n ≥ 1, is
the number of registers, LM is the set of instruction labels, p0 is the start label,
h is the halting label (only used for the HALT instruction), and RM is a set of
(labeled) instructions being of one of the following forms:

• p : (ADD (r) , q, s) increments the value in register r and continues with the
instruction labeled by q or s,

Activation and Blocking of Rules in Sequential Grammars 7

• p : (SUB (r) , q, s) decrements the value in register r and continues the computa-
tion with the instruction labeled by q if the register was non-empty, otherwise
it continues with the instruction labeled by s;

• h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s) q = s;
in this case we write p : (ADD (r) , q). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with k components
using k + 2 registers, for instance, see [9].

2.5 Graph-controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a construct

GGC = (G, g,Hi,Hf ,=⇒GC)

where G = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a labeled
graph where H is the set of node labels identifying the nodes of the graph in a
one-to-one manner, E ⊆ H × {Y,N} ×H is the set of edges labeled by Y or N ,
K : H → 2P is a function assigning a subset of P to each node of g; Hi ⊆ H
is the set of initial labels, and Hf ⊆ H is the set of final labels. The derivation
relation =⇒GC is defined based on =⇒G and the control graph g as follows: For
any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if

• u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
• u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar is said to be
without applicability checking ; the corresponding families of languages are denoted
by L (X-GC) and L (X-P), respectively.

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages generated by graph-
controlled grammars of type X is abbreviated by L

(
X-GCallfinal

ac

)
. By definition,

programmed grammars are just a subvariant where in addition all labels are also
initial.

The notions and concepts with/without applicability checking were introduced
as with/without appearance checking in the original definition for string grammars
because the appearance of the non-terminal symbol on the left-hand side of a
context-free rule was checked, which coincides with checking for the applicabil-
ity of this rule in our general model; in both cases – applicability checking and
appearance checking – we can use the abbreviation ac.

8 A. Alhazov, R. Freund, S. Ivanov

2.6 Matrix Grammars

A matrix grammar (with applicability checking) of type X is a construct

GM = (G,M,F,=⇒GM
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

• wi =⇒G wi+1 or
• wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM) =
{
v ∈ OT | w =⇒∗

GM
v
}
is the language generated by GM . The family

of languages generated by matrix grammars of typeX is denoted by L (X-MATac).
If the set F is empty, then the grammar is said to be without applicability checking ;
the corresponding family of languages is denoted by L (X-MAT).

We mention that in this paper we choose the definition where the sequential
application of the rules of the final matrix may stop at any moment.

2.7 Random-Context Grammars

The following general notion of a random context-grammar had already been in-
troduced in [7, 1] in a similar way before it was formulated in [6].

A random-context grammar GRC of type X is a construct (G,P ′,=⇒GRC
)

where

• G = (O,OT , w, P,=⇒G) is a grammar of type X;
• P ′ is a set of rules of the form (q,R,Q) where q ∈ P , R ∪Q ⊆ P ;
• =⇒GRC

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRC

y if and only if for some rule (q,R,Q) ∈ P ′, x =⇒q y and, moreover,
all rules from R are applicable to x as well as no rule from Q is applicable to
x.

A random-context grammar GRC = (G,P ′,=⇒GRC
) of type X is called a

grammar with permitting contexts of type X if for all rules (q,R,Q) in P ′ we have
Q = ∅, i.e., we only check for the applicability of the rules in R.

A random-context grammar GRC = (G,P ′,=⇒GRC
) of type X is called a

grammar with forbidden contexts of type X if for all rules (q,R,Q) in P ′ we have
R = ∅, i.e., we only check for the non-applicability of the rules in Q.

L(GRC) =
{
v ∈ OT | w =⇒∗

GRC
v
}

is the language generated by GRC . The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are denoted
by L (X-RC), L (X-pC), and L (X-fC), respectively.

Activation and Blocking of Rules in Sequential Grammars 9

2.8 Ordered Grammars

An ordered grammar GO of type X is a construct (Gs,≺,=⇒GO
) where

• Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
• ≺ is a partial order relation on the rules in P ;
• =⇒GO

is the derivation relation assigned to GO such that for any x, y ∈ O,
x =⇒GO

y if and only if for some rule q ∈ P x =⇒q y and, moreover, no rule
p from P with q ≺ p is applicable to x.

L(GO) =
{
v ∈ OT | w =⇒∗

GO
v
}
is the language generated by GO. The family

of languages generated by ordered grammars of type X is denoted by L (X-O).

2.9 Grammars with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specific
moment by activation and blocking relations.

