FORMAL VERIFICATION AND SOME OPEN PROBLEMS WITH VIRUS MACHINES

Antonio Ramírez de Arellano Marrero

19th Brainstorming Week of Membrane Computing Research Group on Natural Computing Dep. of Computer Science and Artificial Intelligence Universidad de Sevilla, Seville Spain

< 注)→ < 注)→

- 2

Seville, Spain, January 25th, 2022

Index

Introduction.

• Why Virus Machines?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Brief definitions
- ② Formal verification
- Some open problems

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why Virus Machines?

BWMC19 Virus Machines

< ロ > < 回 > < 回 > < 回 > < 回 >

Why Virus Machines?

Figure: PhD meeting

BWMC19 Virus Machines

イロト イヨト イヨト イヨト

Why Virus Machines?

Figure: PhD choose

イロト イヨト イヨト イヨト

• New computing parading.

臣

≣ >

< ロ > < 同 > < 臣

- New computing parading.
- COVID-19.

(日)、<回)、<三)、</p>

æ

∢ ≣⇒

- New computing parading.
- COVID-19.
- What do all mathematicians love?
 - Solving mathematical problems...

- New computing parading.
- COVID-19.
- What do all mathematicians love?
 - Solving mathematical problems...
 - And invariants!

Brief definitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Syntax

Definition (Virus Machine)

A virus machine of degree (p, q), $p \ge 1, q \ge 1$ is a tuple $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$, where:

- $\Gamma = \{v\}$ is the singleton alphabet:
- H = {h₁,..., h_p} (host), I = {i₁,..., i_q} (instructions) are ordered sets and h_{out} represents the environment;
- $D_H = (H \cup \{h_{out}\}, E_H, w_H)$ weighted directed graph (WDG);

•
$$D_I = (I, E_I, w_I)$$
 is WDG;

- $G_C = (V_C, E_C)$ undirected bipartite graph;
- $n_j \in \mathbb{N}$, for each j, $1 \le j \le p$.

X. Chen, M.J. Pérez-Jiménez, L. Valencia-Cabrera, B. Wang, X.
Zeng. Computing with viruses. *Theoretical Computer Science*, 623 (2016), 146–159.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

Singleton alphabet $\Pi = (\Gamma, H, I, D_{H}, D_{I}, G_{C}, n_{1}, ..., n_{p}, i_{1}, h_{out})$

BWMC19 Virus Machines

æ

< ≣ ▶

A 🕨 🕨 🖌 🗐

Singleton alphabet $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$ $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$ Ordered sets

臣

문 🕨 🗉 문

BWMC19 Virus Machines

문 🕨 🗉 문

토 🕨 🛛 토

문 > 문

Figure: Host Graph of a Virus Machine

メロト メタト メヨト メヨト

Figure: Host Graph and Instruction Graph of a Virus Machine

A B > 4
 B > 4
 B

< ∃⇒

Figure: Heterogeneous network of a Virus Machine

ヘロト 人間 とくほど 人間とう

Definition

An instantaneous description or a configuration C_t at an instant t is a tuple $(a_{1,t}, \ldots, a_{p,t}, u_t, a_{0,t})$ where $a_{0,t}, a_{1,t}, \ldots, a_{p,t}$ are natural numbers and $u_t \in I \cup \{\#\}$.

臣

< □ > < □ > < □ > < □ > <</p>

Definition

An instantaneous description or a configuration C_t at an instant t is a tuple $(a_{1,t}, \ldots, a_{p,t}, u_t, a_{0,t})$ where $a_{0,t}, a_{1,t}, \ldots, a_{p,t}$ are natural numbers and $u_t \in I \cup \{\#\}$.

Definition

A computation $C = (C_0, C_1, ...)$ of a virus machine Π is a (possibly infinite) sequence of configurations such that C_0 is the initial configuration of Π and for each $t \in \mathbb{N}, C_t \Rightarrow_{\Pi} C_{t+1}$. A computation $C = (C_0, C_1, ..., C_k)$ is called a *halting computation* if there exists a *k* such that C_k is a halting configuration; that is, u = #.

