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Summary. A basic P system, called kernel P system (kP system for short), covering
features of different P systems introduced and studied so far is defined and discussed.
It is a relatively low level specification system aiming to cover features exhibited by
most of the problems modelled so far using P system formalisms. A small set of rules
and specific strategies to run the system step by step are presented. Some preliminary
results regarding the relationships between kP systems and other classes of P systems,
like neural-like P systems and P systems with active membranes, are presented. Examples
illustrating the behaviour of kP systems or showing how a sorting algorithm is modelled
with various classes of P systems are provided. Further developments of this class of P
systems are finally briefly discussed.

1 Introduction

Different variants of P systems have been used for specifying simple algorithms
[4, 2], classes of NP-complete problems [7] and other various applications [5]. More
specific classes of P systems have been recently considered for modelling various
distributed algorithms and problems [9]. In many cases the specification of the
system investigated requires features, constraints or type of behaviour which are
not always provided by the model in its initial definition. It helps in many cases to
have some flexibility with modelling approaches, especially in the early stages of
modelling, as it might simplify the model, shorten associated processes and clarify
more complex or unknown aspects of the system. The downside of this is the lack
of a coherent and well-defined framework that allows us to analyse, verify and test
this behaviour and simulate the system. In this respect we engage now on defining
a kernel P system (kP system, for short) that, at least for this stage, will be a low
level specification language including the most used concepts from P systems. In
a later stage its key features will be formally defined in an operational style and
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finally implemented within a model checker (SPIN [3], Maude [6]) and integrated
into the P-lingua platform.

We will be working with P systems having a graph-like structure (so called,
tissue P systems) using a set of symbols, labels of membranes, rules of various
types and various strategies to run them against the multiset of objects available
in each region. The rules in each compartment will be of two types, (i) object
processing rules which transform and transport objects between compartments or
exchange objects between compartments and environment and (ii) system struc-
ture rules responsible for changing the system’s topology. Each rule has a guard,
defined using activators and inhibitors in a more general way than in traditional P
system classes. An execution strategy can now be specified individually, for each
compartment, allowing for more complex rule selection and iteration procedures
in addition to the classical maximal parallelism and sequential methods. We con-
sider rewriting and communication rules based on promoters and inhibitors as they
seem to be amongst the most flexible and general processing rules, and a special
set of symport/antiport rules; additional features like membrane division, dissolu-
tion, bond creation and destruction are also considered. Two types of P systems,
neural-like P systems and P systems with active membranes, are simulated by the
newly introduced P systems. We analyse a specific case study based on a sorting
algorithm which is described using the currently introduced model, kP systems,
and some other formalisms, using electrical charges, states and labels.

2 kP Systems

A kP system is a formal framework that uses some well-known features of existing
P systems and includes some new elements and, more importantly, it offers a
coherent view on integrating them into the same formalism. The key elements of a
kP system will be formally defined in this section, namely objects, types of rules,
internal structure of the system and strategies for running such systems. Some
preliminary formal concepts describing the syntax of kP systems and an informal
description of the way these systems are executed will be introduced.

We consider that standard concepts like strings, multisets, rewriting rules, and
computation are well-known concepts in P systems and indicate [11] as a compre-
hensive source of information in this respect. First we introduce the key concept
of a compartment.

Definition 1. Given a finite set, A, called alphabet, of elements, called objects,
and a finite set, L, of elements, called labels, a compartment is a tuple C =
(l, w0, R

σ), where l ∈ L is the label of the compartment, w0 is the initial multiset
over A and Rσ denotes the DNA code of C, which comprises the set of rules,
denoted R, applied in this compartment and a regular expression, σ, over Lab(R),
the labels of the rules of R.

The precise format and the types of rules used in this context will be discussed
in Section 2.1.
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Definition 2. A kernel P system of degree n is a tuple

kΠ = (A,L, IO, µ,C1, . . . , Cn, i0),

where A and L are, as in Definition 1, the alphabet and the set of labels, re-
spectively; IO is a multiset of objects from A, called environment; µ defines the
membrane structure, which is a graph, (V,E), where V are vertices, V ⊆ L (the
nodes are labels of these compartments), and E edges; C1, . . . , Cn are the n com-
partments of the system - the inner part of each compartment is called region,
which is delimited by a membrane; the labels of the compartments are from L
and initial multisets are over A; io is the output compartment where the result is
obtained.

As usual in P systems, the environment contains an arbitrary number of copies
of each object. Each compartment is specified according to Definition 1.

2.1 kP System Rules

The discussion below assumes that the rules introduced belong to the same com-
partment, Ci, labelled li.

Each rule r may have a guard g, in which case r is applicable when g is
evaluated to true. Its generic form is r {g}. The guards are constructed according
to certain criteria described below. Before presenting these criteria we introduce
some notations.

