
Tenth Workshop on Membrane Computing

(WMC10)

Curtea de Argeş, Romania

August 24 – 27, 2009

Gheorghe Păun,
Mario J. Pérez-Jiménez
Agustin Riscos-Núñez

Editors

Tenth Workshop

on Membrane Computing

(WMC10)

Curtea de Argeş, Romania

August 24 – 27, 2009

Gheorghe Păun,
Mario J. Pérez-Jiménez
Agustin Riscos-Núñez

Editors

RGNC REPORT 3/2009

Research Group on
Natural Computing

REPORTS

UNIVERSIDAD DE SEVILLA

Proceedings of the 10th International Workshop on Membrane Computing (WMC10)

Printed by:
MARPAPUBLICIDAD, S.L.U.
C/ Perú, n 49. Edif. Corona Center, planta baja, mod. 7
41930 Bormujos (Sevilla, Spain)
tlf/fax: (0034) 954788376
url: http://www.marpapublicidad.es

Edited by:
Gheorghe Păun, Mario J. Pérez-Jiménez, Agustin Riscos-Nú~nez, 2009

Copyright: c© Authors of the contributions, 2009

Published in July 2009

Preface

This volume contains the papers presented at the Tenth Workshop on Mem-
brane Computing, WMC10, which took place in Curtea de Argeş, Romania,
from August 24 to August 27, 2009.

The first three workshops on Membrane Computing were organized in Curtea
de Argeş, Romania – they took place in August 2000 (with the proceedings pub-
lished in Lecture Notes in Computer Science, volume 2235), in August 2001 (with
a selection of papers published as a special issue of Fundamenta Informaticae, vol-
ume 49, numbers 1–3, 2002), and in August 2002 (with the proceedings published
in Lecture Notes in Computer Science, volume 2597). The next six workshops
were organized in Tarragona, Spain, in July 2003, in Milan, Italy, in June 2004,
in Vienna, Austria, in July 2005, in Leiden, The Netherlands, in July 2006, in
Thessaloniki, Greece, in June 2007, and in Edinburgh, UK, in July 2008, with
the proceedings published as volumes 2933, 3365, 3850, 4361, 4860, and 5391,
respectively, of Lecture Notes in Computer Science, Springer-Verlag.

The tenth edition of WMC took place in Posada Hotel in Curtea de Argeş
(http://www.posada.ro/) and it was organized by the National College “Vlaicu
Vodă” from Curtea de Argeş, the University of Piteşti, Romania, and the Institute
of Mathematics of the Romanian Academy, Bucharest, under the auspices of the
European Molecular Computing Consortium (EMCC) and IEEE Computational
Intelligence Society Emergent Technologies Technical Committee Molecular Com-
puting Task Force, with the support of the Council of Argeş County and of Sevilla
University.

Being an anniversary edition of the workshop, ten researchers with funda-
mental contributions to membrane computing were invited to deliver talk cov-
ering important directions of research in this area. These invited speakers were:
Erzsébet Csuhaj-Varjú, Budapest, Hungary; Rudolf Freund, Vienna, Austria; Pier-
luigi Frisco, Edinburgh, UK; Marian Gheorghe, Sheffield, UK; Oscar H. Ibarra,
Santa Barbara, USA; Vincenzo Manca, Verona, Italy; Solomon Marcus, Bucharest,
Romania; Giancarlo Mauri, Milano, Italy; Mario J. Pérez-Jiménez, Sevilla, Spain;
Grzegorz Rozenberg, Leiden, The Netherlands.

Full papers associated with the invited talks or only extended abstract are
included in the present volume.

The volume also contains the 29 accepted papers. Each of them was subject of
three or four referee reports. The program committee consisted of Matteo Cava-
liere (Trento, Italy), Erzsébet Csuhaj-Varjú (Budapest, Hungary), Rudolf Freund
(Vienna, Austria), Pierluigi Frisco (Edinburgh, UK), Marian Gheorghe (Sheffield,

vi Preface

UK), Thomas Hinze (Jena, Germany), Oscar H. Ibarra (Santa Barbara, USA), Flo-
rentin Ipate (Piteşti, Romania), Shankara Narayanan Krishna (Mumbai, India),
Vincenzo Manca (Verona, Italy), Giancarlo Mauri (Milano, Italy), Radu Nico-
lescu (Auckland, New Zealand), Linqiang Pan (Wuhan, China), Gheorghe Păun
(Bucharest, Romania, and Sevilla, Spain) – chair, Mario J. Pérez-Jiménez (Sevilla,
Spain), Claudio Zandron (Milano, Italy).

Different from the previous editions of the workshop, this time there were intro-
duced in the program also seven papers which were submitted after the deadline;
they are included in the present volume in a short form and got only 10 minutes
for the presentation.

During the workshop several prizes were awarded, some of them of an anniver-
sary type (e.g., the youngest participant, the person who participated in most
editions of WMC, the author of the largest number of papers in membrane com-
puting, the author of the first PhD thesis in membrane computing and so on), as
well as a best paper award and another for important contributions to membrane
computing.

The Organizing committee consisted of Gheorghe Păun – Chair, Costel Ghe-
orghe – Co-chair, Gheorghe Barbu – Co-chair, Paul Radovici, Ileana Popescu,
Nicolae Lazăr.

The invited papers and a selection of regular papers, improved according to the
discussions held in Curtea de Argeş and additionally refereed, will be published in
a special issue of Lecture Notes in Computer Science.

Details about membrane computing can be found at the P systems Webpage:
http://ppage.psystems.eu and its mirror http://bmc.hust.edu.cn/psystems.
The workshop web site, designed by Mihai Ionescu is http://wmc10.psystems.eu/.

The workshop was sponsored by the Council of Argeş County, Piteşti, Romania,
being part of the events included in the program of Argeş and Muscel Days, 2009.
The present volume was published by the Research Group on Natural Computing
from Sevilla University, with the support of Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.
Further local support by the City Hall of Curtea de Argeş and Hotel Posada is
gratefully acknowledged.

The editors warmly thank the programme committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants, as well as all who
contributed to the success of WMC10.

Gheorghe Păun
Mario J. Pérez-Jiménez

Agust́ın Riscos-Núñez
Editors

July 16, 2009

Contents

Invited Presentations

P Automata: Concepts, Results and New Aspects
E. Csuhaj-Varjú . 1

Computational Nature of Processes Induced by Biochemical Reactions
A. Ehrenfeucht, G. Rozenberg . 17

Transition and Halting Modes for Tissue P Systems
R. Freund . 19

Conformon P Systems and Topology of Information Flow
P. Frisco . 31

Formal Verification and Testing Based on P Systems
M. Gheorghe, F. Ipate, C. Dragomir . 33

A Look Back at Some Early Results in Membrane Computing
O.H. Ibarra . 35

From P to MP Systems
V. Manca . 37

Bridging Membrane Computing and Biosemiotics
S. Marcus . 58

Energy-based Models of P Systems
G. Mauri, A. Leporati, C. Zandron . 60

A Computational Complexity Theory in Membrane Computing
M.J. Pérez–Jiménez . 82

Regular Presentations

Evolving by Maximizing the Number of Rules: Complexity Study
O. Agrigoroaiei, G. Ciobanu, A. Resios . 106

viii Contents

Modelling Inflections in Romanian Language by P Systems
with String Replication

A. Alhazov, E. Boian, S. Cojocaru, Yu. Rogozhin 116

On Reversibility and Determinism in P Systems
A. Alhazov, K. Morita . 129

Typed Membrane Systems
B. Aman, G. Ciobanu . 140

A P System Based Model of an Ecosystem of Some Scavenger Birds
M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado,
M.J. Pérez-Jiménez, D. Sanuy . 153

Metabolic P System Flux Regulation by Artificial Neural Networks
A. Castellini, V. Manca, Y. Suzuki . 169

A Novel Variant of Tissue P Systems for the Modelling
of Biochemical Systems

P. Cazzaniga, G. Mauri, L. Milanesi, E. Mosca, D. Pescini 184

Eco-P Colonies
L. Cienciala, L. Ciencialová . 201

Decision Trees for Obtaining Active Rules in Transition P Systems
J.A. de Frutos, L. Fernández, F. Arroyo . 210

Regulation and Covering Problems in MP Systems
G. Franco, V. Manca, R. Pagliarini . 218

Hybrid Transition Modes in (Tissue) P Systems
R. Freund, M. Kogler . 228

An Overview of P-Lingua 2.0
M. Garćıa-Quismondo, R. Gutiérrez-Escudero,
I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez 240

A First Attempt to Model Notch Signalling by Means of P Systems
M. Garćıa-Quismondo, B.M. Henley,
I. Pérez-Hurtado, A. Riscos-Núñez . 265

Characterizing Tractability by Tissue-Like P Systems
R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font 269

Searching Previous Configurations in Membrane Computing
M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez . 282

Modelling Signalling Networks with Incomplete Information
about Protein Activation States: A P System Framework
of the KaiABC Oscillator

