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o Ad-hoc simulators
o Problem — Simulator (direct algorithm translation)

@ Framework oriented:
e Within an specific framework
o MetaPlab, Infobiotics Workbench, kPWorkbench. . . (abstraction of a
type of P system)
@ General purpose:

e Global scope (lots of MC frameworks)
o P-Lingua framework, UPSimulator, formal frameworks. . . (abstraction
of the concept of computation)
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P-Lingua framework
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P-Lingua framework

e Standard (de-facto) for specifying P systems and families of P
systems (structured programming).
o Different tools within the same framework:

o Parsers

e Simulators

o Output representations

e pLinguaCore as a standalone library
e Command line commands. ..

@ MeCoSim
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Parsers and simulators implemented

Cell-like P systems
Tissue-like P systems
Spiking Neural P systems
PDP systems

@ Simple kernel P systems
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References

@ Sitio web de P-Lingua (wiki site)
@ Introduction to P-Lingua (in Spanish)

@ Case studies of different variants of P systems in the MeCoSim
website
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http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.cs.us.es/~marper/docencia/SACBS/temas/Adjuntos/introduction-to-p-lingua.pdf
http://www.p-lingua.org/mecosim/doc/#case-studies
http://www.p-lingua.org/mecosim/doc/#case-studies
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Hands on .pli!
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@ Lots of variants. ..
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@ Lots of variants. ..
@ ...But how are they implemented?
@ Subversion/Git repositories for different versions of P-Lingua

@ Remember: P-Lingua MeCoSim
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What is necessary?

Name of variant (@pcolonies)
Lexer (keywords) (more precisely, keysymbols)
Parser (structure, objects, rules, programs. . .)

Simulator (semantics of P colonies)

Output (how we visualize the output of the system)
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Reusable things: Parser

@ Basic creation of a P colony (@mu, @ms(h), ...)

@ Rules (not programs!) (rules can be defined in general for agents with
a certain label) (evolution rules as in cell-like [ a -==> b ]’h,
communication rules as in tissue-like [a]l’h <-=> [b]’0)

o ('@
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Reusable things: Simulator

@ Usual evolution of a P system (concept of computation)

@ Semantics about limits of application of rules (non-deterministic,
selection of rules/programs. . .)

@ Priorities
g @
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Reusable things: Output

@ Structure of the output REALLY similar to other variants
(recalling. ..)
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