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

GM = (G,L, fL, A,B, L0,=⇒GAB
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fL, A,B are finite
subsets of L× L× N, and L0 is a finite set of tuples of the form

(
q,Q, Q̄

)
, q ∈ L,

with the elements of Q, Q̄ being of the form (l, t), where l ∈ L and t ∈ N, t > 1.
A derivation in GM starts with one element

(
q,Q, Q̄

)
from L0 which means

that the rule labeled by q has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations of
rules and Q̄ as blockings of rules have to be taken into account in addition to the
activations and blockings coming along with the application of the rule labeled
by q. The role of L0 is to get a derivation started by activating some rule for the
first step although no rule has been applied so far, but probably also providing
additional activations and blockings for further derivation steps.

A configuration of GM in general can be described by the object derived so
far and the activations Q and blockings Q̄ for the next steps. In that sense, the
starting tuple

(
q,Q, Q̄

)
can be interpreted as

(
{(q, 1)} ∪Q, Q̄

)
, and we may also

simply write
(
Q′, Q̄

)
with Q′ = {(q, 1)} ∪ Q. We mostly will assume Q and Q̄ to

be non-conflicting, i.e., Q∩ Q̄ = ∅; otherwise, we interpret
(
Q′, Q̄

)
as

(
Q′ \ Q̄, Q̄

)
.

Given a configuration
(
u,Q, Q̄

)
, in one step we can derive

(
v,R, R̄

)
, and we

also write (
u,Q, Q̄

)
=⇒GAB

(
v,R, R̄

)
,

if and only if

10 A. Alhazov, R. Freund, S. Ivanov

• u =⇒G v using the rule r such that (q, 1) ∈ Q and (q, r) ∈ fL, i.e., we apply
the rule labeled by q activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R̄ =
{
(x, i) | (x, i+ 1) ∈ Q̄, i > 0

}
∪ {(x, i) | (q, x, i) ∈ B} ,

R = ({(x, i) | (x, i+ 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})
\

{
(x, i) | (x, i) ∈ R̄

}
(observe that R and R̄ are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

• no rule r is activated to be applied in the next derivation step; in this case we
take v = u and continue with

(
v,R, R̄

)
constructed as before provided R is not

empty, i.e., there are rules activated in some further derivation steps; otherwise
the derivation stops.

The language generated by GAB is defined by

L(GAB) =
{
v ∈ OT |

(
w,Q, Q̄

)
=⇒∗

GAB

(
v,R, R̄

)
for some

(
Q, Q̄

)
∈ L0

}
.

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said to
be a grammar with activation of rules (an A-grammar for short) of type X; the
corresponding family of languages is denoted by L (X-A). In this case we might
not allow the second case in a derivation of the A-grammar that in a derivation
step no rule is activated to be applied. Moreover, an A-grammar is called an A1-
grammar if for all (p, q, t) ∈ A we have t = 1, which means that only the rule
applied in one derivation step activates the rules which can be applied in the next
step; in this case we may only write (p, q) instead of (p, q, 1). Moreover, in L0 we
may simply list the labels of the rules to be applied in the first step.

Example 1. Consider the string grammar GS =
(
(N ∪ T)

∗
, T ∗, w, P,=⇒P

)
with

N = {A,B,C}, T = {a, b, c}, w = ABC, and the set of rules
P = {A → aA,B → bB,C → cC,A → λ,B → λ,C → λ},
as well as the A1-grammar
GA = (G,L, fL, A, L0,=⇒GA

) with
L = {pa, pb, pc, pA, pB , pC}, and, writing p : r for the pairs (p, r) in fL,
fL = {pa : A → aA, pb : B → bB, pc : C → cC}

∪ {pA : A → λ, pB : B → λ, pC : C → λ}
A = {(pa, pb) , (pb, pc) , (pc, pa) , (pc, pA) , (pA, pB) , (pB , pC)} , and
P0 = {pa, pA} .

The underlying string grammar generates the regular set {a}∗ {b}∗ {c}∗, whereas
the A1-grammar GA generates {anbncn | n ∈ N0}: starting with the rule labeled
by pa from L0, the rules corresponding to the sequence of labels papbpc is applied
n ≥ 1 times, and finally we switch to the sequence of rules given by pApBpC
whereafter no rule can be applied any more. Starting with pA yields the empty
string.

Activation and Blocking of Rules in Sequential Grammars 11

Only allowing blocking of rules would not make sense, but if we implicitly have
all rules activated in every derivation step, then blocking some of the rules with the
application of a rule in a derivation step for the next derivation step(s) allows us to
speak of a grammar with blocking of rules (a B-grammar for short) of type X; the
corresponding family of languages is denoted by L (X-B). Moreover, a B-grammar
is called a B1-grammar if for all (p, q, t) ∈ B we have t = 1, which means that the
rule applied in one derivation step can only block the rules to be applied in the
next step; in this case we again only write (p, q) instead of (p, q, 1). Moreover, in
L0 we may simply list the labels of the rules to be applied in the first step.