T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster 298

Contents ix

Solving NP-complete Problems by Spiking Neural P Systems
with Budding Rules

T.-O. Ishdorj, A. Leporati, L. Pan, J. Wang . 317

Tuning P Systems for Solving the Broadcasting Problem
R. Lefticaru, F. Ipate, M. Gheorghe, G. Zhang . 337

An Improved Membrane Algorithm for Solving
Time-Frequency Atom Decomposition

C. Liu, G. Zhang, H. Liu, M. Gheorghe, F. Ipate 355

Simulating Active Membrane Systems Using GPUs
M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado,
M.J. Pérez-Jiménez, J.M. Cecilia, G.D. Guerrero, J.M. Garćıa 369

A Region-Oriented Hardware Implementation for Membrane
Computing Applications and Its Integration into Reconfig-P

V. Nguyen, D. Kearney, G. Gioiosa . 385

Discovering the Membrane Topology of Hyperdag P Systems
R. Nicolescu, M.J. Dinneen, Y.-B. Kim . 426

Reversible P Systems with Symport/Antiport Rules
T.Y. Nishida . 452

Approaching a Question of Biologically Plausible Applications
of Spiking Neural P Systems for an Explanation of
Brain Cognitive Functions

Adam Obtu lowicz . 461

A Note on Small Universal Spiking Neural P Systems
L. Pan, X. Zeng . 464

On the Power of Computing with Proteins on Membranes
P. Sośık, A. Păun, A. Rodŕıguez-Patón, D. Pérez 476

An Efficient Simulation of Polynomial-Space Turing Machines
by P Systems with Active Membranes

A. Valsecchi, A.E. Porreca, A. Leporati, G. Mauri, C. Zandron 489

Look-Ahead Evolution for P Systems
S. Verlan . 507

Spiking Neural P Systems with Weights and Thresholds
J. Wang, H.J. Hoogeboom, L. Pan, Gh. Păun . 514

Late Arrived Papers

A Note on P Systems with Small-Size Insertion and Deletion
A. Alhazov, A. Krassovitskiy, Yu. Rogozhin, S. Verlan 534

x Contents

Could Procaryotic (as Well as Eukaryotic Cells)
Provide Software and Hardware for P Systems Based Computers?

I.I. Ardelean . 538

On the Efficiency of Promoters and of Cooperative Rules in P Systems
R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini 543

Power and Size of Generalized Communicating P Systems
with Minimal Interaction Rules

E. Csuhaj-Varjú, S. Verlan . 547

Accepting Evolutionary P Systems
V. Mitrana, J.M. Sempere . 552

Uniformity: Uncovering the Frontier of Parallelism
N. Murphy, D. Woods . 556

P Systems with Control Nuclei
Gh. Ştefănescu, T. Şerbănuţă, C. Chira, G. Roşu 561

P Automata: Concepts, Results
and New Aspects?

Erzsébet Csuhaj-Varjú

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, 1111 Budapest, Hungary
and
Department of Algorithms and Their Applications
Faculty of Informatics
Eötvös Loránd University
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@sztaki.hu

Summary. In this paper we discuss P automata, constructs combining properties of
classical automata and P systems being in interaction with their environments. We de-
scribe the most important variants and their properties, and propose new topics and
open problems for future research.

1 Introduction

Observing natural systems and processes, concepts for reconsidering fundamentals
of computation can be obtained, and based on the new ideas unconventional com-
putational devices can be built. When such a new construct is defined, its benefits
for computing usually are demonstrated by a comparison to its conceptual prede-
cessors or to other classical computational models having features similar to the
new one. This procedure is taking place in the theory of P automata, a framework
consisting of accepting variants of P systems which combine features of classical
automata and P systems being in interaction with their environments. Shortly, a
P automaton is a P system receiving input in each computational step from its
environment which influences its operation, by changing its configuration and thus
affecting its functioning. The sequences of inputs are distinguished as accepted or
rejected input sequences. The input is given as a multiset of objects, where ob-
jects can be elementary ones, i.e., without any structure (for example, symbols)
or non-elementary, structured ones (for example, a P system). The P system that
receives the input is called the underlying P system of the P automaton.
? Research supported in part by the Hungarian Scientific Research Fund (OTKA), Grant

no. K75952

2 E. Csuhaj-Varjú

Similarities between P automata and classical automata can immediately be
observed, but the reader easily may notice differences between the two constructs
as well: for example, conventional automata have separate state sets while in the
case of P automata the actual state is represented by the actual configuration
of the underlying P system. Another property which makes P automata different
from classical automata is that the workspace that they can use for computation is
provided by the objects of the already consumed input multisets. The objects which
enter the system become part of the description of the machine, that is, the input,
the object of the computation and the machine which executes the computation
cannot be separated as it can be done in the case of customary automata.

The first variant of P automata, introduced in [14, 15], was the so-called one-
way P automaton where the underlying P system had only top-down symport rules
with promoters (and implicitly inhibitors). Almost at the same time, a closely
related notion, the analyzing P system was defined in [21] providing a slightly
different concept of an automaton-like P system. Both models describe the class
of recursively enumerable languages. The property that purely communicating
accepting P systems may represent computationally complete classes of computing
devices gave an impetus to the research in the theory of P automata, resulting in
a detailed study of automaton-like P systems.

Since that time, several variants of P automata have been introduced and
investigated, which differ from each other in the main ingredients of these systems:
the objects the P system operates with, the way of defining the acceptance, the
way of communication with the environment, the types of the communication rules
used by the regions, the types of the rules associated with the regions (whether
or not evolution rules are allowed to be used), and whether or not the membrane
structure changes in the course of the computation. Summaries on these constructs
and their properties can be found in [32, 10, 13, 41].

Due to the power of the underlying P system, several of the above variants of P
automata determine the class of recursively enumerable languages, even with lim-
ited size parameters. Although these constructs offer alternative models for Turing
machines, P automata with significantly less computational power are of special
interest as well, since they provide descriptions of natural systems, with low com-
plexity. An adequate example of the latter systems is the standard, generic variant
of P automata, based on antiport rules with promoters or inhibitors, functioning
with sequential rule application, and accepting with final states. By appropriately
chosen mappings for defining the language of the P automaton, these constructs
determine a language class with sub-logarithmic space complexity.

In the following sections we describe the most important variants of P automata
and their properties. We also discuss how some classical variants of automata can
be represented in terms of P automata. Special emphasis is put on non-standard
features of P automata, namely, that the same construct is able to operate over
both finite and infinite alphabets, the underlying membrane structure may remain
unchanged but it also may dynamically vary under functioning, and that to obtain
large computational power they do not need workspace overhead.

P Automata: Concepts, Results and New Aspects 3

We also propose new topics and problems for future research.

2 P automaton - the basic model

2.1 The formal concept

In order to provide the reader with sufficient information to follow the discussion
on P automata and its different variants, we present some formal details concerning
the basic model, following the terms and notations from [13]. For more information
on membrane computing we refer to [37] and for more details on formal language
and automata theory to [38].

Throughout the paper, we denote the class of regular, context-free, context-
sensitive, and recursively enumerable languages by REG, CF, CS, and RE, re-
spectively.

We designate the set of finite multisets over a set V by V ◦, and the set
of their sequences by (V ◦)∗. We also denote u ∈ V ◦ by the correspond-
ing string a

u(a1)
1 a

u(a2)
2 . . . a

u(at)
t ∈ V ∗, V = {a1, a2, . . . , at}, or in the form

{(a1, u(a1)), (a2, u(a2)), . . . , (at, u(at))}.
The underlying membrane system of a P automaton is an antiport (sym-

port) P system possibly having promoters and/or inhibitors. For details on sym-
port/antiport the reader is referred to [35], for the use of promoters to [31].

Briefly, a symport rule is of the form (x, in) or (x, out), x ∈ V ◦. When such a
rule is applied in a region of a P system, then the objects of the multiset x enter
the region from the parent region (in) or they leave to the parent region (out).
An antiport rule is of the form (x, out; y, in), x, y ∈ V ◦. In this case, the objects
of y enter the region from the parent region and in the same step the objects of
x leave to the parent region. Notice that the parent region of the skin region is
the environment. All types of these rules might be associated with a promoter
or an inhibitor multiset, denoted as (x, in)|Z , (x, out)|Z , or (x, out; y, in)|Z , x, y ∈
V ◦, Z ∈ {z,¬z | z ∈ V ◦}. If Z = z, then the rule can only be applied if the
region contains all objects of multiset z, and if Z = ¬z, then z must not be a sub-
multiset of the multiset of objects present in the region. To simplify the notations,
we denote symport and antiport rules with or without promoters/inhibitors as
(x, out; y, in)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where we also allow x, y, z to
be the empty multiset. If y = λ or x = λ, then the notation above denotes the
symport rule (x, in)|Z or (y, out)|Z , respectively, if Z = λ, then the rules above
are without promoters or inhibitors.

