Parallel Communicating ET0L Systems vs. Polymorphic P Systems

Anna Kuczik and György Vaszil

BWMC 2025, Sevilla, January 22, 2025

Polymorphic P systems - The idea

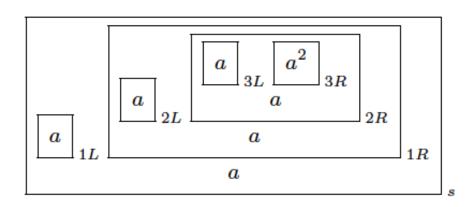
- Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems.
 In: CMC 2010, Vol. 6501 of LNCS, pp. 81-94, 2010
- Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients.

In: CMC 2014, Vol. 8961 of LNCS, pp. 258-273, 2014

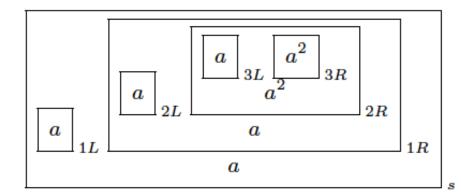
Polymorphic P systems - The idea

 To manipulate the rules during a computation: represent them as data

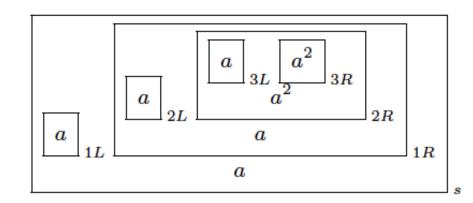
```
egin{bmatrix} 1:ab 
ightarrow ac\ 2:a 
ightarrow d\ abbb \end{bmatrix}_s 	ext{becomes} egin{bmatrix} ab\ ab\ b \end{bmatrix}_{1L} egin{bmatrix} ac\ ab\ b \end{bmatrix}_{1R} egin{bmatrix} a\ abbb \end{bmatrix}_{2L} egin{bmatrix} d\ ab\ abbb \end{bmatrix}_{2R}
```

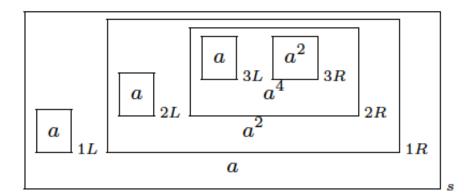
 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a \text{ in } 1R \\ 1: a \rightarrow a \text{ in } s \\ \Rightarrow \end{array}$



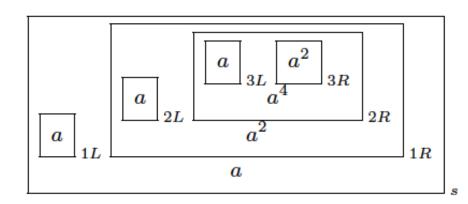
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^2 \text{ in } 1R$ $1: a \rightarrow a \text{ in } s$ \Rightarrow



 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a^2 \text{ in } 1R \\ 1: a \rightarrow a \text{ in } s \\ \Rightarrow \end{array}$



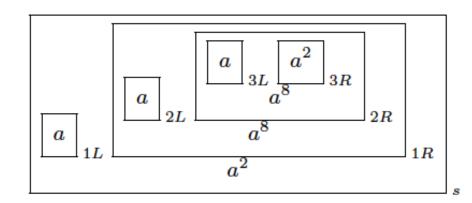
 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a^4 \text{ in } 1R \\ 1: a \rightarrow a^2 \text{ in } s \\ \Rightarrow \end{array}$



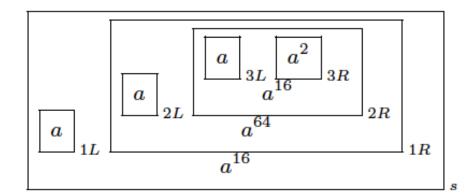
 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a^4 \text{ in } 1R \\ 1: a \rightarrow a^2 \text{ in } s \\ \Rightarrow \end{array}$



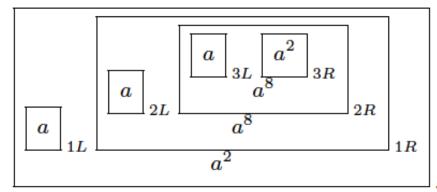
 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a^8 \text{ in } 1R \\ 1: a \rightarrow a^8 \text{ in } s \\ \Rightarrow \end{array}$



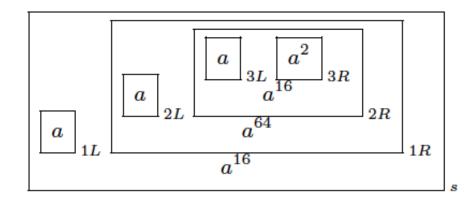
 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^8 \text{ in } 1R$ $1: a \rightarrow a^8 \text{ in } s$ \Rightarrow



 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^{16} \text{ in } 1R$ $1: a \rightarrow a^{64} \text{ in } s$ $\Rightarrow \cdots$



 $\begin{array}{l} 3: a \rightarrow a^2 \text{ in } 2R \\ 2: a \rightarrow a^8 \text{ in } 1R \\ 1: a \rightarrow a^8 \text{ in } s \\ \Rightarrow \end{array}$



 $3: a \rightarrow a^2 \text{ in } 2R$ $2: a \rightarrow a^{16} \text{ in } 1R$ $1: a \rightarrow a^{64} \text{ in } s$ $\Rightarrow \cdots$

$$(2,2^n,2^{n(n-1)/2},2^{n(n-1)(n-2)/6})$$

Non-cooperative polymorphic P systems

- **Strong non-cooperative** systems: left membranes contain at most one symbol
- Weak non-cooperative systems: all rules which are actually applied have one symbol on their left-hand side

Theorem 2. $NOP_*(polym_{+d}(ncoo_w)) = NOP_*(polym_{+d}(ncoo_s))$.

Systems with finite sets of instances of dynamic rules

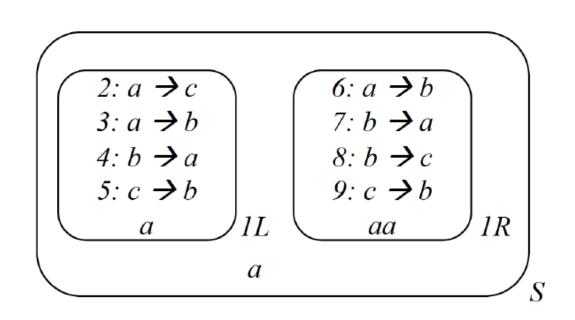
- Non-cooperative rules → Left-membranes have finitely many possible membrane contents in any computation
- →left-membranes are always "finitely representable"

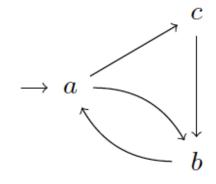
What about "finitely representable" right-membranes?

