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Abstract. A new programming language for membrane computing, P-
Lingua, is developed in this paper. This language is not designed for
a specific simulator software. On the contrary, its purpose is to offer
a general syntactic framework that could define a unified standard for
membrane computing, covering a broad variety of models. At the present
stage, P-Lingua can only handle P systems with active membranes, al-
though the authors intend to extend it to other models in the near future.
P-Lingua allows to write programs in a friendly way, as its syntax is
very close to standard scientific notation, and parameterized expressions
can be used as shorthand for sets of rules. There is a built-in compiler
that parses these human-style programs and generates XML documents
that can be given as input to simulation tools, different plugins can be
designed to produce specific adequate outputs for existing simulators.
Furthermore, we present in this paper an integrated development envi-
ronment that plays the role of interface where P-lingua programs can
be written and compiled. We also present a simulator for the class of
recognizer P systems with active membranes, and we illustrate it by fol-
lowing the writing, compiling and simulating processes with a family of
P systems solving the SAT problem.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch of Natural
Computing that was introduced by Gh. Păun [5]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that provides a new nondeterministic model of computation.

The initial definition of this computing paradigm is very flexible, and many
different models have been defined and investigated in the area: P systems with
symport/antiport rules, with active membranes, with catalysts, with promot-
ers/inhibitors, etc. There were some attempts to establish a common formal-
ization covering most of the existing models (see e.g. [2]), but the membrane
computing community is still using specific syntax and semantics depending on
the model they work with.
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This diversification also exists in what concerns the development of software
applications for the simulation of P systems (see [3], [11]), as such applications
are usually focused on, and adapted for, particular cases, making it difficult to
work on generalizations.

It is convenient to unify standards (specifications that regulate the perfor-
mance of specific processes in order to guarantee their interoperability) and to
implement the necessary tools and libraries in order to give the first steps towards
a next generation of applications.

When designing software for membrane computing, one has to precisely de-
scribe the variant specification that is to be simulated. This task is hard if we
need to handle families of P systems where the set of rules, the alphabet, the
initial contents and even the membrane structure depend on the value assigned
to some initial parameters. In existing software, several options have been imple-
mented: plain text files with a determined format, XML documents, graphical
user interfaces, etc. As mentioned above, most of these solutions are adapted to
specific models or to the specific purpose of the software.

In this paper we propose a programming language, called P-Lingua, whose
programs define P systems in a parametric and modular way. After assigning val-
ues to the initial parameters, the compilation tool generates an XML document
associated with the corresponding P system from the family, and furthermore
it checks possible programming errors (both lexical/syntactical and semantical).
Such documents can be integrated into other applications, thus guaranteeing
interoperability. More precisely, in the simulators framework, the XML specifi-
cation of a P system can be translated into an executable representation.

We present a practical application of P-Lingua giving a simulator for recog-
nizer P systems with active membranes that receives as input an XML document
generated by the compiler and that allows us to simulate a computation, obtain-
ing the correct answer of the system (due to the confluence of it), and a text file
with a detailed step-by-step report of the computation. We also show an inte-
grated development environment that plays the role of interface where P-Lingua
programs can be written and compiled.

The paper is structured as follows. In Section 2 several definitions and con-
cepts are given for the sake of selfcontainment of the paper. The next section
introduces the P-Lingua programming language, and the syntax for P systems
with active membranes is specified. A solution to the SAT problem using P-
Lingua is implemented in Section 4. The compilation tool for the language is
presented in the next section. In Section 6 we present an integrated develop-
ment environment for P-Lingua. Section 7 presents a simulator for recognizer P
systems with active membranes. Finally, some conclusions and ideas for future
work are presented.

2 Preliminaries

Polynomial time solutions to computationally hard problems in membrane com-
puting are achieved by trading time for space. This is inspired by the capability
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of cells to produce an exponential number of new membranes in linear time.
There are many ways a living cell can produce new membranes: mitosis (cell
division), autopoiesis (membrane creation), gemmation, etc. Following these in-
spirations a number of different variants of P systems has arisen, and many of
them proved to be computationally universal.

