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Introduction

Key Agreement Protocols

@ Classical
@ Post-quantum

@ Quantum
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Introduction

Classical

@ Based on hard problems from number theory (DH, DL)
@ No mathematical proof

@ Hope it will work
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Introduction

Diffie-Hellman (DH)

Public parameters:
g P

Alice Bob

aGR{Q,...,p—Z}

A:gamodpx
(-//_L/

K=(B)=g"

begr {2,...,p—2}

B = g mod p

K=(AP=g®
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Introduction

Security of DH

Given g, p, g2 and g® there is no known efficient algorithm for
computing g2°

Conjecture

Given g, p and g* there is no known efficient algorithm for
computing x
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Introduction

Why do we need anything else?

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Short

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Mihail-lulian Plesa Making neural cryptography great again



Introduction

Why do we need anything else?

Factoring integers with sublinear resources on a superconducting quantum processor

Bao Yan,2 * Ziqi Tan,> * Shijie Wei,* * Haocong Jiang,’ Weilong Wang,' Hong Wang,! Lan Luo,' Qianheng Duan,!
Yiting Liu,! Wenhao Shi,! Yangyang Fei,! Xiangdong Meng,! Yu Han,! Zheng Shan,' Jiachen Chen,? Xuhao Zhu,
Chuanyu Zhang,? Feitong Jin, Hekang Li,> Chao Song,® Zhen Wang,?-  Zhi Ma," ! H. Wang,? and Gui-Lu Long?>*67-§

!State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsmghua University, Beijing 100084, China
3School of Physics, ZJU-He hou Global Scientific and Technol 1 ion Center, iplinary Center for Quantum Information,
and Zhejiang Province Key Laboratory of Quantum Technnlogy and Device, Zhejiang University, Hangzhou 310000, China
Bet]tng Acade uf Quantum I Sciences, Bet]mg 100193, China
Snstitute of I Te y, I ion Engineering Uni h hou 450001, China
Beymg National R n Center for Inf ion Science and Technole
and School of Information Tsinghua University, Beijing 100084, Chma
"Frontier Science Center for Quantum Information, Beijing 100084, China

Shor’s algorithm has seriously challenged information security based on public key cryptosystems.
However, to break the widely used RSA-2048 scheme, one needs millions of physical qubits, which is
far beyond current technical capabilities. Here, we report a universal quantum algonthm for integer
factorization by combining the classical lattice reduction with a approximate opti ion algo-
rithm (QAOA). The number of qubits required is O(logN/loglogN), which is sublinear in the bit length
of the integer N, making it the most qubit-saving factorization algorithm to date. We demonstrate the
algorithm experimentally by factoring integers up to 48 bits with 10 superconducting qubits, the largest
integer factored on a device. We estil that a circuit with 372 physical qubits and
a depth of thousands is necessary to challenge RSA-2048 using our algorithm. Our study shows great
promise in expediting the application of current noisy quantum computers, and paves the way to factor
large integers of realistic cryptographic significance.
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Introduction

Post-quantum

@ Based on hard problems from number theory (lattice
problems)

@ No mathematical proof
@ Hope it will work

Different problems - same philosophy
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Introduction

Quantum

@ Based on quantum effects (collapse of the probability wave,
entanglement, etc)

@ No need for a mathematical proof

o It works

Mihail-lulian Plesa Making neural cryptography great again



Introduction

Alice’s bit 0 1 1o0l110!l 0] 1
Alice’s basis + + X + X | X | X +
Alice’s polarization T — | ) T X | Al A -
Bob’s basis + X | X | X + X + +
Bob’s measurement T AN A — Al —|—
Public discussion
Shared Secretkey | () 1 0 1

https://www.cse.wustl.edu/ jain/cse571-07 /ftp/quantum/



Neural cryptography

Neural Key Exchange

Secure exchange of information by
synchronization of neural networks

Ido Kanter!, Wolfgang Kinzel? and Eran Kanter!

