
Some Open Problems about Numerical P Systems

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and

Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, ghpaun@gmail.com

Summary. Some open problems and research topics related to numerical P systems are
formulated – also recalling the problems from the corresponding section of the “mega-
paper” [2] produced for the previous BWMC.

1 Introduction

Although introduced already in 2006, [8] (see also Section 8.1 of Chapter 23 of
[10]) – and being an alternative to multiset or string processing P systems, meant
to compute using numerical variables – the numerical P systems have received
more attention only in the last years, especially in the framework of devising and
implementing controllers for mobile robots.

In short, numerical P systems systems are a class of computing models in-
spired by both the cell structure and economics: numerical variables evolve in the
compartments of a cell-like structure by means of so-called production–repartition
programs. The variables have a given initial value and the production function is
usually a polynomial whose values for the current values of variables is distributed
among variables in the neighboring compartments according to the “repartition
protocol”. In this way, the values of variables evolve; all positive values taken by
a specified variable are said to be computed by the P system.

In a natural way, these systems can also be used for computing mappings:
specified variables of the system are considered as being the function variables
and specified variables provide the results (hence functions from vectors to vectors
of numbers can be computed – this is the case also in the robot control).

In what follows, in order to help the reader (of course, (s)he is supposed to
be familiar with basic elements of membrane computing), I will first recall the
definition of numerical P systems, as given in [10] (Section 23.8.1), with two simple
examples, then I will briefly discuss, following [15], the enzymatic numerical P
systems as used in robot control; finally, further research suggestions are given.

2 Gh. Păun

2 Definitions

We consider usual cell-like membrane structures (with the standard 1, 2, . . . , m
labeling of membranes). The regions delimited by these membranes contain nu-
merical variables. The variables in region i are written in the form xj,i, j ≥ 1. The
value of xj,i at time t ∈ N is denoted by xj,i(t). These values can be of various
types – in what follows we consider integers as values of variables (although in
many applications one would most probably use real numbers – this is the case for
robot control).

In order to evolve the values of variables, we use programs, composed of two
components, a production function and a repartition protocol. The former can be
any function with variables from a given region – here we are interested in com-
putability issues, hence we consider only polynomials with integer coefficients.
Using such a function (chosen non-deterministically if there are several programs
in a given region), we compute a production value of the region at a given step.
This value is distributed to variables from the region where the program resides,
and to variables in its upper and lower neighbors according to the repartition
protocol associated with the used production function. For a given region i, let
v1, . . . , vni

be all these variables. Following [8], here we consider as repartition
protocols expressions of the form

c1|v1 + c2|v2 + . . . + cni |vni ,

where c1, . . . , cni are natural numbers. The idea is that the coefficients c1, . . . , cni

specify the proportion of the current production distributed to each variable
v1, . . . , vni .

This is precisely defined as follows. Consider a program

(Fl,i(x1,i, . . . , xki,i), cl,1|v1 + cl,2|v2 + . . . + cl,ni |vni)

and let

Cl,i =
ni∑

s=1

cl,s.

At a time instant t ≥ 0 we compute Fl,i(x1,i(t), . . . , xki,i(t)). The value q =
Fl,i(x1,i(t), . . . ,xki,i(t))/Cl,i represents the “unitary portion” to be distributed
according to the repartition expression to variables v1, . . . , vni . Thus, vl,s will re-
ceive q · cl,s, 1 ≤ s ≤ ni.

A production function may use only part of the variables from a region. Those
variables “consume” their values when the production function is used (they be-
come zero) – the other variables retain their values. To these values – zero in the
case of variables contributing to the region production – one adds all “contribu-
tions” received from the neighboring regions.

Thus, a numerical P system is a construct of the form

Π = (µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), xj0,i0),

Some Open Problems about Numerical P Systems 3

where µ is a membrane structure with m membranes labeled injectively by
1, 2, . . . ,m, V ari is the set of variables from region i, Pri is the set of programs
from region i (all sets V ari, P ri are finite), V ari(0) is the vector of initial values for
the variables in region i, and xj0,i0 is a distinguished variable (from a distinguished
region i0), which provides the result of a computation.