Example 2. We consider the same underlying string grammar as in Example 1,
GS =

(
(N ∪ T)

∗
, T ∗, w, P,=⇒P

)
with N = {A,B,C}, T = {a, b, c}, w = ABC,

and the set of rules
P = {A → aA,B → bB,C → cC,A → λ,B → λ,C → λ}. From the A1-grammar
as constructed in Example 1, we construct an equvalent B1-grammar
GB = (G,L, fL, B, L0,=⇒GB

) with
L = {pa, pb, pc, pA, pB , pC}, and, writing p : r for the pairs (p, r) in fL,
fL = {pa : A → aA, pb : B → bB, pc : C → cC}

∪ {pA : A → λ, pB : B → λ, pC : C → λ}
B = {(pa, L \ {pb}) , (pb, L \ {pc}) , (pc, L \ {pa, pA})}

∪ {(pA, L \ {pB}) , (pB , L \ {pC})} , and
P0 = {pa, pA} .

This B1-grammar GB generates the same language as the A1-grammar GA

constructed in Example 1, i.e., {anbncn | n ∈ N0}: instead of activating the next
rules to be applied, we block all the other rules.

3 General Results

In this section, we elaborate some general results holding true for many types
of grammars, some even holding for any type X, whereas some of them rely on
specific conditions on X.

3.1 General Results for Standard Control mechanisms

The main results elaborated for the relations between the specific regulating mech-
anisms in [6] and in [5] (not including the new mechanism of activation and block-
ing of rules) are depicted in Figure 1; most of these relations even hold for arbitrary
types X.

Theorem 1. The inclusions indicated by vectors as depicted in Figure 1 hold, the
additionally needed features of having unit and/or trap rules indicated by u and t,
respectively, aside the vector.

12 A. Alhazov, R. Freund, S. Ivanov

L(X-GCac)

L
(
X-GCallfinal

ac

)

L(X-Pac) L(X-MATac)

L(X-GCallfinal)

L(X-P)

L(X-MAT)

L(X-RC)

u, t

L(X-fC)

L(X-O)

t
L(X-pC)

u

L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

3.2 A1-Grammars and B1-Grammars

There is an interesting relation between A1-Grammars and B1-Grammars which
is quite surprising as usually forbidding rules to be applied does not yield the same
computational power as prescribing the rules to be applied in the next step as,
for example, in matrix grammars without ac. The conceptual reason behind this
result is that in B-grammars, by default, all rules are activated for every derivation
step.

Theorem 2. For any type X, L (X-A1) = L (X-B1).

Proof. We first show L (X-A1) ⊆ L (X-B1).

Let GA = (G,L, fL, A, L0,=⇒GA
) be an A1-grammar where the underlying

grammar G = (O,OT , w, P,=⇒G) is of type X, L is a finite set of labels with each
label having assigned one rule from P by the function fL, A is a finite subset of
L× L, and L0 ⊆ L is the set of initial rule labels.

Then we define the equivalent B1-grammar of type X GB as follows:

GB = (G,L, fL, B, L0,=⇒GB
) ,

B = {(l, L \ {m | (l,m) ∈ A}) | l ∈ L} ,

Activation and Blocking of Rules in Sequential Grammars 13

i.e., B is constructed in such a way that instead of activating the rules to be applied
in the next derivation step, we block all the other rules – observe that by default
in B-grammars all rules are activated for every derivation step (compare this with
the construction of the B1-grammar in Example 2 from the A1-grammar given in
Example 1).

We now show the other direction, L (X-A1) ⊇ L (X-B1).

Let GB = (G,L, fL, B, L0,=⇒GB
) be a B1-grammar where the underlying

grammar G = (O,OT , w, P,=⇒G) is of type X, L is a finite set of labels with each
label having assigned one rule from P by the function fL, B is a finite subset of
L× L, and L0 ⊆ L is the set of initial rule labels.

Then we define the equivalent A1-grammar of type X GA as follows:

GA = (G,L, fL, A, L0,=⇒GA
) ,

A = {(l, L \ {m | (l,m) ∈ B}) | l ∈ L} ,
i.e., A is constructed from B in such a way that only those rules are activated to
be applied in the next derivation step which are not blocked according to B. ⊓⊔

It remains as an open question if a similar result also holds for arbitrary A-
and B-grammars.

