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COVID-19.

What do all mathematicians love?

Solving mathematical problems...

And invariants!
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Brief definitions



Syntax

Definition (Virus Machine)

A virus machine of degree (p, q), p ≥ 1, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1, hout), where:

Γ = {v} is the singleton alphabet:

H = {h1, . . . , hp} (host), I = {i1, . . . , iq} (instructions) are
ordered sets and hout represents the environment;

DH = (H ∪ {hout},EH ,wH) weighted directed graph (WDG);

DI = (I ,EI ,wI ) is WDG;

GC = (VC ,EC ) undirected bipartite graph;

nj ∈ IN, for each j , 1 ≤ j ≤ p.

X. Chen, M.J. Pérez-Jiménez, L. Valencia-Cabrera, B. Wang, X.
Zeng. Computing with viruses. Theoretical Computer Science, 623
(2016), 146–159.
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Figure: Host Graph and Instruction Graph of a Virus Machine
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Semantics

Definition

An instantaneous description or a configuration Ct at an instant t
is a tuple (a1,t , . . . , ap,t , ut , a0,t) where a0,t , a1,t , . . . , ap,t are
natural numbers and ut ∈ I ∪ {#}.

Definition

A computation C = (C0, C1, . . . ) of a virus machine Π is a (possibly
infinite) sequence of configurations such that C0 is the initial
configuration of Π and for each t ∈ IN, Ct ⇒Π Ct+1. A
computation C = (C0, C1, . . . , Ck) is called a halting computation if
there exists a k such that Ck is a halting configuration; that is,
u = #.
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Figure: Configuration: C0 = (n1, n2, n3, n4, i1, 0)
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BWMC19 Virus Machines



i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n n

2

3 4

1

Figure: Configuration: Cn1+2 = (0, n2 + 2n1, n3 − 1, n4 + 2, i4, 0)
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Figure: Configuration: Cn1+3 = (0, n2 + 2n1, n3 − 1, n4 + 2, i6, 0)
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Computing

Definition

A virus machine with input of degree (p, q, r) [4], p, q, r ≥ 1 is a
tuple Π = (Γ,H,Hr , I ,DH ,DI ,GC , n1, . . . , np, i1, hout), where:

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1, hout) is a virus
machine of degree (p, q); and

Hr = {hj1 , . . . , hjr } ⊆ H is the ordered set of r input host and
hout /∈ Hr .

The initial configuration of a virus machine with input
(a1, . . . , ar ) ∈ INr is given by (n1, . . . , nj1 + a1 . . . , njr + ar , . . . , np),
and it will be denoted by Π+ (a1, . . . , ar ) (Π + a for single inputs).
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Formal Verification



What is formal verification?

Formal verification1 is the act of proving or disproving the
correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal
methods of mathematics.

A method to formally verify that a computational device of a
model solves a given problem is to find invariant formulas in
some relevant loops of the device, in such a way that the veracity
of those formulas at the end of the loops provides relevant
information.

1en.wikipedia.org/wiki/Formal verification
BWMC19 Virus Machines



What is formal verification?

Formal verification1 is the act of proving or disproving the
correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal
methods of mathematics.

A method to formally verify that a computational device of a
model solves a given problem is to find invariant formulas in
some relevant loops of the device, in such a way that the veracity
of those formulas at the end of the loops provides relevant
information.

1en.wikipedia.org/wiki/Formal verification
BWMC19 Virus Machines



a

h1

b

h2

h3 h4h5

i1 i2i3

i4 i5 i6

2

2

2

2

2

Figure: Virus machine with input Πrem + (a, b) computing the remainder
of the integer division
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Formal verification

Let (a, b) be the input of Π and a = q · b + r . Then the following
invariant holds:

ϕ(k) ≡ Ck(4b+3) = (a− b · k, b, 0, 0, b · k, i1, 0), for 0 ≤ k ≤ q

In particular, ϕ(q) is true, that is

ϕ(q) ≡ Cq(4b+3) = (a− b · k︸ ︷︷ ︸
r

, b, 0, 0, b · q, i1, 0),

The halting configuration is

Cq·(4b+3)+r+3 = (0, b − (r + 1), 0, r + 1, b · q,#, r)
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Computing the Least Prime Divisor
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Figure: Virus machine solving the LPD problem
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Formal verification

In the case that the input n of the virus machine is any odd natural
number, that is n = p1 · qp1 where p1 ̸= 2 is the minimum prime

factor and qp1 =
n

p1
. Let us consider the following notation:

1 For every j ∈ IN, such that j ≥ 2, we consider:

αj = qj(3 · j + 4) + 3rj + n + 7

where qj and rj are the quotient and the reminder of the
integer division between n and j , i.e. they satisfy n = j ·qj + rj .

2 Let βk = α2 + · · ·+ αk , for every natural number k ≥ 2.

The following invariant holds:

ψ(k) ≡ Cβk
= (n, k + 1, 0, 0, 1, i1, 0), for 2 ≤ k ≤ p1 − 1
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Formal verification

In particular ψ(p1 − 1) is true, that is

ψ(p1 − 1) ≡ Cβp1−1 = (n, p1, 0, 0, 1, i1, 0),

The halting configuration is

Cβp1−1+(qp1 )(3p1+4) = (0, 0, 0, n, 1, i1, p1),
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Some open problems



Efficiency

Soft Parallelism: A set of instructions can be activated a the
same transition step.

MC ingredients:

Excitation of the host. (Maybe tomorrow)

Dead hosts, threshold in the number of viruses,mutation...
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Soft Parallelism

Definition

A parallel virus machine of degree (p, q) , p, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, I0, hout), where:

I0 = {ij1 , . . . ijk} ⊆ I is the ordered set of k initial instructions;
and

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, ijr , hout) is a virus
machine of degree (p, q) for every ijr ∈ I0.

What about semantics? Let represent the semantics of a virus
machine as s, that is, if ut is the instruction that will be activated
at ant step t, then s(ut) = ut+1.
The idea of the semantic of parallel virus machines is

It+1 = {s(ik) : ik ∈ It}

This has to be well defined
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Let’s go to the black(green)board!



Thank you for your attention!
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