We consider multisets over A∪Ā, where A and Ā are interpreted as promoters
and inhibitors, respectively; Ā = {ā|a ∈ A}. For a multiset w over A ∪ Ā and
an element a from the same set we denote by #a(w) the number of a′s occurring
in w. We also consider the set of well-known relational operators Rel = {<,≤,=
, ̸=,≥, >}. For a multiset w = an1

1 . . . ank

k , aj ∈ A ∪ Ā, 1 ≤ j ≤ k, and αj ∈ Rel,
1 ≤ j ≤ k, we introduce the following notation w′ = α1a

n1
1 . . . αka

nk

k ; aj is not
necessarily unique in w or w′ (as it will transpire from the explanations below,
this case may occur when the multiplicity of a symbol belongs to an interval); w′

is called multiset over A ∪ Ā with relational operators over Rel.
If g is a guard defined according to the criteria below and pr, a predicate over

this set of guards, then:

• g = ϵ means pr(ϵ) is always true, i.e., no condition is associated with the rule
r; this guard is almost always ignored from the syntax of the rule;

• g is a multiset over A ∪ Ā with relational operators over Rel, i.e., g =
α1a

n1
1 . . . αka

nk

k , then pr(w) is true iff for z, the current multiset of Ci, we
have, for every 1 ≤ j ≤ k, either (i) if aj ∈ A then #aj (z) αj nj holds, or (ii)
if aj ∈ Ā, i.e., aj = ā, a ∈ A, then #a(z) αj nj does not hold;

• g = w1| . . . |wp, i.e., g is a finite disjunction of multisets over A ∪ Ā with
relational operators over Rel, then pr(w1| . . . |wp) is true iff there exists 1 ≤
j ≤ p, such that pr(wj) is true.
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We denote by FE(A ∪ Ā), from Finite regular Expressions over A ∪ Ā with rela-
tional operators, the set of expressions defined above. When a compound guard, cg,
referring to compartments li and lj is used, its generic format is cg = li.g1 op lj .g2,
where g1, g2 are finite expressions referring to compartments li and lj , respectively;
then, obviously, pr(cg) = pr(g1) op pr(g2), op ∈ {&, |}, where & stands for and and
| for or, meaning that either both guards are true or at least one is true. Simpler
forms, where one of the operands is missing, are also allowed as well as cg = ϵ. A
compound guard defines a Boolean condition defined across the two compartments.

Example 1. If the rule is r : ab → c {≤ a3 ≥ b7 = c̄}, then this can be applied
iff the current multiset consists of at most 3 a′s and at least 7 b′s and does not
contain a single c (either none or more than 2 c′s are allowed).

A rule can have one the following types:

• (a) rewriting and communication rule: x → y {g},
where x ∈ A+, y ∈ A∗, g ∈ FE(A ∪ Ā); the right hand side, y, has the form
y = (a1, t1) . . . (ah, th), where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object
and a target, i.e., the label of a compartment, respectively; the target, tj , must
be either the label of the current compartment, li, (more often ignored) or of
an existing neighbour of it ((li, tj) ∈ E) or an unspecified one, ∗; otherwise
the rule is not applicable; if a target, tj , refers to a label that appears more
than once then one of the involved compartments will be non-deterministically
chosen; if tj is ∗ then the object aj is sent to a neighbouring compartment
arbitrarily chosen;

• (b) input-output rule, is a form of symport/antiport rule: (x/y) {g},
where x, y ∈ A∗, g ∈ FE(A ∪ Ā); x from the current region, li, is sent to the
environment and y from the environment is brought into the current region;

• (c) system structure rules; the following types are considered:
– (c1) membrane division rule: []li → []li1 . . . []lih {g},

where g ∈ FE(A ∪ Ā); the compartment li will be replaced by h compart-
ments obtained from li, i.e., the content of them will coincide with that of
li; their labels are li1 , . . . , lih , respectively; all the links of li are inherited
by each of the newly created compartments;

– (c2) membrane dissolution rule: []li → λ {g};
the compartment li will be destroyed together with its links;

– (c3) link creation rule: []li ; []lj → []li − []lj {cg};
the current compartment, li, is linked to lj and if more than one lj ex-
ists then one of them will be non-deterministically picked up; cg, called
compound guard, describes an expression li.g1 op lj .g2 as defined above;

– (c4) link destruction rule: []li − []lj → []li ; []lj {cg};
is the opposite of link creation and means that compartments li, lj are
disconnected; as usual, when more than a link, (li, lj) ∈ E, exists then only
one is considered by this rule; cg is a compound guard.
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2.2 Regular Expressions and their Interpretation for kP Systems

In kP Systems the way in which rules are executed is described using regular ex-
pressions (over the sets of labels of rules). This approach allows the usual behaviour
of P systems - requiring the rewriting and communication, and input-output rules
to be applied in a maximal parallel way and structural rules (e.g. membrane di-
vision and dissolution, creation and destruction of links) to be executed one per
membrane - as well as other alternative or additional features to be expressed in
a consistent and elegant manner.

We first consider the set of labels of the rules, from the set R, in a given
compartment, denoted by Lab(R). We can define regular expressions over this set,
REG(Lab(R)). A regular expression σ ∈ REG(Lab(R)) is interpreted as follows

• σ = ϵ means no rule from the current compartment will be executed;
• σ = r, r ∈ Lab(R), means the rule r is executed;
• σ = αβ means first are executed rules designed by α and then those in β;
• σ = α|β means either the rules designed by α or those by β are executed; often

we use the notation defining sets where | is replaced by ,;
• σ = γ∗ means rules designed by γ are executed in a maximal parallel way.