3.3 Matrix Grammars and A1-Grammars

Our first result shows a close connection between matrix grammars without ap-
pearance checking and A1-grammars:

Theorem 3. For any type X, L (X-MAT) ⊆ L (X-A1).

Proof. Let GM = (G,M,F,=⇒GM
) be a matrix grammar with the underly-

ing grammar G = (O,OT , w, P,=⇒G) being a grammar of type X; let M =
{(pi,1, . . . , pi,ni

) | 1 ≤ i ≤ n} with pi,j ∈ P , 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

We construct the equivalent A1-grammar

GA = (G,L, fL, A, L0,=⇒GA
) ,

L = {li,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
fL = {(li,j , pi,j) | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
A = {(li,j , li,j+1) | 1 ≤ j < ni, 1 ≤ i ≤ n}

∪ {(li,ni , lj,1) | 1 ≤ j ≤ n, 1 ≤ i ≤ n} ,
L0 = {li,1 | 1 ≤ i ≤ n} .

We mention that according to our definitions the sequential application of the rules
of the chosen matrix may stop at any moment if the next rule cannot be applied,
in which case also the simulation in the A1-grammar stops. ⊓⊔

We immediately infer the following for the special cases of strings, multisets,
and arrays as underlying objects:

Corollary 1. For X ∈ {CF,mCF} ∪ {d-#-CFA | d ∈ N},
L (X-MAT) ⊆ L (X-A1) .

14 A. Alhazov, R. Freund, S. Ivanov

3.4 Random Context Grammars and AB-Grammars

For any type X with unit rules, random context grammars of type X can be
simulated by AB-grammars of type X.

Remark 1. In order to keep proofs shorter, in the following, instead of specifying
the set of rules P , the set of labels L, and the function fL assigning rules to the
labels separately, we will only specify the corresponding labeled rules of the form
l : r with l ∈ L, r ∈ P , and (l, r) ∈ fL. Moreover, for X ∈ {A,B}, instead of
(p, q, t) ∈ X, we write (p, q, t)X .

Theorem 4. For any type X with unit rules, L (X-RC) ⊆ L (X-AB).

Proof. Let (G,R,=⇒GRC
) be a random context grammar with the underlying

grammar G = (O,OT , w, P,=⇒G) being of a type X with unit rules, where

R = {(ri, Pi, Qi) | 1 ≤ i ≤ n} , ri ∈ P, 1 ≤ i ≤ n,
Pi = {pi,j | 1 ≤ j ≤ mi, 1 ≤ i ≤ n} ,mi ≥ 0, 1 ≤ i ≤ n,
Qi = {qi,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} , ni ≥ 0, 1 ≤ i ≤ n.

Then we construct an AB-grammar GAB of type X as follows:

GAB = (G′, L, fL, A,B, L0,=⇒GA
) ,

G′ = (O,OT , w, P
′,=⇒G′) ,

P ′ = P ∪ {r+ | r ∈ P} ;
L0 = {lri | 1 ≤ i ≤ n} ;

the application of a random context rule (ri, Pi, Qi) is simulated by the following
sequence of labeled rules together with suitable activations and blockings of rules:

• lri : ri
+, (lri , lri,1)A, (lri , l̄ri,j ,mi+j)A, 1 ≤ j ≤ ni; at the beginning, the check-

ing of all rules which should not be applicable is initiated, and the sequence of
applicability checkings for the rules in Pi is started;

• lri,j : pi,j
+, (lri,j , lri,j+1)A, 1 ≤ j < mi;

• lri,mi : pi,mi
+, (lri,mi , l̂ri , ni + 1)A; when all rules in Pi have been checked to

be applicable, the application of rule ri after further ni steps is activated; yet
if any of the rules in Qi is applicable, then this application of rule ri is blocked;

• l̄ri,j : qi,j
+, (l̄ri,j , l̂ri , ni − j + 1)B , 1 ≤ j ≤ ni;

• l̂ri : ri, (l̂ri , lrk), 1 ≤ k ≤ n; after the successful application of rule r we may
continue with trying to apply any random context rule from R.

We finally observe that only unit rules and no trap rules as in other simulations
known from [6] are needed to obtain this result. ⊓⊔

3.5 AB-Grammars and Graph-Controlled Grammars

Already in [6] graph-controlled grammars have been shown to be the most powerful
control mechanism, and they can also simulate AB-grammars with the underlying
grammar being of any arbitrary type X.

Activation and Blocking of Rules in Sequential Grammars 15

Theorem 5. For any type X, L (X-AB) ⊆ L (X-GCac).

