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Time Petri nets

The Petri nets are state/transition systems: places are used to
convey information and transitions represent events that can
modify the information,

A Petri net is a bipartite graphs: arcs point from places to
transitions and from transitions to places. Every arc possesses
a multiplicity, which is a positive integer.
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Time Petri nets

A transition is ready to fire, when each of its preplaces, that is
the place endpoints of the incoming edges, contains as many
tokens as the multiplicity of the arc coming from that
preplace.

Firing a transition means removing as many tokens from the
preplaces as prescribed by the multiplicities of the incoming
arcs and adding as many tokens to the postplaces as
determined by the multiplicities of the outgoing arcs.
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Example

In the figures below we illustrate a firing sequence of a Petri net1:

1J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice
Hall, N.J., 1981.
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Example

Continuing the example:

B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil Membrane systems and Petri nets



Example

One step more:
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Time Petri nets

Formally: a Petri net is a tuple N = (P,T ,F ,V ,m0) such that

P, T , F are finite, where P ∩ T = ∅, P ∪ T 6= ∅ and
F ⊆ (P × T ) ∪ (T × P),

V : F → N>0,

m0 : P → N.

The elements of P are called places and the elements of T are
called transitions. The elements of F are the arcs and F is the flow
relation of N. The function V is the multiplicity (weight) of the
arcs and m0 is the initial marking. We may occasionally omit the
initial marking and simply refer to a Petri net as the tuple
N = (P,T ,F ,V ). We stipulate that, for, every transition t, there
is a place p such that V (p, t) 6= 0.

B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil Membrane systems and Petri nets



Time Petri nets

A Time Petri net (TPN)2 is a 6-tuple N = (P,T ,F ,V ,m0, I ) such
that

the 5-tuple S(N) = (P,T ,F ,V ,m0) is a Petri net,

I : T → Q≥0 × Q≥0 and, for each t ∈ T , I (t)1 ≤ I (t)2 holds,
where I (t) = [I (t)1, I (t)2].

We call I (t)1 and I (t)2 earliest and latest firing times belonging to
t, respectively. Notation: eft(t), lft(t).

2L. Popova-Zeugmann, Time and Petri Nets, Springer Verlag, Berlin, 2013.
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Time Petri nets

A transition marking with respect to the strong semantics (or
t-marking) is a function t : T → R≥0 ∪ {#}.
Let N = (P,T ,F ,V ,mo , I ) be a Time Petri net, m a
p-marking and h a t-marking in N. A state in N is a pair
u = (m, h) such that

(∀t ∈ T )(t− � m ⊃ h(t) = #),
(∀t ∈ T )(t− ≤ m ⊃ h(t) ∈ R≥0 ∧ h(t) ≤ lft(t)).

A transition marking with respect to the weak semantics is a
function t : T → R≥0. A state in N concerning the weak
seamntics is a pair u = (m, h).
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Time Petri nets

Let t be a transition and u = (m, h) be a state such that u −→t .
Then the result of the firing of t is a new state u′ = (m′, h′), such
that m′ = m +4t(p), where 4t(p) = t+(p)− t−(p), and

h′(t̂) =


h(t̂), if t̂− ≤ m, t̂− ≤ m′ and •t̂ ∩ •t = ∅ or t = t̂,
# if t̂− � m,
0 otherwise .

Observe that we allow multiple firings of the same transition in a
row by demanding h(t̂) = h(t) if t is enabled and t = t̂. We adopt
a stronger condition for h to annul the value for t: when t and t̂
have common preplaces, then h(t̂) = 0. This is for ensuring some
Church-Rosser properties in the Petri net.

B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil Membrane systems and Petri nets



Time Petri nets

Besides the firing of a transition there is another possibility for a
state to alter, and this is the time delay step. Let t be a transition
and u = (m, h) be a state and τ ∈ R+. Then elapsing of time with
τ is possible in the strong semantics for the state u (in notation:
u −→τ ), if

(∀t ∈ T )(h(t) 6= # ⊃ h(t) + τ ≤ lft(t)).