(1) Department of Physics, Bar Ilan University, 52900 Ramat Gan, Israel
(2) Institut fiir Theoretische Physik, Universitdt Wiirzburg, Am Hubland,
D-97074 Wiirzburg, Germany
3.9. 2001

Abstract

A connection between the theory of neural networks and cryptog-
raphy is presented. A new phenomenon, namely synchronization of
neural networks is leading to a new method of gxchange of secretl mes-
sages. Numerical simulations show that two artificial networks being
trained by Hebbian learning rule on their mutual outputs develop an
antiparallel state of their synaptic weights. The Syiichronizediweights
are used to construct an ephemeral K8§ exchange protocol for a secure
transmission of secret data. It is shown that an opponent who knows
the protocol and all details of any transmission of the data has no
chance to decrypt the secret message, since tracking the weights is a
hard problem compared to synchronization. The complexity of the
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Neural cryptography

Tree Parity Machine (TPM)

v
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Neural cryptography

Tree Parity Machine

Two TPMs are synchronized if their sequences of weights are
identical
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Neural cryptography

Neural Key Agreement - In Theory

@ Based on the synchronization of two TPMs
@ No number theory assumptions

@ Quantum secure
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Neural cryptography

Neural Key Agreement - In Practice

o Geometric attack !
e Genetic attack 2
e Majority attack 3

An attacker can recover more than 90% of the key just by listening
to the legitimate participants of the protocol

!Klimov, A., Mityagin, A. and Shamir, A., 2002, December. Analysis of
neural cryptography. In International Conference on the Theory and
Application of Cryptology and Information Security (pp. 288-298). Springer,
Berlin, Heidelberg.

2Ruttor, A., Kinzel, W., Naeh, R. and Kanter, 1., 2006. Genetic attack on
neural cryptography. Physical Review E, 73(3), p.036121

3Shacham, L.N., Klein, E., Mislovaty, R., Kanter, |. and Kinzel, W., 2004.
Cooperating attackers in neural cryptography. Physical Review E, 69(6),
p.066137.
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Neural cryptography

Further improvements

o Input with feedback !

e Output with errors 2

Trade efficiency for security

'Ruttor, A., Kinzel, W., Shacham, L. and Kanter, |., 2004. Neural
cryptography with feedback. Physical Review E, 69(4), p.046110.

2Allam, A.M. and Abbas, H.M., 2009, June. Improved security of neural
cryptography using don't-trust-my-partner and error prediction. In 2009
International Joint Conference on Neural Networks (pp. 121-127). IEEE
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Our work

Anti Spiking Neural Tree Parity Machine P System
(ASNTPM P System)

@ SN P neuron model
@ K - the number of neurons from the hidden layer
@ N - the number of neurons from the input layer connected to

a single hidden neuron

@ L - the maximum value of a weight

Plesa, M.I., Gheoghe, M., Ipate, F. and Zhang, G., 2022. A key agreement
protocol based on spiking neural P systems with anti-spikes. Journal of
Membrane Computing, pp.1-11.
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Our work

ASNTPM - Efficiency

K |IN Syncronization time
TPM ASNTPM P system
Mean|Standard deviation|Mean|Standard deviation
4 8 [138.49 64.23 31.62 12.26
4 | 16 [135.16 63.81 39.02 16.39
8 | 16 |247.18 80.78 65.45 23.72
4 | 32 |138.77 52.06 49.99 17.44
8 | 32 |278.16 89.87 77.30 25.37
16 | 32 [450.63 90.65 112.78 32.68
4 | 64 [149.59 53.45 60.15 23.03
8 | 64 [319.74 102.59 86.39 29.78
16 | 64 [519.39 122.25 128.64 36.48
32 | 64 |727.02 130.50 188.32 54.15
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Our work

ASNTPM - Efficiency
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ASNTPM - Efficiency

Our work
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Our work

ASNTPM - Efficiency

f(x) = 0.00593 x~1.79512 + 19.55725
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Our work

ASNTPM - Efficiency

1e6 f(x) = 0.00090 x~4.32946 + 46142.02117
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Our work