Proof. Let GAB = (G,L, fL, A,B, L0,=⇒GA
) be an AB-grammar with the under-

lying grammar G = (O,OT , w, P,=⇒G) being of any type X. Then we construct
a graph-controlled grammar

GGC = (G, g,Hi,Hf ,=⇒GC)

with the same underlying grammar G. The simulation power is captured by the
structure of the control graph g = (H,E,K). The node labels in H, identifying
the nodes of the graph in a one-to-one manner, are obtained from GAB as all
possible triples of the forms

(
q,Q, Q̄

)
or

(
q̄, Q, Q̄

)
with q ∈ L and the elements

of Q, Q̄ being of the form (r, t), r ∈ L and t ∈ N such that t does not exceed
the maximum time occurring in the relations in A and B, hence, this in total is a
bounded number. We also need a special node labeled ∅, where a computation in
GGC ends in any case when this node is reached.

All nodes can be chosen to be final, i.e., Hf = H. Hi = L0 is the set of initial
labels, i.e., we start with one of the initial conditions as in the AB-grammar.

The idea behind the node
(
q,Q, Q̄

)
is to describe the situation of a configuration

derived in the AB-grammar where q is the label of the rule to be applied and Q, Q̄
describe the activated and blocked rules for the further derivation steps in the
AB-grammar. Hence, as already in the definition of an AB-grammar, we therefore
assume Q ∩ Q̄ = ∅.

Now let g(l) denote the rule r assigned to label l, i.e., (l, r) ∈ fL. Then, the set
of rules assigned to

(
q,Q, Q̄

)
is taken to be {g(q)}. The set of rules assigned to ∅

is taken to be ∅.
As it will become clear later in the proof why, the nodes

(
q̄, Q, Q̄

)
are assigned

the set of rules {g(l) | (l, 1) ∈ Q, l ̸= q}; we only take those nodes where this set
is not empty.

When being in node
(
q,Q, Q̄

)
, we have to distinguish between two possibilities:

• If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

R̄ =
{
(x, i) | (x, i+ 1) ∈ Q̄, i > 0

}
∪ {(x, i) | (q, x, i) ∈ B} ,

R = ({(x, i) | (x, i+ 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})
\

{
(x, i) | (x, i) ∈ R̄

}
(observe that R and R̄ are made non-conflicting) as well as – if it exists –
t0 := min{t | (x, t) ∈ R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node

(
p, P, P̄

)
where p ∈ {x | (x, t0) ∈ R} and

P̄ =
{
(x, i) | (x, i+ t0 − 1) ∈ R̄, i > 0

}
,

P = {(x, i) | (x, i+ t0 − 1) ∈ R} .

16 A. Alhazov, R. Freund, S. Ivanov

If t0 := min{t | (x, t) ∈ R} does not exist, this means that R is empty and we
have to make a Y-edge to the node ∅.

• If g(q) is not applicable to the object derived so far, we first have to check that
none of the other rules activated at this step could have been applied, i.e., we
check for the applicability of the rules in the set of rules

Ū := {g(l) | (l, 1) ∈ Q, l ̸= q}

by going to the node
(
q̄, Q, Q̄

)
with a N-edge; from there no Y-edge leaves, as

this would indicate the unwanted case of the applicability of one of the rules
in Ū , but with a N-edge we continue the computation in any node

(
p, P, P̄

)
with p, P , P̄ computed as above in the first case. We observe that in case R̄
is empty, we can omit the path through the node

(
q̄, Q, Q̄

)
and directly go

to the nodes
(
p, P, P̄

)
which are obtained as follows: we first check whether

t0 := min{t | (x, t) ∈ Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node ∅. Otherwise, a N-edge goes to every node(
p, P, P̄

)
with p ∈ {x | (x, t0) ∈ Q} and

P̄ =
{
(x, i) | (x, i+ t0 − 1) ∈ Q̄, i > 0

}
,

P = {(x, i) | (x, i+ t0 − 1) ∈ Q} .

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the graph-
controlled grammar with taking a correct path through the control graph and
finally ending in node ∅; due to this fact, we could also choose the node ∅ to be
the only final node, i.e., Hf = {∅}. On the other hand, if we have made a wrong
choice and wanted to apply a rule which is not applicable, although another rule
activated at the same moment would have been applicable, we get stuck, but the
derivation simulated in this way still is a valid one in the AB-grammar, although in
most standard types X, which usually are strictly extended ones, such a derivation
does not yield a terminal object. Having taken Hf = {∅}, such paths would not
even lead to successful computations in GGC .

In any case, we conclude that the graph-controlled grammar GGC generates the
same language as the AB-grammar GAB , which observation concludes the proof.
⊓⊔

The power of rule activation is really strong and in most cases the additional
power of blocking is not needed. As a special variant of graph-controlled gram-
mars we consider those where all labels are final; the corresponding family of
languages generated by graph-controlled grammars of type X is abbreviated by
L
(
X-GCallfinal

ac

)
.

