Introductory Overview on Polymorphic P Systems

György Vaszil University of Debrecen

19th BWMC, Sevilla, January 26, 2023

The papers

- Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems.
 In: CMC 2010, Vol. 6501 of LNCS, pp. 81-94, 2010
- Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients.

In: CMC 2014, Vol. 8961 of LNCS, pp. 258-273, 2014

The papers

 Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems.

In: CMC 2010, Vol. 6501 of LNCS, pp. 81-94, 2010

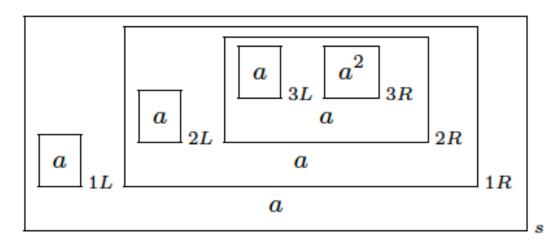
 Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients.

In: CMC 2014, Vol. 8961 of LNCS, pp. 258-273, 2014

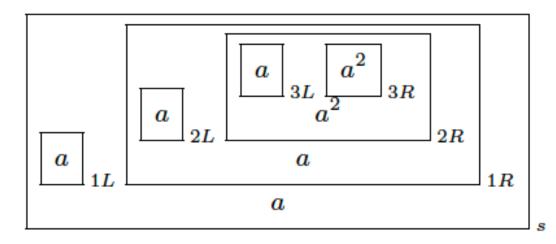
The idea

 To manipulate the rules during a computation: represent them as data

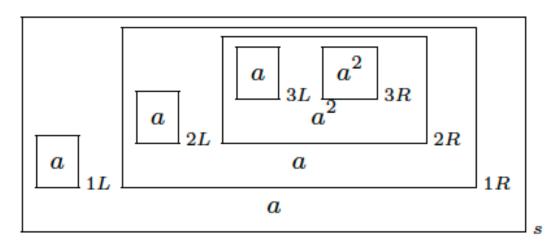




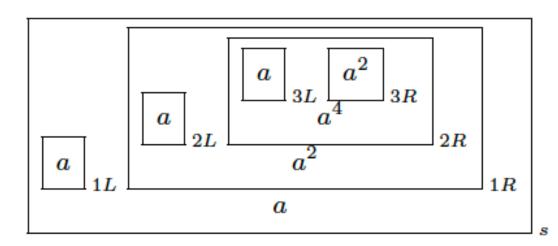
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a \text{ in } 1R$ $1: a \rightarrow a \text{ in } s$



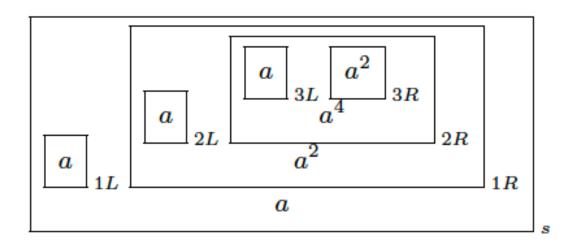
 $egin{aligned} 3:a &
ightarrow a^2 ext{ in } 2R \ 2:a &
ightarrow a^2 ext{ in } 1R \ 1:a &
ightarrow a ext{ in } s \end{aligned}$



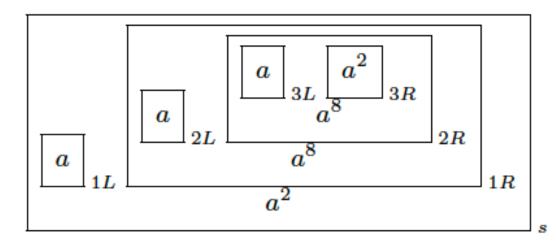
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^2 \text{ in } 1R$ $1: a \rightarrow a \text{ in } s$ \Rightarrow