Finite representability

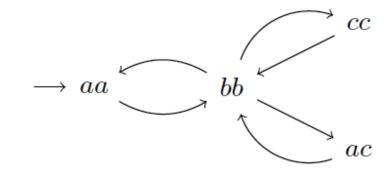
Region h is FIN-representable if the set of successor multisets of the initial contents w_h of region h is finite.

FIN-representability, an example





$$\sigma_{0,1L}^*(a) = \{a, b, c\}$$



$$\sigma_{0,1R}^*(aa) = \{aa, bb, cc, ac\}$$

Theorem: $\mathcal{L}(NOP(polym), ncoo, fin)) = PsET0L$.

All *Right* membranes are FIN-representable

What is ETOL?

Etol example
$$L = \int ww | w \in \{a_1b\}^*\}$$

$$C = (\{a_1b_1, A\}, \{a_1b\}, S_1, A, A\})$$

$$A \rightarrow aA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

$$A \rightarrow bA, a \rightarrow a, b \rightarrow b$$

Theorem 0.2.11. i)

and $\mathcal{L}(TOL)$ and $\mathcal{L}(EDTOL)$ are incomparable.

- ii) $\mathcal{L}(CF) \subset \mathcal{L}(ETOL)$, and $\mathcal{L}(CF)$ is incomparable with $\mathcal{L}(EDTOL)$, $\mathcal{L}(TOL)$, and $\mathcal{L}(DTOL)$.
- iii) For any ETOL (EDTOL) system G there is a propagating ETOL (EDTOL) system G' such that L(G) = L(G').

$PsET0L \subseteq \mathcal{L}(NOP(polym_{\cdot}, ncoo, fin))$

Proof idea – an example

The membrane system:

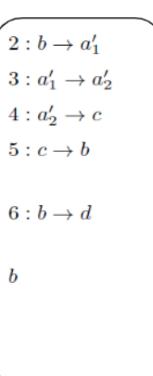
The ETOL system:

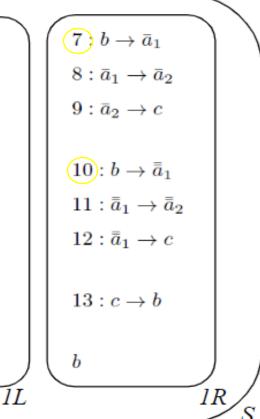
$$G = (V, T, U, w)$$

 $V = T = \{a_1, a_2\},$
 $w = a_1 a_2,$
 $U = (P_1, P_2),$
 $P_1 = \{a_1 \rightarrow a_1 a_2, \ a_2 \rightarrow a_2 a_1 a_1\},$
 $P_2 = \{a_1 \rightarrow a_2, \ a_2 \rightarrow a_1\}.$

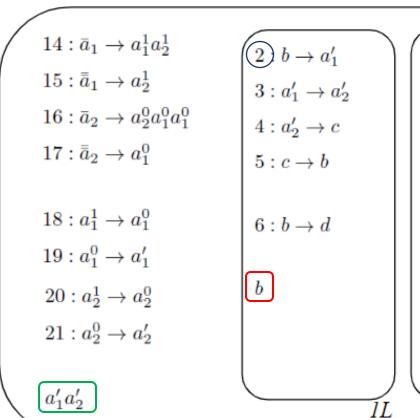
$14: \bar{a}_1 \to a_1^1 a_2^1$
$15:\bar{\bar{a}}_1\to a_2^1$
$16: \bar{a}_2 \to a_2^0 a_1^0 a_1^0$
$17:\bar{\bar{a}}_2\to a_1^0$
$18: a_1^1 \to a_1^0$
$19:a_1^0\to a_1'$
$20:a_2^1\to a_2^0$
$21: a_2^0 \to a_2'$

 $a'_{1}a'_{2}$





Step	Rule 1	Contents
		of the Skin
1.	b o b	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	_	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	



ETOL tables: $P_1 = \{a_1 \to a_1 a_2, \ a_2 \to a_2 a_1 a_1\}$, $P_2 = \{a_1 \to a_2, \ a_2 \to a_1\}$.

 IR_{j}

(7) $b \rightarrow \bar{a}_1$

 $8: \bar{a}_1 \to \bar{a}_2$

 $9: \bar{a}_2 \to c$

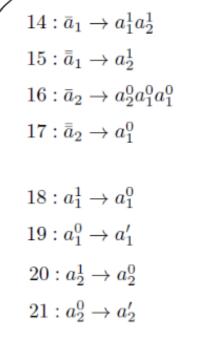
 $10: b \to \bar{\bar{a}}_1$

 $11:\bar{\bar{a}}_1\to\bar{\bar{a}}_2$

 $12: \bar{\bar{a}}_1 \to c$

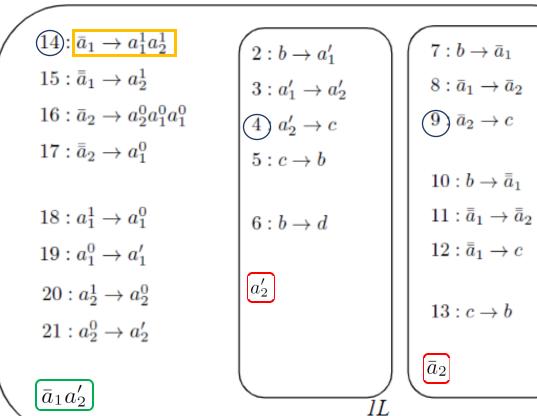
 $13:c\rightarrow b$

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	



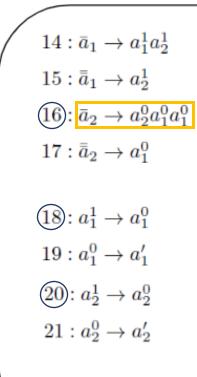
 $a_1'a_2'$

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' o \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \rightarrow \bar{a}_1 \text{ or }$	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	



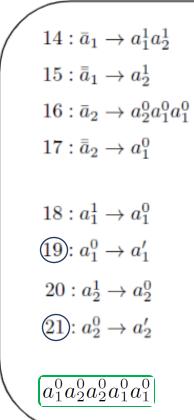
 IR_{j}

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' o \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \rightarrow c$	$a_1^1a_2^1ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	