Then the result of the elapsing of time by τ is defined as follows:
u −→τ u′ = (m′, h′), where m = m′ and

h′(t̂) =

{
h(t̂) + τ, if t̂ + τ ≤ lft(t̂) for an arbitrary t̂ ∈ T ,
# otherwise.

Observe that the definition of a time elapse with respect to the
strong semantics ensures that we are not able to skip a transition
when it is enabled.
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Time Petri nets

Let t be a transition and u = (m, h) be a state and τ ∈ R+. Then
elapsing of time with τ is always possible in the weak semantics.
Then the result of the elapsing of time at state u = (m, h) by τ is
defined as u −→τ u′ = (m′, h′), where m = m′ and
h′(t) = h(t) + τ for every transition t.
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Correspondence between P systems and Time Petri nets

Petri nets with time can generate recursively enumerable sets,
hence it is a reasonable task to represent P systems with time Petri
nets. In the Petri net, places represent elements of the membrane
compartments and tokens correspond to the multiplicities of
elements in the membranes. The transitions correspond to the
rules: a maximal parallel step is represented in two phases- the rule
application and communication phases. Therefore, two subnets
describe the membrane system, which are connected by a third
subnet regulating the order of the application and communication
phases.
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Correspondence between P systems and Time Petri nets

sto p1 p2

to[1,1] t1[0,0]

sem p∗1 p∗2

2

Figure: The Petri net simulating the rule application part of a membrane
computational step.
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Correspondence between P systems and Time Petri nets

sem p1 p2

te[1,1]

1

t∗1[0,0] t∗2[0,0]

ste p∗1 p∗2

Figure: The Petri net simulating the communication part of a membrane
computational step.
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Correspondence between P systems and Time Petri nets

The two subparts are merged together by a semaphore subnet
which behaves as follows.

sem

[1,1] t1
sem [0,0] t2

sem

sto ste

1 2

Figure: The semaphore for the Petri nets.

The semaphore ensures that the rule application and
communication parts follow each other in the prescribed order.
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Correspondence between P systems and Time Petri nets

In the literature,3 Petri nets are considered with maximal
parallelism in order to simulate P systems. In our case, strong
timed semantics substitutes for maximal parallelism.

3cf. e.g. J. H. C. M. Kleijn and M. Koutny and G. Rozenberg, Towards a
Petri Net Semantics for Membrane Systems. Lecture Notes in Computer
Science, volume 3850
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Membrane systems with rule-time

On the analogy of time Petri nets we can assign time intervals to
rules in membrane systems. Let Π = (A, µ,w1, . . . ,wn,R1, . . . ,Rn)
be a membrane system, where A is the alphabet, µ is the
membrane structure, C0 = (w1, . . . ,wn) is the start configuration
and R = (R1, . . . ,Rn) are the set of rules.
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Membrane systems with rule-time

Let I : R → IntQ be a function, where IntQ is the set of closed
intervals with non-negative rational endpoints. We call
Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) a membrane system with
rule-time. In the construction I is the time interval for the rules
when the rules can be active.

B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil Membrane systems and Petri nets



Membrane systems with rule-time

We define a clock for each of the rules in the compartments. The
clock together with the multiset contents of the compartment give
the timed configuration of the membrane system. Let
Π = (A, µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane system with
rule-time.

Let s : R → R≥0 be a function. Then s is the local time for
the rules or a rule-marking for the membrane system with
respect to the weak semantics.

Assume s : R → R≥0 ∪ {#} be a function. Then s is the local
time for the rules or a rule-marking for the membrane system
with respect to the strong semantics.
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Membrane systems with rule-time

Timed configurations differ according to weak or strong semantics
are considered.

Let Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane
system with rule-time. A timed configuration in the strong
semantics is a pair (C , s), where C is a, possibly intermediate,
configuration and s(r) 6= # implies s(r) ≤ I+(r) for every
r ∈ R, where I+(r) is the upper endpoint of the interval I(r).