Regular expressions allows the definition of various execution strategies, in-
cluding well-known maximal parallelism (and also sequential) behaviour, but also
to encode more subtle concepts like order relationships between rules, which in-
troduce a form of sequential execution. Given the above introduced types of rules
we can also specify in a more coherent way the fact that maximal parallelism im-
poses some constraints on the way the rules dealing with the system structure are
handled; it is always the case that such rules are applied one per compartment
and at the end of each step. Indeed, this assumption can be made in this case as
the left hand side of any of the rules c1–c4 , does not contain any object, so they
are applied only when there guards are satisfied. These cases are briefly analysed
below.

• Naturally, ∗ is used to capture the maximal parallelism of a set of rules; for rules
R, with Lab(R) = {r1, . . . , rk}, we mostly write either Lab(R)∗ or {r1, . . . , rk}∗,
instead of (r1| . . . |rk)∗.

• In order to express the fact that maximal parallelism means that object pro-
cessing rules are applied in a maximal parallel way and at the end only one of
the system structure rules is applied, we first split R, the set of rules, into R1,
containing all the object processing rules, and R2, with all the structure defin-
ing rules, associated with the current compartment; then given the convention
introduced for the set of regular expressions over Lab(R), the above behaviour
is expressed by Lab(R1)

∗Lab(R2).
• Now suppose that a certain order relationship exists, e.g. r1, r2 > r3, r4, which

means that when weak priority is applied, the first two rules are executed first,
if possible, then the next two. If both are executed with maximal parallelism,
this is described by {r1, r2}∗ {r3, r4}∗.
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These regular expressions define the strategy of executing the rules of the
current compartment and together with them they form the true DNA code of
each compartment. Other ways of executing the rules of a compartment, like equal
to, less than or greater than a given number of steps, can be also considered.

The result of a computation will be the number of objects collected in the
output compartment. For a kP systems kΠ, the set of all these numbers will be
denoted by M(kΠ).

2.3 kP System Examples

In this section we illustrate the newly introduced P system model with some
examples.

Example 2. Let us consider the following kP system with n = 4 compartments,
kΠ1 = (A,L, IO, µ,C1, . . . , C4, 1), where
A = {a, b, c, p},
L = {1, 2, 3},
IO contains an arbitrary number of objects over {b, c},
C1 = (1, w1,0, R

σ
1 ), C2 = (2, w2,0, R

σ
2 ), C3 = (2, w3,0, R

σ
2 ), C4 = (3, w4,0, R

σ
3 ),

µ is given by the following graph with edges (1, 2), (1, 3); (1, 2) appears twice as
n = 4 and there are two compartments, C2, C3, with label 2;
w1,0 = a3p, w2,0 = p, w3,0 = p, w4,0 = λ, and
Rσ

1 is R1 = {r1 : a → a(b, 2)(c, 3) {≥ p}; r2 : p → p; r3 : p → λ}, and σ1 =
Lab(R1)

∗,
Rσ

2 is R2 = {r1 : (b/c) {≥ p}; r2 : p → p; r3 : p → λ}, and σ2 = Lab(R2)
∗,

Rσ
3 is R3 = ∅ and σ3 = Lab(R3)

∗.
Please note that we do not use targets for objects meant to stay in the

current compartment (i.e. we have r1 : a → a(b, 2)(c, 3) {≥ p} instead of
r1 : a → (a, 1)(b, 2)(c, 3) {≥ p}).

In this example there are only rewriting and communication rules (all the rules,
but r1 from R2) and an input-output one (r1 from R2); some rules have a guard,
≥ p (p is a promoter), others do not have any and in each compartment the rules
are applied in maximal parallel way in every step, as indicated by σj , 1 ≤ j ≤ 3.
As two instances of the compartment labelled 2, C2, C3, appear in the system,
when the rule r1 from the first compartment is applied, the object b goes non-
deterministically to one of the two compartments labelled 2 as long as p remains
in compartment 1; object c goes always to compartment labelled 3, C4.

The initial configuration of kΠ1 is M0 = (a3p, p, p, λ). The only applicable
rules are r1, r2 and r3 from C1 and r2, r3 from C2, C3. If r1, r2 are chosen in C1

and r2 in C2, C3, then a3p is rewritten by r1, r2 in C1 and p in C2, C3 by r2; then
three a′s stay in C1, three b’s go non-deterministically to C2, C3, three c’s go to
compartment labelled 3, C4, and each p in C2, C3 stays in its compartment. Let
us assume that two of them go to C2 and one to C3. Hence, the next configuration
is M1 = (a3p, b2p, bp, c3). If in the next step the same rules are applied identically
in the first compartment, C1, and rules r1, r2 are used in C2 and r1, r3 in C3, then
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the next configuration is M2 = (a3p, b2c2p, bc, c6). If now r1, r3 are used in C1,
with r1 used in the same way and r1, r3 in C2 (no rule is available in C3) then
M3 = (a3, b2c4, b2c, c9); this is a final configuration as there is no promoter to
trigger a further step.

Observation. If r1 : a → a(b, 2)(c, 3) {≥ p} from C1 is changed to r1 : a →
a(b, 2)(c, ∗) {≥ p}, then the three resulting c′s (obtained after applying r1 to a3)
go non-deterministically to any of the three neighbours of C1.