Theorem 6. For any strictly extended type X with unit rules and trap rules,

L
(
X-GCallfinal

ac

)
⊆ L (X-A) .

Activation and Blocking of Rules in Sequential Grammars 17

Proof. Let
GGC = (G, g,Hi,Hf ,=⇒GC)

be a graph-controlled grammar where G = (O,OT , w, P,=⇒G) is a strictly ex-
tended grammar of type X; g = (H,E,K), E ⊆ H × {Y,N} × H is the set of
edges labeled by Y or N , K : H → 2P is a function assigning a subset of P to
each node of g; Hi ⊆ H is the set of initial labels, and Hf is the set of final labels
coinciding with the whole set H, i.e., Hf = H .

Then we construct an equivalent A-grammar

GA = (G′, L, fL, A, L0,=⇒GA
)

as follows:
The underlying grammar G′ is obtained from G by adding all unit and trap

rules, i.e., G′ = (O,OT , w, P
′,=⇒G′) with P ′ = P ∪ {p+, p− | p ∈ P}. G′ again is

strictly extended and w /∈ OT , hence, also in GA rules have to be applied before
terminal objects are obtained. For any node in g labeled by l with the assigned set
of rules Pl we assume it to be described by Pl = {pl,i | 1 ≤ i ≤ nl}. Moreover, for
pl,i we take a label (l, i) into L and ((l, i), pl,i) into fL.

We now sketch how the transitions from a node in g labeled by l with the
assigned set of rules Pl can be simulated:

For each rule pl,i in Pl, 1 ≤ i ≤ nl, (l, Y, k) ∈ E and pk,j ∈ Pk, we take
((l, i), (k, j)) into A.

If no rule in Pl can be applied, a trickier construction is needed: as long as
we assume that at some moment when going through the control graph a rule
will be applicable, we guess in which node k this will happen as well as a path
h0 = l−h1−· · ·−hn = k in g following only N-edges from node l to node k which
does not contain a loop. For any such path we introduce a label (l̄, h1, . . . , (k, j))
in L and (l̄, h1, . . . , (k, j)) : pk,j

+ in fL. Moreover, we use the following activations
in A:

• ((l̄, h1, . . . , (k, j)), {q− | q ∈
∪

0≤i≤k−1 Phi
, 1) is used to check in the next step

that no rule along the path from node l to node k is applicable, whereas in the
second next step only the designated rule pk,j can be applied, i.e., we take

• ((l̄, h1, . . . , (k, j)), pk,j , 2) into A.

What remains to be settled is how a derivation in the A-grammar starts:
As w /∈ OT , at least one rule must be applied to obtain a terminal object;

hence, we check all possibilities that a rule in an initial node in Hi or along a path
in g following only N-edges from such an initial node can be applied; for each such
rule pk,j in node k we introduce an initial label (k, j) in L and also take it into

L0 as well as (k, j) : pk,j
+ into fL which allows for starting with pk,j using the

activation ((k, j), (k, j)) in A. As by construction pk,j is applicable it is guaranteed
that any continuation of the computation will follow a Y-edge in g and thus the
simulation in GA will also follow the simple simulation of an applicable rule and
its continuation with a direct activation of rule in a set assigned to a node directly
reachable from node k by a Y-edge.

18 A. Alhazov, R. Freund, S. Ivanov

In total, the construction given above guarantees that the simulation of a com-
putation in GGC by a computation in GA starts correctly and continues until no
rule can be applied any more. As we have assumed all nodes in g to be final and
X to be a strictly extended type, i.e., no rules can be applied to a terminal object
any more, the only condition to get a result is to obtain a terminal object at the
end of a computation. This observation completes our proof. ⊓⊔

As programmed grammars are just a special case of graph-controlled grammars
with all labels being final, we immediately infer the following result:

Corollary 2. For any strictly extended type X with unit rules and trap rules,

L (X-Pac) ⊆ L (X-A) .

4 Special Results for Specific Objects

In this section we show computational completeness results for AB-grammars
based on corresponding well-known computational completeness for other control
mechanisms.

4.1 Special Results for Arrays

In both the one- and the two-dimensional case, it has been shown, see [4], that even
matrix grammars without ac are sufficient to generate any recursively enumerable
array language, i.e., for d ∈ {1, 2}, L (d-#-CFA-MAT) = L (d-ARBA) (the main
reason for such a result is the “#-sensing” ability of the rules of type d-#-CFA).
Based on Theorem 3, we immediately infer the following result:

Theorem 7. For d ∈ {1, 2},

L (d-#-CFA-A1) = L (d-#-CFA-MAT) = L (d-ARBA) .