Let Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane
system with rule-time. A timed configuration in the weak
semantics is a pair (C , s), where C is a, possibly intermediate,
configuration and s(r) ∈ R≥0.
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Membrane systems with rule-time

Let Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane system
with rule-time. Let (C , s) be a possibly intermediate configuration.
Then a rule execution from (C , s) in compartment mi is defined as
usual. Time elapse is distinguished by the different semantics.

A time step (C , s)→τ (C , s ′) with τ can be made in
compartment mi w.r.t. the strong semantics, if, for every
r ∈ Ri , s(r) ∈ R implies s(r) + τ ≤ I+(r). Moreover,
s ′(r) = s(r) + τ .

A time step (C , s)→τ (C , s ′) can be made in compartment
mi w.r.t. the weak semantics and s ′(r) = s(r) + τ .
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Membrane systems with rule-time

Let Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane system
with rule-time. Let (C , s) be a proper configuration. A
computational step from (C , s) is a sequence of complete runs
{σ1, . . . , σn}. Let Ri1, . . ., Rip be multisets of rules in Ri .

If σi = (Ri1, τ1, . . . ,Rip, τp), then σi is a run of length p in
mi with respect to maximal parallel execution when Rij are
maximal multisets of rules and τj are taken according to the
weak or strong semantics.
If σi = (Ri1, τ1, . . . ,Rip, τp), then σi is a run of length p in
mi with unsynchronized execution provided Rij are multisets
of rules and τj are taken according to the weak or strong
semantics. In this case no stipulation is made on the
maximality of the multisets of rules executed between the
time steps.

A run is complete, if no more steps are possible in the strong
semantics, or the sum of the time values in the run exceed the
upper bound of the function I+.
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Results

For every membrane system with rule time w. r. t. the weak
semantics (and maximal parallelism) we can find a time Petri
net w. r. t. the strong semantics giving exactly the same
result.

For every membrane system with rule time w. r. t. the strong
semantics (and maximal parallelism) there exists a time Petri
net w. r. t. the strong semantics giving exactly the same
result.
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Corollary

Runs can be integer runs in computations, that is, it is enough to
take integer values for every time step in a run. This follows from
the corresponding theorem for time Petri nets understood with the
strong semantics4. This means, a straightforward interpretation of
the rule-time system is possible with promoters (in case of maximal
parallelism) and priority (in case of the strong semantics).

4L. Popova-Zeugmann, Time and Petri Nets, Springer Verlag, Berlin, 2013.
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Corollary

Let Π = (V , µ,w1, . . . ,wn,R1, . . . ,Rn, I) be a membrane system
with rule-time. Assume Π is interpreted with maximal parallel
mode w.r.t. the strong semantics. Let B = max{I+(r) | r ∈ R}.
Let us assume that each membrane contains the promoters
{F ,C0} at the start. Then the following rules define a membrane
systems that can compute exactly the same set of numbers as Π.
In what follows let r ∈ Ri , where 1 ≤ i ≤ n.

I , lhs(r) −→ rhs(r),F |Ct (Initt)

r |{F ,Ct} (Rulet)

F −→ I

Ct −→ Ct+1 (Shiftt)

Initt > Shiftt for every 0 ≤ t ≤ B
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Relating the computational models: remarks, conjectures

The simulation of symbol object membrane systems with time
Petri nets with the strong semantics suggests that maximal
parallel execution can be substituted for rule-time with the
strong semantics.

It can happen that all four kinds of P systems with rule time
differ in computational strength. It is known by the results for
Petri nets that weak and strong semantics are not bisimilar.
Obviously, rule-time with the strong semantics is Turing
complete either with maximal parallelism or not. Is it true for
rule-time system with the weak semantics without maximal
parallelism?

Existing timed membrane systems defined by imposing time
delays on rules5. Rule-time membrane systems with maximal
parallel execution can simulate these models in a
straightforward way.

5M. Cavaliere and D. Sburlan, Time and synchronization in membrane
systems. Fundamenta Informaticae, 20 (2007), 1–14.
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Relating the computational models: open questions

The power of the timed model does not seem to be restricted to
substituting for maximal parallelism. We conjecture that even
membrane dissolution and priority can be defined by means of time
intervals assigned to rules.
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Thank you for your attention!
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