Definition 1. A P automaton (with n membranes) is an (n + 4)-tuple, n ≥ 1,
Π = (V, µ, P1, . . . , Pn, c0,F), where

• V is a finite alphabet of objects,
• µ is a membrane structure of n membranes with membrane 1 being the skin

membrane,

4 E. Csuhaj-Varjú

• Pi is a finite set of antiport rules with promoters or inhibitors associated to
membrane i for all i, 1 ≤ i ≤ n,

• c0 = (w1, . . . , wn) is called the initial configuration (or the initial state) of Π
where each wi ∈ V ◦ is called the initial contents of region i, 1 ≤ i ≤ n,

• F is a computable set of n-tuples (v1, . . . , vn) where vi ⊆ V ◦, 1 ≤ i ≤ n; it is
called the set of accepting configurations of Π.

An n-tuple (u1, . . . , un) of finite multisets of objects over V present in the n
regions of the P automaton Π is called a (possible) configuration of Π; ui is the
contents of region i in this configuration, 1 ≤ i ≤ n.

A P automaton functions as a standard antiport (symport) P system (with
promoters and/or inhibitors), changes its configurations by applying rules accord-
ing to a certain type of working mode. In the case of P automata, the two most
commonly used variants are the sequential rule application, introduced in [14, 15]
(also called 1-restricted minimally parallel in [26]), and the maximally parallel rule
application. In the case of sequential rule application, at any step of the compu-
tation the rule set to be applied is chosen in such a way that exactly one rule is
applied in each region where the application of at least one rule is possible. When
the the maximally parallel working mode is used, at every computational step as
many rule application is performed simultaneously in each region as it is possible.

The set of the different types of working modes is denoted by MODE, we use
seq and maxpar for the sequential and the maximally parallel rule application,
respectively.

Definition 2. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton working
in the X-mode of rule application, where X ∈ MODE. The transition mapping of
Π is defined as a partial mapping δX : V ◦ × (V ◦)n → 2(V ◦)n

as follows:
For two configurations c, c′ ∈ (V ◦)n, we say that c′ ∈ δX(u, c) if Π enters con-

figuration c′ from configuration c by applying its rules in the X-mode while reading
the input u ∈ V ◦, i.e., if u is the multiset of objects that enter the skin membrane
from the environment while the underlying P system changes configuration c to c′

by applying its rules in mode X.

The sequence of multisets of objects accepted by a P automaton is defined
as the input sequence which is consumed by the skin membrane until the system
reaches an accepting configuration.

Definition 3. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton. The set
of input sequences accepted by Π with X-mode of rule application, X ∈ MODE,
is defined as

AX(Π) = {v1 . . . vs ∈ (V ◦)∗ | there are c0, c1, . . . , cs ∈ (V ◦)n, such that
ci ∈ δX(vi, ci−1), 1 ≤ i ≤ s, and cs ∈ F}.

A P automaton Π, as above, is said to be accepting by final states if F =
E1 × . . . × En for some Ei ⊆ V ◦, 1 ≤ i ≤ n, where Ei is either a finite set of

P Automata: Concepts, Results and New Aspects 5

finite multisets or Ei = V ◦. Thus, a configuration c = (u1, . . . , un) is final, if for
all regions of Π, ui ∈ Ei, 1 ≤ i ≤ n.

If Π accepts by halting, then F contains all halting configurations of Π, that
is, all configurations c with no c′ ∈ (V ◦)n such that c′ ∈ δX(v, c) for some v ∈ V ◦,
X ∈ MODE.

The accepted multiset sequences of a P automaton can be encoded to strings,
thus making possible to assign languages to the P automaton. In the case of se-
quential rule application, the set of multisets that may enter the system is finite,
thus the input multisets can obviously be encoded by a finite alphabet. This im-
plies that any accepted input sequence can be considered as a string over a finite
alphabet. In the case of parallel rule application, the number of objects which
may enter the system in one step is not necessarily bounded by a constant. There-
fore, in this case the accepted input sequences correspond to strings over infinite
alphabets.

In the following we consider languages over finite alphabets, therefore we apply
a mapping to produce a finite set of symbols from a possibly infinite set of multisets.

Definition 4. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton, Σ be
a finite alphabet, and let f : V ◦ → Σ∗ be a mapping. The language accepted by
Π with respect to f using the X-mode rule application, where X ∈ MODE, is
defined as

LX(Π, f) = {f(v1) . . . f(vs) ∈ Σ∗ | v1 . . . vs ∈ AX(Π)}.

The class of languages accepted by P automata with respect to a class of
computable mappings C with X-mode rule application, X ∈ MODE, is denoted
by LX,C(PA).

We illustrate the notion of a P automaton by an example from [10].

Example 1. Let

Π = ({S1, S2, S3, a, b, c}, [1 [2 [3]3]2]1(S1, P1, {d}), (S2, P2, {S1S2}), (S3, P3, ∅),

with

P1 = {(a, in)|S1 , (a, in)|a, (b, in)|a, (b, in)|b, (c, in)|b, (c, in)|c,
(d, in)|c, (ε, in)|d},

P2 = {(S1, in)|S2 , (a, in)|S1 , (b, in)|S1 , (c, in)|S1 , (ε, in)|c},
P3 = {(ε, in)|S3 , (abc, in)|S3},

Then, for f(x) = x, for x ∈ {a, b, c}, Π accepts words of the form anbncn,
n ≥ 1, with sequential application of rules and with only symport rules with
promoters. Thus, the language accepted by Π is a well-known non-context-free
context-sensitive language.

6 E. Csuhaj-Varjú

2.2 Computational power

Examining the concept of a language accepted by a P automaton, the reader
can immediately notice that it strongly depends on the choice of mapping f (see
Definition 4). This implies that there might be cases when the power of the P
automaton comes from the mapping f and not from the P automaton itself. Due
to this property, the investigations on the accepting power of P automata have
concentrated on the cases where the mapping f is of low complexity.

It can also easily be seen that P automata work with no workspace overhead,
i.e., the workspace P automata can use for computation is provided by the objects
of the already consumed input multisets. Although this property appears to sig-
nificantly bound the computational power, since P automata may use maximally
parallel working mode, i.e., may input an exponentially growing number of objects,
the obtained computational power can be rather large.

We first recall some notations from [13]. Let NSPACE(S) designate the class
of languages accepted by a non-deterministic Turing machine using a workspace
which is bounded by a function S : N → N of the length of the input. We say that
L ∈ r1NSPACE(S) if there is a Turing machine which accepts L by reading the
input from a read only input tape once from left to right, and for every accepted
word of length n, there is an accepting computation during which the number of
nonempty cells on the work-tape(s) is bounded in each step by c · S(d) where c is
an integer constant, and d ≤ n is the number of input tape cells that have already
been read, that is, the actual distance of the reading head from the left end of the
one-way input tape.

Let c = (u1, . . . , un) be a configuration of a P automaton. We denote by |c| the
number of objects present inside the membrane structure, that is, |c| = Σn

i=1|ui|
where |ui| denotes the number of objects of ui ∈ V ◦.

The following statement describes the workspace of the P automaton used for
computing and its language for a non-erasing mapping f [13]. (The mapping f is
non-erasing if f : V ◦ → Σ∗ for some V, Σ with f(u) = λ if and only if u = ∅.)
Theorem 1. Let Π be a P automaton, let c0, c1, . . . , cm be a sequence of con-
figurations during an accepting computation, and let S : N → N, such that
|ci| ≤ S(d), 0 ≤ d ≤ i ≤ m, where S(d) bounds the number of objects inside
the system in the ith step of functioning, d ≤ i being the number of transitions in
which a nonempty multiset was imported into the system from the environment.

If f is non-erasing and f ∈ NSPACE(Sf), then for any X ∈ MODE,
LX(Π, f) ∈ r1NSPACE(log(S) + Sf).

By applying the above theorem and its proof to three-counter machines, the
following theorem can be obtained (see [13]). (Three-counter machines are Turing
machines with a one-way read only input tape and three work-tapes which can be
used as three counters capable of storing any non-negative integer as the distance
of the reading head from the only non-blank tape cell marked with the special
symbol Z.)

The following results were first published in [11, 12].

P Automata: Concepts, Results and New Aspects 7

Theorem 2.

1. Lseq,C(PA) = r1NSPACE(log(n)) for any class C of non-erasing mappings
with a finite domain, and

2. Lmaxpar,C(PA) = CS for any class C of non-erasing linear space computable
mappings.

By the simulation of the three-counter machine which is used to prove the
previous theorem, it follows that if we allow arbitrary linear space computable
functions for mapping the input multisets of the P automaton to the alphabet
of the accepted language, then we can obtain a characterization of the class of
recursively enumerable languages.

Corollary 1. Lmaxpar,C(PA) = RE for any class C of linear space computable
mappings.

2.3 Discussion of the basic model

In the following we briefly discuss the main ingredients of P automata and propose
topics for future research.