ASNTPM - Security

K N Mean entropy of the key
ASNTPM P system TPM
Mean Mean
4 8 4.86 4.82
4 |16 5.87 5.79
8 | 16 6.84 6.79
4 | 32 6.86 6.78
8 | 32 7.85 7.7
16 | 32 8.82 8.77
4 | 64 7.87 7.76
8 | 64 8.85 8.76
16 | 64 9.83 9.76
32 | 64 10.83 10.76
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Our work

ASNTPM - Security

K |IN Mean synchronization percentage of the attacker

ASNTPM P system TPM

Mean Mean
4 8 0.05 0.68
4 | 16 0.02 0.40
8 | 16 0.01 0.45
4 | 32 0.01 0.53
8 | 32 0.02 0.40
16 | 32 0.02 0.30
4 | 64 0.02 0.34
8 | 64 0.02 0.30
16 | 64 0.03 0.34
32 | 64 0.03 0.32
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Our work

ASNTPM - Security
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Current research

Cryptography works with proofs

@ Formal adversary model

@ Formal security proof in that model
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Current research

We need a "hard problem”

@ Classical key agreement protocols: DH, DDH, Factoring, DL,
etc

@ Post-quantum key agreement protocols: SVP, CVP, LWE,
RLWE, etc

@ Quantum cryptography: entanglement, no cloning, the
collapse of the probability wave, etc.

Prove that breaking the protocol is equivalent to solving a "hard
problem”

Mihail-lulian Plesa Making neural cryptography great again



Current research

Neural synchronization as a hard problem

@ No hard problem is defined in neural cryptography
o No formal adversary model

@ No formal security proof
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Current research

ASNTPM - constructing a hard problem

Can we design an efficient algorithm for synchronizing two
ASNTPMs without mutual learning?
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Current research

ASNTPM - constructing a hard problem

Treat every attack on TPMs as a possible algorithm for
synchronizing two ASNTPMs without mutual learning.
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Current research

ASNTPM - constructing a hard problem

Algorithm 1 ASNTPM P System initialization

1: function INITIALIZE(II, X)
2: fori=1; i< K;i=i+1do

3 forj=1j<Nj=j+1do

4 if X[i* N+ j] <0 then

5: NI, 0in,,) = |X[i % N + ]
6: else

7 N(II,0in;;) = X[i * N + 4]
8: end if

9: Walills] & [0,2L)

10: end for

11: end for
12: fori=1;i<K;i=i+1do

13: N(II,on,) =0
14: N(I,on,)=0
15: end for

16: N(II,00ut) =0
17: N(II,00u) =0
18: end function
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Current research

ASNTPM - constructing a hard problem

Algorithm 2 ASNTPM P System running
1: function Run(IT)
2: fori=1;,i<K;i=i¢+1do

fori=1;i<K;i=:¢+1do
N(Hvaouf) = N(vaout) + N(vam)

10: NI, 00ut) = N(II,00ut) + N(II,0n;)

11: end for

12: end function

3: forj=1j<Nj=j+1do

4: N(II,0n,) = N(II,0n;) + Wali][j] * NI, 0in,;)
5: N(I,on;) = N(II,0n;) + Wnli][j] * N(II, 0in,;)
6: end for

T end for

8:

9:
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Current research

ASNTPM - constructing a hard problem

Algorithm 3 The learning function
1: function UPDATEWEIGHTS(IT)
2: fori=1;i<K;i=1i+1do
3 if [[N(IT,on,) = N(IT,00ut)] V [N(IT, 0n;) = N(II,00ut)]] then
4 forj=1j;<Nj=j+1do
5: if N(I1,054¢) > 0 then
6: Wrlil[j] = [Wrlil[j] + N(I, 0in,;)|
7.
8

else if N(II,00ut) > 0 then
: Wilillj] = |Wrli][j] - N(II,0in,,)|
9: end if

10: end for

11: if Wi[#][j] > L then
12: Wi lilj] =

13: end if

14: end if

15: end for

16: end function

Mihail-lulian Plesa Making neural cryptography great again



Current research

ASNTPM - constructing a hard problem

Algorithm 4 The synchronization percentage
1: function SYNCHRONIZATIONPERCENTAGE(II1, I15)
2: total < 0
3 counter < 0
4 fori=1i<Ki=i+1do
5: forj=1j<Nj=j+1do
6: if Wiz, [i][f] # 2L A Wi, [i][j] # 2L then
7.
8

total « total + 1
i Wi, [i)[j] = Wiz, i]5] then

9: counter < counter + 1
10: end if
11: end if
12: end for
13: end for
14: return counter /total

