
Formal verification and some open
problems with Virus Machines

Antonio Raḿırez de Arellano Marrero

19th Brainstorming Week of Membrane Computing
Research Group on Natural Computing

Dep. of Computer Science and Artificial Intelligence
Universidad de Sevilla, Seville Spain

Seville, Spain, January 25th, 2022

Index
1 Introduction.

Why Virus Machines?

Brief definitions

2 Formal verification

3 Some open problems

Introduction

Why Virus Machines?

Virus
Machines

P
Systems

Figure: PhD meeting

BWMC19 Virus Machines

Why Virus Machines?

Virus
Machines

P
Systems

Figure: PhD meeting

BWMC19 Virus Machines

Why Virus Machines?

Figure: PhD choose

BWMC19 Virus Machines

Why Virus Machines?

New computing parading.

COVID-19.

What do all mathematicians love?

Solving mathematical problems...

And invariants!

BWMC19 Virus Machines

Why Virus Machines?

New computing parading.

COVID-19.

What do all mathematicians love?

Solving mathematical problems...

And invariants!

BWMC19 Virus Machines

Why Virus Machines?

New computing parading.

COVID-19.

What do all mathematicians love?

Solving mathematical problems...

And invariants!

BWMC19 Virus Machines

Why Virus Machines?

New computing parading.

COVID-19.

What do all mathematicians love?

Solving mathematical problems...

And invariants!

BWMC19 Virus Machines

Brief definitions

Syntax

Definition (Virus Machine)

A virus machine of degree (p, q), p ≥ 1, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1, hout), where:

Γ = {v} is the singleton alphabet:

H = {h1, . . . , hp} (host), I = {i1, . . . , iq} (instructions) are
ordered sets and hout represents the environment;

DH = (H ∪ {hout},EH ,wH) weighted directed graph (WDG);

DI = (I ,EI ,wI) is WDG;

GC = (VC ,EC) undirected bipartite graph;

nj ∈ IN, for each j , 1 ≤ j ≤ p.

X. Chen, M.J. Pérez-Jiménez, L. Valencia-Cabrera, B. Wang, X.
Zeng. Computing with viruses. Theoretical Computer Science, 623
(2016), 146–159.

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

Ordered
sets

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

Ordered
sets

WDG

Bipartite
Graph

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

Ordered
sets

WDG

Bipartite
Graph

Number
of viruses

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

Ordered
sets

WDG

Bipartite
Graph

Number
of viruses

Initial
instruction

BWMC19 Virus Machines

Π = (Γ,H,I,D ,D,G ,n ,...,n ,i ,h) H I C 1 p 1 out

Singleton
alphabet

Ordered
sets

WDG

Bipartite
Graph

Number
of viruses

Initial
instruction

Environment

BWMC19 Virus Machines

h1 h2

h3 h4

2

2

Figure: Host Graph of a Virus Machine

BWMC19 Virus Machines

h1 h2

h3 h4

2

2

i1

i2

i3

i4

i5

i6

2

2

2 2

Figure: Host Graph and Instruction Graph of a Virus Machine

BWMC19 Virus Machines

h1 h2

h3 h4

2

2

i1

i2

i3

i4

i5

i6

2

2

2 2

Figure: Heterogeneous network of a Virus Machine

BWMC19 Virus Machines

Semantics

Definition

An instantaneous description or a configuration Ct at an instant t
is a tuple (a1,t , . . . , ap,t , ut , a0,t) where a0,t , a1,t , . . . , ap,t are
natural numbers and ut ∈ I ∪ {#}.

Definition

A computation C = (C0, C1, . . .) of a virus machine Π is a (possibly
infinite) sequence of configurations such that C0 is the initial
configuration of Π and for each t ∈ IN, Ct ⇒Π Ct+1. A
computation C = (C0, C1, . . . , Ck) is called a halting computation if
there exists a k such that Ck is a halting configuration; that is,
u = #.