If we consider a P automaton as a P system being in interaction with its envi-
ronment, then not only input sequences but also output sequences are of interest
to study. While an input sequence can be considered as a representation of a se-
quence of impulses obtained from the environment, a sequence of outputs, i.e., a
sequence of multisets of objects that were sent to the environment at the steps of
the computation, correspond to reactions to the effect of the previously obtained
impulses and the change they caused in the behavior of the system. By obvious
modifications of Definitions 2, 3, 4, we can assign a so-called output language to
the P automaton. Output languages of P automata, supposing that the underlying
P system issues at any computation step at least one object to the environment,
would be of particular interest topic of investigations.

The concept of an (accepted) output sequence of a P automaton opens several
further topics to be examined. For example, if ui denotes the input and vi the
output of the P automaton Π at the ith computation step of a computation,
then diff(i) =| card(ui)− card(vi) |, i.e., the difference in the number of objects
entering and leaving the system, describes the volume of information exchange
at the given computation step and it is a characteristics of the P system. Based
on this parameter, several complexity measures can be defined: maxdiff(Π), i.e.,
the supremum, or mindiff(Π), i.e., the minimum of the difference of the volume
of information exchange with respect to any accepting computation. We also can
consider the difference of these two measures as well.

Based on the above measures, we can define a P automaton Π to be monotone
or strictly monotone if for any accepting computation in Π (or, for an accept-
ing computation for any word in the language accepted by Π) m(Π) ≥ 0 or
m(Π) > 0 holds, respectively, where m ∈ {maxdiff, mindiff}. Monotone P au-
tomata represent systems which are able to tolerate more and more impulses from

8 E. Csuhaj-Varjú

the environment. Especially interesting topic for future research would be the de-
scription of language classes of P automata classes where the value of measures
maxdiff and mindiff regarding the P automata in the class can be bounded by
linear, polynomial, and exponential functions, respectively.

The concepts of an input and an output of a P automaton raise another issue.
As we have seen, unlike classical automata, the whole input sequence is not given at
the beginning of the computation, but it will be available step by step. Moreover,
the input is not given in advance but it is determined by the actual configuration
(state) of the underlying P system. It is an obvious question, what happens if we
present an input sequence of multisets of objects in advance and we consider it as an
accepted sequence if after consuming the elements of the sequence the underlying
P system enters an accepting state. Obviously, this model needs to be elaborated,
since the multisets in the sequence need not to coincide with the multiset of objects
the underlying P system is able to consume. However, this direction of research
would be of certain interest.

Some steps, although in a bit different manner, have already been made in this
direction, see, for example, [20]. We note that the existence of a designated input
membrane does not necessarily alter the computational power.

2.4 Non-standard features of P automata

P automata over infinite alphabets

One of the important characteristics of P automata is that the basic model is
suitable for describing languages over infinite alphabets, without any extension
or additional component added to the construct. This property arises from the
fact that the language accepted by these systems corresponds to the sequence of
multisets entering during a successful computation, and the number of possible
symbols which constitute the accepted string can be arbitrarily large.

An example of this approach is the notion of a P finite automaton, introduced
in [19].

This construct is a P automaton Π = (V ∪ {a}, µ, P1, . . . , Pn, c0,F) which
applies the rules in the maximally parallel manner, accepts by final states, the
object alphabet V ∪ {a} contains a distinguished symbol a; P1 (the skin region)
contains rules of the form (x, out; y, in)|Z with x ∈ (V ∪ {a})◦, y ∈ {a}◦, Z ∈
{z,¬z}, z ∈ V ◦; and if i 6= 1, the set Pi contains rules of the form (x, out; y, in)|Z
with Z ∈ {z,¬z}, x, y, z ∈ V ◦. We also allow the use of rules of the form (x, in)|Z
in the skin membrane in such a way, that the application of any number of copies
of the rule is considered in maximally parallel manner.

Notice that the domain of the mapping f is infinite, so its range could also
easily be defined to be infinite, as f : {a}◦ → Σ ∪ {λ} for an infinite alphabet
Σ = {a1, a2, . . .} with f(ak) = ak for any k ≥ 1, and f(∅) = λ.

The language accepted by a P finite automaton Π is L(Π) = Lmaxpar(Π, f)
for f as above.

P Automata: Concepts, Results and New Aspects 9

In [19] it was shown that for any L ⊆ Σ∗ over a finite alphabet Σ, L ∈ REG
if and only if L = L(Π) for some P finite automaton Π.

Because of these properties, the infinite alphabet languages accepted by P finite
automata can be considered as the extension of the class of regular languages
to infinite alphabets. In [19] it is also shown that this construction significantly
differs from other infinite alphabet extensions of regular languages defined by,
for example, the machine model called finite memory automata from [29] or the
infinite alphabet regular expressions introduced in [34].

P automata models for extensions of further language classes to infinite alpha-
bets, for example, to context-free languages, would also be an interesting research
direction.

ω-P automata

P automata also provide possibilities of describing (possibly) infinite runs (se-
quences of configurations). This feature is of particular importance, since if we
consider a P automaton as a system being in interaction with its environment, we
also should consider communication processes not limited in time.

Variants of P automata, motivated by these considerations, are the so-called
ω-P automata [25]. These constructs (having also so-called membrane channels)
were introduced to simulate the functioning of ω-Turing machines, that is, actions
of Turing machines on infinite words.

It was proved that for any well-known variant of acceptance mode of ω-Turing
machines one can construct an ω-P automaton with two membranes which simu-
lates the computations of the corresponding ω-Turing machine.

2.5 Variants of P automata

During the years, several types of automaton-like P systems were introduced with
the aim of studying their boundaries as computational devices and exploring their
relations to classical automata.

A lot of efforts have been devoted to describe the recursively enumerable lan-
guage class in terms of P automata. To be conform with formal language theoretic
constructs, several variants have been introduced, where input objects and auxil-
iary objects , i.e., terminal objects and nonterminal objects of the P automaton are
distinguished. Then, the accepted language is defined as the sequence of terminal
strings of the input multisets during an accepting computation (where the set of
terminal strings of a multiset consists of all permutations of its terminal symbols).
An example for this extended P automaton is the analyzing P system [21], which
has only antiport rules, works with the maximally parallel rule application and
accepts by halting. As we mentioned in the Introduction, the authors have shown
that these systems, even with small size parameters, are able to recognize any
recursively enumerable language.

In the case of these extended P automata, the workspace to obtain the computa-
tional completeness of P automata model, is due to the nonterminal objects which

10 E. Csuhaj-Varjú

can be available in a number not restricted by the length of the input string. In [28]
interesting results were obtained for automaton-like P systems, called exponential-
space symport/antiport acceptors, working with other types of bounded resources,
with a set of terminal objects Σ containing a distinguished symbol $, and four types
of rules of restricted forms. These systems work with maximally parallel applica-
tion of rules and accept by final states; the language accepted by them is defined
in a slightly different way from the one that is used in the case of an extended P
automaton. The term “exponential-space symport/antiport acceptor” comes from
the fact that due to the restricted form of the rules, the workspace which can be
used by such a construct is not arbitrarily large, the membrane system contains
no more than an exponential number of objects (up to some constant) at any time
during the computation. Working with the maximally parallel rule application,
these systems describe the class of context-sensitive languages [28].

The original motivation of the introduction of the concept of the P automaton
was to study the power of purely communicating accepting P systems. For this
reason, the question whether or not any change in the underlying communicating
P system implies changes in the power and the size complexity of the respective
new class of P automata is of particular interest. During the years, several models
have been introduced to approach this problem.

Additional constraints given by a partial binary relation were posed to the
application of the communication rules of the basic model in the case of P automata
with priorities in [6], where the rules with the highest priority must be applied in
configuration change. Two other variants, with conditional symport/antiport rules,
are P automata with membrane channels [32, 22, 23], motivated by certain natural
processes taking place in cells, and P automata with conditional communication
rules associated with the membranes [32, 24]. All these models are computationally
complete devices, in the latter two cases optimal results on their size parameters
have also been obtained.

Another feature in which P automata differ from classical automata is the
property that they have no separate internal state sets, the states are represented
by the (possibly infinite) set of configurations. P automata with states attempted
to make the basic concept resemble more to conventional automata [30]. In this
model, both states and objects are considered, the states, together with the objects,
govern the communication. The device is computationally complete, moreover,
any recursively enumerable language can be described by these systems with very
restricted form [20].

Although most of the variants of P automata realize purely communicating, ac-
cepting P systems, the concept can be extended to be suitable for describing com-
plex evolving systems. Evolution-communication P automata, having both com-
munication and evolution rules, are examples for such models [1]. The construct
can be considered as a variant of extended P automata, and as it is expected, it
provides a description of the class of recursively enumerable languages.

P Automata: Concepts, Results and New Aspects 11

3 Further developments

3.1 P automata computing by structure

The models that have been discussed so far have a static membrane structure, that
is, the membrane structure is not altered during the functioning of the system.
Considering P automata as models of complex biological systems, this condition
is rather restrictive, since the architecture of natural systems may change in the
course of their functioning.