For the sake of simplicity, we shall focus in this paper on a model,
P systems with active membranes. It is a construct of the form Π =
(O,H, µ, ω1, . . . , ωm, R), where m ≥ 1 is the initial degree of the system; O
is the alphabet of objects, H is a finite set of labels for membranes; µ is a mem-
brane structure, consisting of m membranes injectively labelled with elements
of H, ω1, . . . , ωm are strings over O, describing the multisets of objects placed
in the m regions of µ; and R is a finite set of rules, where each rule is of one of
the following forms:

(a) [a → v]αh where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects associated with membranes and
depending on the label and the charge of the membranes (object evolution
rules);

(b) a [ ]αh → [b]βh where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communi-
cation rules). An object is introduced in the membrane, possibly modified,
and the initial charge α is changed to β;

(c) [a]αh → [ ]βhb where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communica-
tion rules). An object is sent out of the membrane, possibly modified, and
the initial charge α is changed to β;

(d) [a]αh → b where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A
membrane with a specific charge is dissolved in reaction with a (possibly
modified) object;

(e) [a]αh → [b]βh [c]γh where h ∈ H, α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division
rules). A membrane is divided into two membranes. The objects inside the
membrane are replicated, except for a, that may be modified in each mem-
brane.

Rules are applied according to the following principles:

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated
by division during the computation.

– Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e. in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

– Rules (b) to (e) cannot be applied simultaneously in a membrane in one
computation step.
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– An object a in a membrane labelled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before
the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and
“after that” the results are replicated into the two new membranes.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin is never dissolved.

The so-called recognizer P systems were introduced in [6], and constitute
the natural framework to study the solvability of decision problems, since decid-
ing whether an instance has an affirmative or negative answer is equivalent to
deciding if a string belongs or not to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with
P systems with input. The data related to an instance of the decision problem
has to be provided to the P system in order for it to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation, yes or no, is sent to the environment.

A P system with input is a tuple (Π,Σ, i
Π

), where: (a) Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
ω1, . . . , ωp associated with them; (b) Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ \Σ; and (c) i

Π
is the label of a distinguished

(input) membrane.
For each multiset, m, over Σ, the initial configuration of (Π,Σ, i

Π
) with

input m is (µ, ω1, . . . , ωi
Π

+m, . . . , ωp).
A recognizer P system is a P system with input, (Π,Σ, i

Π
), and with external

output such that:

(a) The working alphabet contains two distinguished elements, yes and no.
(b) All computations halts.
(c) If C is a computation of Π, then either the object yes or the object no (but

no both) must have been released into the environment, and only in the last
step of the computation.

We say that C is an accepting computation (respectively, rejecting computa-
tion) if the object yes (respectively, no) appears in the external environment
associated with the corresponding halting configuration of C.

3 The P-Lingua programming language

A programming language is an artificial language that can be used to control the
behavior of a machine, particularly a computer, but it can be used also to define
a model of a machine that can be translated into an executable representation
by a simulation tool.

Programming languages are defined by syntactic and semantic rules which
describe their structure and their meaning, respectively.
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The P-Lingua programming language intends to define a broad variety of P
system models. At the present stage, P-Lingua can only define P systems with
active membranes, but other models will be added to the language specification
in future works.

What follows is the syntax of the language for P systems with active mem-
branes (originally presented at [1]).

3.1 Valid identifiers

We say that a sequence of characters forms a valid identifier if it does not
begin with a numeric character and it is composed by characters from the fol-
lowing:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels and alphabet objects.

The following text strings are reserved words in the language: def, call,
@mu, @ms, main, -->, # and they cannot be used as valid identifiers.

3.2 Identifiers for electrical charges

In P-Lingua, we can consider electrical charges by using the + and - symbols for
positive and negative charges, respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

3.3 Variables

Two kind of variables are permitted in P-Lingua:

– indexes

– Parameters

Variables are used to store numeric values and their names are valid identifiers.
We use 32 bits (signed), this allows a range from −231 to 231 − 1.

