Membrane Computing Applications in Computational Economics

Eduardo Sánchez Karhunen

BWMC 2017 Sevilla, February 3, 2017
Contents

1. Preliminaries
2. Producer – Retailer problem: Initial Model
 • Description.
 • Formalization.
 • Implementation in P – Lingua & MeCoSim.
 • Simulation & Results discussion.
 • Description.
 • Formalization.
 • Implementation in P – Lingua & MeCoSim.
 • Simulation & Results discussion.
4. Further developments
Motivation

• Success of MC modeling biological systems
• Translation to unexplored field: Economic Modeling
• Replication of Păun’s Producer - Retailer Problem results:
 • Selection of the proper type of P System
 • Economic processes modeling
 • Implementation in P-Lingua & MeCoSim
 • Simulate & discuss results
• Extension of the original model with new economic processes:
 • Identification and modeling of processes
 • Implementation & simulation
• Further developments
Why not extend to other fields?

- **Computational economics:**
 - Computational modeling of economic systems (ODEs, ABM, ...)

- **Up-to-date efforts:**
 - Polish authors: Korczynski (2005)
 - Păun’s efforts:
Păun’s proposals

- Encourage researchers of other areas to use P Systems.
- Suggests modeling of some processes:
 - Production of goods
 - Order of goods
 - Purchase transactions:
 - Preferences between pairs (producer, retailer)
 - Geographical barriers
 - No distinction between counterparts
 - Monetary unit exchange
 - Capacity increase
Producer – Retailer Problem

Membrane Computing Applications in Computational Economics
Model Entities

- **Actors:**
 - Producers:
 - \((b_i, u_i) \rightarrow \text{capacity, money}\)
 - Retailers
 - \((c_j, v_j) \rightarrow \text{capacity, money}\)

- **Generic sources:**
 - Of raw material \((u_S, \text{generation rate})\)
 - Of demand or Generic consumer \((u_C, \text{demand rate})\)
Model interactions

- **Good’s and order’s flows:**
 - Producers generate good d from raw material.
 - Retailers receive order \bar{d} from generic consumer.
 - d and \bar{d} are matched
 - Purchase $P_{i,j} = P(\text{producer } i, \text{retailer } j)$

- **Monetary flows:**
 - Monetary unit exchange (u_S, u_C, u_i, u_j)
 - A set of prices.

- **External monetary injection:**
 - Key role for system evolving.
Summarized actors & interactions
Păun’s proposed system dynamic

- Presents a system behavior simulation:
Proposal - drawbacks

- Păun sketches the model:
 - No indications about:
 - Type of P System to be used.
 - The sequence of steps of the cyclic behavior.
 - The competing set of rules to be used.
 - Probabilities associated to rules in a strange way.
 - Randomness introduced in a naive way.

\[
\begin{align*}
[d_1 \bar{d}_1 v_1^{\text{price}}]_2 & \xrightarrow{p_{11}} [b_1 c_1 u_1^{\text{price}}]_2 \\
[d_2 \bar{d}_1 v_1^{\text{price}}]_2 & \xrightarrow{p_{12}} [b_2 c_1 u_2^{\text{price}}]_2 \\
[d_3 \bar{d}_1 v_1^{\text{price}}]_2 & \xrightarrow{p_{13}} [b_3 c_1 u_3^{\text{price}}]_2
\end{align*}
\]

\[\sum_i p_{ij} = 1\] Non-as-usual
Reproducing Păun’s system evolution

- Define a so-called: Initial Model

- Steps:
 - Select a type of P System -> PDP System.
 - Probabilities associated to rules.
 - Success in ecosystem modeling.
 - Define the steps of the cycle:
 - Associated to the transactions.
 - Formalize the model.
 - Establish the set of rules:
 - Following Păun’s guidelines.
 - Avoid problems associated to “strange” probabilities.
Defining steps of cycle

1. Initialization
 - Aggregate demand creation
 - Raw material disposability

2. Production
 - Orders generation
 - Production of goods

3. Authorization
 - Purchase authorizations generation

4. Transaction
 - Purchase transactions

5. Cleaning
 - Cleaning and technical rules

Membrane Computing Applications in Computational Economics
Model Formalization (I)

\[\Pi = (G, \Gamma, \Sigma, T, \mathcal{R}_E, \mu, \mathcal{R}_\Pi, \{ f_r \in \mathcal{R}_\Pi \}, M_1, M_2) \]

PDP System of degree (2,1)

Where:

- \(G = (V, E) \) with \(V = \{ e_1 \} \) and \(E = \{(e_1, e_1)\} \).
- Working alphabet: \(\Gamma = \{ b_i, d_i, u_i, c_j, \bar{d}_j, v_j, \bar{e}_j, f_{i,j} : 1 \leq i \leq k_1, 1 \leq j \leq k_2 \} \cup \{ R_1, R_2 \} \cup \{ C, S, \bar{d}, a, u_C, u_S \} \)

Where:

- \(C \): aggregate generic consumer.
- \(S \): raw material supplier.
- \(\bar{d} \): unit of aggregate demand from \(C \).
- \(a \): unit of supplied raw material provided by \(S \).
- \(u_C \): monetary unit owned by \(C \).
- \(u_S \): monetary unit owned by \(S \).
- \(b_i \): unit of production capacity of producer \(i. 1 \leq i \leq k_1 \).
- \(d_i \): unit of good supplied by producer \(i. 1 \leq i \leq k_1 \).
- \(u_i \): monetary unit owned by producer \(i. 1 \leq i \leq k_1 \).
- \(c_j \): unit of capacity of retailer \(j. 1 \leq j \leq k_2 \).

\(\bar{d}_j \): unit of good demanded by retailer \(j. 1 \leq j \leq k_2 \).