A P automaton-like system working with a dynamically changing membrane
structure is the P automaton with marked membranes ([16]), or a Ppp automaton,
for short. The concept is motivated by the theory of P systems, brane calculi [5],
and traditional automata theory. The underlying P system models the situation
when proteins are allowed to move through the membranes and to attach onto or
to detach from the membranes, in such a way that their moves may also imply
changes in the membrane structure. P automata with marked membranes are
able to consume inputs from their environment, i.e., multisets of proteins, which
might influence the behavior of the system, and correspond to the result of a
computation if the Ppp automaton starts in the initial configuration and halts
in a final configuration. As in the previous cases, the model is computationally
complete. Its importance lies in the bridge built between important research areas.

A variant of accepting P systems with dynamically changing membrane struc-
ture, called an active P automaton, was proposed and used for parsing sentences
of natural languages in [2, 3]. An active P automaton starts the computation with
one membrane containing the string to be analyzed together with some additional
information assisting the computation. It computes with the structure of the mem-
brane system, using operations as membrane creation, division, and dissolution.
There are also rules for extracting a symbol from the left-hand end of the input
string and for processing assistant objects. The computation ends with acceptance
when all symbols from the string are consumed and all membranes are dissolved.
It was shown that the model is suitable for recognizing any recursively enumerable
language, and with restrictions in the possible types of rules, also for determining
other well-known language classes, such as the regular language class and the class
of context-sensitive languages. This special variant of accepting P systems resem-
bles P automata since any symbol in the string can be considered as a multiset of
objects with one element consumed from the environment.

3.2 Classical automata versus P automata

Another important research area to investigate is how models and concepts of
classical automata theory can be related to models and concepts in P automata
theory. As we have seen in Subsection 2.4, finite automata can be represented in
terms of P automata in a natural manner.

12 E. Csuhaj-Varjú

The property that by using the maximally parallel working mode an object
can appear in a region in a number of copies not bounded by a constant (ob-
viously, depending on the underlying P automaton), implies that strings (in the
form of numbers which are the values of numbers given in k-ary notation) can be
represented by regions of P automata. Based on this correspondence, contents of
pushdown storages or stacks can be described, which natural observation is used
for characterizing the context-free language class by a restricted variant of P au-
tomata, called stack P automata in [40]. Obviously, a pushdown storage can also
be represented as a configuration of a P system with a linear structure, where there
is only one object or one object of some distinguished type (representing a symbol
that belongs to the pushdown alphabet) in each region [39]. If we allow changes in
the linear membrane structure, i.e., the dissolution of the skin membrane and cre-
ation of a new linear structure which embraces the remaining part of the original
linear membrane structure, we can obtain a representation of a pushdown storage
in some other manner. Both approaches are used in [17], where different languages
classes, for example, the growing context-sensitive language class, are described in
terms of variants of multi-pushdown automata.

Counterparts of other classical variants of automata are found in [7], where
the so-called Mealy multiset automata and elementary Mealy membrane automata
are proposed and examined. These models are inspired by the concept of a Mealy
automaton. As a continuation of this research, an augmented version of the ele-
mentary Mealy membrane automaton, with extended communication capabilities,
called a simple P machine was investigated in [8].

So far we have discussed automata with only input, although transducers, i.e.,
automata with input and output play outstanding role in classical automata the-
ory. The concept of a P transducer, which is basically a one-membrane P automa-
ton working with input and output objects [9], realizes such a construction. Four
types of these machines were distinguished and studied, two of them are computa-
tionally complete, and two are incomparable to finite state sequential transducers.
Iterating these latter P transducer classes, new characterizations of the recursively
enumerable language class were obtained.

3.3 P automata and words with nested data

Since membrane systems are nested architectures, investigations in connections
between P automata theory and the theory of data languages, a theory mainly
motivated by applications in XML databases and parametrized verification, are of
particular interest. Research in this direction has started in [18].

In order to briefly report on the topic, we recall some notions on words with
nested data, following the notations in [4]. Let V be a finite alphabet and ∆ an
infinite set whose elements are called data values. For a natural number k, a word
w with k layers of data is a string where every position, apart from a label in
V , has k labels d1, . . . , dk ∈ ∆. The label di is called the ith data value of the
position. Thus, w ∈ (V ×∆k)∗. In w, the data values can be seen as inducing k

P Automata: Concepts, Results and New Aspects 13

equivalence relations ∼1, . . . ,∼k on the positions of w; two positions are related
by ∼i if they agree on the ith data value. A word with k layers of data is said to
have nested data if for each i = 2, . . . , k the relation ∼i is a refinement of ∼i−1.
Since P automata are able to operate over infinite alphabets, for representing sets
of words with k layers of data or with k layers of nested data (over some alphabets
V and ∆), P automata with dynamically changing linear structure and antiport
rules can be constructed.

Unlike standard questions concerning the computational power of P automata,
the main questions in this case are how much change the input implies in the
structure of the underlying P system and in the contents of certain regions.

Another important research direction can be to develop logic for these P au-
tomata (P systems), since certain properties of words with (k layers of) nested
data, have been described in terms of a fragment of first order logic, thus these
words were considered as models for logic, with logical quantifiers ranging over
word positions.

The topic is closely related to the study of shuffle expressions, since connec-
tions between words with nested data and these expressions have been explored, see
for example [4]. Shuffle expressions are regular expressions extended with intersec-
tions and the shuffle operation. Relations between shuffle expressions and so-called
high-order multicounter automata was analysed in [4], where it was shown that the
class of languages defined by shuffle expressions, the class of languages defined by
high-order multi-counter automata, and the recursively enumerable language class
are equal. High-order multicounter automata are automata with several counters
which can be incremented and decremented, but zero tests are only allowed at the
end of the word. In [18] a new variant of P automata is defined with strong for-
mal similarities to high-order multicounter automata. Based on the construction,
results on P automata and shuffle expressions can be derived.

3.4 P automata expressions

One important research area of classical automata theory is the study of the closure
with respect to certain operations, especially how to construct an automaton for
languages obtained by certain operation among a given collection of automata.
Questions related to compositions of P automata are of particular interest.

A step in this direction has been made in [27], where so-called P automata with
communication and active membrane rules working in the initial mode (CAIP)
have been introduced. The authors presented methods for constructing automata
for accepting the union, the concatenation, the Kleene closure, or the ω closure
of the given languages which are represented by some P automata. Starting from
these results, and considering these and other operations and these and other
(restricted) variants of P automata, it would be interesting to develop further
descriptions of language classes in term of so-called P-automata expressions.

14 E. Csuhaj-Varjú

4 Conclusions

Investigations in the theory of P automata expected to be continued in several
directions. Since P automata can be considered as constructs attempting to build
a bridge between automata theory and membrane systems theory, similarities and
differences between the two fields are certainly of interest. But, as we mentioned in
the Introduction, P automata are models of dynamically changing systems which
are in communication (interaction) with their environments as well. According to
this approach, the investigations of P automata as dynamical systems form simi-
larly important research directions. We hope to have new results in both directions
in the future.

References

1. A. Alhazov: Minimizing evolution-communication P systems and EC P automata. In:
M. Cavaliere, C. Mart́ın-Vide and Gh. Păun (eds.), Brainstorming Week on Mem-
brane Computing. Technical Report 26/03 of the Research Group on Mathematical
Linguistics, Rovira i Virgili University, Tarragona, Spain, 2003, 23-31.

2. G. Bel-Enguix and R. Gramatovici: Parsing with active P automata. In: C. Mart́ın-
Vide, G. Mauri, Gh. Păun, G. Rozenberg and A. Salomaa (eds.), Membrane Com-
puting. International Workshop, WMC 2003, Tarragona, Spain, July 17-22, 2003.
Revised Papers. Lecture Notes in Computer Science 2933, Springer, Berlin, 2004,
31-42.

3. G. Bel-Enguix and R. Gramatovici: Parsing with P automata. In: G. Ciobanu, M.
Pérez-Jiménez and Gh. Păun (eds.), Applications of Membrane Computing. Natural
Computing Series, Springer, Berlin, 2006, 389-410.

4. H. Björklund and Mikolaj Bojanczyk: Shuffle Expressions and Words with Nested
Data. In: L. Kucera, Antonn Kucera (eds.): Mathematical Foundations of Computer
Science 2007, 32nd International Symposium, MFCS 2007, Cesk Krumlov, Czech
Republic, August 26-31, 2007, Proceedings. Lecture Notes in Computer Science 4708,
Springer, 2007, 750-761.

5. L. Cardelli: Brane Calculi. Interactions of biological membranes. In: V. Danos and V.
Schacter (eds.), Computational Methods in Systems Biology. International Confer-
ence CMSB 2004, Paris, France, May 2004, Revised Selected Papers. Lecture Notes
in Computer Science 3082, Springer-Verlag, Berlin, 2005, 257-280.

6. L. Cienciala and L. Ciencialova: Membrane automata with priorities. Journal of
Computer science and Technology 19(1) (2004), 89-97.

