
P-Lingua: from user to developer in ∼1 hour

David Orellana-Mart́ın

Research Group on Natural Computing
Dept. of Computer Science and Artificial Intelligence

Universidad de Sevilla, Seville, Spain

February 23, 2022

1 / 17

P-Lingua: Origins

Specific purpose:

Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:
Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator

(direct algorithm translation)
Framework oriented:

Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:

Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:
Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . .

(abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:
Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:

Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:
Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . .

(abstraction
of the concept of computation)

2 / 17

P-Lingua: Origins

Specific purpose:
Ad-hoc simulators
Problem → Simulator (direct algorithm translation)

Framework oriented:
Within an specific framework
MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)

General purpose:
Global scope (lots of MC frameworks)
P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)

2 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).

Different tools within the same framework:
Parsers
Simulators
Output representations
pLinguaCore as a standalone library
Command line commands. . .

MeCoSim

3 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
Different tools within the same framework:

Parsers

Simulators
Output representations
pLinguaCore as a standalone library
Command line commands. . .

MeCoSim

3 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
Different tools within the same framework:

Parsers
Simulators

Output representations
pLinguaCore as a standalone library
Command line commands. . .

MeCoSim

3 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
Different tools within the same framework:

Parsers
Simulators
Output representations

pLinguaCore as a standalone library
Command line commands. . .

MeCoSim

3 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
Different tools within the same framework:

Parsers
Simulators
Output representations
pLinguaCore as a standalone library

Command line commands. . .
MeCoSim

3 / 17

P-Lingua framework

Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
Different tools within the same framework:

Parsers
Simulators
Output representations
pLinguaCore as a standalone library
Command line commands. . .

MeCoSim

3 / 17

Versions of P-Lingua

Different versions of P-Lingua:

P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9

(deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)

P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0

(outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)

P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim

(Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)

P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0

(C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

4 / 17

Versions of P-Lingua

Different versions of P-Lingua:
P-Lingua 1.0, . . . , P-Lingua 3.9 (deprecated)
P-Lingua 4.0 (outdated)
P-Lingua MeCoSim (Java, maintained by L. Valencia-Cabrera)
P-Lingua 5.0 (C++, maintained by I. Pérez-Hurtado)

5 / 17

Parsers and simulators implemented

Cell-like P systems
Tissue-like P systems
Spiking Neural P systems
PDP systems
Simple kernel P systems

6 / 17

References

Sitio web de P-Lingua (wiki site)
Introduction to P-Lingua (in Spanish)
Case studies of different variants of P systems in the MeCoSim
website

7 / 17

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.cs.us.es/~marper/docencia/SACBS/temas/Adjuntos/introduction-to-p-lingua.pdf
http://www.p-lingua.org/mecosim/doc/#case-studies
http://www.p-lingua.org/mecosim/doc/#case-studies

Hands on .pli!

8 / 17

Back to the slides. . .

Lots of variants. . .

. . . But how are they implemented?
Subversion/Git repositories for different versions of P-Lingua
Remember: P-Lingua MeCoSim

9 / 17

Back to the slides. . .

Lots of variants. . .
. . . But how are they implemented?

Subversion/Git repositories for different versions of P-Lingua
Remember: P-Lingua MeCoSim

9 / 17

Back to the slides. . .

Lots of variants. . .
. . . But how are they implemented?
Subversion/Git repositories for different versions of P-Lingua

Remember: P-Lingua MeCoSim

9 / 17

Back to the slides. . .

Lots of variants. . .
. . . But how are they implemented?
Subversion/Git repositories for different versions of P-Lingua
Remember: P-Lingua MeCoSim

9 / 17

What is necessary?

Name of variant (@pcolonies)

Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer

(keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords)

(more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)

Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser

(structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)

Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator

(semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)

Output (how we visualize the output of the system)

10 / 17

What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)
Simulator (semantics of P colonies)
Output (how we visualize the output of the system)

10 / 17

Reusable things: Lexer

Arrows already defined (-->, <-->)

Cells (tissue-like) ∼ Agents (P colonies) (different permeability, same
structure)
Symbols as objects

11 / 17

Reusable things: Lexer

Arrows already defined (-->, <-->)
Cells (tissue-like) ∼ Agents (P colonies)

(different permeability, same
structure)
Symbols as objects

11 / 17

Reusable things: Lexer

Arrows already defined (-->, <-->)
Cells (tissue-like) ∼ Agents (P colonies) (different permeability, same
structure)

Symbols as objects

11 / 17

Reusable things: Lexer

Arrows already defined (-->, <-->)
Cells (tissue-like) ∼ Agents (P colonies) (different permeability, same
structure)
Symbols as objects

11 / 17

Reusable things: Parser

Basic creation of a P colony (@mu, @ms(h), . . .)

Rules (not programs!) (rules can be defined in general for agents with
a certain label) (evolution rules as in cell-like [a --> b]’h,
communication rules as in tissue-like [a]’h <--> [b]’0)

12 / 17

Reusable things: Parser

Basic creation of a P colony (@mu, @ms(h), . . .)
Rules (not programs!) (rules can be defined in general for agents with
a certain label)

(evolution rules as in cell-like [a --> b]’h,
communication rules as in tissue-like [a]’h <--> [b]’0)

12 / 17

Reusable things: Parser

Basic creation of a P colony (@mu, @ms(h), . . .)
Rules (not programs!) (rules can be defined in general for agents with
a certain label) (evolution rules as in cell-like [a --> b]’h,
communication rules as in tissue-like [a]’h <--> [b]’0)

12 / 17

Reusable things: Simulator

Usual evolution of a P system (concept of computation)

Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)
Priorities

13 / 17

Reusable things: Simulator

Usual evolution of a P system (concept of computation)
Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)

Priorities

13 / 17

Reusable things: Simulator

Usual evolution of a P system (concept of computation)
Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)
Priorities

13 / 17

Reusable things: Output

Structure of the output REALLY similar to other variants
(recalling. . .)

14 / 17

What to do?

Define variants to add to the framework

Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations)

(initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict)

(programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)

What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ?

(to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)

Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)

Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)

Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

15 / 17

What to do?

Define variants to add to the framework
Make the variant defined as general as possible (with not so much
limitations) (initial variant was REALLY strict) (programs)
What if. . . ? (to specify some details about the notion of transition)
Implement simulator (as general as possible)
Non-determinism (optional in some systems)
Adapt the output to programs. . .

16 / 17

THANKYOU
Gracias

Merci

M
UL

ŢU
M

ES
C

DANKE

Dankon
Ob

rig
ad

o
Gràcies谢
谢

Děkuji

17 / 17

