READING AND DISCUSSION

OBJECT DISTRIBUTION IN P SYSTEMS

Outline

- Motivation
- About the paper:
 - Introduction
 - Formal Definitions
 - Approaches
- Our problem:
 - Simulation algorithm
 - Ideas

Motivation

- Parallel simulation Probabilistic P systems on GPUs/CUDA.
- Probabilistic P systems:
 - Multienvironment, multicompartmental, probabilities associated to rules.
 - Rules of the form: $r: u [v]_{i}^{\alpha} \xrightarrow{c_{r}} u' [v']_{i}^{\alpha'}$
 - LHS of rules can have intersections (competition for objects).

- An Algorithm for Non-deterministic Object Distribution in P Systems and Its Implementation in Hardware
 - Van Nguyen, David Kearney, Gianpaolo Gioiosa: School of Computer and Information Science, University of South Australia,
 - Membrane Computing: 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised Selected and Invited Papers.
 - 325 354

• Transition P system:

Definition 1. A P system is a tuple

$$\Pi = (O, \mu, w_1, \ldots, w_n, R_1, \ldots, R_m, i_0),$$

where:

- (i) O is an alphabet (i.e., a set of distinct entities) whose elements are called objects.
- (ii) μ is the membrane structure of the particular P system; membranes are injectively labeled with succeeding natural numbers starting with one.
- (iii) $w_i, 1 \le i \le m$, are strings that represent multisets over O associated with each region *i*.
- (iv) $R_i, 1 \le i \le m$, are finite sets of rewriting rules (called evolution rules) over O. An evolution rule is of the form $u \to v$, $u \in O^+$ and $v \in O^+_{tar}$, where $O_{tar} = O \times TAR$, $TAR = \{\text{here, out}\} \cup \{\text{in}_j | 1 \le j \le m\}$.
- (v) $i_0 \in \{1, 2, ..., m\}$ is the label of an elementary membrane (i.e., a membrane that does not contain any other membrane), called the output membrane.

- Maximal Parallelism:
 - In a transition of a P system, if any reaction rule can be applied, it must be applied.
- Non-determinism:
 - When the reaction rules in a region are applied in a maximally parallel manner during a transition, there are often multiple ways in which the objects in the region can be distributed to the reaction rules.

$$(a)^{13} b^{15} c^{10}$$

$$R_{1}: a^{2} b c^{5} \rightarrow \dots$$

$$R_{2}: a b^{2} c^{4} \rightarrow \dots$$

$$R_{3}: a^{3} b^{3} c \rightarrow \dots$$

$$R_{4}: a^{4} b^{5} c^{3} \rightarrow \dots$$

$$(a)$$

R ₁	R_2	R_{9}	R_4
0	0	0	3
0	0	1	2
0	0	3	1
0	1	0	2
0	1	2	1
0	1	4	0
0	2	2	0
1	0	2	1
1	0	3	0
1	1	1	0
2	0	0	0

(b)

• *n* reaction rules in a region:

 $R_{1}: o_{1}^{a_{11}} o_{2}^{a_{21}} \dots o_{m}^{a_{m1}} \to \dots$ $R_{2}: o_{1}^{a_{12}} o_{2}^{a_{22}} \dots o_{m}^{a_{m2}} \to \dots$ \dots $R_{n}: o_{1}^{a_{1n}} o_{2}^{a_{2n}} \dots o_{m}^{a_{mn}} \to \dots,$

• *m* objects in a multiset:

$$o_1^{b_1}o_2^{b_2}\dots o_m^{b_m}$$

- Instances of reaction rules: x_1, x_2, \ldots, x_n
- It must be satisfied: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m$$

- Maximal parallelism:
 - Consider solution: $s = (s_1, s_2, \ldots, s_n)$
 - s corresponds to maximal application i.o.i.:

- Solution
$$v = (v_1, v_2, \dots, v_n)$$

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b'_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b'_2$$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b'_m,$

• Maximal parallelism:

where

$$b'_{1} = b_{1} - a_{11}s_{1} - a_{12}s_{2} - \dots - a_{1n}s_{n}$$

$$b'_{2} = b_{2} - a_{21}s_{1} - a_{22}s_{2} - \dots - a_{2n}s_{n}$$

$$b'_{m} = b_{m} - a_{m1}s_{1} - a_{m2}s_{2} - \dots - a_{mn}s_{n}$$

is such that v is the zero vector.