Each program is of the form specified above: prl,i = (Fl,i(x1,i, . . . , xki,i),
cl,1|v1 + cl,2|v2 + . . . + cl,ni

|vni
) denotes the lth program from region i, where

V ari = {x1,i, . . . , xki,i}.
Such a system evolves in the way informally described before. Initially, the

variables have the values specified by V ari(0), 1 ≤ i ≤ m. A transition from a
configuration at time instant t to a configuration at time instant t + 1 is made by
(i) choosing non-deterministically one program from each region, (ii) computing
the value of the respective production function for the values of local variables at
time t, and then (iii) computing the values of variables at time t+1 as directed by
repartition protocols. A sequence of such transitions forms a computation, with
which we associate a set of numbers, viz., the numbers which occur as positive
values of the variable xj0,i0 ; this set of numbers is denoted by N+(Π).

3 Examples

I illustrate the previous definition with the numerical system Π1 given in Figure 1
with the distinguished variable x1,1. One can easily see that variable x1,3 increases
by 1 at each step, also transmitting its value to x1,2. In turn, region 2 transmits
the value 2x1,2 + 1 to x1,1, which is never consumed, hence its value increases
continuously. In the initial configuration all variables are set to 0. Thus, x1,1 starts
from 0 and continuously receives 2i + 1, for i = 0, 1, 2, 3, . . ., which implies that in
n steps the value of x1,1 becomes

∑n−1
i=0 (2i+1) = n2, and consequently N+(Π1) =

{n2 | n ≥ 0}.
The system Π1 was deterministic; let us consider also a non-deterministic sys-

tem:
Π2 = ([]

1
, ({x1,1}, {(2x1,1, 1|x1,1), (3x1,1, 1|x1,1)}, 1), x1,1).

The production is assigned to the unique variable, but in each step we can choose
either the first program or the second one; in the former case x1,1 is multiplied by
2, and in the latter case it is multiplied by 3. Thus, the values of x1,1 will be of
the form 2i3j , with i ≥ 0, j ≥ 0. Actually, all numbers of this form are values of
x1,1, where the value 2i3j is obtained in step i + j.

In these two examples we have chosen the programs in such a way that the
production value is divisible by the total sum of coefficients cj from each region
(let us denote this case with div). When a current production is not divisible by
the given total value of coefficients, then we can take the following decisions: (i)
the remainder is lost (the production which is not immediately distributed is lost),
(ii) the remainder is added to the production obtained in the next step (the non-
distributed production is carried over to the next step), (iii) the system simply

4 Gh. Păun

'

&

$

%

'

&

$

%

'

&

$

%

1

2

3

x1,1[0]

x1,2[0]

2x1,2 + 1 → 1|x1,1

x1,3[0]

2(x1,3 + 1) → 1|x1,3 + 1|x1,2

Fig. 1. The system Π1

stops and aborts, no result is associated with that computation. We denote these
three cases by lost, carry, stop, respectively.

4 Families of Numbers Computed

Thus, we can distinguish many types of systems, depending on the programs
and their use. The family of sets of numbers N(Π) computed by numerical
P systems with at most m membranes, production functions which are poly-
nomials of degree at most n, with at most r variables in each polynomial,
with nonnegative coefficients, and the distribution of type α is denoted by
NNPm(polyn(r), nneg, α), m ≥ 1, n ≥ 0, r ≥ 0, α ∈ {div, lost, carry, stop}. The
restriction to deterministic systems is indicated by adding the letter D in front of
NNP. If arbitrary coefficients are allowed, then the indication “nneg” is removed.
If one of the parameters m,n, r is not bounded, then it is replaced by ∗. The set of
positive numbers occurring as values of the output variable is denoted by N+(Π),
and NN gets the superscript + when considering the family of such sets.

Here are some results concerning these families – mode details can be found in
[8].

Theorem 1. (i) DNN+P1(poly1(1), nneg, div)− SLIN+
1 6= ∅.

(ii) SLIN+
1 ⊂ DNN+P∗(poly1(1), nneg, div).

The main result of [8] shows that, surprisingly enough, numerical P systems of
a rather restricted type are Turing complete, even when using small numbers of
membranes and polynomials of low degrees with a small number of variables:

Theorem 2. N+RE = NN+P8(pol5(5), div) = NN+P7(poly5(6), div).