Example 3. Let us reconsider the example above enriched with rules dealing with
the system structure. First we will show how the system handles the multiplication
of compartments with label 2, C2 and C3, when a certain condition holds; we will
consider the guard ≥ b2 ≥ p. In this case the new kP system, denoted kΠ2, will
have the same structure and content as kΠ1 except Rσ

2 which is now defined as
follows
Rσ

2 is R2 = R
(1)
2 ∪R

(2)
2 , where R

(1)
2 = {r1 : (b/c) {≥ p}; r2 : p → p; r3 : p → λ},

R
(2)
2 = {r4 : []2 → []2[]2 {≥ b2 ≥ p}} and σ2 = Lab(R

(1)
2 )∗Lab(R

(2)
2 ).

We can notice that the regular expression σ2 tells us that first the rewriting rules
are applied in a maximal parallel manner and then one of system structure rules
is chosen to be executed.

If the system follows the same pathway as kΠ1 then M2 shows a different con-

figuration given that in C2 after applying R
(1)
2 in a maximal parallel manner, R

(2)
2

is applied as indicated by σ2, when the guard of r4 is true. The compartment C2

is divided into two compartments, C2,1, C2,2, with the same label 2 and appearing
on positions 2 and 3 in the new configuration, M ′

2 = (a3p, b2c2p, b2c2p, bc, c6); the
new compartments labelled 2 are linked to compartment C1. In the next step both
are divided as they contain the guard triggering the membrane division rule r4.
The process will stop when either p will be rewritten to λ or b2 stops coming.

If we aim to either dissolve or disconnect a compartment labelled by 2 from
compartment C1, once a certain condition is true, for instance b2c2p appears in it,

then two more rules will be added to R
(2)
2 , namely

r5 : []2 → λ {≥ b2 ≥ c2 ≥ p}, r6 : []2− []1 → []2; []1 {≥ b2 ≥ c2 ≥ p}. The same reg-

ular expression, σ2 = Lab(R
(1)
2 )∗Lab(R

(2)
2 ), is used, but in this case R

(2)
2 contains

three elements and at most one is applied at each step, in every compartment with
label 2.

3 Neural-like P Systems and P Systems with Active
Membranes versus kP Systems

In order to prove how powerful and expressive kP systems are, we will show how
two of the most used variants of P systems are simulated by kP system. More
precisely, we will show how neural-like P systems and P systems with active mem-
branes are simulated by some reduced versions of kP systems.
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Definition 3. A neural-like P system (tissue P system with states) of degree n is
a construct Π = (O, σ1, ...σn, syn, i0) ([10], p. 249), where:

• O is a finite, non-empty set of objects, the alphabet;
• σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, represents a cell and

– Qi is the finite set of states of cell σi;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects contained in cell σi;
– Ri is a finite set of rewriting and communication rules, of the form sw →

s′xygozout; when such a rule is applied, x will replace w in cell σi, the objects
from y will be sent to neighbouring cells, according to the transmission mode
(see th next Observation) and the objects from z will be sent out into the
environment; cell σi will move from state s to s′;

• syn ⊆ {1, ..., n} × {1, ..., n}, the connections between cells, synapses;
• i0 is the output cell.

Observations.

1. For such systems, three processing modes are considered, called “max”, “min”,
“par”, and three transmission modes, namely “one”, “repl”, “spread”. For for-
mal definitions and other details we refer to [10].

2. We denote by simple neural-like P systems the class of P systems given by Def-
inition 3, with rewriting and communication rules sw → s′x(a1, t1) · · · (ap, tp),
where th, 1 ≤ h ≤ p, denotes the target cell (σh), and processing mode “max”,
transmission mode defined by the target indications mentioned in each rule.

Notation. For a given P system, Π, the set of numbers computed by Π will
be denoted by M(Π).

Theorem 1. If Π is neural-like P system of degree n, then there is a kP system,
Π ′, of degree n and using only rules of type (a), rewriting and communication
rules, simulating Π and such that M(Π ′) ⊆ M(Π) ∪ {2}.

Proof. Let Π be a simple neural-like P systems of degree n, as defined above. We
construct Π ′ as follows:
Π ′ = (A,L, IO, µ,C1, ..., Cn) where:

• A = O ∪ (
∪

1≤i≤n Qi)∪ {γ}; γ is a new symbol neither in O nor in
∪

1≤i≤n Qi;
• L = {1, ..., n}; IO = ∅;
• µ = syn;
• Ci = (i, w′

i,0, R
′σ
i ), 1 ≤ i ≤ n; and

– w′
i,0 = γ, 1 ≤ i ≤ n;

– R′
i contains the following rules:

1. γ → si,0twi,0, where si,0, wi,0 are the initial state and initial multiset,

respectively, associated with cell σi, and t ∈ Q
(i)
si,0 . For s ∈ Qi, denote

by Q
(i)
s = {t|t ∈ Qi, sx → ty ∈ Ri}; i.e., Q(i)

s gives, when the cell σi

is in state s, all the states where σi can move to. In the first step, in
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compartment Ci, a rule γ → si,0twi,0 is applied and the current multiset
becomes w′

i = si,0wi,0.