BWMC19 Virus Machines

Semantics

Definition

An instantaneous description or a configuration Ct at an instant t
is a tuple (a1,t , . . . , ap,t , ut , a0,t) where a0,t , a1,t , . . . , ap,t are
natural numbers and ut ∈ I ∪ {#}.

Definition

A computation C = (C0, C1, . . .) of a virus machine Π is a (possibly
infinite) sequence of configurations such that C0 is the initial
configuration of Π and for each t ∈ IN, Ct ⇒Π Ct+1. A
computation C = (C0, C1, . . . , Ck) is called a halting computation if
there exists a k such that Ck is a halting configuration; that is,
u = #.

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

n n

n n

1 2

3 4

Figure: Configuration: C0 = (n1, n2, n3, n4, i1, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

n-1 n+2

n n

1 2

3 4

Figure: Configuration: C1 = (n1 − 1, n2 + 2, n3, n4, i1, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

n-n n+2n

n n

1 2

3 4

1 1

Figure: Configuration: Cn1 = (n1 − n1, n2 + n1, n3, n4, i1, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n n

2

3 4

1

Figure: Configuration: Cn1+1 = (0, n2 + 2n1, n3, n4, i2, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n n

2

3 4

1

Figure: Non-deterministic behavior

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n n

2

3 4

1

Figure: Configuration: Cn1+2 = (0, n2 + 2n1, n3 − 1, n4 + 2, i4, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n-1 n+2

2

3 4

1

Figure: Configuration: Cn1+3 = (0, n2 + 2n1, n3 − 1, n4 + 2, i6, 0)

BWMC19 Virus Machines

i

h

i

h

i

h

i

i

h

i

1

1

2

3

3

2

4

5

4

6

2

2

2

2

2

2

0 n+2n

n-1 n+1

2

3 4

1

#

1

Figure: Configuration: Cn1+3 = (0, n2 + 2n1, n3 − 1, n4 + 1,#, 1)

BWMC19 Virus Machines

Computing

Definition

A virus machine with input of degree (p, q, r) [4], p, q, r ≥ 1 is a
tuple Π = (Γ,H,Hr , I ,DH ,DI ,GC , n1, . . . , np, i1, hout), where:

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1, hout) is a virus
machine of degree (p, q); and

Hr = {hj1 , . . . , hjr } ⊆ H is the ordered set of r input host and
hout /∈ Hr .

The initial configuration of a virus machine with input
(a1, . . . , ar) ∈ INr is given by (n1, . . . , nj1 + a1 . . . , njr + ar , . . . , np),
and it will be denoted by Π+ (a1, . . . , ar) (Π + a for single inputs).

BWMC19 Virus Machines

Computing

Definition

A virus machine with input of degree (p, q, r) [4], p, q, r ≥ 1 is a
tuple Π = (Γ,H,Hr , I ,DH ,DI ,GC , n1, . . . , np, i1, hout), where:

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1, hout) is a virus
machine of degree (p, q); and

Hr = {hj1 , . . . , hjr } ⊆ H is the ordered set of r input host and
hout /∈ Hr .

The initial configuration of a virus machine with input
(a1, . . . , ar) ∈ INr is given by (n1, . . . , nj1 + a1 . . . , njr + ar , . . . , np),
and it will be denoted by Π+ (a1, . . . , ar) (Π + a for single inputs).

BWMC19 Virus Machines

Formal Verification

What is formal verification?

Formal verification1 is the act of proving or disproving the
correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal
methods of mathematics.

A method to formally verify that a computational device of a
model solves a given problem is to find invariant formulas in
some relevant loops of the device, in such a way that the veracity
of those formulas at the end of the loops provides relevant
information.

1en.wikipedia.org/wiki/Formal verification
BWMC19 Virus Machines

What is formal verification?

Formal verification1 is the act of proving or disproving the
correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal
methods of mathematics.