3.4 Numeric expressions

Numeric expressions can be written by using the * (multiplication), / (division),
% (modulo), + (addition), - (subtraction) operators with integer numbers or
variables, along with the use of parentheses.
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3.5 Objects

The objects of the alphabet of a P system are written using valid identifiers,
and the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es are
written as x{i,2*n+1} and Yes, respectively.

The multiplicity of an object is represented by using the * operator. For
example, x2n+1

i is written as x{i}*(2*n+1).

3.6 Modules definition

Similarities between various solutions to NP-complete numerical problems by
using families of recognizer P systems are discussed in [4]. Also, a cellular pro-
gramming language is proposed based on libraries of subroutines. Using these
ideas, a P-Lingua program consists of a set of programming modules that can
be used more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{
sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.
The parameters must be valid identifiers and cannot appear repeated. It is pos-
sible to define a module without parameters. Parameters have a numerical value
that is assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without pa-
rameters. The compiler will look for it when generating the XML file.

In P-Lingua there are sentences to define the membranes configuration of a P
system, to specify multisets, to define rules and to make calls to other modules.
Next, let us see how such sentences are written.

3.7 Module calls

In P-Lingua, modules are executed by using calls. The format of a sentence that
calls a module for some specific values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is an integer number or a variable.
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3.8 Definition of the initial membrane structure of a P system

In order to define the initial membrane structure of a P system, the following
sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical
charge of each membrane.

Examples:

1. [[ ]02]01 ≡ @mu = [[]’2]’1

2. [[ ]0b [ ]−c ]+a ≡ @mu = +[[]’b, -[]’c]’a

3.9 Definition of multisets

The next sentence defines the initial multiset associated to the membrane la-
belled by label.

@ms(label) = list of objects;

where label is a valid identifier or a natural number that represents a label of
the structure of membranes and list of objects is a comma-separated list of
objects. The character # is used to represent the empty multiset.

3.10 Union of multisets

P-Lingua allows to define the union of two multisets (recall that the input mul-
tiset is added to the initial multiset of the input membrane) by using a sentence
with the following format.

@ms(label) += list of objects;

3.11 Definition of rules

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a [ ]αh → [b]βh is
given next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[ ]βh is
given next:

α[a]’h --> β[]b
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4. The format to define division rules of type [a ]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

where:

– α, β and γ are identifiers for electrical charges;
– a, b and c are objects of the alphabet;
– v is a comma-separated list of objects that represents a multiset;
– h is a label (the symbol ’ always precedes a label name).

Some examples:

– [xi,1 → r4i,1]+2 ≡ +[x{i,1} --> r{i,1}*4]’2

– dk[ ]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]

– [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}

– [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]

– [a]−2 → b ≡ -[a]’2 --> b

3.12 Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the next
format:

sentence : range1, ..., rangeN;

where sentence is a sentence of the language, or a sequence of sentences in
brackets, and range1, ..., rangeN is a comma-separated list of ranges with
the format:

min value <= index <= max value

where min value and max value are numeric expressions, integer numbers or
variables, and index is a variable that can be used in the context of the sentence.
It is possible to use the operator < instead of <=.

The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n;
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3.13 Inclusion of comments

The programs in P-Lingua can be commented by writing phrases into the text
strings /* and */.

4 Implementation of a solution to SAT

In this section, we present a solution to the SAT problem using recognizer P
systems with active membranes, given by M.J. Pérez–Jiménez et al. [7].

