
Open Problems

B. Aman, G. Ciobanu
Institute of Computer Science, Romanian Academy

Bld. Carol I, no.8, 700505, Iaşi Branch, România

1 Type Systems in Membrane Computing

Type theory is fundamental both in logic and computer science. In computer
science, type theory refers to the design, analysis and study of type systems.
Generally, a type system is used to prevent the occurrences of errors during
the evolution of a system. A type inference procedure determines the minimal
requirements to accept a system or a component as well-typed.

Membrane systems consider cells as mechanisms working in a maximal par-
allel and non-deterministic manner. However, the living cells do not work in
such a way: a chemical reaction takes place only if certain quantitative con-
straints are fulfilled. In order to cope with such constraints, membrane systems
should be enriched by adding a quantitative type discipline, and making use of
type inference and principal typing [2]. We associate to each reduction rule a
minimal set of constraints that must be satisfied in order to assure that by the
application of this rule to a well-formed membrane system, we get a well-formed
membrane system as well. A first step in this direction was done in [1] where a
type system for membrane system with symport/antiport rules is given.

Some restrictions can be imposed to membrane systems using type systems:

• limiting the volume of cell/number of objects present in a membrane;

• limiting the types of objects that are allowed to stay in/on a membrane;

• limiting the amount of energy a neuron can receive.

Other restrictions can be designed for specific classes of membrane systems.

2 Verification of Some Behavioural Properties

There are numerous decidability problems that have to be answered when using
membrane systems for modelling. In what follows we present some of them.

Reachability is the problem of deciding whether a system can reach a given
configuration during its evolution. This problem is useful in the automated
verification of systems, by checking if a system can reach an undesired state. It
also has the property that many other problems can be reduced to it. When

1



a biological system is modelled using membrane systems, reachability is also
useful. Assume we are modelling a virus attack on an organism. One can be
interested in knowing if, during evolution, the virus successfully infects some
parts of the organism, namely if the membrane system model reaches some
undesired configuration.

Boundedness is a property of systems whose resources may be bounded (pro-
duction and consumption are limited during a finite period of time). From a
biological point of view, boundedness can be interpreted as a storage limitation:
e.g., in a cell only a finite amount of chemical components are allowed to be
stored since the cell cannot accumulate more than a finite amount of material.

A liveness property asserts that a system always progresses: e.g., if the sys-
tem requests a resource, then its request is eventually granted. More precisely,
when proving the liveness property of a biological system, we check that the time
progresses from each reachable configuration. A dead marking is a marking in
which no transitions are enabled.

As a consequence, tools and techniques developed for membrane systems
should provide beside description and analysis, also automated verification of
behavioural properties (qualitative properties (reachability) and quantitative
properties (boundedness, liveness)) of membrane systems, and in particular for
the investigation of the ongoing behaviour of membrane systems. This would
complement and broaden the standard approach to the analysis of membrane
systems which concentrates primarily on the ultimate results of “successful” or
halting computations of membrane systems, and on the computational power
(including aspects of complexity) of different variants of the main model.

References

[1] B. Aman, G. Ciobanu. Typed Membrane Systems. Lecture Notes in Com-
puter Science, vol. 5957, 169–181, 2010.

[2] J. Wells. The Essence of Principal Typings. Lecture Notes in Computer
Science, vol.2380, Springer, 913–925, 2002.

2