For arbitrary dimensions d ∈ N, we have (see [4])

L (d-#-CFA-O) = L (d-ARBA) .

Hence, based on Corollary 2 and Theorem 1 we obtain the following result:

Theorem 8. For any d ∈ N and for any control mechanism Y ,
Y ∈

{
O, fC,RC,MATac, Pac, GCallfinal

ac , GCac, A,AB
}
,

L (d-ARBA) = L (d-#-CFA-Y) .

Activation and Blocking of Rules in Sequential Grammars 19

4.2 Special Results for Strings

It is well-known, for example see [2], that L (CF -RC) = L (ARB). Based on
Theorem 4, we immediately infer the following computational completeness result:

Theorem 9. L (CF -AB) = L (CF -RC) = L (ARB) = RE.

Based on Corollary 2, we even obtain the following stronger result:

Theorem 10. L (CF -A) = L (CF -Pac) = L (CF -GCac) = L (CF -RC) = RE.

4.3 Special Results for Multisets

As in the case of multisets the structural information contained in the sequence
of symbols cannot be used, arbitrary multiset rules are not sufficient for obtaining
all sets in Ps (L (ARB)). Yet we can show that even with A-grammars we obtain
the following:

Theorem 11. PsRE = Ps (L (ARB)) = L (mARB-A).

Proof. It is folklore, for example see [8] and [6], that

PsRE = Ps (L (ARB)) = L (mARB-fC) = L (mARB-RC) ,

hence, by Theorem 4, we also obtain PsRE = L (mARB-AB). Based on Corol-
lary 2, we even obtain PsRE = L (mARB-Pac) = L (mARB-A) . ⊓⊔

5 Computational Completeness for Context-Free
AB-Grammars with Two Non-Terminal Symbols

In this section, we state our main results for context-free string and multiset gram-
mars showing that computational completeness can already be obtained with two
non-terminal symbols, which result is optimal with respect to the number of non-
terminal symbols.

Theorem 12. Any recursively enumerable set of strings can be generated by a
context-free AB-grammar using only two non-terminal symbols.

Proof. (Sketch) The main technical details of how to use only two non-terminal
symbols A and B for generating a given recursively enumerable language follow the
construction given in [6] for graph-controlled grammars. The most important to be
shown here is how to simulate the ADD- and SUB-instructions of a deterministic
register machine with the contents of the two working registers being given by the
number of symbols A and B; only at the end, both numbers are zero, whereas in
between, during the whole computation, at least one symbol A or B is present.

20 A. Alhazov, R. Freund, S. Ivanov

The initial string is A, and one A is also the last symbol to be erased at the end
in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols A
and B, and Y then stands for the other one. For any label p of the register machine
we use two labels p and p′. The simulations in the AB-grammar work as follows:

• p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, q, 1)A, (p
′, q′, 2)A;

• p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, s, 1)A, (p
′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled by p′;
in any case, for the next rule labeled r to be simulated, both r and r′ are activated,
again r′ following r one step later.

For the halting label h, only the labeled rule h : A → λ is to be activated. ⊓⊔
This result is optimal with respect to the number of non-terminal symbols:

as it has been shown in [3], even for graph-controlled context-free grammars one
non-terminal symbol is not enough, hence, the statement immediately follows from
Theorem 5.

We now show a similar result for multset grammars.

Theorem 13. Any recursively enumerable set of multisets can be generated by an
AB-grammar using context-free multiset rules and only two non-terminal symbols.

Proof. Given a recursively enumerable set of multisets L over the terminal alpha-
bet T = {a1, . . . , ak}, we can construct a register machine ML generating L in the
following way: instead of speaking of a number n in register r we use the nota-
tion ar

n, i.e., a configuration of ML is represented as a string over the alphabet
V = T ∪ {ak+1, ak+2} with the two non-terminal symbols ak+1, ak+2.