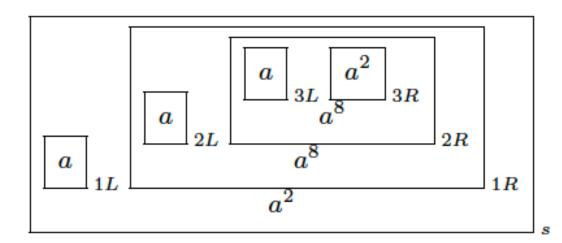
 $3:a
ightarrow a^2 ext{ in } 2R \ 2:a
ightarrow a^4 ext{ in } 1R \ 1:a
ightarrow a^2 ext{ in } s$



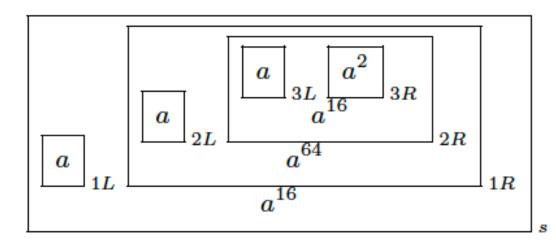
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^4 \text{ in } 1R$ $1: a \rightarrow a^2 \text{ in } s$ \Rightarrow



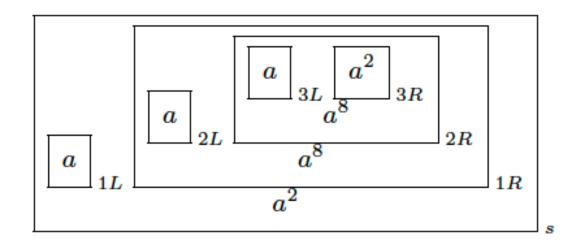
 $3: a \rightarrow a^2 ext{ in } 2R$ $2: a \rightarrow a^8 ext{ in } 1R$ $1: a \rightarrow a^8 ext{ in } s$



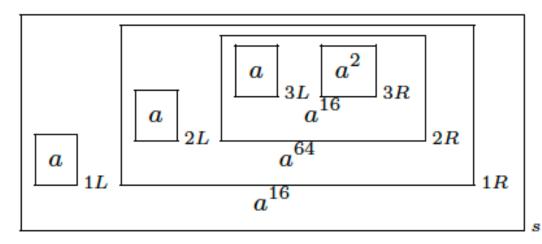
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^8 \text{ in } 1R$ $1: a \rightarrow a^8 \text{ in } s$ \Rightarrow



 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^{16} \text{ in } 1R$ $1: a \rightarrow a^{64} \text{ in } s$ $\Rightarrow \cdots$



 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^8 \text{ in } 1R$ $1: a \rightarrow a^8 \text{ in } s$ \Rightarrow



 $3: a \rightarrow a^2 ext{ in } 2R$ $2: a \rightarrow a^{16} ext{ in } 1R$ $1: a \rightarrow a^{64} ext{ in } s$ $\Rightarrow \cdots$

$$(2,2^n,2^{n(n-1)/2},2^{n(n-1)(n-2)/6})$$

Notation

```
NOP_k(polym_{+d}(coo), tar), PsOP_k(polym_{+d}(coo), tar), fDOP_k(polym_{+d}(coo), tar).
```

- Numbers, vectors, functions
- The number of regions
- Rule "disabling"
- Determinism
- Cooperating, non-cooperating rules
- Target indicators

•

Theorem 2. There exist

- A strongly universal P system from $OP_{47}(polym_{-d}(coo))$;
- A P system $\Pi_1 \in DOP_7(polym_{-d}(ncoo))$ with a superexponential growth;
- A P system $\Pi_2 \in OP_{13}(polym_{-d}(ncoo), tar)$ such that $N(\Pi_2) = \{n! \cdot n^k \mid n \geq 1, k \geq 0\}$ and the time complexity of generating $n! \cdot n^k$ is n + k + 1;
- A P system $\Pi_3 \in OP_9(polym_{-d}(coo), tar)$ such that $N(\Pi_3) = \{n! \mid n \geq 1\}$ and the time complexity of generating n! is n + 1;
- A P system $\Pi_4 \in OP_{15}(polym_{-d}(ncoo), tar)$ such that $N(\Pi_4) = \{2^{2^n} \mid n \geq 0\}$ and the time complexity of generating 2^{2^n} is 3n + 2;
- A P system $\Pi_5' \in DOP_*(polym_{-d}(coo), tar)$ such that $f(\Pi_5) = (n \longrightarrow 2^{2^n})$ and the time complexity of computing $n \longrightarrow 2^{2^n}$ is O(n);
- A P system $\Pi_6 \in DOP_*(polym_{-d}(coo), tar)$ such that $N_d(\Pi_6) = \{n! \mid n \geq 1\}$ and the complexity of deciding any number $k, k \leq n!$ does not exceed 4n.