2. For each pair (s, t), t ∈ Q
(i)
s , there are rules

sxi → tyi ∈ Ri, 1 ≤ i ≤ p (∗).
If there are no rules in Ri from s to t then another pair is considered.
For the above rules, the following rules are considered in R′

i:

xi → yi {= s = t}, 1 ≤ i ≤ p, and st → tq {≥ x1|...| ≥ xp}, q ∈ Q
(i)
t

(∗∗)
In the above guards the notation ≥ xi, if xi = ai,1 . . . ai,li , denotes
≥ ai,1 . . . ≥ ai,li . The rules (∗∗) make use of guards; the first p rules
are applied iff the current multiset contains one s and one t, whereas
the last one is applicable iff at least one or more of the occurrences of
one of the multisets xi, 1 ≤ i ≤ p, is included in the current multiset.
Clearly, in state s only the rules (∗) ofΠ are applicable for this P system,
depending on the availability of the multisets occurring on the left hand
side of them; the next state Π is moving to is t. Similarly, in Π ′ only the
rules denoted by (∗∗) are applicable; the rule st → tq {≥ x1|...| ≥ xp}
is applied once whereas the first p rules are applied as many times as
their corresponding (∗) rules are applied.

If the set Q
(i)
t used in st → tq {≥ x1|...| ≥ xp} of (∗∗) is empty, i.e., there are

no rules from state t, then the rule is replaced by st → λ. When Q
(i)
si,0 = ∅ then

the rule γ → wi,0 is introduced in R′
i.

At any moment the component Ci of the kP system Π ′ contains a multiset
which is the multiset of σi augmented by the current state of σi, s, and one of the
next states, t, if it exists.

The process will stop in component Ci of Π
′ when no pair of rules of type (∗∗)

is applicable, which means no sxi → tyi rule is applicable in state s.
The multiset M(Π ′) contains M(Π) and maybe two states s, t occurring in the

last step of the computation. Hence M(Π ′) ⊆ M(Π) ∪ {2}. ⊓⊔

Comments.

1. The above simulation can be assessed with respect to number of compartments,
objects and rules as well as the computation steps.

2. When rules sw → txygo are used in the “spread” mode, this means that any
a ∈ O occurring in y may go to any of the neighbours. In this case if y = y1ay2
then for each such a ∈ O, the rules of R′

i corresponding to sw → txygo, denoted
(∗∗) above, will show w → xy {= s = t} replaced by w → xy1(a, j)y2 {= s = t},
where j the label of one of the neighbours of the current compartment. For
“one” mode all a′s in y will point to the same target, j, for all neighbours of
the compartment i.

3. The transmission replicative mode - when a symbol is sent to all the neighbours,
can also be simulated. Indeed if j1, · · · , jh are the neighbours of i, then w →
xy1(a, j)y2 is transformed into w → xy1(a, j1) · · · (a, jh)y2 for each a.
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4. If a rewriting rule contains zout on its right side, i.e., sw → txygoxout then in
the set of rules transcribing it, w → α, we will have α = xy1(a, j)y2z

′, where
if z = a1 · · · ak, then z′ = a′1 · · · a′k; also rules (a′/λ) will be added to R′

i, for
any a ∈ O. In this way in the next step all the prime elements are sent out
into the environment. If there is a need to synchronize the behaviour of the
system with the environment then this should be done a bit differently. For
this transmission mode the kP system is a bit more complex as it must contain
input-output rules and the environment definition needs to be considered.

5. If we want to simulate the “min” processing mode then this can be obtained
by specifying the sequential behaviour of the component i - by changing the
regular expression of the component.

We study now how P systems with active membranes are simulated by kP sys-
tems. In this case we are dealing with a cell-like system, so the underlying struture
is a tree and a set of labels (types) for the compartments of the system. The sys-
tem will start with a number of compartment and its structure will evolve. In the
study below it will be assumed that the number of compartments simultaneously
present in the system is bounded.

Definition 4. A P system with active membranes of initial degree n is a tuple (see
[11], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O, w1,0, . . . , wn,0 and i0 are as in Definition 3;
• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The following result shows how a P system with active membranes starting
with n1 compartments and having no more than n2 simultaneously present ones
can be simulated by a kP systems using only rules of type (a).

Theorem 2. If Π is a P system with active membrane having n1 initial com-
partments and utilising no more than n2 compartments at any time, then there
is a kP system, Π ′, of degree 1 and using only rules of type (a), rewriting and
communication rules, such that Π ′ simulates Π.
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Proof. Let us denote J0 = {(i, h)|1 ≤ i ≤ n2, h ∈ H}; for a multiset w = a1 . . . am,
(w, i, h), (i, h) ∈ J0, denotes (a1, i, h) . . . (am, i, h). Let us consider the P system
with active membranes, Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0). The polarizations of
the n1 compartments are all 0, i.e., e1 = . . . = en1 = 0.