A method to formally verify that a computational device of a
model solves a given problem is to find invariant formulas in
some relevant loops of the device, in such a way that the veracity
of those formulas at the end of the loops provides relevant
information.

1en.wikipedia.org/wiki/Formal verification
BWMC19 Virus Machines

a

h1

b

h2

h3 h4h5

i1 i2i3

i4 i5 i6

2

2

2

2

2

Figure: Virus machine with input Πrem + (a, b) computing the remainder
of the integer division

BWMC19 Virus Machines

Formal verification

Let (a, b) be the input of Π and a = q · b + r . Then the following
invariant holds:

ϕ(k) ≡ Ck(4b+3) = (a− b · k, b, 0, 0, b · k, i1, 0), for 0 ≤ k ≤ q

In particular, ϕ(q) is true, that is

ϕ(q) ≡ Cq(4b+3) = (a− b · k︸ ︷︷ ︸
r

, b, 0, 0, b · q, i1, 0),

The halting configuration is

Cq·(4b+3)+r+3 = (0, b − (r + 1), 0, r + 1, b · q,#, r)

BWMC19 Virus Machines

Formal verification

Let (a, b) be the input of Π and a = q · b + r . Then the following
invariant holds:

ϕ(k) ≡ Ck(4b+3) = (a− b · k, b, 0, 0, b · k, i1, 0), for 0 ≤ k ≤ q

In particular, ϕ(q) is true, that is

ϕ(q) ≡ Cq(4b+3) = (a− b · k︸ ︷︷ ︸
r

, b, 0, 0, b · q, i1, 0),

The halting configuration is

Cq·(4b+3)+r+3 = (0, b − (r + 1), 0, r + 1, b · q,#, r)

BWMC19 Virus Machines

Computing the Least Prime Divisor

n

h1

2

h2h3

h4

1

h5
2

i1 i2i3i4

i5

i6 i7 i8

i9

i10

2

2

2

2

2

2

i1 activates h2 → h3

i2 activates h1 → h4

i3 activates h1 → h4

i4 activates h4 → h1

i5 activates h3 → env

i6 activates h5 → h2 (2)

i7 activates h2 → h5

i8 activates h4 → h1

i9 activates h3 → h2

Figure: Virus machine solving the LPD problem

BWMC19 Virus Machines

Formal verification

In the case that the input n of the virus machine is any odd natural
number, that is n = p1 · qp1 where p1 ̸= 2 is the minimum prime

factor and qp1 =
n

p1
. Let us consider the following notation:

1 For every j ∈ IN, such that j ≥ 2, we consider:

αj = qj(3 · j + 4) + 3rj + n + 7

where qj and rj are the quotient and the reminder of the
integer division between n and j , i.e. they satisfy n = j ·qj + rj .

2 Let βk = α2 + · · ·+ αk , for every natural number k ≥ 2.

The following invariant holds:

ψ(k) ≡ Cβk
= (n, k + 1, 0, 0, 1, i1, 0), for 2 ≤ k ≤ p1 − 1

BWMC19 Virus Machines

Formal verification

In particular ψ(p1 − 1) is true, that is

ψ(p1 − 1) ≡ Cβp1−1 = (n, p1, 0, 0, 1, i1, 0),

The halting configuration is

Cβp1−1+(qp1)(3p1+4) = (0, 0, 0, n, 1, i1, p1),

BWMC19 Virus Machines

Some open problems

Efficiency

Soft Parallelism: A set of instructions can be activated a the
same transition step.

MC ingredients:

Excitation of the host. (Maybe tomorrow)

Dead hosts, threshold in the number of viruses,mutation...

BWMC19 Virus Machines

Efficiency

Soft Parallelism: A set of instructions can be activated a the
same transition step.

MC ingredients:

Excitation of the host. (Maybe tomorrow)

Dead hosts, threshold in the number of viruses,mutation...

BWMC19 Virus Machines

Efficiency

Soft Parallelism: A set of instructions can be activated a the
same transition step.