\(v_j \): monetary unit owned by retailer \(j. 1 \leq j \leq k_2 \).

\(\bar{e}_j \): unit of good demanded by retailer and authorized for transaction unit of \(\bar{d}_j. 1 \leq j \leq k_2 \).

\(f_{i,j} \): authorization for \(\bar{d}_j \) to be exchange with \(d_i. 1 \leq i \leq k_1, 1 \leq j \leq k_2 \).

\(R_1, R_2 \): for technical reasons.
Model Formalization (II)

- $\Sigma = \emptyset$.
- $R_E = \emptyset$.
- $\Pi = \{\Gamma, \mu, M_1, M_2, R_\Pi\}$ where:
 - Membrane structure: $\mu = [\ []_2]_1$.
 - $M_1 = \{C, S, R_1, R_2\} \cup \{b_{i}^{k_{i,1}}, u_{i}^{k_{i,2}} : 1 \leq i \leq k_1\} \cup \{c_{j}^{k_{j,3}} : 1 \leq j \leq k_2\}$

Initial multisets contain basically:

- $b_{i}^{k_{i,1}}, u_{i}^{k_{i,2}}$: producers’ initial parameters.
- $c_{j}^{k_{j,3}}$: retailers’ initial capacities.

Where:

- $k_{i,1}$: initial production capacity of producer i. $1 \leq i \leq k_1$.
- $k_{i,2}$: initial monetary units of producer i. $1 \leq i \leq k_1$.
- $k_{j,3}$: initial capacity of retailer j. $1 \leq j \leq k_2$.
Model Parameters

Goal: maximize model parametrization

- k_1: total number of producers.
- k_2: total number of retailers.
- k_3: units of raw material inserted into the system by S.
- k_4: allowed deviation from k_3.
- k_5: units of aggregate demand inserted into the system by C.
- k_6: allowed deviation from k_5.
- k_7: price fixed by S for each unit of a.
- k_8: price fixed by C as an estimation of each order of good.
- $k_{i,1}$: initial production capacity of producer i. $1 \leq i \leq k_1$.
- $k_{i,2}$: initial monetary units of producer i. $1 \leq i \leq k_1$.
- $k_{j,3}$: initial capacity of retailer j. $1 \leq j \leq k_2$.
- $k_{m,4}$: discrete prob. distribution of units of raw material inserted into the system by S. $1 \leq m \leq 3$.
- $k_{m,5}$: discrete prob. distribution of units of aggregate demand inserted into the system by C. $1 \leq m \leq 3$.
- $k_{i,6}$: price fixed by producer i for each unit of d_i. $1 \leq i \leq k_1$.
- $k_{j,7}$: price fixed by retailers j for each order of good. $1 \leq j \leq k_2$.
Set of rules – Initialization

- Step 1.a: raw material disposability

\[r_1 \equiv R_1 s[\ldots]_2^{k_{1,4}} a^{k_3+k_4} s[R_1]_2^+ \]
\[r_2 \equiv R_1 s[\ldots]_2^{k_{2,4}} a^{k_3} s[R_1]_2^+ \]
\[r_3 \equiv R_1 s[\ldots]_2^{k_{3,4}} a^{k_3-k_4} s[R_1]_2^+ \]
\[r_4 \equiv R_1 s[\ldots]_2^{1-k_{1,4}-k_{2,4}-k_{3,4}} a^{k_3-2*k_4} s[R_1]_2^+ \]

- Step 1.b: generic demand creation

\[r_5 \equiv R_2 c[\ldots]_2^{k_{1,5}} \bar{d}^{k_5+k_6} u_C^{(k_5+k_6)*k_8} c[R_2]_2^+ \]
\[r_6 \equiv R_2 c[\ldots]_2^{k_{2,5}} \bar{d}^{k_5} u_C^{k_5*k_8} c[R_2]_2^+ \]
\[r_7 \equiv R_2 c[\ldots]_2^{k_{3,5}} \bar{d}^{k_5-k_6} u_C^{(k_5-k_6)*k_8} c[R_2]_2^+ \]
\[r_8 \equiv R_2 c[\ldots]_2^{1-k_{1,5}-k_{2,5}-k_{3,5}} \bar{d}^{k_5-2*k_6} u_C^{(k_5-2*k_6)*k_8} c[R_2]_2^+ \]

- Katie’s initial units of raw material inserted into the system by \(S \).
- \(k_4 \): allowed deviation from \(k_3 \).
- \(k_{m,4} \): discrete prob. distr. of units of raw material inserted.
- \(k_5 \): units of aggregate demand inserted by \(C \).
- \(k_6 \): allowed deviation from \(k_5 \).
- \(k_{m,5} \): discrete prob. distr. of units of aggregate demand inserted.
Set of rules – Production

- **Step 2.a: producer operation**
 \[r_9 \equiv a \cdot b_i \cdot u_i^{k_7} \cdot []_2^+ \rightarrow u_S^{k_7} \cdot [d_i]_2^0 \quad 1 \leq i \leq k_1 \]

- **Step 2.b: retailer operation**
 \[r_{10} \equiv \bar{d} \cdot c_j \cdot u_C^{k_{j,7}} \cdot []_2^+ \rightarrow [\bar{d} \cdot v_j^{k_{j,7}}]_2^0 \quad 1 \leq j \leq k_2 \]

- \(k_1 \): total number of producers.
- \(k_2 \): total number of retailers.
- \(k_7 \): price fixed by \(S \) for each unit of \(a \).
- \(k_{j,7} \): price fixed by retailers \(j \) for each order of good.
Set of rules – Auth. & Trans.