For each (m,n) ∈ N2, we consider the P system (Π(〈m,n〉), Σ(m,n), i(m,n)),
where

– Σ(m,n) = {xi,j , x̄i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
– i(m,n) = 2
– Π(〈m,n〉) = (Γ (m,n), {1, 2}, [ [ ]2 ]1, w1, w2, R), is defined as follows:

• Γ (m,n) = Σ(m,n) ∪ {ck : 1 ≤ k ≤ m+ 2} ∪
{dk : 1 ≤ k ≤ 3n+ 2m+ 3} ∪
{ri,k : 0 ≤ i ≤ m, 1 ≤ k ≤ m+ 2} ∪ {e, t} ∪ {Y es,No}

• w1 = ∅
• w2 = {d1}
• The set of rules, R, is given by:

{[dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n}

{[xi,1 → ri,1]+2 , [x̄i,1 → ri,1]−2 : 1 ≤ i ≤ m}

{[xi,1 → λ]−2 , [x̄i,1 → λ]+2 : 1 ≤ i ≤ m}

{[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}

{[x̄i,j → x̄i,j−1]+2 , [x̄i,j → x̄i,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}

{[dk]+2 → [ ]02dk, [dk]−2 → [ ]02dk : 1 ≤ k ≤ n}

{dk[ ]02 → [dk+1]02 : 1 ≤ k ≤ n− 1}

{[ri,k → ri,k+1]02 : 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1}

{[dk → dk+1]01 : n ≤ k ≤ 3n− 3}; [d3n−2 → d3n−1e]01
e[ ]02 → [c1]+2 ; [d3n−1 → d3n]01
{[dk → dk+1]01 : 3n ≤ k ≤ 3n+ 2m+ 2}

[r1,2n]+2 → [ ]−2 r1,2n ; {[ri,2n → ri−1,2n]−2 : 1 ≤ i ≤ m}

r1,2n[ ]−2 → [r0,2n]+2
{[ck → ck+1]−2 : 1 ≤ k ≤ m}

[cm+1]+2 → [ ]+2 cm+1 ; [cm+1 → cm+2t]01
[t]01 → [ ]+1 t ; [cm+2]+1 → [ ]−1 Y es ; [d3n+2m+3]01 → [ ]+1 No
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4.1 Implementation

The following is the code of the program written in P-Lingua that specifies a
family of P systems solving the SAT problem.

Objects of the form x̄i,j are written as nx{i,j}.

/* Module that defines a family of recognizer P systems
to solve the SAT problem */

def Sat(m,n)
{
/* Initial configuration */
@mu = [[]’2]’1;

/* Initial multisets */
@ms(2) = d{1};

/* Set of rules */
[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

{
+[x{i,1} --> r{i,1}]’2;
-[nx{i,1} --> r{i,1}]’2;
-[x{i,1} --> #]’2;
+[nx{i,1} --> #]’2;

} : 1 <= i <= m;

{
+[x{i,j} --> x{i,j-1}]’2;
-[x{i,j} --> x{i,j-1}]’2;
+[nx{i,j} --> nx{i,j-1}]’2;
-[nx{i,j} --> nx{i,j-1}]’2;

} : 1<=i<=m, 2<=j<=n;

{
+[d{k}]’2 --> []d{k};
-[d{k}]’2 --> []d{k};

} : 1<=k<=n;

d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;
[r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2*n-1;
[d{k} --> d{k+1}]’1 : n <= k<= 3*n-3;
[d{3*n-2} --> d{3*n-1},e]’1;
e[]’2 --> +[c{1}];
[d{3*n-1} --> d{3*n}]’1;
[d{k} --> d{k+1}]’1 : 3*n <= k <= 3*n+2*m+2;
+[r{1,2*n}]’2 --> -[]r{1,2*n};
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-[r{i,2*n} --> r{i-1,2*n}]’2 : 1<= i <= m;
r{1,2*n}-[]’2 --> +[r{0,2*n}];
-[c{k} --> c{k+1}]’2 : 1<=k<=m;
+[c{m+1}]’2 --> +[]c{m+1};
[c{m+1} --> c{m+2},t]’1;
[t]’1 --> +[]t;
+[c{m+2}]’1 --> -[]Yes;
[d{3*n+2*m+3}]’1 --> +[]No;

} /* End of Sat module */

/* Main module */
def main()
{
/* Call to Sat module for m=4 and n=6 */
call Sat(4,6);
/* Expansion of the input multiset */
@ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},

nx{2,4}, x{3,5}, nx{4,6};
} /* End of main module */

The module main is instantiated with the formula

ϕ ≡ (x1 + x2)(x2 + x3 + x4)x5 x6

where n = 6, m = 4 and the input multiset: x1,1, x1,2, x2,2, x2,3, x2,4, x3,5, x4,6.