MC ingredients:

Excitation of the host. (Maybe tomorrow)

Dead hosts, threshold in the number of viruses,mutation...

BWMC19 Virus Machines

Efficiency

Soft Parallelism: A set of instructions can be activated a the
same transition step.

MC ingredients:

Excitation of the host. (Maybe tomorrow)

Dead hosts, threshold in the number of viruses,mutation...

BWMC19 Virus Machines

Soft Parallelism

Definition

A parallel virus machine of degree (p, q) , p, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, I0, hout), where:

I0 = {ij1 , . . . ijk} ⊆ I is the ordered set of k initial instructions;
and

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, ijr , hout) is a virus
machine of degree (p, q) for every ijr ∈ I0.

What about semantics? Let represent the semantics of a virus
machine as s, that is, if ut is the instruction that will be activated
at ant step t, then s(ut) = ut+1.
The idea of the semantic of parallel virus machines is

It+1 = {s(ik) : ik ∈ It}

This has to be well defined

BWMC19 Virus Machines

Soft Parallelism

Definition

A parallel virus machine of degree (p, q) , p, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, I0, hout), where:

I0 = {ij1 , . . . ijk} ⊆ I is the ordered set of k initial instructions;
and

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, ijr , hout) is a virus
machine of degree (p, q) for every ijr ∈ I0.

What about semantics? Let represent the semantics of a virus
machine as s, that is, if ut is the instruction that will be activated
at ant step t, then s(ut) = ut+1.

The idea of the semantic of parallel virus machines is

It+1 = {s(ik) : ik ∈ It}

This has to be well defined

BWMC19 Virus Machines

Soft Parallelism

Definition

A parallel virus machine of degree (p, q) , p, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, I0, hout), where:

I0 = {ij1 , . . . ijk} ⊆ I is the ordered set of k initial instructions;
and

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, ijr , hout) is a virus
machine of degree (p, q) for every ijr ∈ I0.

What about semantics? Let represent the semantics of a virus
machine as s, that is, if ut is the instruction that will be activated
at ant step t, then s(ut) = ut+1.
The idea of the semantic of parallel virus machines is

It+1 = {s(ik) : ik ∈ It}

This has to be well defined

BWMC19 Virus Machines

Soft Parallelism

Definition

A parallel virus machine of degree (p, q) , p, q ≥ 1 is a tuple
Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, I0, hout), where:

I0 = {ij1 , . . . ijk} ⊆ I is the ordered set of k initial instructions;
and

Π = (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, ijr , hout) is a virus
machine of degree (p, q) for every ijr ∈ I0.

What about semantics? Let represent the semantics of a virus
machine as s, that is, if ut is the instruction that will be activated
at ant step t, then s(ut) = ut+1.
The idea of the semantic of parallel virus machines is

It+1 = {s(ik) : ik ∈ It}

This has to be well defined
BWMC19 Virus Machines

Let’s go to the black(green)board!

Thank you for your attention!

Romero-Jiménez, Á., Valencia-Cabrera, L., Pérez-Jiménez, M.J.:
Generating diophantine sets by virus machines. In: Gong, M.,
Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds.) Bio-Inspired
Computing – Theories and Applications. pp. 331–341. Springer
Berlin Heidelberg, Berlin, Heidelberg (2015)

Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B.,
Zeng, X.: Computing with viruses. Theoretical Computer Science
623, 146–159 (2016).

Romero-Jiménez, Á., Valencia-Cabrera, L., Riscos-Núñez, A.,
Pérez-Jiménez, M.J.:Computing partial recursive functions by virus
machines. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron,
C. (eds.) Membrane Computing. pp. 353–368. Springer International
Publishing, Cham (2015)

Raḿırez-de Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.:
Basic arithmetic calculations through virus-based machines. In:
Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F.,
Adeli, H. (eds.) Bio-inspired Systems and Applications: from
Robotics to Ambient Intelligence. pp. 403–412. Springer
International Publishing, Cham (2022).