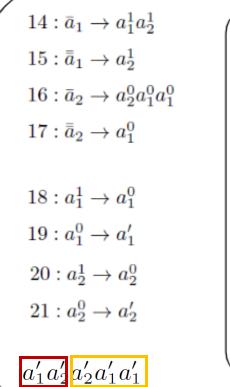


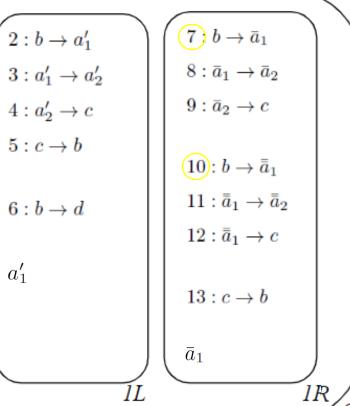
 $\boxed{a_1^1 a_2^1 \bar{a}_2}$

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	b o b	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1 \text{ or }$	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	

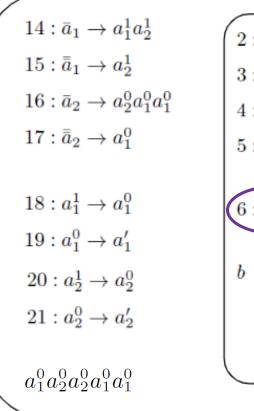


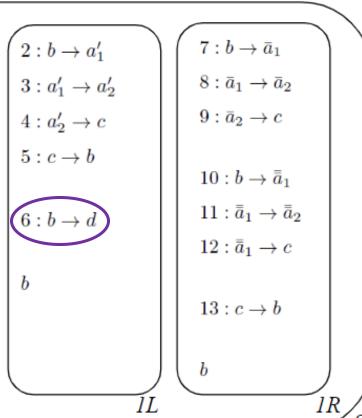
Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' o \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1 \text{ or }$	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	





Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1'a_2'$
2.	$a_1' \to \bar{a}_1$	$a_1'a_2'$
3.	$a_2' o \bar{a}_2$	$\bar{a}_1 a_2'$
4.	$c \to c$	$a_1^1 a_2^1 \bar{a}_2$
5.	$b \to b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	

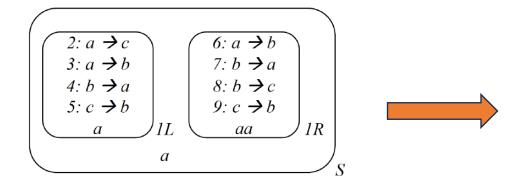


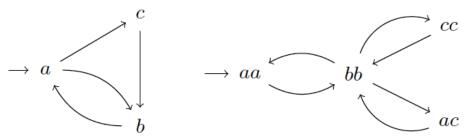


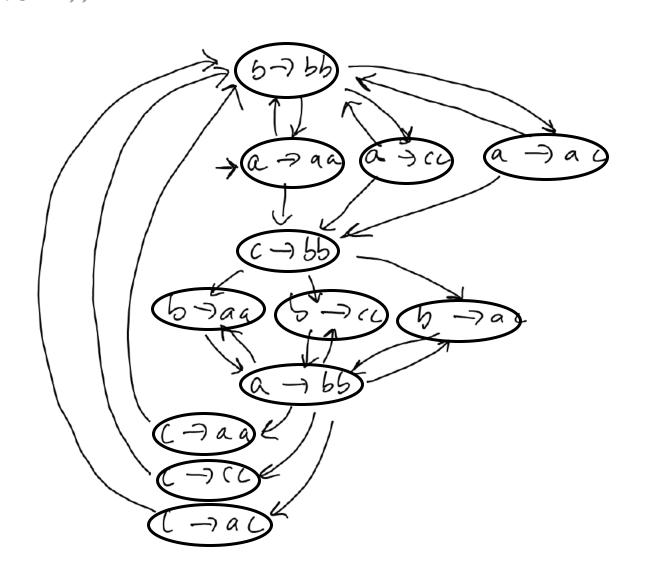
 $\mathcal{L}(NOP(polym^-, ncoo, fin)) \subseteq PsET0L.$

The proof idea

We can construct the **finite** set of instances of rule 1:







The **construction** of the *ETOL* **tables**:

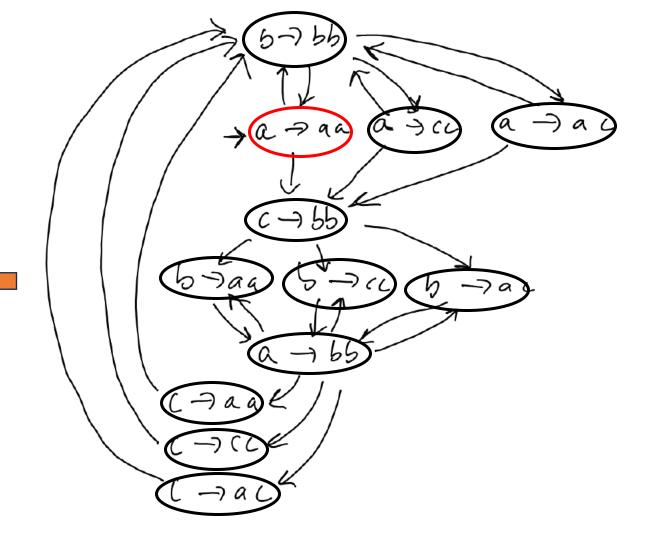
- initial string: $d_{a \rightarrow aa} a$
- the table:

$$a \rightarrow aa$$

$$d_{a \rightarrow aa} \rightarrow d_{b \rightarrow bb}$$

$$d_{a \rightarrow aa} \rightarrow d_{c \rightarrow bb}$$

$$d_{x \rightarrow yz} \rightarrow F$$



The **construction** of the *ETOL* **tables**:

- after the 1st step: $d_{a \rightarrow aa}$ aa
- the table:

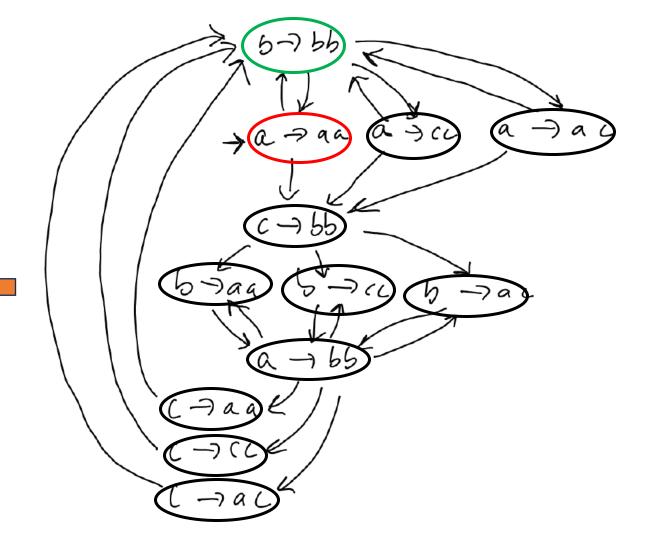
$$a \rightarrow aa$$

$$d_{a \to aa} \to d_{b \to bb}$$

$$d_{a \to aa} \to d_{c \to bb}$$

$$d_{x \to yz} \to F$$

$$E \to F$$



The **construction** of the *ETOL* tables:

- after the 1st step: $d_{a \rightarrow aa}$ aa
- the table:

$$d_{b \to bb} \to d_{a \to aa}$$

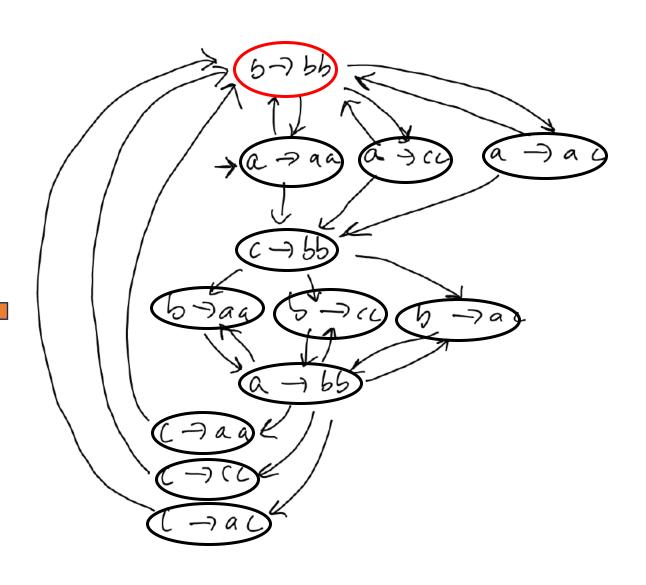
$$d_{b \to bb} \to d_{a \to cc}$$

$$d_{b \to bb} \to d_{a \to ac}$$

$$d_{x \to yz} \to F$$

$$d_{x \rightarrow yz} \rightarrow F$$

$$F \rightarrow F$$



The **construction** of the *ETOL* **tables**:

- after the 1st step: $d_{a \rightarrow aa}$ aa
- the table:

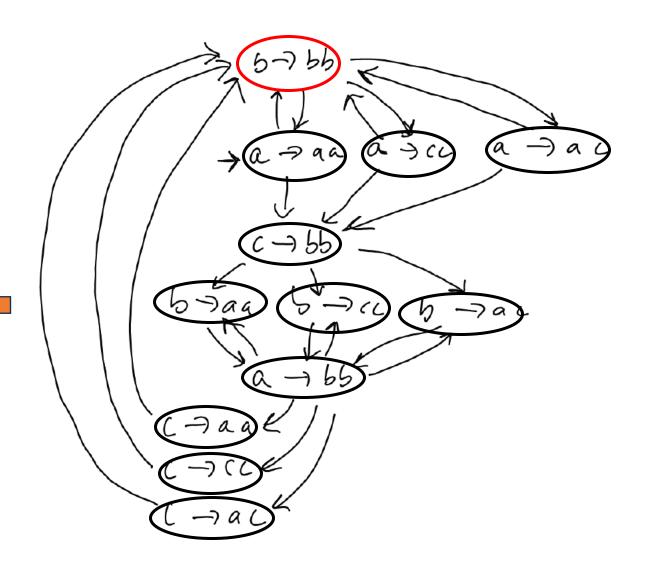
$$d_{b\rightarrow bb} \rightarrow d_{a\rightarrow aa}$$

$$d_{b\rightarrow bb} \rightarrow d_{a\rightarrow cc}$$

$$d_{b\rightarrow bb} \rightarrow d_{a\rightarrow ac}$$

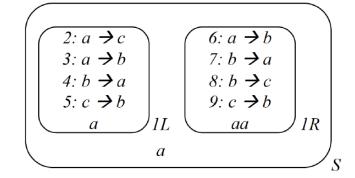
$$d_{x \to yz} \to F$$

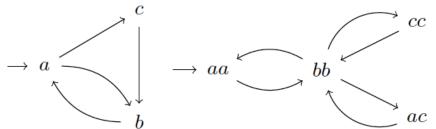
$$F \rightarrow F$$
 and so on...

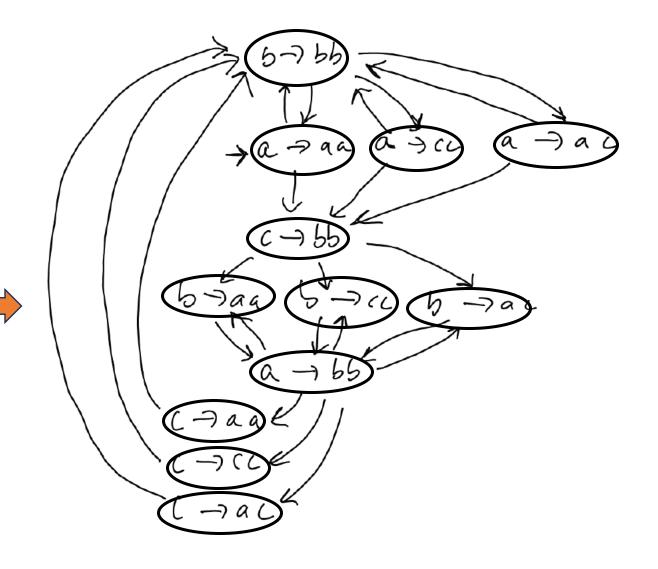


If we have two dynamic rules...