- **Step 3: Purchase auth. generation**

 \[r_{14} \equiv [\tilde{d}_1]_2 \rightarrow [\tilde{e}_1 f_{1,1}]_2 \]

 - Geo-barriers

 \[r_{15} \equiv [\tilde{d}_1]_2 \rightarrow [\tilde{e}_1 f_{1,2}]_2 \]

 - Non-preferences

 \[r_{16} \equiv [\tilde{d}_2]_2 \rightarrow [\tilde{e}_2 f_{2,1}]_2 \]

 \[r_{17} \equiv [\tilde{d}_2]_2 \rightarrow [\tilde{e}_2 f_{2,2}]_2 \]

 - Preferences

 \[r_{18} \equiv [\tilde{d}_3]_2 \rightarrow [\tilde{e}_3 f_{3,1}]_2 \]

 \[r_{19} \equiv [\tilde{d}_3]_2 \rightarrow [\tilde{e}_3 f_{3,2}]_2 \]

 Solution: \(f_{i,j} \) follows the probability distribution of the desired transactions probabilities.

- **Step 4: Purchase transactions**

 \[r_{20} \equiv [d_{i} \tilde{e}_j f_{i,j} v_{j}^{k_{i,j}}]_2 \rightarrow [b_{i} c_{j} u_{i}^{k_{i,j}}]_2 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2 \]

 - \(k_1 \): total number of producers.

 - \(k_2 \): total number of retailers.

 - \(k_{i,j} \): price fixed by producer \(i \) for each unit of \(d_i \).
Set of rules – Cleaning

Step 5: cleaning rules

- Eliminate non-exhausted authorizations:
 \[r_{26} \equiv [f_{i,j}]_2^{-} \rightarrow []_2^0 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2 \]

- Unauthorize non-exhausted \(\tilde{e}_j \):
 \[r_{27} \equiv [\tilde{e}_j]_2^{-} \rightarrow \tilde{d}_j[]_2^0 \quad 1 \leq j \leq k_2 \]

- Signaling a new cycle:
 \[r_{30} \equiv [r_1, r_2]_2^{-} \rightarrow r_1, r_2 []_2^0 \]

\(k_1 \): total number of producers.

\(k_2 \): total number of retailers.
P - Lingua

- Set of rules has been implemented in P – Lingua.

- An example for each set of rules:
 - Initialization:

    ```
    /* r2 */ s, R_1[ ]'2 → s, a * k{3} + [R_1]'2 :: k_{2,4};
    ```
 - Production:

    ```
    /* r9 */ b{i}, a, u{i} * k{7} + [ ]'2 → u s * k{7}[ d{i}]'2 :: 1 : 1 ≤ i ≤ k{1}
    ```
 - Authorization:

    ```
    /* r18 */ [d{n}{3} ]'2 → [e{n}{3}, f{3,1} ]'2 :: 0.15
    ```
 - Transaction:

    ```
    /* r20 */ [d{i}, e{n}{j}, f{j, i}, v{j} * k{i, 6} ]'2 → −[ b{i}, c{j}, u{i} * k{i, 6} ]'2 :: 1 1 ≤ i ≤ k{1}, 1 ≤ j ≤ k{2}
    ```
Simplified trace

STEP 1:
- Generic demand generation
- Supply creation

STEP 2:
- Production of goods
- Order generation

STEP 3:
- Generation of purchase transaction authorizations

STEP 4:
- Purchase transactions

STEP 5:
- Cleaning
- Technical rules

Membrane Computing Applications in Computational Economics
Simulation parameters

- Simulation tool: MeCoSim
- Parameters: same as Păun’s paper

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/s</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>2</td>
<td>Total number of producers</td>
</tr>
<tr>
<td>k_2</td>
<td>3</td>
<td>Total number of retailers</td>
</tr>
<tr>
<td>k_3</td>
<td>60</td>
<td>Units of raw material inserted into the system by S</td>
</tr>
<tr>
<td>k_4</td>
<td>1</td>
<td>Deviation from k_3</td>
</tr>
<tr>
<td>k_5</td>
<td>60</td>
<td>Units of aggregate demand inserted into the system by C</td>
</tr>
<tr>
<td>k_6</td>
<td>1</td>
<td>Deviation from k_5</td>
</tr>
<tr>
<td>k_7</td>
<td>11</td>
<td>Price fixed by S for each unit of a</td>
</tr>
<tr>
<td>k_8</td>
<td>14</td>
<td>Price fixed by C as an estimation of each order of good</td>
</tr>
<tr>
<td>$k_{i,1}$</td>
<td>(65,35)</td>
<td>Initial production capacity of producer i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{i,2}$</td>
<td>(750,400)</td>
<td>Initial monetary units of producer i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{j,3}$</td>
<td>(50,30,20)</td>
<td>Initial capacity of retailer j. $1 \leq j \leq k_2$</td>
</tr>
<tr>
<td>$k_{m,4}$</td>
<td>(0.01,0.95,0.03)</td>
<td>Values of discrete probability distribution of units of raw material inserted into the system by S</td>
</tr>
<tr>
<td>$k_{m,5}$</td>
<td>(0.03,0.90,0.04)</td>
<td>Values of discrete probability distribution of units of aggregate demand inserted into the system by C</td>
</tr>
<tr>
<td>$k_{i,6}$</td>
<td>(12,13)</td>
<td>Price fixed by producer i for each unit of d_i</td>
</tr>
<tr>
<td>$k_{j,7}$</td>
<td>(13,14,15)</td>
<td>Price fixed by retailer j for each order of good j. $1 \leq j \leq k_2$</td>
</tr>
</tbody>
</table>
MeCoSim definition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>$[@r,1>$</td>
<td>Captures number of producers based on the number of rows in table Producer_input</td>
</tr>
<tr>
<td>k_2</td>
<td>$[@r,8>$</td>
<td>Captures number of retailers based on the number of rows in table Retailer_input</td>
</tr>
<tr>
<td>k_3</td>
<td>$<$9,1-2,2$></td>
<td>Units of raw material inserted into the system by S</td>
</tr>
<tr>
<td>k_4</td>
<td>Deviation from k_3</td>
<td></td>
</tr>
<tr>
<td>k_5</td>
<td>$<$9,1-$2,2$></td>
<td>Units of aggregate demand inserted into the system by C</td>
</tr>
<tr>
<td>k_6</td>
<td>Index $1 = [3..<@r,9>+2]$</td>
<td>Deviation from k_5</td>
</tr>
<tr>
<td>k_7</td>
<td>Price fixed by S for each unit of a</td>
<td></td>
</tr>
<tr>
<td>k_8</td>
<td>Price fixed by C as an estimation of each order of good</td>
<td></td>
</tr>
<tr>
<td>$k_{i,1}$</td>
<td>$<$1,15,1+3></td>
<td>Initial production capacity of producer i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{i,2}$</td>
<td>Index $1 = [1..k[1]]$</td>
<td>Initial monetary units of producer i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{j,3}$</td>
<td>$<$8,1,5$></td>
<td>Initial capacity of retailer j. $1 \leq j \leq k_2$</td>
</tr>
<tr>
<td>$k_{m,4}$</td>
<td>$<$10,1,5$,$2$-$3$></td>
<td>Values of discrete probability distribution of units of raw material inserted into the system by S</td>
</tr>
<tr>
<td>$k_{m,5}$</td>
<td>Index $1 = [1..<@r,10>]$</td>
<td>Values of discrete probability distribution of units of aggregate demand inserted into the system by C</td>
</tr>
<tr>
<td>$k_{i,6}$</td>
<td>$<$1,15,6></td>
<td>Price fixed by producer i for each unit of d_i</td>
</tr>
<tr>
<td>$k_{j,7}$</td>
<td>$<$8,15,5></td>
<td>Price fixed by retailer j for each order of good j. $1 \leq j \leq k_2$</td>
</tr>
</tbody>
</table>
Simulation results – monetary units