7. G. Ciobanu and V. M. Gontineac: Mealy multiset automata. International Journal
of Foundations of Computer Science 17 (2006), 111-126.

8. G. Ciobanu and V. M. Gontineac: P machines: An automata approach to mem-
brane computing. In: H.-J. Hoogeboom, Gh. Păun, G. Rozenberg and Arto Salomaa
(eds.), Membrane Computing, 7th International Workshop, WMC 2006, Leiden, The
Netherlands, July 17-21, 2006, Revised, Selected, and Invited Papers. Lecture Notes
in Computer Science 4361, Springer, Berlin, 2006, 314-329.

9. G. Ciobanu, Gh. Păun and Gh. Stefănescu: P transducers. New Generation Comput-
ing 24(1) (2006), 1-28.

P Automata: Concepts, Results and New Aspects 15

10. E. Csuhaj-Varjú: P automata. In: G. Mauri, Gh. Păun, M. Pérez-Jiménez, G. Rozen-
berg and A. Salomaa (eds.), Membrane Computing: 5th International Workshop,
WMC 2004, Milan, Italy, June, 14-16, 2004. Revised Selected and Invited Papers.
Lecture Notes in Computer Science 3365, Springer, 2005, 19-35.

11. E. Csuhaj-Varjú, O.H. Ibarra and Gy. Vaszil: On the computational complexity of
P automata. In: C. Ferretti, G. Mauri and C. Zandron (eds.), DNA Computing,
10th International Workshop on DNA Computing, DNA10, Milan, Italy, June 7-10,
Revised Selected Papers. Lecture Notes in Computer Science 3384, Springer, 2005,
77-90.

12. E. Csuhaj-Varjú, O.H. Ibarra and Gy. Vaszil: On the computational complexity of P
automata. Natural Computing 5(2) (2006), 109-126.

13. E. Csuhaj-Varjú, M. Oswald and Gy. Vaszil: P automata. Chapter in Handbook of
Membrane Computing. Gh. Păun, G. Rozenberg and A. Salomaa (Eds.), Oxford
University Press, to appear.

14. E. Csuhaj-Varjú and Gy. Vaszil: P automata. In: Gh. Păun and C. Zandron (eds.),
Pre-Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008,
2002, 177-192.

15. E. Csuhaj-Varjú and Gy. Vaszil: P automata or purely communicating accepting P
systems. In: Gh. Păun, G. Rozenberg, A. Salomaa and C. Zandron (eds.), Membrane
Computing. International Worskhop, WMC-CdeA 2002, Curtea de Arges, Roma-
nia, August 19-23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, Berlin, 2003, 219-233.

16. E. Csuhaj-Varjú and Gy. Vaszil: (Mem)brane automata. Theoretical Computer Sci-
ence 404(1-2) (2008), 52-60.

17. E. Csuhaj-Varjú and Gy. Vaszil: Representation of language classes in terms of P
automata. Manuscript, 2009.

18. E. Csuhaj-Varjú and Gy. Vaszil: Logic for P automata. Manuscript, 2009.
19. J. Dassow and Gy. Vaszil: P finite automata and regular languages over countably

infinite alphabets. In: H.-J. Hoogeboom, Gh. Păun, G. Rozenberg and A. Salomaa
(eds.), Membrane Computing. 7th International Workshop, WMC 2006, Leiden, The
Netherlands, July 17-21, 2006, Revised, Selected, and Invited Papers. Lecture Notes
in Computer Science 4361, Springer-Verlag, Berlin, 2006, 367-381.

20. R. Freund, C. Mart́ın-Vide, A. ObtuÃlowicz and Gh. Păun: On three classes of
automata-like P systems. In: Z. Ésik and Z. Fülöp (eds.), Developments in Lan-
guage Theory. 7th International Conference, DLT 2003, Szeged, Hungary, July 7-11,
2003. Proceedings. Lecture Notes in Computer Science 2710, Springer, Berlin, 2003,
292-303.

21. R. Freund and M. Oswald: A short note on analysing P systems. Bulletin of the
EATCS 78 (October 2002), 231-236.

22. R. Freund and M. Oswald: P automata with activated/prohibited membrane chan-
nels. In: Gh. Păun, G. Rozenberg, A. Salomaa and C. Zandron (eds.), Membrane
Computing. International Worskhop, WMC-CdeA 2002, Curtea de Arges, Roma-
nia, August 19-23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, Berlin, 2003, 261-269.

23. R. Freund and M. Oswald: P automata with membrane channels. Artificial Life and
Robotics 8(2004), 186-189.

16 E. Csuhaj-Varjú

24. R. Freund and M. Oswald: P systems with conditional communication rules assigned
to membranes. Journal of Automata, Languages and Combinatorics 9(4) (2004), 387-
397.

25. R. Freund, M. Oswald and L. Staiger: ω-P automata with communication rules.
In: C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg and A. Salomaa (eds.),
Membrane Computing. International Workshop, WMC 2003, Tarragona, Spain, July
17-22, 2003. Revised Papers. Lecture Notes in Computer Science 2933, Springer,
Berlin, 2004, 203-217.

26. R. Freund, S. Verlan: (Tissue) P systems working in the k-restricted minimally par-
allel derivation mode. In: E. Csuhaj-Varjú, R. Freund, M. Oswald and K. Salomaa
(eds.), International Workshop on Computing with Biomolecules, August 27, 2008,
Wien, Austria. Österreichische Computer Gesellschaft, 2008, 43-52.

27. H. Long, Y. Fu: A general approch for building combinational P automata. Interna-
tional Journal of Computer Mathematics 84(12) (2007), 1715-1730.

28. O. H. Ibarra and Gh. Păun: Characterization of context-sensitive languages and
other language classes in terms of symport/antiport P systems. Theoretical Computer
Science 358(1) (2006), 88-103.

29. M. Kaminski and N. Francez: Finite-memory automata. Theoretical Computer Sci-
ence 134(1994), 329-363.

30. M. Madhu and K. Krithivasan: On a class of P automata. International Journal of
Computer Mathematics 80(9) (2003), 1111-1120.

31. C. Mart́ın-Vide, A. Păun and Gh. Păun: On the power of P systems with symport
rules. Journal of Universal Computer Science 8(2002), 317-331.

32. M. Oswald: P Automata. PhD dissertation, Vienna University of Technology, 2003.
33. M. Oswald and R. Freund: P Automata with membrane channels. In: M. Sugisaka and

H. Tanaka, H. (eds): Proc. of the Eights Int. Symp. on Artificial Life and Robotics,
Beppu, Japan, 2003, 275-278.

34. F. Otto: Classes of regular and context-free languages over countably infinite alpha-
bets. Discrete Applied Mathematics 12 (1985), 41-56.

35. A. Păun and Gh. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3) (2002), 295-305.

36. Gh. Păun: Computing with membranes. Journal of Computer and System Sci-
ences61(1) (2000) 108-143.

37. Gh. Păun: Membrane Computing. An Introduction. Springer Verlag, Berlin-
Heidelberg, 2002.

38. G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, Heidelberg, 1997.

39. D. Sburlan: Private communication, 2009.
40. Gy. Vaszil: A class of P automata characterizing context-free languages. In: M. A.

Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núnez and F. J. Romero-Campero (eds.),
Proceedings of the Fourth Brainstorming Week on Membrane Computing, Sevilla,
Spain, January 30-February 3, 2006. Volume II. RGNC Report, 03/2006, Fénix Ed-
itora, Sevilla, 2006, 267-276.

41. Gy. Vaszil:Automata-like membrane systems - A natural way to describe complex
phenomena. In: C. Campeanu, G. Pighizzini (eds.), 10th International Workshop
on Descriptional Complexity of Formal Systems, July 16-18, Charlottetown, PE,
Canada. Proceedings. University of Prince Edwards Island, 2008, 26-37.

Computational Nature of Processes Induced
by Biochemical Reactions

Andrzej Ehrenfeucht1, Grzegorz Rozenberg1,2

1 University of Colorado at Boulder, USA
2 Leiden University, The Netherlands
rozenber@liacs.nl

Natural computing is concerned with human-designed computing inspired by na-
ture as well as with computations taking place in nature, i.e., it investigates phe-
nomena taking place in nature in terms of information processing.

Well-known examples of the first strand of research are evolutionary computing,
neural computation, cellular automata, swarm intelligence, molecular computing,
quantum computation, artificial immune systems, and membrane computing.

Examples of research themes from the second strand of research are computa-
tional nature of self-assembly, computational nature of developmental processes,
computational nature of bacterial communication, computational nature of brain
processes, computational nature of biochemical reactions, and system biology ap-
proach to bionetworks.

While progress in the first line of research often contributes to important
progress in Information and Communication Technology (ITC), advances in the
second line of research often remind the general scientific community that com-
puter science is also the fundamental science of information processing, and as
such a basic science for other scientific disciplines such as, e.g., biology.

The research we present is concerned with the computational nature of bio-
chemical reactions in living cells. In particular we investigate the computational
processes inspired (based on) biochemical reactions.