5 The compilation tool

Programming languages are associated with compilation tools, which are com-
puter programs that translate text written in a programming language into an-
other language. The original text is usually called the source code whereas the
output is called the object code. Commonly the output has a form suitable for
being processed by other programs or for being executed by the computer, but
it may as well be a human-readable text file.

We have developed a compilation tool that is able to translate programs
written in P-lingua into XML documents, after having assigned values to some
initial parameters. Moreover, plugins can be designed and added to produce
object code with different formats.

Recall that a P-lingua program can encode a family of P systems (with the
help of some parameters) in a flexible manner, whereas the object code generated
by the compilation tool specifies only a single P system of the family. In this way,
the applications that accept that object code do not need to process parametric
systems, and hence their implementation is much easier.
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The eXtensible Markup Language (XML) is a general-purpose specification
for creating custom markup languages. It is classified as an extensible meta-
language because it allows the users to define their own elements. Its primary
purpose is to facilitate the sharing of structured data across different informa-
tion systems. It is worth mentioning that the SBML (Systems Biology Markup
Language) is a XML language encoding the main components of biochemical net-
works. It is used by several existing simulators for P systems (see the software
link at [11]).

The complete syntax of the XML language generated by the compilation tool
for P systems with active membranes can be found at [1].

The tool may be executed from the command line as follows:

plingua input file -xml output file [-v verbosity level] [-h]

The text file input file contains the program (written in P-lingua) that we
want to be compiled, and output file is the name of the XML file that is gen-
erated. Optional arguments are in brackets: the option -v verbosity level is
a number between 0 and 5 indicating the level of detail of the messages shown
during the compilation process, and the option -h displays some help informa-
tion.

6 An integrated development environment

An integrated development environment (IDE) is a software application that
provides comprehensive facilities to computer programmers for software devel-
opment. Usually, an IDE consists of a source code editor, a compiler and/or
interpreter, a debugger, and other useful tools.

Typically an IDE is devoted to a specific programming language, so as to
provide a feature set which most closely matches the programming paradigms
of the language. In this sense, we have developed an IDE for P-Lingua by using
the Java language. This application provides an environment to write and de-
bug programs in P-Lingua for P systems with active membranes, and it can be
updated by adding plugins to accept future versions of the language. The IDE
can also be used as a simulation tool for P-Lingua programs.

This application includes a source code editor with syntax highlighting which
is a feature that displays text source code in different colors and fonts, as both
structures and syntax errors are visually distinct. With this editor, it is also
possible to generate P-Lingua programs composed of several single files.

A compilation tool is included to check possible programming errors and to
generate XML files that can be used in third-part applications.

A simulation tool for debugging is included in order to aid the researcher in
the task of designing new P systems. This tool provides simulations by using
an interactive step-by-step mode. The user can choose between simulation of
one or several steps, or let the simulation run until a halting state. A lot of
information is given in each step of the simulation: a tree-view of the membranes
structure, complete information of the multisets and the set of rules selected to
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be executed. The user can also choose between different non-deterministic ways
of computation, or let the software select one.

7 A simulator for recognizer P systems with active
membranes

The act of simulating generally entails representing certain key characteristics or
behaviors of some physical, or abstract, system. We must distinguish a simulation
tool from an emulation tool: this duplicates the functions of one system by
using a different system, so that the second system behaves like (and appears to
be) the emulated system. With the current technology, we cannot emulate the
functionality of a cellular machine (a membrane system) by using a conventional
computer to solve instances of NP-hard problems in a polynomial time, but we
can simulate these cellular machines for research purposes, even if the simulation
is not done in a polynomial time.