イロト イヨト イヨト イヨト

Figure: Configuration: $C_0 = (n_1, n_2, n_3, n_4, i_1, 0)$

・ 同・ ・ ヨ・

- < ≣ →

Figure: Configuration: $C_1 = (n_1 - 1, n_2 + 2, n_3, n_4, i_1, 0)$

・ 同・ ・ ヨ・

< 注 → 注

Figure: Configuration: $C_{n_1} = (n_1 - n_1, n_2 + n_1, n_3, n_4, i_1, 0)$

・ 同・ ・ ヨ・

< 注 → 注

Figure: Configuration: $C_{n_1+1} = (0, n_2 + 2n_1, n_3, n_4, i_2, 0)$

伺 ト く ヨ ト

< ≣ >

Figure: Non-deterministic behavior

・ロト ・回ト ・ヨト ・ヨト

Figure: Configuration: $C_{n_1+2} = (0, n_2 + 2n_1, n_3 - 1, n_4 + 2, i_4, 0)$

・ 同・ ・ ヨ・

< 注 → 注

Figure: Configuration: $C_{n_1+3} = (0, n_2 + 2n_1, n_3 - 1, n_4 + 2, i_6, 0)$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Figure: Configuration: $C_{n_1+3} = (0, n_2 + 2n_1, n_3 - 1, n_4 + 1, \#, 1)$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Computing

Definition

A virus machine with input of degree (p, q, r) [4], $p, q, r \ge 1$ is a tuple $\Pi = (\Gamma, H, H_r, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$, where:

- $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$ is a virus machine of degree (p, q); and
- *H_r* = {*h_{j1}*,..., *h_{jr}*} ⊆ *H* is the ordered set of *r* input host and *h_{out}* ∉ *H_r*.

Computing

Definition

A virus machine with input of degree (p, q, r) [4], $p, q, r \ge 1$ is a tuple $\Pi = (\Gamma, H, H_r, I, D_H, D_I, G_C, n_1, \dots, n_p, i_1, h_{out})$, where:

- Π = (Γ, H, I, D_H, D_I, G_C, n₁, ..., n_p, i₁, h_{out}) is a virus machine of degree (p, q); and
- $H_r = \{h_{j_1}, \ldots, h_{j_r}\} \subseteq H$ is the ordered set of r input host and $h_{out} \notin H_r$.

The initial configuration of a virus machine with input $(a_1, \ldots, a_r) \in \mathbb{N}^r$ is given by $(n_1, \ldots, n_{j_1} + a_1 \ldots, n_{j_r} + a_r, \ldots, n_p)$, and it will be denoted by $\Pi + (a_1, \ldots, a_r)$ ($\Pi + a$ for single inputs).

イロン イヨン イヨン ・ ヨン

Formal Verification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Formal verification¹ is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.

 1en.wikipedia.org/wiki/Formal_verification
 < □ > < ⊡ > < ⊡ > < ≡ > < ≡ < ⊃ < ⊘</td>

 BWMC19
 Virus Machines
Formal verification¹ is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.

A method to formally verify that a computational device of a model solves a given problem is to find **invariant formulas** in some relevant loops of the device, in such a way that the veracity of those formulas at the end of the loops provides relevant information.

 1en.wikipedia.org/wiki/Formal_verification
 ← □ ▷ ← ∅ ▷ ← ≧ ▷ ↓ ≧ ▷ ○ < ○</td>

 BWMC19
 Virus Machines

Figure: Virus machine with input $\Pi_{rem} + (a, b)$ computing the remainder of the integer division

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Let (a, b) be the input of Π and $a = q \cdot b + r$. Then the following invariant holds:

 $\phi(k) \equiv \mathcal{C}_{k(4b+3)} = (a - b \cdot k, b, 0, 0, b \cdot k, i_1, 0), \text{ for } 0 \leq k \leq q$

▲御▶ ▲注▶ ▲注▶

Let (a, b) be the input of Π and $a = q \cdot b + r$. Then the following invariant holds:

$$\phi(k) \equiv \mathcal{C}_{k(4b+3)} = (a - b \cdot k, b, 0, 0, b \cdot k, i_1, 0), \text{ for } 0 \leq k \leq q$$

In particular, $\phi(q)$ is true, that is

$$\phi(q) \equiv \mathcal{C}_{q(4b+3)} = (\underbrace{a-b\cdot k}_{r}, b, 0, 0, b\cdot q, i_1, 0),$$

The halting configuration is

$$C_{q\cdot(4b+3)+r+3} = (0, b - (r+1), 0, r+1, b \cdot q, \#, r)$$

Computing the Least Prime Divisor

Figure: Virus machine solving the LPD problem

Image: A math a math

< ∃⇒

臣

In the case that the input *n* of the virus machine is any odd natural number, that is $n = p_1 \cdot q_{p_1}$ where $p_1 \neq 2$ is the minimum prime factor and $q_{p_1} = \frac{n}{p_1}$. Let us consider the following notation:

• For every $j \in \mathbb{N}$, such that $j \ge 2$, we consider:

$$\alpha_j = q_j(3 \cdot j + 4) + 3r_j + n + 7$$

where q_j and r_j are the quotient and the reminder of the integer division between n and j, i.e. they satisfy n = j ⋅ q_j + r_j.
2 Let β_k = α₂ + ··· + α_k, for every natural number k ≥ 2. The following invariant holds:

$$\psi(k) \equiv \textit{C}_{eta_k} = (\textit{n}, \textit{k}+1, 0, 0, 1, \textit{i}_1, 0), ext{ for } 2 \leq \textit{k} \leq \textit{p}_1 - 1$$

In particular $\psi(p_1 - 1)$ is true, that is

$$\psi(p_1-1) \equiv C_{\beta_{p_1-1}} = (n, p_1, 0, 0, 1, i_1, 0),$$

The halting configuration is

$$C_{\beta_{p_1-1}+(q_{p_1})(3p_1+4)}=(0,0,0,n,1,i_1,p_1),$$

< ロ > < 回 > < 回 > < 回 > <</p>

∢ ≣ ≯

3

Some open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ヘロト ヘロト ヘヨト ヘヨト

æ

• Soft Parallelism: A set of instructions can be activated a the same transition step.

Image: A mathematical states and a mathem

臣

∢ ≣⇒

- Soft Parallelism: A set of instructions can be activated a the same transition step.
- MC ingredients:
 - Excitation of the host. (Maybe tomorrow)

• Soft Parallelism: A set of instructions can be activated a the same transition step.

• MC ingredients:

- Excitation of the host. (Maybe tomorrow)
- Dead hosts, threshold in the number of viruses, mutation...

Definition

A parallel virus machine of degree (p,q), $p,q \ge 1$ is a tuple $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, l_0, h_{out})$, where:

- $I_0 = \{i_{j_1}, \dots, i_{j_k}\} \subseteq I$ is the ordered set of k initial instructions; and
- $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_{j_r}, h_{out})$ is a virus machine of degree (p, q) for every $i_{j_r} \in I_0$.

Definition

A parallel virus machine of degree (p,q), $p,q \ge 1$ is a tuple $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, l_0, h_{out})$, where:

- $I_0 = \{i_{j_1}, \dots, i_{j_k}\} \subseteq I$ is the ordered set of k initial instructions; and
- Π = (Γ, H, I, D_H, D_I, G_C, n₁, ..., n_p, i_{jr}, h_{out}) is a virus machine of degree (p, q) for every i_{jr} ∈ I₀.

What about semantics? Let represent the semantics of a virus machine as s, that is, if u_t is the instruction that will be activated at ant step t, then $s(u_t) = u_{t+1}$.

Definition

A parallel virus machine of degree (p, q), $p, q \ge 1$ is a tuple $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, l_0, h_{out})$, where:

- $I_0 = \{i_{j_1}, \dots, i_{j_k}\} \subseteq I$ is the ordered set of k initial instructions; and
- $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_{j_r}, h_{out})$ is a virus machine of degree (p, q) for every $i_{j_r} \in I_0$.

What about semantics? Let represent the semantics of a virus machine as s, that is, if u_t is the instruction that will be activated at ant step t, then $s(u_t) = u_{t+1}$.

The idea of the semantic of parallel virus machines is

$$I_{t+1} = \{s(i_k) : i_k \in I_t\}$$

Definition

A parallel virus machine of degree (p, q), $p, q \ge 1$ is a tuple $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, l_0, h_{out})$, where:

- $I_0 = \{i_{j_1}, \dots, i_{j_k}\} \subseteq I$ is the ordered set of k initial instructions; and
- $\Pi = (\Gamma, H, I, D_H, D_I, G_C, n_1, \dots, n_p, i_{j_r}, h_{out})$ is a virus machine of degree (p, q) for every $i_{j_r} \in I_0$.

What about semantics? Let represent the semantics of a virus machine as s, that is, if u_t is the instruction that will be activated at ant step t, then $s(u_t) = u_{t+1}$.

The idea of the semantic of parallel virus machines is

$$I_{t+1} = \{s(i_k) : i_k \in I_t\}$$

This has to be well defined

Let's go to the black(green)board!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Romero-Jiménez, Á., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: Generating diophantine sets by virus machines. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds.) Bio-Inspired Computing – Theories and Applications. pp. 331–341. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)
- Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B., Zeng, X.: Computing with viruses. Theoretical Computer Science 623, 146–159 (2016).
- Romero-Jiménez, Á., Valencia-Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.:Computing partial recursive functions by virus machines. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) Membrane Computing. pp. 353–368. Springer International Publishing, Cham (2015)
- Ramírez-de Arellano, A., Orellana-Martín, D., Pérez-Jiménez, M.J.: Basic arithmetic calculations through virus-based machines. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. pp. 403–412. Springer International Publishing, Cham (2022).