On the level of abstraction that we adopt, the functioning of a biochemical
reaction is based on facilitation and inhibition: a reaction can take place if all of
its reactants are present and none of its inhibitors is present. If a reaction takes
place, then it produces its product. Therefore a reaction is defined as a triplet
a = (R, I, P), where R, I, P are finite sets called the reactant set of a, the inhibitor
set of a, and the product set of a, and denoted by Ra, Ia, and Pa, respectively. If
S is a set such that R, I, P ⊆ S, then we say that a is a reaction in S.

Then a reaction a takes place (in a given state – a given molecular soup) if all
of its reactants are present and none of its inhibitors is present. Consequently, for
a finite set (state) T , a is enabled by T if Ra ⊆ T and Ia ∩ T = ∅. The result of a

18 A. Ehrenfeucht, G. Rozenberg

on T , denoted by resa(T), is defined by: resa(T) = Pa if a is enabled on T , and
resa(T) = ∅ otherwise.

For a set A of reactions, the result of A on T , denoted resA(T), is defined by:

resA(T) =
⋃

a∈A

resa(T).

Finally, a reaction system, abbreviated rs, is an ordered pair A = (S, A) such
that S is a finite set, called the background set of A, and A is a set of reactions in
S, called the set of reactions of A. For a finite set (state) T ⊆ S, the result of A
on T , denoted resA(T), is defined by:

resA(T) = resA(T).

The framework of reaction systems sketched above and motivated by organic
chemistry of living organisms is based on assumptions that are very different from
(and mostly orthogonal to) underlying assumptions of majority of models in the-
oretical computer science. We will discuss now some of these assumptions.

If a reaction a is enabled by a state T , then the result resa(T) is “locally de-
termined” in the sense that it depends on Ra only. However, the effect of applying
a to T is “dramatically global”, because the whole set T − Pa vanishes (to visu-
alize this effect assume that the cardinalities of T,Ra, and Pa are 10000, 3, and 2
only; then 9998 elements of T will vanish while a has seen/used only 3 elements
of T !!!). This is really orthogonal to models such as, e.g., Petri nets, and it affects
our assumption that there is no permanency of elements: an element of a global
current state will vanish unless it is sustained by a reaction.

When a set of reactions A is applied to a state T , the result of application
is cumulative: it is the union of the results of all individual reactions from A.
Note that we do not have here a notion of conflict between reactions in A: even
if Ra ∩ Rb 6= ∅ for some a, b ∈ A, then still both a and b contribute to resA(T) –
there is no conflict of resources here. Again this is in strong contrast to standard
models in theoretical computer science such as, e.g., Petri nets. This reflects our
assumption about the “threshold supply”: either an element is present, and then
there is “enough” of it, or an element is not present. Therefore, there is no counting
in reaction systems, and consequently, reaction systems is a qualitative rather than
a quantitative model.

Finally, we note that in reaction systems reactions are primary while struc-
tures are secondary. We do not have permanency of elements and consequently,
in transitions from state to state, reaction systems create states (rather than they
transform states). Therefore, reaction systems do not work in an environment, but
rather they create an environment.

Transition and Halting Modes
for Tissue P Systems

Rudolf Freund

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

Summary. A variety of different transition modes for tissue P systems as well as several
halting modes currently are used in the area of membrane computing. In this paper, the
definitions of the most important transition modes and halting modes are explained based
on networks of cells, a general model for tissue P systems. Moreover, some results for
specific variants of tissue P systems working on multisets of objects are recalled.

1 Introduction

Membrane systems were introduced by Gheorghe Păun one decade ago as dis-
tributed parallel computing devices, based on inspiration from biochemistry, es-
pecially with respect to the structure and the functioning of a living cell, which
is considered as a set of compartments enclosed by membranes containing objects
and evolution rules. In the original model of membrane systems, the objects evolve
in a hierarchical membrane structure (see [8], [16]); in tissue P systems (e.g., see
[20], [21], and [11]), the cells communicate within an arbitrary graph topology. In
the original model of membrane systems, the maximally parallel transition mode
was used, yet later on also other new transition modes for P systems and tis-
sue P systems have been introduced and investigated, for example, the sequential
and the asynchronous transition mode as well as the minimally parallel transi-
tion mode (see [6]). In [12], a formal framework for (tissue) P systems capturing
the formal features of these transition modes was developed, based on a general
model of membrane systems as a collection of interacting cells containing multi-
sets of objects (compare with the models of networks of cells as discussed in [5]
and networks of language processors as considered in [7]). Continuing the formal
approach started in [12], the k-bounded minimally parallel transition mode (see
[13]) was introduced, where at most k rules can be taken from each of the sets of
the partitioning of the set of rules used in the minimally parallel transition mode.

In most models of (tissue) P systems, a computation continues as long as still
a (multiset of) rule(s) can be applied; the result of a computation then is taken at
the end of a halting computation (total halting). Recently, various other halting

20 R. Freund

conditions have been investigated; for example, when using partial halting (see
[2], [3], [10]), a computation may only continue as long as from each set of a rule
partitioning at least one rule can still be applied. The result of a computation may
also be extracted at each step of a (halting or non-halting) computation, e.g., see
[4].

The main parts of notions, definitions, and results presented in the following
are taken from [12] and [13] as well as from [3] and [10]. For an introduction to
the area of membrane computing we refer the interested reader to the monograph
[17], the actual state of the art can be seen in the web [22].

2 Preliminaries

We recall some of the notions and the notations we use (for further details see [8]
and [19]). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a lan-
guage) over V , and V + = V ∗ − {λ} where λ denotes the empty string. RE, REG
(RE (T), REG (T)) denote the families of recursively enumerable and regular lan-
guages (over the alphabet T), respectively; MATλ denotes the family of languages
generated by context-free matrix grammars. For any family of string languages F ,
PsF denotes the family of Parikh sets of languages from F and NF the family of
Parikh sets of languages from F over a one-letter alphabet. By N we denote the set
of all non-negative integers, by Nk the set of all vectors of non-negative integers;
[k..m] for k ≤ m denotes the set of natural numbers n with k ≤ n ≤ m. In the fol-
lowing, we will not distinguish between NRE, which coincides with PsRE ({a}),
and RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a mapping
M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of occurrences of a
in M . The size of the multiset M is |M | = ∑

a∈V M (a). A multiset M over V can
also be represented by any string x that contains exactly M (ai) symbols ai for
all 1 ≤ i ≤ k, e.g., by a

M(a1)
1 ...a

M(ak)
k . The set of all finite multisets over the set

V is denoted by 〈V,N〉. Throughout the rest of the paper, we will not distinguish
between a multiset from 〈V,N〉 and its representation by a string over V containing
the corresponding number of each symbol. We may also consider mappings M of
the form M : V −→ N∞ where N∞ = N ∪ {∞}, i.e., elements of M may have an
infinite multiplicity; we shall call such multisets where M (ai) = ∞ for at least
one i, 1 ≤ i ≤ k, infinite multisets. The set of all such multisets M over V with
M : V −→ N∞ is denoted by 〈V,N∞〉.

3 Networks of Cells

In this section we consider membrane systems as a collection of interacting cells
containing multisets of objects like in [5] and [12].

Transition and Halting Modes for Tissue P Systems 21

Definition 1. A network of cells – we shall also use the notion tissue P system –
with checking sets, of degree n ≥ 1, is a construct

Π = (n, V,w, R)

where

1. n is the number of cells;
2. V is a finite alphabet;
3. w = (w1, . . . , wn) where wi ∈ 〈V,N∞〉, for all 1 ≤ i ≤ n, is the multiset ini-

tially associated to cell i (in most of the cases, at most one cell, then being
called the environment, will contain symbols occurring with infinite multiplic-
ity);

4. R is a finite set of rules of the form

(E : X → Y)

where E is a recursive condition for configurations of Π (see definition below)
as well as X = (x1, . . . , xn), Y = (y1, . . . , yn), with xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n,
are vectors of multisets over V . We will also use the notation

(E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n))

for a rule (E : X → Y). If no conditions E are used, we use the simpler nota-
tions X → Y etc.

A network of cells consists of n cells, numbered from 1 to n, that contain (possi-
bly infinite) multisets of objects over V ; initially cell i contains wi. A configuration
C of Π is an n-tuple of multisets over V (u1, . . . , un); the initial configuration of
Π, C0, is described by w, i.e., C0 = w = (w1, . . . , wn). Cells can interact with each
other by means of the rules in R. An interaction rule

(E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n))

is applicable to a configuration C if and only if C fulfills condition E; its application
means rewriting objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n.

The set of all multisets of rules applicable to C is denoted by Appl (Π,C) (a
procedural algorithm how to obtain Appl (Π, C) is described in [12]).

For the specific transition modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C has to be a specific subset of
Appl (Π, C); for the transition mode ϑ, the selection of multisets of rules applicable
to a configuration C is denoted by Appl (Π, C, ϑ).