Producers’ monetary units

Retailers’ monetary units
Simulation results - capacities

Producers’ capacities

Retailers’ capacities
Simulation results - comparison

Păun's evolution

Initial model evolution
Enhanced Model

Summarized behavior of Initial Model:
- A steady increase of monetary units owned by producers, retailers and generic consumer.
- Nearly stable producer’s and retailer’s capacities.
- Monetary units obtained by raw source of material get out of circulation.

Why?
- Producers’ & retailers’ capacities are fixed and no changes are allowed.
- Raw material and aggregate demand are initially settled and remain unchanged during the system evolution.
- Artificial exogenous injection of monetary units into consumer C at the beginning of each cycle. This flow is necessary to maintain system evolving.
Getting closer to real situations:

- Allowing variations of producers’ and retailers’ capacities:
 - Capital stock depreciation.
 - Investment or capital increase decision.

- Remove external injection of monetary units:
 - Payment of rents to the owners of the production factors.
 - Raw material source is owned by the aggregate consumer.
 - Aggregate consumer is stakeholder of producers and retailers, thus implying dividends payments.

- Inclusion of randomness in a PDP-way:
 - Raw material generation.
 - Aggregate demand generation.
 - Mechanism of capacity increase decision.
Producer – Retailer Enhanced Model

Membrane Computing Applications in Computational Economics
Model Entities

- **Actors:**
 - Producers: \((b_i, u_i) \rightarrow \text{(capacity, money)}\)
 - Retailers: \((c_j, v_j) \rightarrow \text{(capacity, money)}\)

- **Generic sources:**
 - Of raw material \((u_S, \text{generation rate})\)
 - Of demand or Generic consumer \((u_C, \text{demand rate})\)
Model interactions

- **Good’s and order’s flows:**
 - Producers generate good \(d \) from raw material.
 - Retailers receive order \(\bar{d} \) from generic consumer.
 - \(d \) and \(\bar{d} \) are matched
 - Purchase \(P_{i,j} = P(producer \ i, \ retailer \ j) \)

- **External monetary injection:**
 - Removed.
Additional interactions

- **Monetary flows:**
 - Initial Model monetary exchange due to prices.
 - Rents payments to owners: Generic Consumer.
 - Dividends payments to stakeholders: Generic Consumer.
 - Raw material source owners: Generic Consumer.

- **Capacity variations:**
 - Producers’ capacity depreciation.
 - Producers’ capacity increase decision: non-satisfied demand from retailers.
Defining steps of cycle

INITIALIZATION
- Capacity cost payments
- Aggregate demand creation
- Raw material disposability

EVOLUTION
- Dividend payments
- Capacity increase decision
- Capacity depreciation

PRODUCTION
- Orders generation
- Production of goods

TRANSACTION
- Purchase transactions

AUTHORIZATION
- Purchase authorizations generation
Model Formalization (I)

\[\Pi = (G, \Gamma, \Sigma, T, \mathcal{R}_E, \mu, \mathcal{R}_\Pi, \{ f_\Gamma \in \mathcal{R}_\Pi \}, M_1, M_2) \quad \text{PDP System of degree (2,1)} \]

Where:

- \(G = (V, E) \) with \(V = \{e_1\} \) and \(E = \{(e_1, e_1)\} \).
- Working alphabet: \(\Gamma_{\text{enhanced}} = \Gamma_{\text{initial}} \cup \{g_i, y_i, m_i, z_i, h_i: 1 \leq i \leq k_1\} \cup \{p, q\} \)

Where:

- \(C \): aggregate generic consumer.
- \(S \): raw material supplier.
- \(\bar{d} \): unit of aggregate demand from \(C \).
- \(a \): unit of supplied raw material provided by \(S \).
- \(u_C \): monetary unit owned by \(C \).
- \(b_i \): unit of production capacity of producer \(i \). \(1 \leq i \leq k_1 \).
- \(d_i \): unit of good supplied by producer \(i \). \(1 \leq i \leq k_1 \).
- \(u_i \): monetary unit owned by producer \(i \). \(1 \leq i \leq k_1 \).
- \(c_j \): unit of capacity of retailer \(j \). \(1 \leq j \leq k_2 \).
- \(\bar{d}_j \): unit of good demanded by retailer \(j \). \(1 \leq j \leq k_2 \).
- \(v_j \): monetary unit owned by retailer \(j \). \(1 \leq j \leq k_2 \).
- \(\bar{e}_j \): unit of good demanded by retailer and authorized for transaction unit of \(\bar{d}_j \). \(1 \leq j \leq k_2 \).
- \(f_{i,j} \): authorization for \(\bar{d}_j \) to be exchange with \(d_i \). \(1 \leq i \leq k_1 \), \(1 \leq j \leq k_2 \).
- \(R_1 \): for technical reasons.
- \(p \): randomness generator for \(a \) provision by \(S \).
- \(q \): randomness generator for \(\bar{d} \) generation by \(C \).
- \(h_i \): unit of production capacity of producer \(i \) before depreciation. \(1 \leq i \leq k_1 \).
- \(y_i \): unit (in idle state) of aborted purchase transactions considered for capacity increase. \(1 \leq i \leq k_1 \).
- \(m_i \): randomness generator for \(y_i \). \(1 \leq i \leq k_1 \).
- \(z_i \): activated unit of aborted purchase transactions considered for capacity increase. \(1 \leq i \leq k_1 \) \(. 1 \leq i \leq k_1 \).
- \(g_i \): for technical reasons. \(1 \leq i \leq k_1 \).
Model Formalization (II)

- $\Sigma = \emptyset$.
- $R_E = \emptyset$.
- $\Pi = \{\Gamma, \mu, M_1, M_2, R_\Pi\}$ where:
 - Membrane structure: $\mu = [[]]_1$.
 - $M_1 = \{C, S, R_1\} \cup \{g_i, u_i^{k_{i,1}k_{10}*7}: 1 \leq i \leq k_1\}, \{v_j^{k_{j,3}k_{10}*7}: 1 \leq j \leq k_2\}$
 - $M_2 = \{c_j^{k_{j,3}}: 1 \leq j \leq k_2\} \cup \{b_i^{k_{i,1}}: 1 \leq i \leq k_1\}$

Initial multisets contain basically:

- $b_i^{k_{i,1}}, u_i^{k_{i,1}k_{10}*7}$: producers’ initial parameters.
- $c_j^{k_{j,3}}, v_j^{k_{j,3}k_{10}*7}$: retailers’ initial parameters.

They need same initial amount of monetary units to pay initial capacity costs. Where:

- $k_{i,1}$: initial production capacity of producer i. $1 \leq i \leq k_1$.
- $k_{j,3}$: initial capacity of retailer j. $1 \leq j \leq k_2$.
Model Parameters

- **Goal:** maximize model parametrization

 - k_1: total number of producers.
 - k_2: total number of retailers.
 - k_3: raw material inserted into the system by S – minimum value of range
 - k_4: raw material inserted into the system by S – maximum value of range.
 - k_5: aggregate demand inserted into the system by C – minimum value of range.
 - k_6: aggregate demand inserted into the system by C – maximum value of range.
 - k_7: price fixed by S for each unit of a.
 - k_8: number of failed purchases considered for the analysis of increasing capital stock – minimum value.
 - k_9: number of failed purchases considered for the analysis of increasing capital stock – maximum value.
 - k_{10}: cost of capital stock per cycle.
 - k_{11}: depreciation rate of capital stock.
 - k_{12}: step of capacity increase.
 - k_{13}: dividend percentage.
 - $k_{i,1}$: initial production capacity of producer i. $1 \leq i \leq k_1$.
 - $k_{i,2}$: price fixed by producer i for each unit of d_i. $1 \leq i \leq k_1$.
 - $k_{j,3}$: initial capacity of retailer j. $1 \leq j \leq k_2$.
 - $k_{i,6}$: price fixed by retailers j for each order of good. $1 \leq j \leq k_2$.
Set of rules – Initialization

- From Naïve randomness:

 \[r_5 \equiv R_2 \ c[]_2^{k_{1,5}} \overset{\bar{d}^{k_5+k_6}}{\longrightarrow} c[R_2]_2^+ \]
 \[r_6 \equiv R_2 \ c[]_2^{k_{2,5}} \overset{\bar{d}^{k_5}}{\longrightarrow} c[R_2]_2^+ \]
 \[r_7 \equiv R_2 \ c[]_2^{k_{3,5}} \overset{\bar{d}^{k_5-k_6}}{\longrightarrow} c[R_2]_2^+ \]
 \[r_8 \equiv R_2 \ c[]_2^{1-k_{1,5}-k_{2,5}-k_{3,5}} \overset{\bar{d}^{k_5-2*k_6}}{\longrightarrow} c[R_2]_2^+ \]

 \[\text{Generates } \bar{d} \text{ around } k_5 \]

- To a PDP-way: raw material disposability & generic demand creation:

 \[r_1 \equiv R_1 \ s \ c[]_2 \rightarrow a^{k_3} \ p^{k_4-k_3} \ \bar{d}^{k_5} \ q^{k_6-k_5} \ s \ c[R_1]_2^+ \]
 \[r_2 \equiv p \ []_2^{-0.5} \rightarrow []_2^+ \]
 \[r_3 \equiv p \ []_2^{-0.5} \rightarrow a \ []_2^+ \]
 \[r_4 \equiv q \ []_2^{-0.5} \rightarrow []_2^+ \]
 \[r_5 \equiv q \ []_2^{-0.5} \rightarrow \bar{d} \ []_2^+ \]

 \[\text{Generates } [\bar{d}^{k_5}, \bar{d}^{k_6}] \]
 \[\text{Generates } [a^{k_3}, a^{k_4}] \]
Set of rules – Capacity costs