15: end function
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Current research

ASNTPM - constructing a hard problem

Algorithm 5 Synchronization of two ASNTPM P Systems
1: function SYNCA(II4, II,)

2: while SYNCHRONIZATIONPERCENTAGE(II1, IT>) # 1 do

3: z & 2KV

4: INtTIALIZE(ITL, )

5: INITIALIZE(I]2, )

6: RuN(IT)

7 RuUN(II3)

8: if N(IT1,00ut) = N(IT2,00ut) V N(IT1, 00ut) = N(II2,00,:) then
9: UPDATEWEIGHTS (I11)

10: UPDATEWEIGHTS (I12)

11: end if

12: end while
13: end function
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Current research

ASNTPM - constructing a hard problem

Algorithm 6 Simple synchronization process of three ASNTPM
function SYNcB(II1, II3, II3)
while SYNCHRONIZATIONPERCENTAGE(II1, II2) # 1 do
z & ZKN
INITIALIZE(IT1, T)
INITIALIZE(IT2, T)
INITIALIZE(I]3, )

RuUN(I11)

RuUN(IT2)

RUN(I13)

if N(II1,00ut) = N(II2,00ut) V N(IT1,00ut) = N(IT2,00y4t) then
UPDATEWEIGHTS(I11)
UPDATEWEIGHTS(I1>)
if N(Hl, Uout) = N(H3, Ucut) \Y2 N(Hl, O'(mg) = N(H3, Joug) then

UPDATEWEIGHTS(II3)

end if

end if

end while

return SYNCHRONIZATIONPERCENTAGE(II1, IT3)
end function
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Current research

ASNTPM - constructing a hard problem

Algorithm 7 The geometric solution for the synchronization of three ASNTPM
P Systems
function SyNcC(ITy, 12, IT3)
while SYNGHRONIZATIONPERCENTAGE(Ty, IT2) # 1 do
R A
INrmiALiZE(TT, 7)
InTiaLize(IT, z)
InrmiALize(Is, )

if N(IT1,00ut) = N(IT2,00ut) V N(IT1, 0out) = N(I12,00u) then
UppareWeianTs (1)
UpDATEWEIGHTS(IT2)
if N(IT1,00u) = N(IT3,00u) V N (1T, 0out
UppATEWEIGHTS(IT5)

end if

i N(ITy, 0oue) # N (I, 0ou) AN, Gout) # N(ITs, 00ur) then

N(IIs5, o) then

distance = Wi, [1] - z|
minimum = distance

index

fori=2 i<K;i=i+1do

distance = [|Wiz,i] - |
if distance < minimum then
‘mininum = distance
index = i
end if
end for
auz = N(ITs,o,,,..)
NIy, 0n,,,,,) = N(Ils,0,,,..)
N(IIs,0n,,,,,) = auz
N(ITs, 00utpur) = N(IT1, Goutput)

end if

end while
return SYNCHRONIZATIONPE

end function
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Current research

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as K using the classical
synchronization algorithm

® Original Noised Data
08 — Fitted Curve
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Current research

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as N using the classical
synchronization algorithm

030 ® Original Noised Data
—— Fitted Curve
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Current research

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as K using the geometric
synchronization algorithm

. @ Original Noised Data
— Fitted Curve

p(M1,M3) = 09170004



Current research

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as N using the geometric
synchronization algorithm

. @ Original Noised Data
— Fitted Curve

p (Ny,M3) = 0.99¢0-003N



Conclusions

ASNTPM - Conclusions

o Like quantum but cheaper
@ Serious cryptography requires proofs, not intuition

@ We cannot rely on the simple fact that it works”
(Shamir told us why)

@ No previous work has attempted to do this
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