Some Open Problems about Numerical P Systems 5

The proof is based on the characterization of recursively enumerable sets of
numbers as positive values of polynomials with integer values, [3]. Latter (see
below) the register machines were used in universality proofs, and similar results
were obtained, in certain cases, also for deterministic numerical P systems.

Many research topics are open for numerical P systems, among others: a
throughout investigation of all classes of systems mentioned above, considering
also vectors of numbers, looking for non-universal classes (and decidability results
for those classes), hierarchies and normal forms.

5 Enzymatic Numerical P Systems

The numerical P systems were recently used in a series of papers (see references
in [1], [14]) for implementing controllers for mobile robots; in this framework the
P systems work in the computing mode: an input is introduced in the form of the
values of some variables and an output is produced, as the values of other variables.
Furthermore, in the robot control context, the so-called enzymatic numerical P
systems were introduced and used, [4], [5], [6]. Such systems correspond to catalytic
P systems in the “general” membrane computing: a program is applied only if
the value of the associated enzyme is strictly greater than the smallest value of
any variable involved in the production polynomial. Enzyme variables are not
consumed or produced by the rules which they catalyze, but can be changed by
the rules for which they do not act as catalysts. Therefore, their values can evolve
during the computational process.

More formally (we recall the definition from [12]), enzymatic numerical P sys-
tems (in short, EN P systems) use both evolution programs as introduced above
and programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i → cl,1|v1 + cl,2|v2 + . . . + cl,ni |vni ,

where ej,i is a variable from V ari different from x1,i, . . . , xki,i, and from v1, . . . , vni .
Such a program can be applied at a time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
(A slightly more complex definition is considered in [5] and [6] where: ej,i(t) >
min(|x1,i(t)|, . . . , |xki,i(t)|). Considering the absolute value of the variables, instead
of their real values, simplifies the design of the membrane structures used to com-
pute cos and sin functions as power series, but here we consider only the simpler
case defined above. We also use here a notation different from that in [5], writing
the enzyme in the same way as the promoters are written in multiset rewriting
rules.) Note that in order to apply the program it is sufficient that one variable
has the current value strictly smaller than the value of the enzyme variable. The
enzyme cannot evolve by means of the associated program, but it can evolve by
means of other programs, and can receive “contributions” from other programs
and regions.

Because the enzymes are usual variables, playing a different role only “locally”,
in specified programs, we do not consider their set separated, hence the general

6 Gh. Păun

writing of an enzymatic numerical P systems is the same as that of a numerical P
system – only the form of programs can be different.

Using enzymes introduces a checking possibility in our systems (we compare the
value of the enzyme with the values of variables from the associated program), and
this suggests the possibility of choosing the positive values of the output variable
“inside the system”.

Tissue numerical P systems are also considered in [12], with a parallel use of
programs. If in each membrane, at each step, we use a maximal set of programs
(programs are selected non-deterministically, and a set of programs is applied
only if it is maximal, i.e., no further program can be added to it in such a way
that the new set is still applicable). Clearly, two cases are possible: (i) a variable
can appear only in one production function, and this is the only restriction in
choosing (nondeterministically) the programs to apply in a step, and (ii) if two
or more programs which are enabled at a computation step (i.e., they satisfy the
condition imposed by the associated enzymes), share variables in their production
functions, then they will all use the current values of those variables (we denote
this with allP).

A large variety of classes of numerical P systems is created in this way: (1)
enzymatic or non-enzymatic, (2) deterministic or nondeterministic, (3) sequential,
all-parallel, one-parallel, (4) used in the generating, computing, accepting mode,
etc. By combining these variants, a plethora of classes of numerical P systems can
be investigated.

In the notations of the families NNαPm(polyn(r), . . .) considered in the pre-
vious sections we add now the indication enz when enzymes are used, and one of
seq, oneP, allP, depending on the way (sequential or parallel) the rules are used.
When tissue systems are used, we write NNtPm(polyn(r), α, β, γ). However, in
what follows we do not mention div and nneg, as they are always present.

Here are the main results from [8] (written in the new notation) and [12].

Theorem 3. NRE = NN+P8(poly5(5), seq) = NN+P7(poly5(6), seq) =
NNP7(poly5(5), enz, seq) = NNtP∗(poly1(11), enz, oneP) =
NNP254(poly2(253), enz, allP, det).

