
Robot Path Planning using Rapidly-exploring Random
Trees:

A Membrane Computing Approach

Ignacio Pérez-Hurtado1, Mario J. Pérez-Jiménez1,
Gexiang Zhang2, David Orellana-Mart́ın1

1Research Group on Natural Computing
Dept. of Computer Science and Artificial Intelligence

Universidad de Sevilla, Seville, Spain
2School of Electrical Engineering

Southwest Jiaotong University
Chengdu, Sichuan, China

Seville, Spain, Jan 7, 2019

1 / 21



1 Robot path planning

2 Membrane Computing

3 Simulation of the Bidirectional RRT algorithm by RENPSM

4 Future work

2 / 21



Introduction

Where are we?

Global planning

Local planning

Control

3 / 21



Introduction

Where are we?

Global planning

Local planning

Control

3 / 21



Introduction

Where are we?

Global planning

Local planning

Control

4 / 21



Path planning

Motion planning problem

Holonomic vs Nonholonomic (x , y , θ)

Dimensions are important here: degrees of freedom

5 / 21



Path planning

Motion planning problem

Holonomic vs Nonholonomic

(x , y , θ)

Dimensions are important here: degrees of freedom

5 / 21



Path planning

Motion planning problem

Holonomic vs Nonholonomic (x , y , θ)

Dimensions are important here: degrees of freedom

5 / 21



Path planning

Motion planning problem

Holonomic vs Nonholonomic (x , y , θ)

Dimensions are important here: degrees of freedom

5 / 21



Motion planning problem

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
6 / 21



Motion planning problem

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
6 / 21



Motion planning problem

•xinit

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
6 / 21



Motion planning problem

•xinit

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
6 / 21



Motion planning problem

•xinit

xend

Typical scenario in a motion planning problem:

A n-dimensional space X

An initial state xinit

An obstacle region Xobs
1

A target region Xend

1Or its complementary, a free region Xfree
6 / 21



RRT algorithm: extension

•xinit

xend

•

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm: extension

•xinit

xend

•

•xrand

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm: extension

•xinit

xend

•xrand

•xnear

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm: extension

•xinit

xend

•xrand

•xneardmin

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm: extension

•xinit

xend

•xrand

•xnear

•xnew
u∆(t)

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm: extension

•xinit

xend

•xnear

•xnew

An extension of the generated tree step:

We generate a random point xrand

xnear = nearest neighbor of the tree of xrand

If distance(xrand , xnear ) ≥ dmin

Create xnew depending on xnear

Add xnew to the current tree

7 / 21



RRT algorithm

8 / 21



RRT algorithm

It manages nonholonomic, kinodynamic and environment restrictions

The free space is explored in a uniform way

It is computationally tractable

A path can be generated by connecting two RRT: one from the
starting state, another from the goal state: Bidirectional RRT
algorithm

9 / 21



RRT algorithm

It manages nonholonomic, kinodynamic and environment restrictions

The free space is explored in a uniform way

It is computationally tractable

A path can be generated by connecting two RRT: one from the
starting state, another from the goal state: Bidirectional RRT
algorithm

9 / 21



RRT algorithm

It manages nonholonomic, kinodynamic and environment restrictions

The free space is explored in a uniform way

It is computationally tractable

A path can be generated by connecting two RRT: one from the
starting state, another from the goal state: Bidirectional RRT
algorithm

9 / 21



RRT algorithm

It manages nonholonomic, kinodynamic and environment restrictions

The free space is explored in a uniform way

It is computationally tractable

A path can be generated by connecting two RRT: one from the
starting state, another from the goal state: Bidirectional RRT
algorithm

9 / 21



Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path

10 / 21



Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path

10 / 21



Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path

10 / 21



Bidirectional RRT algorithm: a hint

It is easy by its name:

An initial node at xinit

An initial node at xend

When they “find” each other, we return the path 2

2Remember dmin
11 / 21



Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory

12 / 21



Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory

12 / 21



Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory

12 / 21



Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory

12 / 21



Random Enzymatic Numerical P systems with Proteins
and Shared Memory

Variables with numerical values

Specific kind of variables, called enzymes

Special alphabet of proteins

Finite set of programs F (x1,h, . . . , xkF ,h)
e(F );α(F )−→ c1 | v1, . . . cnF | vnF

A membrane representing a shared memory

12 / 21



A few slides ago...

Where are we?

Global planning

Local planning

Control

13 / 21



A few slides ago...

Where are we?

Global planning

Local planning

Control

14 / 21



A few slides ago...

Where are we?

Global planning

Local planning

Control

15 / 21



Simulation of the Bidirectional RRT algorithm by
RENPSM

16 / 21



Simulation of the Bidirectional RRT algorithm by
RENPSM

17 / 21



Keys in the simulation

Proteins as commanders of the computation

Each 18 steps, a new iteration is started

Haltmem is the halting variable

Min. cost 11.77 m

Max. cost 17.96 m

Avg. cost 13.42 m

Std. dev. 0.795 m

N. experiments 1435

18 / 21



Simulation of the Bidirectional RRT algorithm by
RENPSM

19 / 21



Future work

Formal verification of RENPSM

Change to nonhonolomic robots

Use differents kinds of P systems

. . .

20 / 21



THANKYOU
Gracias

Merci

M
U

L
Ţ

U
M

E
S

C

D
A

N
K

E

D
ankon

O
br

ig
ad

o
Gràcies谢

谢
21 / 21


	Robot path planning
	Membrane Computing
	Simulation of the Bidirectional RRT algorithm by RENPSM
	Future work