Moreover, polymorphic P systems can grow faster than any non-polymorphic P systems, whereas even non-cooperative polymorphic P systems with targets can grow faster than any polymorphic P systems without targets.

Interesting problem

To charcaterize the power of the non-cooperating variants

The papers

- Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems.
 In: CMC 2010, Vol. 6501 of LNCS, pp. 81-94, 2010
- Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients.

In: CMC 2014, Vol. 8961 of LNCS, pp. 258-273, 2014

Variants of non-cooperativity

- Strong non-cooperative systems: left membranes contain at most one symbol
- Weak non-cooperative systems: all rules which are actually applied have one symbol on their left-hand side

```
Theorem 2. NOP_*(polym_{+d}(ncoo_w)) = NOP_*(polym_{+d}(ncoo_s)).
```

Rule disabling doesn't matter

Proposition 1. $NOP_*(polym_{-d}(ncoo)) = NOP_*(polym_{+d}(ncoo))$.

Left polymorphism

- In general, as a consequence of certain lemmas: left membranes with "invariable rules" are sufficient
- Left polymorphic systems are more powerful than conventional transition P systems, but they cannot generate everything:

```
Proposition 2. L_{2^n} = \{2^n \mid n \in \mathbb{N}\} \in NOP_*(lpolym(ncoo)).
```

```
Proposition 3. L_{n!} = \{n! \mid n \in \mathbb{N}\} \notin NOP_*(lpolym_{+d}(ncoo)).
```

A depth-based hierarchy

Theorem 4.
$$L_{d+1} = \left\{2^{\binom{n}{d-1}} \mid n \in \mathbb{N}, n > d\right\} \notin NOP_*^d(polym(ncoo)), d > 1.$$

Corollary 3. $NOP_*^d(polym(ncoo)) \subseteq NOP_*^{d+1}(polym(ncoo))$.

A depth-based hierarchy

Theorem 4.
$$L_{d+1} = \left\{2^{\binom{n}{d-1}} \mid n \in \mathbb{N}, n > d\right\} \notin NOP_*^d(polym(ncoo)), d > 1.$$

Corollary 3.
$$NOP^d_*(polym(ncoo)) \subsetneq NOP^{d+1}_*(polym(ncoo))$$
.

As a consequence for left polymorphic systems:

Corollary 4.
$$NOP_*(lpolym(ncoo)) \subsetneq NOP_*(polym(ncoo))$$
.

(since the left membranes with depth 3 are sufficient to reach their maximal power)

Right polymorphism and general polymorphism

Proposition 4. $L'_{2^n} = \{2^n \mid n \in \mathbb{N}, n > 2\} \in NOP_*(rpolym(ncoo)).$

Theorem 3. $L_{n!} = \{n! \mid n \in \mathbb{N}\} \notin NOP_*(polym(ncoo)).$

Some open problems

- The relationship of the right polymorphic and the general variants
- Upper bounds on the power of certain variants
- Polymorphic systems seem to lie between systems with static membrane structures and systems with dynamic membrane structures (active membranes)

Some open problems

- The relationship of the right polymorphic and the general variants
- Upper bounds on the power of certain variants
- Polymorphic systems seem to lie between systems with static membrane structures and systems with dynamic membrane structures (active membranes)

For some initial ideas, see the next presentation...