We construct Π ′ as follows:
Π ′ = (A,L, IO, µ′, C1) where:

• A =
∪

(i,h)∈J0
{(a, i, h)|a ∈ O ∪ {+,−, 0} ∪ {δ}}, where δ is a new symbol; let

us denote by = δall the guard = (δ, 1, 1) . . . = (δ, n2, |H|), |H| is the number of
elements in H (= δall stands for none of the (δ, i, h), (i, h) ∈ J0);

• L = {1}; IO = ∅; µ′ = []1;
• C1 = (1, w′

1,0, R
′σ
1 ), and

– w′
1,0 = (w1,0, 1, h1) . . . (wn1,0, n1, hn1)(e1, 1, h1) . . . (en1 , n1, hn1), e1 = . . . =

en1 = 0; let Jc = J0 \ {(i, hi)|1 ≤ i ≤ n1} (Jc denotes indexes available for
new compartments and J0 \ Jc the set of indexes of the current compart-
ments);

– R′
1 contains the following rules

· (a’) for each h ∈ H and each rule [u → v]eh ∈ R, e ∈ {+,−, 0}, we
add the rules (u, i, h) → (v, i, h) {= (e, i, h) = δall}, 1 ≤ i ≤ n2; these
rules are applied to every multiset containing elements with h ∈ H, only
when the polarization (e, i, h) appears and none of the (δ, j, h′) appears;

· (b’) for each h ∈ H and each rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0},
we add the rules (u, j, l)(e1, i, h) → (v, i, h)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l; these rules will transform (u, j, l) corre-
sponding to u from the parent compartment j to (v, i, h) corresponding
to v from compartment i of label h, the polarization is changed; for each
polarization, (e1, i, h) only one single rule can be applied at any moment
of the computation;

· (c’) for each h ∈ H and each rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0},
we add the rules (u, i, h)(e1, i, h) → (v, j, l)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l;

· (d’) for each h ∈ H and each rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we
add the rules (u, i, h)(e, i, h) → (v, j, l)(δ, i, h) {= δall}, 1 ≤ i ≤ n2, j
is the parent of i of label l; all the elements corresponding to those in
compartment i must be moved to j - this will happen in the presence of
(δ, i, h) when no other transformation will take place; this is obtained by
using rules (a, i, h) → (a, j, l) {= (δ, i, h)}, a ∈ O and (δ, i, h) → λ {=
(δ, i, h)}; the set of available indexes will change now to Jc = Jc∪{(i, h)};

· (e’) for each h ∈ H and each rule [u]e1h → [v]e2h [w]e3h ∈ R, e1, e2, e3 ∈
{+,−, 0}; if j1, j2 are the indexes of the new compartments, we add
(u, i, h)(e1, i, h) → (v, j1, k1)(e2, j1, k1)(w, j2, k2)(e3, j2, k2)(δ, i, h) {=
δall}, 1 ≤ i ≤ n2; the content corresponding to compartment i should
be moved to j1 and j2, hence rules (a, i, h) → (a, j1, k1)(a, j2, k2 {=
(δ, i, h)}, a ∈ O and finally (δ, i, h) → λ {= (δ, i, h)}; Jc is updated,
Jc = Jc ∪ {(i, h)} \ {(j1, k1), (j2, k2)}.
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The size of the multiset obtained in i0 by using Π computation is the same as
the size of the multiset in Π, when only (a, i0, h) are considered, minus 1 (the
polarization is also included). ⊓⊔

4 Case Study - Static Sorting

In this section we analyze the newly introduced kP systems by comparing them
with established P system classes by using them to specify a static sorting algo-
rithm. This algorithm was first written with symport/antiport rules [4] and then
reconsidered in some other cases [2]. The specification below mimics this algorithm.

4.1 Static Sorting with kP Systems

Let us consider a kP system having the following n = 6 compartments:
Ci = (i, wi,0, R

σ
i ), 1 ≤ i ≤ n, where

w1,0 = a3;w2,0 = a6p;w3,0 = a9;w4,0 = a5p;w5,0 = a7;w6,0 = a8p.
The rules in compartment Ri, 1 ≤ i ≤ n, are :

r1 : a → (b, i− 1) {≥ p}, only for i > 1
r2 : p → p′

r3 : p′ → (p, i− 1), for i even and r′3 : p′ → (p, i+ 1), for i odd
r4 : ab → a(a, i+ 1), i < n
r5 : b → a, i < n.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
The aim of this problem is to order the content of these compartments such that
the highest element (a9) will be in the left most compartment, C1, and the smallest
one (a3) in the right most compartment, Cn, (n = 6).

Remarks:

• the set of objects is A = {a, b, p, p′};
• compartment Ci has the label i, 1 ≤ i ≤ n; so any two compartments have

distinct labels;
• the rule r1 is absent from the compartment C1;
• the last two rules, r4, r5, are only present in compartments C1 to Cn−1;
• for n = 2k + 1 we need an auxiliary compartment, Cn+1, which will start

with an initial multiset p and will contain a set of rules with r2 : p → p′ and
r3 : p′ → (p, n); whereas Cn should have an additional rule r′3 : p′ → (p, n+1);

• the regular expression corresponding to the execution of the rules in a com-
partment Ci is σi = {r1, r2, r3, r4}∗{r5}∗, if i is even; for odd values of i, r3 is
replaced by r′3; the regular expression tells us that firstly the rules from the first
set are applied in a maximal parallel manner and then r5, also in a maximal
way.
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Observation. The regular expression, σi, describes an order relationship,
r1, r2, r3, r4 > r5. So we can replace this kP system by a P system with pro-
moters and having an order relationships on the set of rules associated with each
membrane.