The P system computations are massively parallel. One of the most common
programming methods to simulate real parallelism in a conventional computer
with a single processor is to use multithreading. A thread in this sense is a thread
of execution. Threads are a way for a program to fork (or split) itself into two or
more simultaneously (or pseudo-simultaneously) running tasks. Multiple threads
can be executed in parallel on a single computer. This multithreading generally
occurs by time-division multiplexing where the processor switches between dif-
ferent threads. This context switching can happen so fast as to give the illusion
of parallelism to an end-user. On a multiprocessor or multi-core system, thread-
ing can be achieved via multiprocessing, wherein different threads can literally
run simultaneously on different processors or cores.

As a first practical application of the P-lingua programming language, we
have implemented a simulator for recognizer P systems with active membranes
that takes as input an XML document generated by the P-lingua compiler and
runs one of the possible computations that the P system may follow, obtaining
the answer that the system outputs to its environment, and a text file with a
detailed step-by-step report of the computation.

The system requirements are the same as in the case of the P-lingua compiler.
The simulator is launched from the command line as follows:

plingua sim input xml [-o output file]

where input xml is an XML document formatted as discussed in this paper,
and output file is the name of the file where the report about the simulated
computation will be saved.

7.1 Simulation of a solution to the SAT problem

We now show an execution of the simulator running on the XML document
obtained after compiling the P-lingua program described in Section 4.1. The
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results have been obtained on an AMD Sempron machine, at 2.8 Ghz and with
512Mb of RAM memory.

The command used to execute the simulation is:

plingua sim sat.xml -o info.txt

The simulation ends when no more rules can be applied, and then the following
information is displayed:

Environment multiset: t, Yes
Steps: 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be
executed in the next step)

Thus, the computation of the P system spend 41 transition steps, and it took
1.971 seconds to simulate it until reaching a halting configuration (recall that
we are simulating a parallel device on a sequential computer).

The file info.txt keeps detailed information about each configuration of
the simulated computation. More precisely, the multisets and polarizations of
all the membranes are listed, as well as the rules selected for execution at each
transition step. The configurations are numbered (starting at 0), to keep track
of the step of the computation that is being simulated. Some information about
the CPU time is shown for each step, and the number of rules of each type that
is executed. As an example, we give the information generated for the first two
configurations.

### MEMBRANE ID: 1, Label: 2, Charge: 0
Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},

nx{4, 6}, x{2, 3}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1*DIVISION RULE: [d{1}]’2 --> +[d{1}] -[d{1}]

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 1

Configuration: 0
Time: 0.0 s.
1 division rule(s) selected to be executed in the step 1
************************************************
### MEMBRANE ID: 1, Label: 2, Charge: +

Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},
nx{4, 6}, x{2, 3}, x{1, 1}

Parent Membrane ID: 0
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Rules Selected:
1*EVOLUTION RULE: +[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: +[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: +[x{3, 5} --> x{3, 4}]’2
1*EVOLUTION RULE: +[x{1, 1} --> r{1, 1}]’2
1*EVOLUTION RULE: +[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: +[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: +[x{2, 3} --> x{2, 2}]’2
1*SEND-OUT RULE: +[d{1}]’2 --> []d{1}

### MEMBRANE ID: 2, Label: 2, Charge: -
Multiset: nx{1, 2}, d{1}, nx{2, 4}, x{3, 5}, nx{2, 2},

x{2, 3}, nx{4, 6}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1*EVOLUTION RULE: -[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: -[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: -[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: -[x{1, 1} --> #]’2
1*EVOLUTION RULE: -[x{2, 3} --> x{2, 2}]’2
1*EVOLUTION RULE: -[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: -[x{3, 5} --> x{3, 4}]’2
1*SEND-OUT RULE: -[d{1}]’2 --> []d{1}