• Non-determinism:

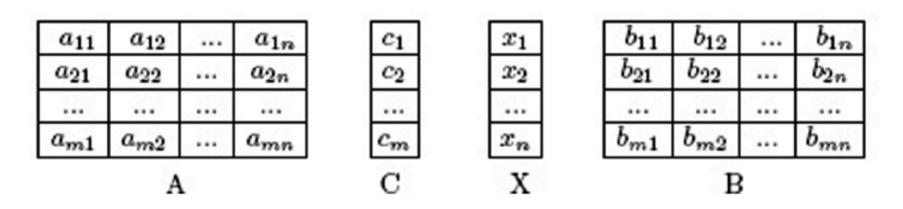
There are $p \ge 0$ possible values for s

Approaches

- Indirect approaches:
 - Algorithms that consider both non-solutions and solutions as it navigates the space of possible solutions.
 - Indirect straightforward approach: To simply enumerate all the possible solutions and pick at random.
 - Incremental approach: The distribution of objects is accomplished in rounds, randomly choosing rules from a pool.

Approaches

- Direct approaches:
 - Algorithms that consider only solutions as it navigates the space of possible solutions.
 - **Direct straightforward approach:** All the solutions are give as input, and one of them is selected at random.
 - Direct non-deterministic distribution algorithm (DND algorithm): Performs the distribution in one step (with a possible adjustment step). Based on two phases.



procedure obtainASolutionnon-deterministically (

- m: number of object types required by a reaction rule
- n: number of reaction rules in the region
- A: an $m \times n$ matrix (with initially unmarked columns) used to store the coefficients of the linear system
- B: an initially empty $m \times n$ matrix that contains results of calculations carried out on A
- C: an $m \times 1$ matrix that contains the RHS constants of the linear system
- X: an $n \times 1$ matrix used to store the solution
- V: an $m \times 1$ matrix used to store accumulated sums used in the calculation of values to be stored in B
- Z: a list of integer labels for columns of A (ordered according to the order in which the columns of A are processed)

//Forward phase

- 1. for u = 1 to n
- 2. Randomly select a column *p* from all the unmarked columns in A $(1 \le p \le n)$.
- 3. Add *p* to Z.
- 4. if B is empty
- 5. **let** q be the minimum value of all c_i/a_{ip} $(1 \le i \le m)$.

6. else 7. le

- let q be the minimum value of all $b_{i(u-1)}/a_{ip}$ $(1 \le i \le m)$.
- 8. **if** *p* is the only unmarked column in A

9. **if** *q* is an integer

else

Set $x_p = q$. End procedure.

Set $x_p = |q|$. Go to 22.

11.

10.

15.

12.

13. else

14. **if** q = 0

Set $x_p = q$ and mark x_p as final.

16. else

- 17. Randomly select $r \in \{0, 1, \dots, \lfloor q \rfloor\}$ and set $x_p = r$. 18. For all i $(1 \le i \le m)$, set $v_i = v_i + ra_{ip}$.
- 19. For all i $(1 \le i \le m)$, set $v_i = v_i + v_{i,i}$
- 20. Mark column p in A.

21. end for

//Backward phase Reset V and set $v_i = x_{Z(n)}a_{iZ(n)}$ for all $i \ (1 \le i \le m)$. 22. 23. for s = n - 1 to 1 if $x_{Z(s)}$ is not marked as final 24. 25. if s = 1let q' be the minimum value of all $(c_i - v_i)/a_{iZ(1)}$ $(1 \le i \le m)$. 26. 27. else let q' be the minimum value of all $(b_{i(s-1)} - v_i) / a_{iZ(s)}$ $(1 \le i \le m)$. 28. if $x_{Z(s)} \neq q'$ set $x_{Z(s)} = \lfloor q' \rfloor$. 29. For all i $(1 \le i \le m)$, set $v_i = v_i + \lfloor q' \rfloor a_{iZ(s)}$. 30. end if 31. 32. end for

- Time complexity: O(n), n=number of rules
- Space complexity: O(2mn+n), m=number of objects, n=number of rules.
- The algorithm is verified, and a hardware implementation is defined.

Our problem

- Probabilistic P systems:
 - Multienvironment, multicompartmental, probabilities associated to rules.
 - Rules of the form: $r: u \begin{bmatrix} v \end{bmatrix}_{i}^{\alpha} \xrightarrow{c_{r}} u' \begin{bmatrix} v' \end{bmatrix}_{i}^{\alpha'}$
 - Note that:
 - Objects of different regions collaborate
 - Consider all the regions as a superregion where to apply this algorithm
 - For the model of the zebra mussel ecosystem, the algorithm requires more than 3Gbytes, and all the rule selection stage is performed in sequential mode.

Ideas

- Identify rules with intersection in the RHS, and apply only for them this algorithm.
- Considering the caractheristics of the current models, to develop a specific algorithm based on the DND.

Thanks for listening