The table below presents the first steps of the computation. In the first step
the only applicable rules are r1, r2; given the presence of the promoter p, rule r1
moves all a′s from each even compartment to the left compartment as b′s and rule
r2 transforms the promoter into p′. Next, rules r3, r4, r5 are applicable; first r3 and
r4 are applied, this means p′ is moved as p to the left compartments and for each
ab an a is kept in the current compartment and a b is moved as an a to the right
compartment; finally, the remaining b′s, if any, are transformed into a’s. These two
steps implement a sort of comparators between two adjacent compartments mov-
ing to the left bigger elements. In the previous steps the comparators have been
considered between odd and even compartments. In the next step the promoters
appear in even compartments and the comparators are now acting between an
even and an odd compartment. The algorithm does not have a stopping condition.
It must stop when no changes appear in two consecutive steps. Given that the
algorithm must stop in maximum 2(n − 1) steps, then we can introduce such a
counter, c, in each compartment and rules c → c1, ci → ci+1, 1 ≤ i ≤ 2(n− 1)− 2
and c2(n−1)−1p → λ. These rules should be executed before the rest, so the regular
expression associated with them should be a prefix of the regular set associated
with each compartment.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3 a6p a9 a5p a7 a8p
1 a3b6 p′ a9b5 p′ a7b8 p′

2 a6p a3 a9p a5 a8p a7

3 a6p′ a3b9 p′ a5b8 p′ a7

4 a6 a9p a3 a8p a5 a7p
5 a6b9 p′ a3b8 p′ a5b7 p′

Observation. Bounded number of labels! The above solution is using n
labels for n compartments. As the rules are the same in each compartment, with
two exceptions involving the components at both ends of the system (compart-
ments C1 and Cn), it is natural to look for a solutions with a bounded number
of labels. If we use the same label everywhere except for the two margins then we
face the problem of replacing the rules using targets with different rules where the
targets are now the new labels; if these are the same we can no longer distinguish
between left and right neighbours, so we should have at least two distinct ones.
Additionally, we have to distinguish odd and even positions. Consequently, four la-
bels, and two more for the two ends are enough. Are there further simplifications?
The answer to this question and the solution in this case are left as exercises to
the reader.
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4.2 Static Sorting with States

We consider the same n-compartment tissue-like P system structure as in the
previous subsection. Additionally, in this case, the rules in each compartment use
states; an order relationship between rules in each compartment is also considered.
Initial states are s1 in odd compartments and s0 otherwise; the content of the 6
regions is illustrated by the first line, step 0, of the table below.

The addition of states is potentially very useful from a modelling point of view
since many widely-used modelling languages are state-based and, therefore, such
rules were a strong candidate for inclusion in our kP system model. However, as
shown below, states can be effectively simulated by rewriting rules, as shown below
.

For the algorithm considered, the rules in each compartment and the order
relationships are as follows
Compartment 1:
r1 : s0x → s0y
r2 : s0y → s1x
r3 : s1ab → s0a(a, 2)
r4 : s1b → s0a
The rules satisfy: r1, r2, r3 > r4 .

Compartment i, 2 ≤ i ≤ n− 1:
r1 : s0a → s1(b, i− 1)
r3 : s1ab → s0a(a, i+ 1)
r4 : s1b → s0a
The rules satisfy: r1, r3 > r4.

Compartment n:
r1 : s0a → s1bn−1

r2 : s1x → s1y
r3 : s1y → s1z
r4 : s1z → s0x

Membranes - Step C1 C2 C3 C4 C5 C6

0 s1 : a3x s0 : a6 s1 : a9 s0 : a5 s1 : a7 s0 : a8x
1 s1 : a3b6x s1 : s1 : a9b5 s1 : s1 : a7b8 s1 : x
2 s0 : a6x s1 : a3 s0 : a9 s1 : a5 s0 : a8 s1 : a7y
3 s0 : a6y s1 : a3b9 s1 : s1 : a5b8 s1 : s1 : a7z
4 s1 : a6x s0 : a9 s1 : a3 s0 : a8 s1 : a5 s0 : a7x
5 s1 : a6b9 s1 : s1 : a3b8 s1 : s1 : a5b7 s1 : x

In the case where we have an odd number of compartments, the n−th region
must contain an y instead of x. Thus the starting configuration for n = 7 is the
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following:
w1,0 = a3x;w2,0 = a6;w3,0 = a9;w4,0 = a5;w5,0 = a7;w6,0 = a8;w7,0 = a13y.

4.3 Static Sorting with P Systems using Polarizations on Membranes

We now use cell-like P systems with active membranes to specify the same algo-
rithm. P systems with active membranes were introduced with the primary aim of
solving NP-complete problems in polynomial (often linear) time [11]. The key fea-
tures of this variant is the possibility of multiplying the number of compartments
during the computation process by using membrane division rules in addition to
multiset rewriting and communication rules. Each membrane can have one of the
three electrical charges {+,−, 0} and a rule can only be executed if the membrane
has the required electrical charge; a rule can also change the polarization of the
membrane when objects cross it (either in or out).

