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Ignacio Pérez-Hurtado1, Mario J. Pérez-Jiménez1,
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Path planning

Motion planning problem

Holonomic vs Nonholonomic (x , y , θ)

Dimensions are important here: degrees of freedom
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Motion planning problem

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
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RRT algorithm: extension

•xinit

xend

•

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree
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RRT algorithm
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RRT algorithm

It manages nonholonomic, kinodynamic and environment restrictions

The free space is explored in a uniform way

It is computationally tractable

A path can be generated by connecting two RRT: one from the
starting state, another from the goal state: Bidirectional RRT
algorithm
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Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path
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Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path 2

2Remember dmin
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Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory
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A few slides ago...

Where are we?

Global planning

Local planning

Control
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Simulation of the Bidirectional RRT algorithm by
RENPSM
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Keys in the simulation

Proteins as commanders of the computation

Each 18 steps, a new iteration is started

Haltmem is the halting variable

Min. cost 11.77 m

Max. cost 17.96 m

Avg. cost 13.42 m

Std. dev. 0.795 m

N. experiments 1435
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Simulation of the Bidirectional RRT algorithm by
RENPSM
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Future work

Formal verification of RENPSM

Change to nonhonolomic robots

Use differents kinds of P systems

. . .
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