...we can **construct** the finite set of instances of **rule pairs**

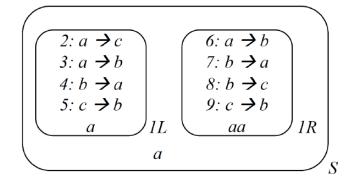


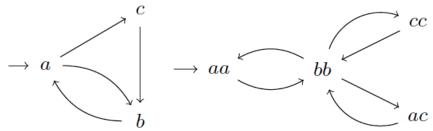


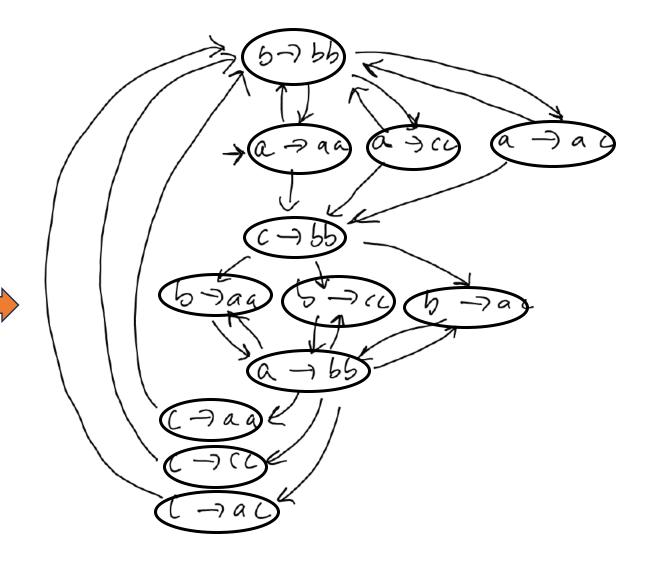


If we have several dynamic rules...

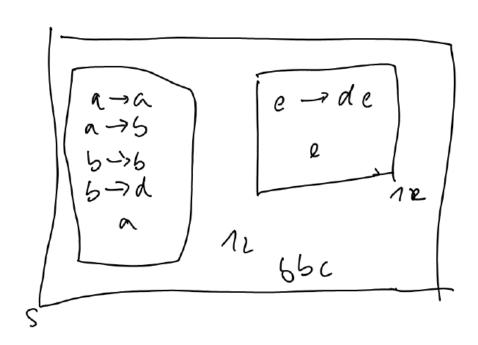
...we can construct the finite set of instances of groups of rules that can be applied simultaneously







$$\mathcal{L}(NOP(polym1, ncoo, fin)) = ?$$



What happens if the system is not finitely representable?

The righthand sides of rules are "words" of an infinite language \rightarrow

- → symbols are replaced with "words" of unbounded length →
- → like **parallel communicating** grammar systems?

A Parallel Communicating EOL system

$$\Gamma = (N, K, T, G_1, G_2, G_3, G_4)$$

with $N = \{a, b, c, d\}$, $T = \{a, c\}$, $K = \{Q_1, Q_2, Q_3, Q_4\}$, and $G_i = (N \cup K, T, \omega_i)$, $1 \le i \le 4$, where

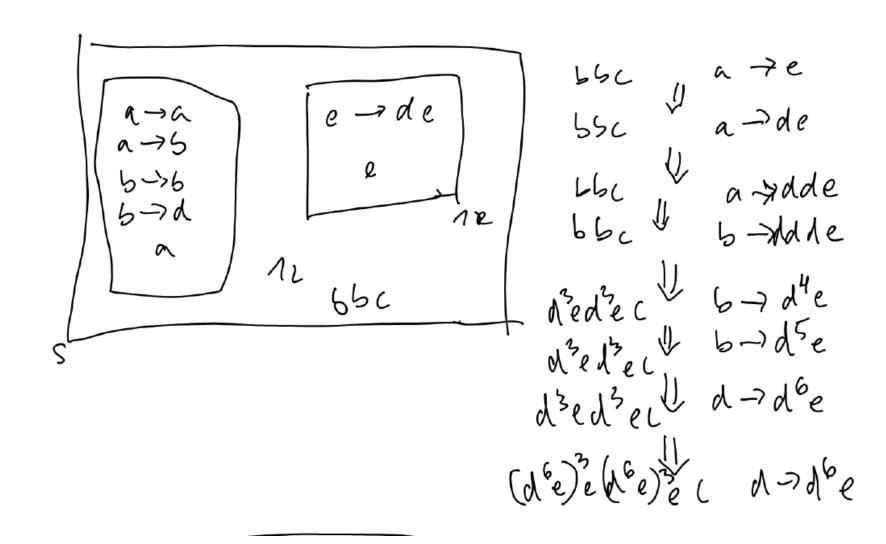
$$\omega_1 = a, \ P_1 = \{a \to aa\},\$$
 $\omega_2 = b, \ P_2 = \{b \to Q_1b\},\$
 $\omega_3 = d, \ P_3 = \{b \to \lambda, d \to Q_2, d \to Q_4\}, \ \text{and}\$
 $\omega_4 = d, \ P_4 = \{d \to cd\}.$

$$\omega_1 = a, \ P_1 = \{a \to aa\},\$$
 $\omega_2 = b, \ P_2 = \{b \to Q_1b\},\$
 $\omega_3 = d, \ P_3 = \{b \to \lambda, d \to Q_2, d \to Q_4\},\$
 $\omega_4 = d, \ P_4 = \{d \to cd\}.$

G_1	G_2	G_3	G_4
\boldsymbol{a}	b	d	d
aa	Q_1b	Q_4	cd
aa	aab	cd	cd
aaaa	aaQ_1b	cQ_4	ccd
aaaa	aaaaab	c ccd	ccd
a^8	$aaaaaaQ_1b$	$c cc Q_2$	cccd
a^8	$aaaaaaa^8b$	$c cc Q_2$	cccd
a^8	$aaaaaaa^8b$	$cccaaaaaaa^8b$	cccd
a^{16}	$aaaaaaa^8Q_1b$	$cccaaaaaaa^8$	cccd

$$L(\Gamma) = \{ c^{\frac{n(n+1)}{2}} a^{2^{n+2}-2} \mid n \ge 0 \}$$

Polymorphic P systems vs. PC ETOL systems



Polymorphic P systems vs. PC ETOL systems – a system with 2 components

(and 7 and (e-2de) Q1->61L 65c a12 D11-7 # → de 66c a12 1 → a かんうす bbc ans De 676 560 bAL d -> y) NAL - RIRRIRC 612 \sim Adde 12 66c N36 A36 (602 BIL 7 BIL 611-7d12 14e de de cbil 6-) Q1R de de c du QU->F d&e (de)2 (de)3 e c d12 (dil -) dil RIL -JF 61L -) F d - QIR

This idea can be formalized:

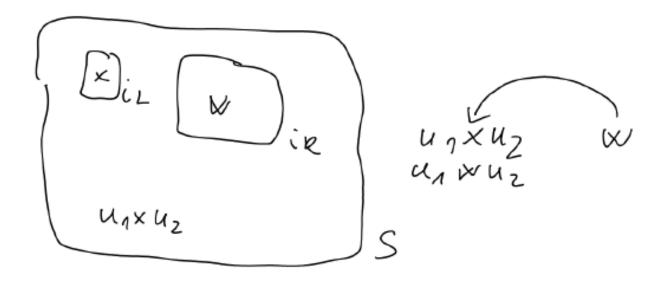
Theorem: $\mathcal{L}(NOP(polym, ncoo)) \subseteq PsNPC(ET0L)$

[A. Kuczik, Gy. Vaszil, CMC 2024]

The other way around?

$$\mathcal{L}(NOP(polym, ncoo)) \supseteq PsNPC(ET0L)$$

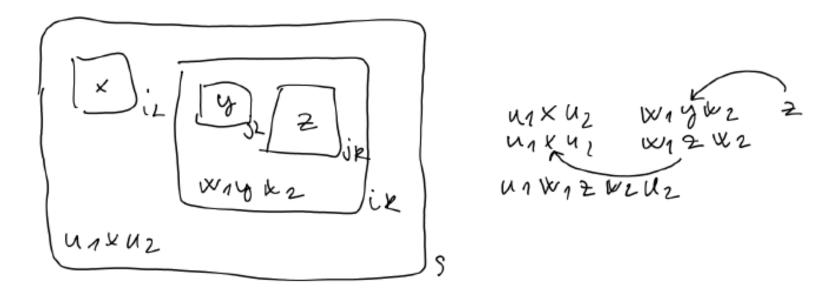
- The "communication graphs" of P systems are not complex enough
- → What can polymorphic P systems do?



The other way around?

$$\mathcal{L}(NOP(polym, ncoo)) \supseteq PsNPC(ET0L)$$

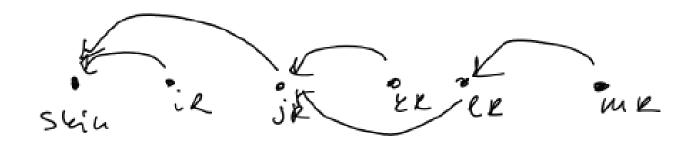
- The "communication graphs" of P systems are not complex enough
- → What can polymorphic P systems do?



The other way around?

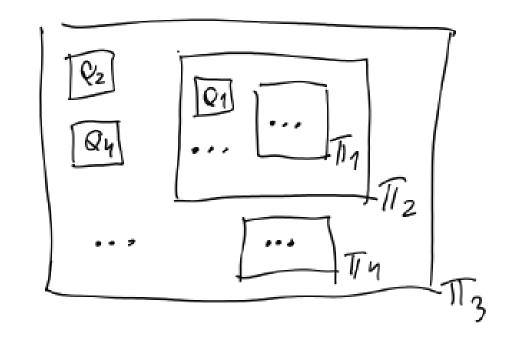
• The "communication graphs" of P systems are not complex enough

→ In general:



The communication graph is a tree

Here ahout the special case PSNPCtree (ETOL)?
The idea:



We can prove:

Theren: & (NOP (palyn, ncoo)) = PSNPCtree (ETOL)

The earlier example:

G_1	G_2	G_3	G_4
\boldsymbol{a}	b	d	d
aa	Q_1b	Q_4	cd
aa	aab	cd	cd
aaaa	aaQ_1b	cQ_4	ccd
aaaa	aaaaaab	cccd	ccd
a^8	$aaaaaaQ_1b$	$c ccQ_2$	cccd
a^8	$aaaaaaa^8b$	$c ccQ_2$	cccd
a^8	$aaaaaaa^8b$	$cccaaaaaaa^8b$	cccd
a^{16}	$aa aaaa a^8 Q_1 b$	$cccaaaaaaa^8$	cccd

```
r_{4,1}: d_{4R,1} \to d_{4R,2}, r_{4,2}: d_{4R,2} \to d_{4R,3}, r_{4,3}: d_{4R,3} \to c_{4R,4}d_{4R,4},
      Q_4
                         r_{4,4}: d_{4R,4} \to d_{4R,5}, \dots, r_{4,8}: d_{4R,8} \to d_{4R,9}, r_{4,9}: d_{4R,9} \to d_{4R,1},
                        r_{4,10}: c_{4R,4} \to c_{4R,5}, \dots, r_{4,14}: c_{4R,8} \to c_{4R,9}, r_{4,15}: c_{4R,9} \to c_{4R,1},
                         r_{4.16}: c_{2R.3} \to c_{2R.F}, r_{4.17}: d_{2R.3} \to d_{2R.F}
     Q_2
                                               r_{1,1}: a_{1R,1} \to a_{1R,2}a_{1R,2},
                                               r_{1,2}: a_{1R,2} \to a_{1R,3}, \ldots, r_{1,8}: a_{1R,8} \to a_{1R,9},
                                               r_{1,9}: a_{1R,9} \to a_{1R,1}, r_{1,10}: a_{1R,1} \to a_{1R,F}
                        r_{2,1}:b_{2R,1}\to b_{2R,2}, r_{2,2}:b_{2R,2}\to b_{2R,3}, r_{2,3}:b_{2R,3}\to Q_1b_{2R,4},
                        r_{2,4}:b_{2R,4}\to b_{2R,5},\ldots,r_{2,8}:b_{2R,8}\to b_{2R,9},r_{2,9}:b_{2R,9}\to b_{2R,1},
                        r_{2.10}: a_{1R.4} \rightarrow a_{2R.6}, r_{2.11}: a_{2R.6} \rightarrow a_{2R.7}, \dots,
                        r_{2.13}: a_{2R.8} \rightarrow a_{2R.9}, r_{2.14}: a_{2R.9} \rightarrow a_{2R.1},
                        r_{2.15}: a_{2R.3} \to a_{2R.F}, r_{2.16}: b_{2R.3} \to b_{2R.F}
                        b_{2R.1}
                     r_{s_1,1}:a_{s_1,1}\to a_{s_1,2},
                                                                                            r_{s_3,1}:c_{s_3,1}\to c_{s_3,2},
a_{s,3}
                     r_{s_1,2}:a_{s_1,2}\to a_{s_1,3}
                                                                                            r_{s_3,2}:c_{s_3,2}\to c_{s_3,3}
                                                                                           r_{s_3,3}:c_{s_3,3}\to c_{s_3,4},
                     r_{s_1,3}: a_{s_1,3} \to a_{s_1,4},
                     r_{s_1,4}: a_{s_1,3} \to a
                                                                                            r_{s_2,4}:c_{s_2,3}\to c
                     r_{s_1,5}:a_{s_1,4}\to a_{s_1,5},\ldots
                                                                                            r_{s_3,5}:c_{s_3,4}\to c_{s_3,5},\ldots,
                     r_{s_1,9}: a_{s_1,8} \to a_{s_1,9},
                                                                                            r_{s_3,9}:c_{s_3,8}\to c_{s_3,9},
                     r_{s_1,10}: a_{s_1,9} \to a_{s_1,1}
                                                                                            r_{s_3,10}:c_{s_3,9}\to c_{s_3,1},
                     a_{s_1,1}
                                                                                            c_{s_3,1}
                                                                                                                                s_3R
                      r_{s_2,1}:b_{s_2,1}\to b_{s_2,2},
                                                                                         r_{s_A,1}:d_{s_A,1}\to d_{s_A,2},
                      r_{s_2,2}:b_{s_2,2}\to b_{s_2,3}
                                                                                          r_{s_4,2}:d_{s_4,2}\to d_{s_4,3}
                                                                                          r_{s_4,3}:d_{s_4,3}\to d_{s_4,4},
                      r_{s_2,3}:b_{s_2,3}\to b_{s_2,4},
                       r_{s_2,4}:b_{s_2,3}\to b
                                                                                          r_{s_4,4}:d_{s_4,3}\to d
                      r_{s_2,5}:b_{s_2,4}\to b_{s_2,5},\ldots
                                                                                          r_{s_4,5}:d_{s_4,4}\to d_{s_4,5},\ldots,
                       r_{s_2,9}:b_{s_2,8}\to b_{s_2,9},
                                                                                          r_{s_4,9}:d_{s_4,8}\to d_{s_4,9},
                       r_{s_2,10}:b_{s_2,9}\to b_{s_2,1},
                                                                                          r_{s_4,10}:d_{s_4,9}\to d_{s_4,1},
                                                                                          d_{s_4,1}
                       b_{s_{2},1}
                                                                                                                                s_4R
   r_{s,1}:d_{s,1}\to d_{s,2}, r_{s,2}:d_{s,2}\to d_{s,3}, r_{s,3}:d_{s,3}\to d_{s,4}, r_{s,4}:d_{s,4}\to d_{s,6},
   r_{s,5}: a_{s_1,4} \to a_{s,6}, r_{s,6}: b_{s_2,4} \to b_{s,6}, r_{s,7}: c_{s_3,4} \to c_{s,6}, r_{s,8}: d_{s,6} \to Q_4, r_{s,9}: d_{s,6} \to Q_2,
   r_{s,10}: c_{4R,7} \to c_{s,9}, r_{s,11}: d_{4R,7} \to d_{s,9}, r_{s,12}: d_{s,9} \to d_{s,1}, r_{s,13}: c_{s,9} \to c_{s,1},
   r_{s.14}: a_{s.6} \rightarrow a_{s.F}, r_{s.15}: b_{s.6} \rightarrow b_{s.F}, r_{s.16}: c_{s.6} \rightarrow c_{s.F}, r_{s.17}: d_{s.6} \rightarrow d_{s.F}, r_{s.18}: b \rightarrow \lambda.
```