- Rents for capacity:
 - Generic consumer is the owner of production factors.
 - Agents have enough monetary units to pay for capacity:
 \[
 r_9 \equiv u_i^{k_{10}} [b_i]_2 \rightarrow b_i \ u_c^{k_{10}} []_2^+ 1 \leq i \leq k_1
 \]
 \[
 r_{10} \equiv v_j^{k_{10}} [c_j]_2 \rightarrow c_j \ u_c^{k_{10}} []_2^+ 1 \leq j \leq k_2
 \]
 - Agents are not able to pay for capacity:
 \[
 r_{11} \equiv [b_i]^+ \rightarrow u_c^{k_{10}} []_2 1 \leq i \leq k_1
 \]
 \[
 r_{12} \equiv [c_j]^+ \rightarrow u_c^{k_{10}} []_2 1 \leq j \leq k_2
 \]

\[k_1: \text{total number of producers.}\]
\[k_2: \text{total number of retailers.}\]
\[k_{10}: \text{cost of capital stock per cycle.}\]
Set of rules – Operations

- Main changes:
 - Generic consumer is the owner of raw material source

- Producer operation:
 \[r_{14} \equiv a \ b_i \ u_i^{k_7} \ []_2^+ \rightarrow u_c^{k_7} \ [d_i]_2^0 \ 1 \leq i \leq k_1 \]

- Retailer operation:
 \[r_{15} \equiv d \ c_j \ u_c^{k_j,6} \ []_2^+ \rightarrow [d_j v_j^{k_j,6}]_2^0 \ 1 \leq j \leq k_2 \]

- Unused capacities:
 \[r_{16} \equiv b_i \ []_2 \rightarrow [b_i]_2 \ 1 \leq i \leq k_1 \]
 \[r_{17} \equiv c_j \ []_2 \rightarrow [c_j]_2 \ 1 \leq j \leq k_2 \]

\[k_1: \text{total number of producers.} \]
\[k_2: \text{total number of retailers.} \]
\[k_7: \text{price fixed by } S \text{ for each unit of } a. \]
\[k_{i,6}: \text{price fixed by retailers } j \text{ for each order of good.} \]
\[k_{j,7}: \text{price fixed by retailers } j \text{ for each order of good.} \]

Retired from the operational membrane waiting for their depreciation.
Set of rules – Auth. & Transactions

Purchase authorization generation

- **Geo-barriers**

 \[
 r_{18} \equiv [\tilde{d}_1^1]_2 \rightarrow [\tilde{e}_1 f_{1,1}^1]_2 \\
 r_{19} \equiv [\tilde{d}_1^1]_2 \rightarrow [\tilde{e}_1 f_{1,2}^1]_2 \\
 r_{20} \equiv [\tilde{d}_2^2]_2 \rightarrow [\tilde{e}_2 f_{2,1}^2]_2 \\
 r_{21} \equiv [\tilde{d}_2^2]_2 \rightarrow [\tilde{e}_2 f_{2,2}^2]_2 \\
 r_{22} \equiv [\tilde{d}_3^3]_2 \rightarrow [\tilde{e}_3 f_{3,1}^3]_2 \\
 r_{23} \equiv [\tilde{d}_3^3]_2 \rightarrow [\tilde{e}_3 f_{3,2}^3]_2
 \]

- **Non-preferences**

- **Preferences**

Purchase transactions

\[
 r_{24} \equiv [d_i \tilde{e}_j f_{j,i} v_{j,i}^{k_{i,2}}]_2^0 \rightarrow u_i^{k_{i,2}} [h_i c_j]_2^1 \quad 1 \leq i \leq k_1, \ 1 \leq j \leq k_2
\]

\(b_i\) are retired as \(h_i\) from the operational membrane waiting for their depreciation.

\(k_1\): total number of producers.

\(k_2\): total number of retailers.

\(k_{i,2}\): price fixed by producer \(i\) for each unit of \(d_i\).
Set of rules - Evolution

- **Dividend payment:**

 \[r_{25} \equiv \left[v_j \right]_2 \rightarrow v_j \left[\right]_2^0 \quad 1 \leq j \leq k_2 \]

 \[r_{26} \equiv u_i \left[\right]_2 \xrightarrow{k_{13}} u_C \left[\right]_2^0 \quad 1 \leq i \leq k_1 \]

 \[r_{27} \equiv u_i \left[\right]_2 \xrightarrow{1-k_{13}} u_i \left[\right]_2^0 \quad 1 \leq i \leq k_1 \]

 Both blocks of rules only applied to producers

- **Capacity depreciation:**

 \[r_{31} \equiv \left[h_i \right]_2 \xrightarrow{1-k_{11}} \left[b_i \right]_2^0 \quad 1 \leq i \leq k_1 \]

 \[r_{32} \equiv \left[h_i \right]_2 \xrightarrow{k_{11}} \left[\right]_2^0 \quad 1 \leq i \leq k_1 \]

 \[k_1: \text{total number of producers.} \]

 \[k_2: \text{total number of retailers.} \]

 \[k_{11}: \text{depreciation rate of capital stock.} \]

 \[k_{13}: \text{dividend percentage.} \]
Set of rules – capacity increase

- When strictly necessary only

- Trigger: non-exhausted $f_{j,i}$

 - Case a: Enough producer capacity:

 $$r_{28} \equiv [f_{j,i} \, d_i]^2_2 \rightarrow [d_i]^0_2 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2$$
 $$r_{29} \equiv [f_{j,i} \, h_i]^2_2 \xrightarrow{1-k_{11}} [b_i]^0_2 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2$$
 $$r_{30} \equiv [f_{j,i} \, h_i]^2_2 \xrightarrow{k_{11}} [_]^0_2 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2$$