In our static sorting example compartments with two states were used, so,
when the algorithm is implemented using electrical charges, it is expected that
two electrical charges would suffice. Indeed, from the list of rules below one may
observe that 0 and + are the only polarizations utilised.

There is, however, a problem with this approach, arising from the rule appli-
cation strategy. In P systems with membrane division and polarizations, only one
rule which can change the polarization of a membrane can be applied per step [7].
The sorting algorithm however, employs maximal parallel communication rules
to operate the comparator procedure between membranes. In order to correctly
implement this procedure we will accept maximal parallel communication rules
which change the charge of the membrane they traverse to/from if and only if
they target the same final polarization.

In the case of P systems with polarizations on membranes we will use a cell-like
structure with n = 6 regions defined below with the initial multisets included and
initial polarizations; the implementation of the static sorting with P systems with
polarization on membranes is using priorities over the sets of rules.

µ = [[[[[[[a3x1]
0
1a

6x1]
+
2 a

9x1]
0
3a

5x1]
+
4 a

7x1]
0
5a

8x1]
+
6 ]

0
aux

Rules:
”Comparator” rules:
r1 : a[]0j → [b]0j , 1 ≤ j ≤ n;

r2 : [ab]0j → a[a]+j , 1 ≤ j ≤ n;

r3 : [b → a]0j , 1 ≤ j ≤ n;

Rules for switching polarities between adjacent membranes:
r4 : [x1 → x2]

i
j , 1 ≤ j ≤ n;

r5 : [x2]
0
j → y1[]

+
j , 1 ≤ j ≤ n;

r6 : [x2]
+
j → y1[]

0
j , 1 ≤ j ≤ n;

r7 : [y1 → y2]
i
j , 1 < j ≤ n+ 1;
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r8 : y2[]
0
j → [x1]

+
j , 1 ≤ j ≤ n;

r9 : y2[]
+
j → [x1]

0
j , 1 ≤ j ≤ n;

where i ∈ {0,+} ; and the order relationship r1, r2, r4, r5, r6, r7, r8, r9 > r3.

M/S []1 []2 []3 []4 []5 []6 []aux

0 [a3x1]
0 [a6x1]

+ [a9x1]
0 [a5x1]

+ [a7x1]
0 [a8x1]

+ [ ]0

1 [a3b6x2]
0 [x2]

+ [a9b5x2]
0 [x2]

+ [a7b8x2]
0 [x2]

+ [ ]0

2 [a6]+ [a3y1]
0 [a9y1]

+ [a5y1]
0 [a8y1]

+ [a7y1]
0 [y1]

0

3 [a6]+ [a3b9y2]
0 [y2]

+ [a5b8y2]
0 [y2]

+ [a7y2]
0 [y2]

0

4 [a6x1]
0 [a9x1]

+ [a3x1]
0 [a8x1]

+ [a5x1]
0 [a7x1]

+ [ ]0

5 [a6b9x2]
0 [x2]

+ [a3b
8x2]

0 [x2]
+ [a5b7x2]

0 [x2]
+ [ ]0

There are no additional requirements in the case where n = 2k + 1, however
we always entail an extra auxiliary membrane to enable out communication of the
n−th membrane, therefore allowing it to switch polarity.

A similar implementation of the static sorting algorithm can be obtained by
using P systems with labels on membranes. As illustrated in [1], we can encode elec-
trical charges in strings of the membrane labels, in order to differentiate between
the two necessary states. For each membrane hi we synthesise its complementary
label h′

i, which is changed to by a communication rule. We leave this as an exercise
to the reader.

A number of (preliminary) conclusions can be drawn from the above case study:

• kP systems are conceptually closer to tissue P systems than cell-like P systems;
in our case studies, this is reflected by the similarity between the specifications
using kP systems and tissue P systems, respectively. On the other hand, the
model realized using the cell-like P system variant is significantly more complex.

• In terms of complexity, the three implementations are roughly equivalent. The
kP system executes in each step one more rule then the P system with states;
this rule is either r2 or r3 (dealing with p). On the other hand, the number
of rules applied in each compartment for every step by cell-like P systems is
similar to the case of kP systems.

5 Conclusions

The kP system introduced in this work represents a low level specification lan-
guage. Its syntax and informal semantics and some examples have been introduced
and discussed. A case study based around a simple sorting algorithm has allowed
us to compare different specifications of this using various types of P systems. In
the next stage formal semantics will be defined and an implementation using model
checkers (SPIN, Maude) is also expected. Several extensions can be considered for
kP systems that may lead to a more flexible and higher level specification language.
A first set of extensions refer to ways of defining objects, rules and compartments
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using indexes over some specified domains. Modules can also be introduced using
a syntactic approach, rather than considering additional semantic features [8]. In
order to prove the expressive power of kP systems, a more systematic study of
simulating important classes of P systems with kP systems will be produced in a
forthcoming paper.

Acknowledgement. The work of MG and FI was partially supported by
project MuVet, Romanian National Authority for Scientific Research (CNCS –
UEFISCDI) grant number PN-II-ID-PCE-2011-3-0688.

References
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