 $d_{s,1}$

The earlier example:

G_1	G_2	G_3	G_4
\boldsymbol{a}	b	d	d
aa	Q_1b	Q_4	cd
aa	aab	cd	cd
aaaa	aaQ_1b	cQ_4	ccd
	aaaaaab	cccd	ccd
a^8	$aaaaaaQ_1b$	$c cc Q_2$	cccd
a^8	$aaaaaaa^8b$	$c ccQ_2$	cccd
a^8	$aaaaaaa^8b$	$cccaaaaaaa^8b$	cccd
a^{16}	$aa aaaa a^8 Q_1 b$	$cccaaaaaaa^8$	cccd

S	2R	4R	1R	84
$d_{s,1}$	$b_{2R,1}$	$d_{4R,1}$	$a_{1R,1}$	$d_{s_4,1}$
$d_{s,2}$	$b_{2R,2}$	$d_{4R,2}$	$a_{1R,2}a_{1R,2}$	$d_{s_4,2}$
$d_{s,3}$	$b_{2R,3}$	$d_{4R,3}$	$a_{1R,3}a_{1R,3}$	$d_{s_4,3}$
$d_{s,4}$	$Q_1b_{2R,4}$	$c_{4R,4}d_{4R,4}$	$a_{1R,4}a_{1R,4}$	$d_{s_4,4}$
$d_{s_4,4}$	$a_{1R,4}a_{1R,4}b_{2R,5}$	$c_{4R,5}d_{4R,5}$	$a_{1R,5}a_{1R,5}$	$d_{s_4,5}$
$d_{s,6}$	$a_{2R,6}a_{2R,6}b_{2R,6}$	$c_{4R,6}d_{4R,6}$	$a_{1R,6}a_{1R,6}$	$d_{s_4,6}$
Q_4	$a_{2R,7}a_{2R,7}b_{2R,7}$	$c_{4R,7}d_{4R,7}$	$a_{1R,7}a_{1R,7}$	$d_{s_4,7}$
$c_{4R,7}d_{4R,7}$	$a_{2R,8}a_{2R,8}b_{2R,8}$	$c_{4R,8}d_{4R,8}$	$a_{1R,8}a_{1R,8}$	$d_{s_4,8}$
$c_{s,9}d_{s,9}$	$a_{2R,9}a_{2R,9}b_{2R,9}$	$c_{4R,9}d_{4R,9}$	$a_{1R,9}a_{1R,9}$	$d_{s_{4},9}$
$c_{s,1}d_{s,1}$	$a_{2R,1}a_{2R,1}b_{2R,1}$	$c_{4R,1}d_{4R,1}$	$a_{1R,1}a_{1R,1}$	$d_{s_4,1}$
$c_{s,2}d_{s,2}$	$a_{2R,2}a_{2R,2}b_{2R,2}$	$c_{4R,2}d_{4R,2}$	$(a_{1R,2})^4$	$d_{s_4,2}$
$c_{s,3}d_{s,3}$	$a_{2R,3}a_{2R,3}b_{2R,3}$	$c_{4R,3}d_{4R,3}$	$(a_{1R,3})^4$	$d_{s_4,3}$
$c_{s,4}d_{s,4}$	$a_{2R,4}a_{2R,4}Q_1b_{2R,4}$	$c_{4R,4}c_{4R,4}d_{4R,4}$	$(a_{1R,4})^4$	$d_{s_4,4}$
$c_{s,5}d_{s_4,4}$	$(a_{2R,5})^2(a_{1R,4})^4b_{2R,5}$	$c_{4R,5}c_{4R,5}d_{4R,5}$	$(a_{1R,5})^4$	$d_{s_4,5}$
$c_{s,6}d_{s,6}$	$(a_{2R,6})^2(a_{2R,6})^4b_{2R,6}$	$c_{4R,6}c_{4R,6}d_{4R,6}$	$(a_{1R,6})^4$	$d_{s_4,6}$
$c_{s,7}Q_4$	$(a_{2R,7})^2(a_{2R,7})^4b_{2R,7}$	$c_{4R,7}c_{4R,7}d_{4R,7}$	$(a_{1R,7})^4$	$d_{s_4,7}$
$c_{s,8}c_{4R,7}c_{4R,7}d_{4R,7}$	$(a_{2R,8})^2(a_{2R,8})^4b_{2R,8}$	$c_{4R,8}c_{4R,8}d_{4R,8}$	$(a_{1R,8})^4$	$d_{s_4,8}$
$c_{s,9}c_{s,9}c_{s,9}d_{s,9}$	$(a_{2R,9})^2(a_{2R,9})^4b_{2R,9}$	$c_{4R,9}c_{4R,9}d_{4R,9}$	$(a_{1R,9})^4$	$d_{s_4,9}$
$c_{s,1}(c_{s,1})^2 d_{s,1}$	$(a_{2R,1})^2(a_{2R,1})^4b_{2R,1}$	$c_{4R,1}c_{4R,1}d_{4R,1}$	$(a_{1R,1})^4$	$d_{s_4,1}$
$c_{s,2}(c_{s,2})^2 d_{s,2}$	$(a_{2R,2})^2(a_{2R,2})^4b_{2R,2}$	$c_{4R,2}c_{4R,2}d_{4R,2}$	$(a_{1R,2})^8$	$d_{s_4,2}$