 - Case b: Not enough producer capacity:

 $$r_6 \equiv g_i \, [_]^0_2 \rightarrow [g_1 \, y_i \, k_8 \, m_i^{(k_9-k_8)}]^+_2 \quad 1 \leq i \leq k_1$$
 $$r_7 \equiv [m_i]^+_2 \rightarrow [_]^0_2 \quad 1 \leq i \leq k_1$$
 $$r_8 \equiv [m_i]^+_2 \xrightarrow{0.5} [y_i]^0_2 \quad 1 \leq i \leq k_1$$
 $$r_{33} \equiv [y_i]^+_2 \rightarrow [z_i]^0_2 \quad 1 \leq i \leq k_1$$
 $$r_{34} \equiv [f_{j,i} \, z_i]^0_2 \rightarrow b_i^{-k_{12}}[_]^+_2 \quad 1 \leq i \leq k_1, 1 \leq j \leq k_2$$

k_1: total number of producers.

k_2: total number of retailers.

k_8: number of failed purchases considered for the analysis of increasing capital stock – min value.

k_9: number of failed purchases considered for the analysis of increasing capital stock – max value.

k_{11}: depreciation rate of capital stock.

Generates $[y_i^{k_8}, y_i^{k_9}]$
Set of rules – Cleaning

Cleaning rules and technical rules

- Eliminate non-exhausted authorizations:

 \[r_{35} \equiv [f_{j,i}]_{2}^{+} \rightarrow []_{2}^{0} \quad 1 \leq i \leq k_{1}, 1 \leq j \leq k_{2} \]

 \[r_{36} \equiv [z_{i}]_{2}^{+} \rightarrow []_{2}^{0} \quad 1 \leq i \leq k_{1} \]

 \[k_{1} \text{: total number of producers.} \]

 \[k_{2} \text{: total number of retailers.} \]

- Unauthorized non-exhausted \(\bar{e}_{j} \):

 \[r_{13} \equiv v_{j} []_{2}^{+} \rightarrow [v_{j}]_{2}^{0} \quad 1 \leq j \leq k_{2} \]

 \[r_{37} \equiv [\bar{e}_{j}]_{2}^{+} \rightarrow [\bar{d}_{j}]_{2}^{0} \quad 1 \leq j \leq k_{2} \]

- Signaling a new cycle:

 \[r_{38} \equiv [r_{1}]_{2}^{-} \rightarrow r_{1} []_{2}^{0} \]

 \[r_{39} \equiv [g_{i}]_{2}^{-} \rightarrow g_{i} []_{2}^{0} \quad 1 \leq j \leq k_{2} \]
P - Lingua

- Set of rules has been implemented in P – Lingua.
- An example for each set of rules:
 - Initialization:
    ```
    /* r1 */   s, c, r1 [ ]’2 → s, c, a * k{3}, p * (k{4} − k{3}), dn * k{5}, q * (k{6} − k{5}) +[r1]’2:: 1
    ```
 - Production:
    ```
    /* r9 */   u{i} * k{10} [b{i}]’2 → b{i}, uc * k{10} + [ ]’2 :: 1 : 1 <= i <= k{1};
    ```
 - Transaction:
    ```
    /* r24 */   [d{i}, en{j}, f{j}, i], v{j} * k{i, 2} ]’2 → u{i} * k{i, 2} − [ h{i}, c{j}, ]’2 :: 1 : 1 <= i <= k{1}, 1 ≤ j ≤ k{2}
    ```
 - Capacity increase:
    ```
    /* r34 */   [ f{j, i}, z{i}]’2 → b{i} * k{12} + [ ]’2 :: 1 : 1 ≤ i ≤ k{1}, 1 ≤ j ≤ k{2}
    ```
Simplified trace

STEP 1:
• Generic demand generation
• Supply creation
• Capacity cost payment

STEP 2:
• Production of goods
• Order generation

STEP 3:
• Generation of purchase transaction authorizations

STEP 4:
• Purchase transactions

STEP 5:
• Dividend payment
• Capacity depreciation
• Capacity increase decision
Simulation parameters

