P-Lingua: from user to developer in ~1 hour

us

David Orellana-Martin

Research Group on Natural Computing
Dept. of Computer Science and Artificial Intelligence
Universidad de Sevilla, Seville, Spain

February 23, 2022

RGNC

1/17

P-Lingua: Origins

@ Specific purpose:

RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator

us

RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:

RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:

e Within an specific framework
o MetaPlab, Infobiotics Workbench, kPWorkbench. . .

RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:

e Within an specific framework
o MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

@ General purpose:

RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:

e Within an specific framework
o MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

@ General purpose:

e Global scope (lots of MC frameworks)
e P-Lingua framework, UPSimulator, formal frameworks. . .

@ RGNC

2/17

P-Lingua: Origins

@ Specific purpose:
o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:
e Within an specific framework
o MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)
@ General purpose:

e Global scope (lots of MC frameworks)
o P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

@ RGNC

2/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).

RGNC

3/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:
o Parsers

RGNC

3/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:

o Parsers
e Simulators

RGNC

3/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:

o Parsers
e Simulators
o Output representations

RGNC

3/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:

o Parsers

e Simulators

e Output representations

e pLinguaCore as a standalone library

@ RGNC

3/17

P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:

o Parsers

e Simulators

o Output representations

e pLinguaCore as a standalone library
e Command line commands. ..

@ MeCoSim

@ RGNC

3/17

Versions of P-Lingua

o Different versions of P-Lingua:

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9

us

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)

us

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)
e P-Lingua 4.0

us

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)
o P-Lingua 4.0 (outdated)

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)
o P-Lingua 4.0 (outdated)
e P-Lingua MeCoSim

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
e P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)
o P-Lingua 4.0 (outdated)
o P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:
P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)

o P-Lingua 4.0 (outdated)
o P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
e P-Lingua 5.0
w Ol
U RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:

P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)

P-Lingua 4.0 (outdated)

P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by |. Pérez-Hurtado)

RGNC

4/17

Versions of P-Lingua

o Different versions of P-Lingua:

P-Lingua 1.0, ..., P-Lingua 3.9 (deprecated)

P-Lingua 4.0 (outdated)

P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by |. Pérez-Hurtado)

@ RGNC

5/17

Parsers and simulators implemented

Cell-like P systems
Tissue-like P systems
Spiking Neural P systems
PDP systems

@ Simple kernel P systems

RGNC

6/17

References

@ Sitio web de P-Lingua (wiki site)
@ Introduction to P-Lingua (in Spanish)

@ Case studies of different variants of P systems in the MeCoSim
website

RGNC

7/17

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.cs.us.es/~marper/docencia/SACBS/temas/Adjuntos/introduction-to-p-lingua.pdf
http://www.p-lingua.org/mecosim/doc/#case-studies
http://www.p-lingua.org/mecosim/doc/#case-studies

s

Hands on .pli!

RGNC

8/17

Back to the slides. . .

@ Lots of variants. ..

RGNC

9/17

Back to the slides. . .

@ Lots of variants. ..

@ ...But how are they implemented?

us

RGNC

9/17

Back to the slides. . .

@ Lots of variants. ..
@ ...But how are they implemented?

@ Subversion/Git repositories for different versions of P-Lingua

RGNC

9/17

Back to the slides. . .

@ Lots of variants. ..
@ ...But how are they implemented?
@ Subversion/Git repositories for different versions of P-Lingua

@ Remember: P-Lingua MeCoSim

RGNC

9/17

What is necessary?

@ Name of variant (@pcolonies)

us

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)

o Lexer

us

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)

@ Lexer (keywords)

us

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)

@ Lexer (keywords) (more precisely, keysymbols)

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)
@ Lexer (keywords) (more precisely, keysymbols)

o Parser

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)
@ Lexer (keywords) (more precisely, keysymbols)

@ Parser (structure, objects, rules, programs. . .)

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)
@ Lexer (keywords) (more precisely, keysymbols)
@ Parser (structure, objects, rules, programs. . .)

@ Simulator

RGNC

10/17

What is necessary?

@ Name of variant (@pcolonies)
@ Lexer (keywords) (more precisely, keysymbols)
@ Parser (structure, objects, rules, programs. . .)

e Simulator (semantics of P colonies)

RGNC

10/17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)

Simulator (semantics of P colonies)

Output (how we visualize the output of the system)

@ RGNC

10/17

Reusable things: Lexer

o Arrows already defined (-->, <-->)

RGNC

11/17

Reusable things: Lexer

o Arrows already defined (-->, <-->)

o Cells (tissue-like) ~ Agents (P colonies)

RGNC

11/17

Reusable things: Lexer

o Arrows already defined (-->, <-->)

o Cells (tissue-like) ~ Agents (P colonies) (different permeability, same
structure)

RGNC

11/17

Reusable things: Lexer

o Arrows already defined (-->, <-->)

o Cells (tissue-like) ~ Agents (P colonies) (different permeability, same
structure)

@ Symbols as objects

RGNC

11/17

Reusable things: Parser

@ Basic creation of a P colony (@mu, @ms(h), ...)

RGNC

12/17

Reusable things: Parser

@ Basic creation of a P colony (@mu, @ms(h), ...)

@ Rules (not programs!) (rules can be defined in general for agents with
a certain label)

RGNC

12/17

Reusable things: Parser

@ Basic creation of a P colony (@mu, @ms(h), ...)

@ Rules (not programs!) (rules can be defined in general for agents with
a certain label) (evolution rules as in cell-like [a -==> b]’h,
communication rules as in tissue-like [a]l’h <-=> [b]’0)

o ('@
u@ RGNC

12/17

Reusable things: Simulator

@ Usual evolution of a P system (concept of computation)

RGNC

13/17

Reusable things: Simulator

@ Usual evolution of a P system (concept of computation)

@ Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)

@ RGNC

13/17

Reusable things: Simulator

@ Usual evolution of a P system (concept of computation)

@ Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)

@ Priorities
g @
u@ RGNC

13/17

Reusable things: Output

@ Structure of the output REALLY similar to other variants
(recalling. ..)

RGNC

14 /17

What to do?

@ Define variants to add to the framework

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations)

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict)

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

o What if...?

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

e What if...? (to specify some details about the notion of transition)

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

e What if...? (to specify some details about the notion of transition)

@ Implement simulator (as general as possible)

@ RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

e What if...? (to specify some details about the notion of transition)
@ Implement simulator (as general as possible)

@ Non-determinism (optional in some systems)

@ RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

e What if...? (to specify some details about the notion of transition)
@ Implement simulator (as general as possible)
@ Non-determinism (optional in some systems)

@ Adapt the output to programs. ..

RGNC

15/17

What to do?

@ Define variants to add to the framework

@ Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

e What if...? (to specify some details about the notion of transition)
e Implement simulator (as general as possible)
@ Non-determinism (optional in some systems)

@ Adapt the output to programs. ..

RGNC

16/17

O
J>

Dékuji =2

Gracies mMerci S
s THANKYOU 2

ESC

o O o
%= O Gracias ¢ -
% ==
o 5 =
0 -
B o