We start with one ak+1 and first generate an arbitrary multiset over T step by
step adding one element am from T and at the same time multiply the number
of symbols ak+1 by pm, where pm is the m-th prime number. At the end of this
procedure, for the multiset a1

n1 . . . ak
nk we have obtained am

nm in each register
m, 1 ≤ m ≤ k, and ak+1

p1
n1 ...pk

nk in register k+1. As for example, already shown
in [9], only using registers k + 1 and k + 2, a deterministic register machine M ′

L

simulating any number of registers by this prime number encoding can compute
starting with ak+1

p1
n1 ...pk

nk and halt if and only if a1
n1 . . . ak

nk ∈ L. Only with
halting, all registers of M ′

L are cleared to zero, i.e., we end up with only one ak+1

in ML when this deterministic register machine M ′
L has reached its halting label

h. So the last step of ML before halting is just to eliminate this last ak+1. During
the whole computation of ML, the sum of symbols ak+1 and ak+2 is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X to
specify one of the two non-terminal symbols ak+1 and ak+2, and Y then stands for
the other one, i.e., X,Y ∈ {ak+1, ak+2}. For any label p of the register machine
we use two labels p and p′. The simulations in the AB-grammar work as follows:

Activation and Blocking of Rules in Sequential Grammars 21

• a non-deterministic ADD-instruction p : (ADD(X), q, s) is simulated by
branching into two deterministic ADD-instructions even twice:
p : X → X and p′ : Y → Y with (p, p′, 1)B as well as
(p, (p,X, q), 2)A, (p, (p,X, s), 2)A, and (p′, (p, Y, q), 1)A, (p

′, (p, Y, s), 1)A;

in the third step of the simulation, we already know whether X is present or
else we have to use Y ; this now allows us to simulate the four deterministic
ADD-instructions (p, α, β) : (ADD(X), β), α ∈ {X,Y }, β ∈ {q, s}, in a simpler
way by using the rules
(p, α, β) : α → αX
and the activations
((p, α, β), β, 1)A, ((p, α, β), β

′, 2)A;

• p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, q, 1)A, (p
′, q′, 2)A;

• p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, s, 1)A, (p
′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled
by p′; in any case, for the next rule labeled r to be simulated, both r and r′

are activated, again r′ following r one step later;

• for the halting label h, only the labeled rule h : ar+1 → λ is to be activated.

When the final rule h : ar+1 → λ is applied, no further rule is activated, thus
the derivation ends yielding the multiset a1

n1 . . . ak
nk ∈ L as terminal result. ⊓⊔

6 Conclusion

We have considered the concept of regulating the applicability of rules based on
the application of rules in the preceding step(s) within a very general model for
sequential grammars and compared the resulting computational power in relation
to various other control mechanisms based on the applicability of rules in the un-
derlying grammar, especially for graph-controlled and matrix grammars as well as
random context grammars. Even only using the structural features of the sequences
of applied rules, yet not taking into account the features of the underlying objects
(e.g., strings, multisets, arrays), general simulation results are obtained. Then we
also established some special computational completeness results for string, array,
and multiset grammars only using activation of rules. Using both activation and
blocking of rules in the case of string and multiset grammars with context-free
rules, computational completeness can already be obtained with only two non-
terminal symbols, which is a sharp result, as only one non-terminal symbol is not
sufficient.

The concept of activation and blocking of rules can also be used when rules
are applied in parallel, which is an attractive idea for the area of P systems where
several variants of parallel derivation modes are common.

22 A. Alhazov, R. Freund, S. Ivanov

References

1. Cavaliere, M., Freund, R., Oswald, M., Sburlan, D.: Multiset random context gram-
mars, checkers, and transducers. Theoretical Computer Science 372(2–3), 136–151
(2007)

2. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin (1989)

3. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. Journal of Au-
tomata, Languages and Combinatorics 12(1–2), 117–138 (2007)

4. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, Gh.
(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World
Scientific Publ., Singapore (1994)

5. Freund, R.: Control mechanisms for array grammars on cayley grids. In: Durand-
Lose, J., Verlan, S. (eds.) Proceedings of MCU 2018. Lecture Notes in Computer
Science, Springer (2018)

6. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computa-
tion, Cooperation, and Life - Essays Dedicated to Gheorghe Păun on the Occasion of
His 60th Birthday. Lecture Notes in Computer Science, vol. 6610, pp. 35–53. Springer
(2011)

7. Freund, R., Oswald, M.: Modelling grammar systems by tissue P systems working in
the sequential mode. Fundamenta Informaticae 76(3), 305–323 (2007)

8. Kudlek, M., Mart́ın-Vide, C., Păun, Gh.: Toward a formal macroset theory. In:
Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing –
Mathematical, Computer Science and Molecular Computing Points of View, Lecture
Notes in Computer Science, vol. 2235, pp. 123–134. Springer-Verlag, Berlin (2001)

9. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1967)

10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

11. Rosenfeld, A.: Picture Languages. AcademicPress, Reading, MA (1979)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.

Springer, New York, NY, USA (1997)
13. Wang, P.S.P. (ed.): Array Grammars, Patterns and Recognizers, World Scientific

Series in Computer Science, vol. 18. World Scientific Publ., Singapore (1989)
14. The P Systems Website. http://ppage.psystems.eu/