Parameters: similar to Păun’s paper

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>2</td>
<td>Total number of producers</td>
</tr>
<tr>
<td>k_2</td>
<td>3</td>
<td>Total number of retailers</td>
</tr>
<tr>
<td>k_3</td>
<td>59</td>
<td>Units of raw material inserted into the system by S — minimum value of range</td>
</tr>
<tr>
<td>k_4</td>
<td>62</td>
<td>Units of raw material inserted into the system by S — maximum value of range</td>
</tr>
<tr>
<td>k_5</td>
<td>59</td>
<td>Units of aggregate demand inserted into the system by C — minimum value of range</td>
</tr>
<tr>
<td>k_6</td>
<td>62</td>
<td>Units of aggregate demand inserted into the system by C — maximum value of range</td>
</tr>
<tr>
<td>k_7</td>
<td>11</td>
<td>Price fixed by S for each unit of a</td>
</tr>
<tr>
<td>k_8</td>
<td>3</td>
<td># failed purchases considered for the analysis of increasing capital stock — minimum value.</td>
</tr>
<tr>
<td>k_9</td>
<td>5</td>
<td># failed purchases considered for the analysis of increasing capital stock — maximum value.</td>
</tr>
<tr>
<td>k_{10}</td>
<td>2</td>
<td>cost of capital stock per cycle</td>
</tr>
<tr>
<td>k_{11}</td>
<td>0.1</td>
<td>depreciation rate of capital stock</td>
</tr>
<tr>
<td>k_{12}</td>
<td>1</td>
<td>step of capacity increase</td>
</tr>
<tr>
<td>k_{13}</td>
<td>0.01</td>
<td>Dividend percentage</td>
</tr>
<tr>
<td>$k_{i,1}$</td>
<td>(65,35)</td>
<td>Initial production capacity of producer i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{i,2}$</td>
<td>(13,13)</td>
<td>Price fixed by producer i for each unit of d_i. $1 \leq i \leq k_1$</td>
</tr>
<tr>
<td>$k_{j,3}$</td>
<td>(50,30,20)</td>
<td>Initial capacity of retailer j. $1 \leq j \leq k_2$</td>
</tr>
<tr>
<td>$k_{i,6}$</td>
<td>(15,15,15)</td>
<td>Price fixed by retailer j for each order of good j. $1 \leq j \leq k_2$</td>
</tr>
</tbody>
</table>
MeCoSim definition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td><@r,1> (\text{Index 1 = 1})</td>
<td>Captures number of producers based on the number of rows in table Producer_input</td>
</tr>
<tr>
<td>k_2</td>
<td><@r,8> (\text{Index 2 = 2})</td>
<td>Captures number of retailers based on the number of rows in table Retailer_input</td>
</tr>
<tr>
<td>k_3</td>
<td>(k_3) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Units of raw material inserted into the system by (S) – minimum value of range</td>
</tr>
<tr>
<td>k_4</td>
<td>(k_4) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Units of raw material inserted into the system by (S) – maximum value of range</td>
</tr>
<tr>
<td>k_5</td>
<td>(k_5) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Units of aggregate demand inserted into the system by (C) – minimum value of range</td>
</tr>
<tr>
<td>k_6</td>
<td>(k_6) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Units of aggregate demand inserted into the system by (C) – maximum value of range</td>
</tr>
<tr>
<td>k_7</td>
<td>(k_7) (\text{Index 1} = [3..<@r,9>+2])</td>
<td>Price fixed by (S) for each unit of a</td>
</tr>
<tr>
<td>k_8</td>
<td>(k_8) (\text{Index 1} = [3..<@r,9>+2])</td>
<td># failed purchases considered for the analysis of increasing capital stock – minimum value.</td>
</tr>
<tr>
<td>k_9</td>
<td>(k_9) (\text{Index 1} = [3..<@r,9>+2])</td>
<td># failed purchases considered for the analysis of increasing capital stock – maximum value.</td>
</tr>
<tr>
<td>k_{10}</td>
<td>(k_{10}) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Cost of capital stock per cycle</td>
</tr>
<tr>
<td>k_{11}</td>
<td>(k_{11}) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Depreciation rate of capital stock</td>
</tr>
<tr>
<td>k_{12}</td>
<td>(k_{12}) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Step of capacity increase</td>
</tr>
<tr>
<td>k_{13}</td>
<td>(k_{13}) (\text{Index 1} = 1, \text{Index 2} = 2)</td>
<td>Dividend percentage</td>
</tr>
<tr>
<td>k_{i1}</td>
<td>(k_{i1}) (\text{Index 1} = [1..k_1])</td>
<td>Initial production capacity of producer (i). (1 \leq i \leq k_1)</td>
</tr>
<tr>
<td>k_{i2}</td>
<td>(k_{i2}) (\text{Index 1} = [1..k_1])</td>
<td>Price fixed by producer (i) for each unit of (d_i). (1 \leq i \leq k_1)</td>
</tr>
<tr>
<td>k_{j3}</td>
<td>(k_{j3}) (\text{Index 1} = [1..k_2])</td>
<td>Initial capacity of retailer (j). (1 \leq j \leq k_2)</td>
</tr>
<tr>
<td>k_{i6}</td>
<td>(k_{i6}) (\text{Index 1} = [1..k_2])</td>
<td>Price fixed by retailer (j) for each order of good (j). (1 \leq j \leq k_2)</td>
</tr>
</tbody>
</table>
Simulation results – capacities

Producers’ capacities with:

- Depreciation rate = 0.1
- Deactivated capacity increase mechanism.

Producers’ capacities with:

- Depreciation rate = 0.1
- Activated capacity increase mechanism.
Simulation results – dividends

Generic consumer monetary units:
• Deactivated dividend payment.

Generic consumer monetary units:
• Restored dividend payment.
Simulation results – producer

- Initial distribution of capacities: 65 + 35
- Raw material generation rate [59,62]
- Raw material generation rate [40,43]

System tries to reach an equilibrium point in function of parameters of S
Simulation results – retailer

- Initial distribution of capacities: 50 + 30 + 20
- Generic demand generation rate [59,62]
- Generic demand generation rate [40,43]

System tries to reach an equilibrium point in function of parameters of C
CONCLUSIONS

Initial model:
- We have been able to reproduce Păun’s results using:
 - PDP systems.
 - P – Lingua & MeCoSim framework.
 - Inference engine DNDP4.

Enhanced model:
- Initial model has been extended including several real world economic processes.
 - Cost of production factors, dividend payment.
 - Capacity depreciation, capacity increase mechanisms.
 - Removing external injection of monetary units.
- Model evolves autonomously around an equilibrium point different from the initial conditions.
FURTHER DEVELOPMENTS

- Complete the enhanced model:
 - Macroeconomics interest: behavior of system under perturbation around equilibrium.
 - Introduce mechanisms to adjust prices to some stimulus.
 - Investigate if different patterns of randomness could be generated easily.

- Future Case of Study:
 - SDGE (Stochastic Dynamic General Equilibrium).
 - Previous techniques can be utilized in this problem.
 - Challenge: generate an emergent optimization behavior.