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 2

Configuration: 1
Time: 0.025 s.
14 evolution rule(s) selected to be executed in the step 2
2 send-out rule(s) selected to be executed in the step 2
************************************************

After simulating 41 transition steps, the halting configuration is described as
follows:

### MEMBRANE ID: 1, Label: 2, Charge: +
Multiset: r{0, 12}*3, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 2, Label: 2, Charge: +
Multiset: c{1}, r{2, 12}, r{3, 12}
Parent Membrane ID: 0

### MEMBRANE ID: 3, Label: 2, Charge: +
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Multiset: r{0, 12}*5, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 4, Label: 2, Charge: +
Multiset: r{0, 12}*4, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 5, Label: 2, Charge: +
Multiset: r{0, 12}, r{2, 12}, c{2}
Parent Membrane ID: 0

### MEMBRANE ID: 6, Label: 2, Charge: +
Multiset: c{1}, r{3, 12}
Parent Membrane ID: 0

### MEMBRANE ID: 7, Label: 2, Charge: +
Multiset: 4*r{0, 12}, c{4}
Parent Membrane ID: 0

...

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: -
Multiset: t*10, d{29}*64, c{6}*10
Internal membranes count: 64

~~~ENVIRONMENT: t, Yes

Configuration 41
Time: 1.971 s.
Halt configuration (No rule can be selected to be
executed in the next step)

************************************************

Note that there are 64 different membranes labelled by 2 in this configuration,
although for the sake of simplicity we show only seven of them.

8 Conclusions and future work

In this paper we have presented a programming language for membrane com-
puting, P-Lingua, together with a compiler that generates XML documents, an
integrated development environment and a simulator for a class of P systems,
namely recognizer P systems with active membranes.

Using a programming language to define cellular machines is a concept in
the development of applications for membrane computing that leads to a stan-
dardization with the following advantages:
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– Users can define cellular machines in a modular and parametric way by using
an easy-to-learn programming language.

– It is possible to define libraries of modules that can be shared among users
to facilitate the design of new programs.

– This method to define P systems is decoupled from its applications and the
same P-Lingua programs can be used in different software environments.

– By using compiling tools, the P-Lingua programs are translated to other file
formats that can be interpreted by a large number of different applications.

The first version of P-Lingua is presented for P systems with active mem-
branes. In forthcoming versions, we will try to generalize the language so that
other types of cellular devices can be also defined, for instance transition P sys-
tems and tissue P systems. In this sense, necessary plugins (software modules)
for the IDE and the compilation tool must be developed also.

We have chosen an XML language as the output format because of the reasons
exposed above. However, we are aware that for some applications it is not the
most suitable format, due to the fact that XML does not include any method for
compressing data, and therefore the text files can eventually become too large,
which is a clear disadvantage for applications running on networks of processors.
It would be convenient to improve the compiler (by adding plugins) so that it
generates a larger variety of output formats, of special interest are compressed
binary files or executable code (either in C or Java).

It is important to recall that the simulator presented here is designed to run
in a conventional computer, having limited resources (RAM, CPU), and this
leads to a bound on the size of the instances of computationally hard problems
whose solutions can be successfully simulated. Moreover, conventional comput-
ers are not massively parallel devices, and therefore it seems that the inherent
parallelism of P systems must be simulated by means of multithreading tech-
niques. It would be interesting to design heuristics which help us to find good
(short) computations.

These shortcomings lead us to the possibility of implementing a distributed
simulator running on a network or cluster of processors, where the need of re-
sources arising during the computation could be solved by adding further nodes
to the network, thus moving towards massive parallelism.

The sofware presented in this paper and its source code can be freely down-
loaded from the software section on the website [12]. This software is under the
GNU General Public License (GNU GPL) [8] and it is written in Java [9] using
the lexical and syntactical analyzers provided by JavaCC [10]. The minimum
system requirements are having a Java virtual machine (JVM) version 1.6.0
running in a Pentium III computer.
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