$c_{s,3}(c_{s,3})^2 d_{s,3}$	$(a_{2R,3})^2(a_{2R,3})^4b_{2R,3}$	$c_{4R,3}c_{4R,3}d_{4R,3}$	$(a_{1R,3})^8$	$d_{s_4,3}$
$c_{s,4}(c_{s,4})^2 d_{s,4}$	$(a_{2R,4})^2 (a_{2R,4})^4 Q_1 b_{2R,4}$	$c_{4R,4}c_{4R,4}c_{4R,4}d_{4R,4}$	$(a_{1R,4})^8$	$d_{s_4,4}$
$c_{s_3,4}(c_{s_3,4})^2 d_{s_4,4}$	$(a_{2R,5})^2(a_{2R,5})^4(a_{1R,4})^8b_{2R,5}$	$c_{4R,5}c_{4R,5}c_{4R,5}d_{4R,5}$	$(a_{1R,5})^8$	$d_{s_4,5}$
$(c_{s,6}(c_{s,6})^2d_{s,6})$	$(a_{2R,6})^2(a_{2R,6})^4(a_{2R,6})^8b_{2R,6}$	$c_{4R,6}c_{4R,6}c_{4R,6}d_{4R,6}$	$(a_{1R,6})^8$	$d_{s_4,6}$
$c_{s,7}(c_{s,7})^2Q_2$	$(a_{2R,7})^2(a_{2R,7})^4(a_{2R,7})^8b_{2R,7}$	$c_{4R,7}c_{4R,7}c_{4R,7}d_{4R,7}$	$(a_{1R,7})^8$	$d_{s_4,7}$
$c_{s,8}(c_{s,8})^2(a_{2R,7})^2(a_{2R,7})^4(a_{2R,7})^8b_{2R,7}$	$(a_{2R,8})^2(a_{2R,8})^4(a_{2R,8})^8b_{2R,8}$	$c_{4R,8}c_{4R,8}c_{4R,8}d_{4R,8}$	$(a_{1R,8})^8$	$d_{s_{4},8}$
$(c_{s,9}(c_{s,9})^2(a_{s,9})^2(a_{s,9})^4(a_{s,9})^8b_{s,9}$	$(a_{2R,9})^2(a_{2R,9})^4(a_{2R,9})^8b_{2R,9}$	$c_{4R,9}c_{4R,9}c_{4R,9}d_{4R,9}$	$(a_{1R,9})^8$	$d_{s_4,9}$
$(c_{s,1}(c_{s,1})^2(a_{s,1})^2(a_{s,1})^4(a_{s,1})^8b_{s,1}$	$(a_{2R,1})^2(a_{2R,1})^4(a_{2R,1})^8b_{2R,1}$	$c_{4R,1}c_{4R,1}c_{4R,1}d_{4R,1}$	$(a_{1R,1})^8$	$d_{s_4,1}$
$c_{s,2}(c_{s,2})^2(a_{s,2})^2(a_{s,2})^4(a_{s,2})^8b_{s,2}$	$(a_{2R,2})^2(a_{2R,2})^4(a_{2R,2})^8b_{2R,2}$	$c_{4R,2}c_{4R,2}c_{4R,2}d_{4R,2}$	$(a_{1R,F})^8$	$d_{s_4,2}$
$(c_{s,3}(c_{s,3})^2(a_{s,3})^2(a_{s,3})^4(a_{s,3})^8b_{s,3}$	$(a_{2R,3})^2(a_{2R,3})^4(a_{2R,3})^8b_{2R,3}$	$c_{4R,3}c_{4R,3}c_{4R,3}d_{4R,3}$	$(a_{1R,F})^8$	$d_{s_4,3}$
$c_{s,4}(c_{s,4})^2(a_{s,4})^2(a_{s,4})^4(a_{s,4})^8b_{s,4}$	$(a_{2R,F})^2(a_{2R,F})^4(a_{2R,F})^8b_{2R,F}$	$c_{4R,F}c_{4R,F}c_{4R,F}d_{4R,F}$	$(a_{1R,F})^8$	d
$c(c)^2(a)^2(a)^4(a)^8b$	$(a_{2R,F})^2(a_{2R,F})^4(a_{2R,F})^8b_{2R,F}$	$c_{4R,F}c_{4R,F}c_{4R,F}d_{4R,F}$	$(a_{1R,F})^8$	d
$c(c)^2(a)^2(a)^4(a)^8$	$(a_{2R,F})^2(a_{2R,F})^4(a_{2R,F})^8b_{2R,F}$	$c_{4R,F}c_{4R,F}\overline{c_{4R,F}d_{4R,F}}$	$(a_{1R,F})^8$	d

Thus...

We have a characterization of non-cooperative polymrphic systems in terms of parallel communicating ETOL systems.

Thank you.