A considerable improvement of the last equality was proved in [13]:

Theorem 4. NRE = NNP4(poly1(6), enz, allP, det).

Whether or not the parameters appearing in these results are optimal or not
is an open problem.

6 Open Problems

Only a few of the many cases mentioned above were so far investigated, the other
ones wait for research efforts.

Some Open Problems about Numerical P Systems 7

In particular, we have seen that enzymes improve the universality results in
terms of the complexity of used polynomials, both in the cell-like case and the
tissue-like case, provided that the evolution programs are used in a parallel manner.
However, two different types of parallelism were used in the two cases – hence the
question: can the one-parallel mode (used for tissue P systems) be used also in the
cell-like case?

Various extensions of “general” notions in membrane computing to numerical
P systems remain to be examined – this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded
parallelism, asynchronously. Then, we can also consider rules for handling mem-
branes, such as membrane division and membrane creation. These operations are
the basic tools by which polynomial solutions to computationally hard problems,
typically, NP-complete problems, are obtained in the framework of P systems with
symbol objects. Is this possible also for numerical P systems? This is a particularly
interesting issue, both from the point of view of applications and because in this
way we can achieve “fypercomputations”, [7], in terms of numerical P systems.

Of course, a natural research topic is to further explore the use of numerical P
systems in controlling robots, and to look for further applications where functions
from Rk1 to Rk2 should be computed. In this framework an important question
is to develop a complexity theory based on numerical P systems: define specific
complexity classes, compare them with existing classes, look for ways to speed-up
computations (see also the previous suggestion: to bring to numerical P systems
more ideas investigated for symbol object P systems, in particular, tools to create
an exponential working space in polynomial time).

I end with another natural question: defining dP systems, as in [9], with the
components being numerical P systems. Can this be useful from the computation
efficiency (“parallelization”) point of view?

References

1. C. Buiu, C.I. Vasile, O. Arsene: Development of membrane controllers for mobile
robots. Information Sciences, 187 (2012), 33–51.

2. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Research Frontiers of
Membrane Computing: Open Problems and Research Topics. Intern. J. Found. Com-
puter Sci., in press (a preliminary version was published in the Tenth Brainstorming
Week on Membrane Computing, Sevilla, 2012, vol. II, 171–250).

3. Y. Matijasevitch: Hilbert’s Tenth Problem. MIT Press, Cambridge, London, 1993.
4. A.B. Pavel, C. Buiu: Using enzymatic numerical P systems for modeling mobile robot

controllers. Natural Computing, in press, DOI: 10.1007/s11047-011-9286-5, 2011
5. A.B. Pavel, O. Arsene, C. Buiu: Enzymatic numerical P systems – a new class of

membrane computing systems. The IEEE Fifth Intern. Conf. on Bio-Inspired Com-
puting. Theory and applications. BIC-TA 2010, Liverpool, Sept. 2010, 1331–1336.

6. A.B. Pavel, C.I. Vasile, I. Dumitrache: Robot localization implemented with enzy-
matic numerical P systems. Proc. Living Machines 2012, LNCS 7375, Springer, 2012,
204–215.

8 Gh. Păun

7. Gh. Păun: Towards “fypercomputations” (in membrane computing). Languages
Alive. Essays Dedicated to Jurgen Dassow on the Occasion of His 65 Birthday (H.
Bordihn, M. Kutrib, B. Truthe, etcs.), LNCS 7300, Springer, Berlin, 2012, 207–221.

8. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems.
Fundamenta Informaticae, 73 (2006), 213–227.

9. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane
computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

10. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford Univ. Press, 2010.

11. The P Systems Web Page: http://ppage.psystems.eu.
12. C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: On the power of enzymatic numer-

ical P systems. Acta Informatica, 49,6 (2012), 395–412.
13. C.I. Vasile, A.B. Pavel, I. Dumitrache: Universality of enzymatic numerical P sys-

tems. Intern. J. Computer Math., in press.
14. C.I. Vasile, A.B. Pavel, J. Kelemen: Implementing obstacle avoidance and follower

behaviors on Koala robots using numerical P systems. Tenth Brainstorming Week
on Membrane Computing, Sevilla, 2012, vol. II, 215–227.

15. C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: Numerical P systems. Section 13
in [2].