Definition 2. For the asynchronous transition mode (asyn),

Appl (Π, C, asyn) = Appl (Π,C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

22 R. Freund

Definition 3. For the sequential transition mode (sequ),

Appl (Π,C, sequ) = {R′ | R′ ∈ Appl (Π, C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π, C, sequ) has size 1.

The most important transition mode considered in the area of P systems from
the beginning is the maximally parallel transition mode where we only select mul-
tisets of rules R′ that are not extensible, i.e., there is no other multiset of rules
R′′ % R′ applicable to C.

Definition 4. For the maximally parallel transition mode (max),

Appl (Π, C,max) = {R′ | R′ ∈ Appl (Π,C) and there is
no R′′ ∈ Appl (Π, C) with R′′ % R′} .

For the minimally parallel transition mode, we need an additional feature for
the set of rules R, i.e., we consider a partition of R into disjoint subsets R1 to Rh.
Usually, this partition of R may coincide with a specific assignment of the rules to
the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of sets of rules
Rj , 1 ≤ j ≤ h, with Rj ∩R′ 6= ∅.

There are several possible interpretations of this minimally parallel transition
mode which in an informal way can be described as applying multisets such that
from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g.,
see [6]). For the basic variant as defined in the following, in each transition step
we choose a multiset of rules R′ from Appl (Π,C, asyn) that cannot be extended
to R′′ ∈ Appl (Π, C, asyn) with R′′ % R′ as well as (R′′ −R′) ∩ Rj 6= ∅ and
R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj

from which no rule has been taken into R′.

Definition 5. For the minimally parallel transition mode (min),

Appl (Π, C,min) = {R′ | R′ ∈ Appl (Π, C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with R′′ % R′, (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

In [12], further restricting conditions on the four basic modes defined above,
especially interesting for the minimally parallel transition mode, were considered.
The following variant allasetmin requires that from all applicable partition at least
one rule has to be applied:

Definition 6. For the using all applicable sets minimally parallel transition mode
(allasetmin),

Appl (Π,C, allasetmin) = {R′ | R′ ∈ Appl (Π,C, min) and
for all j, 1 ≤ j ≤ h,
Rj ∩Appl (Π, C) 6= ∅
implies Rj ∩R′ 6= ∅} .

Transition and Halting Modes for Tissue P Systems 23

We now consider a restricted variant of the minimally parallel transition mode
allowing only a bounded number of at most k rules to be taken from each set Rj ,
1 ≤ j ≤ h, of the partitioning into a multiset of rules applicable in the minimally
parallel transition mode.

Definition 7. For the k-restricted minimally parallel transition mode (mink),

Appl (Π,C, mink) = {R′ | R′ ∈ Appl (Π,C, min) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ h} .

For all the transition modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying transition mode:

Definition 8. Given a configuration C of Π and a transition mode ϑ, we may
choose a multiset of rules R′ ∈ Appl (Π, C, ϑ) in a non-deterministic way and
apply it to C. The result of this transition step from the configuration C with
applying R′ is the configuration Apply (Π,C, R′), and we also write C =⇒(Π,ϑ) C ′.
The reflexive and transitive closure of the transition relation =⇒(Π,ϑ) is denoted
by =⇒∗

(Π,ϑ).

Definition 9. A configuration C is said to be accessible in Π with respect to the
derivation mode ϑ if and only if C0 =⇒∗

(Π,ϑ) C (C0 is the initial configuration of
Π). The set of all accessible configurations in Π is denoted by Acc (Π).

Definition 10. A derivation mode ϑ is said to be deterministic (det-ϑ) if
|Appl (Π, C, ϑ)| = 1 for any accessible configuration C.

Definition 11. A computation in a tissue P system Π, Π = (n, V,w, R), starts
with the initial configuration C0 = w and continues with transition steps according
to the chosen transition mode ϑ.

3.1 Halting Conditions

A halting condition is a predicate applied to an accessible configuration. The sys-
tem halts according to the halting condition if this predicate is true for the current
configuration. In such a general way, the notion halting with final state or signal
halting can be defined as follows:

Definition 12. An accessible configuration C is said to fulfill the signal halting
condition or final state halting condition (S) if and only if

S (Π, ϑ) = {C ′ | C ′ ∈ Acc (Π) and State (Π,C ′, ϑ)} .

Here State (Π,C ′, ϑ) means a decidable feature of the underlying configuration
C ′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P systems
area is the total halting, usually simply considered as halting :

24 R. Freund

Definition 13. An accessible configuration C is said to fulfill the total halting
condition (H) if and only if no multiset of rules can be applied to C with respect
to the derivation mode anymore, i.e.,

H (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) and Appl (Π, C ′, ϑ) = ∅} .

The adult halting condition guarantees that we still can apply a multiset of
rules to the underlying configuration, yet without changing it anymore:

Definition 14. An accessible configuration C is said to fulfill the adult halting
condition (A) if and only if

A (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) , Appl (Π,C ′, ϑ) 6= ∅ and
Apply (Π, C ′, R′) = C ′ for every R′ ∈ Appl (Π, C ′, ϑ)} .

We should like to mention that we could also consider A (Π, ϑ) ∪ H (Π,ϑ)
instead of A (Π,ϑ).

For introducing the notion of partial halting, we have to consider a partitioning
of R into disjoint subsets R1 to Rh as for the minimally parallel transition mode.
We then say that we are not halting only if there still is a multiset of rules R′ from
Appl (Π, C) with R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h:

Definition 15. An accessible configuration C is said to fulfill the partial halting
condition (h) if and only if

h (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) and there is
no R′ ∈ Appl (Π, C ′) with
R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h} .

3.2 Goal and Result of a Computation

The computations with a tissue P system may have different goals, e.g., to generate
(gen) a (vector of) non-negative integers in a specific output cell (membrane) or
to accept (acc) a (vector of) non-negative integers placed in a specific input cell at
the beginning of a computation. Moreover, the goal can also be to compute (com)
an output from a given input or to output yes or no to decide (dec) a specific
property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell, but, for example, also be taken modulo a terminal alphabet (T) or by
subtracting a constant from the result (−k).

Such different tasks of a tissue P system may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computations γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ are two other parameters to be specified and clearly defined when defining
the functioning of a tissue P system.

Transition and Halting Modes for Tissue P Systems 25

3.3 Taxonomy of Tissue P Systems

For a particular variant of networks of cells or tissue P systems we have to specify
the transition mode, the halting condition as well as the procedure how to get the
result of a computation, but also the specific kind of rules that are used, especially
some complexity parameters.

For tissue P systems, we shall use the notation

OmtCn (ϑ, φ, γ, ρ) [parameters for rules]

to denote the family of sets of vectors obtained by tissue P systems Π = (n, V, w, R)
of degree n with m = |V |, as well as ϑ, φ, ρ indicating the transition mode, the
halting condition, and the way how to get results, respectively; the parameters for
rules describe the specific features of the rules in R. If any of the parameters m
and n is unbounded, we replace it by ∗.

If the communication structure in the tissue P system is a tree as in the
original model of membrane systems, then we omit the t and use the notations
OmCn (ϑ, φ, γ, ρ) and OmCn (ϑ, φ, γ, ρ).

4 Examples and Results

In this section, we give some examples how several well-known models of (tissue) P
systems can be expressed within the general framework presented in the preceding
section.

4.1 P Systems with Symport/Antiport Rules

For definitions and results concerning P systems with symport/antiport rules, we
refer to the original paper [15] as well as to the overview given in [18]. An antiport
rule is a rule of the form (x, i) (u, j) → (x, j) (u, i) usually written as (x, out;u, in),
xu 6= λ, where j is the region outside the membrane i in the underlying graph
structure. A symport rule is of the form (x, i) → (x, j) or (u, j) → (u, i).

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type of rules α usually written as
antik. The weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|,
respectively. Using only symport rules with weight k induces the type of rules α
usually written as symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and
with |x| + |u| ≤ 3 as well as symport rules of weight 1 are used, we shall write
anti2′ . The following result is well known:

Theorem 1. O∗tC2 (max, H, gen,N) [anti2′] = NRE.

Observe that, within the normal framework of membrane systems, we only need
one membrane separating the environment and the skin region, but this means that
two regions corresponding to two cells are involved.

26 R. Freund

4.2 Purely Catalytic P Systems

Already in the original paper of Gheorghe Păun (see [16]), membrane systems with
catalytic rules were defined, but used together with other noncooperative rules. In
[9] it was shown that only three catalysts are sufficient in one membrane, using
only catalytic rules with the maximally parallel transition mode, to generate any
recursively enumerable set of natural numbers.

A noncooperative rule is of the form (I : (a, i) → (y1, 1) . . . (yn, n)) where a is a
single symbol and I denotes the condition that is always fulfilled. A catalytic rule is
of the form (I : (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n)) where c is from a distinguished
subset C ⊂ V such that in all rules (noncooperative evolution rules, catalytic rules)
of the whole system the yi are from (V − C)∗ and the symbols a are from (V − C).
Imposing the restriction that the noncooperative rules and the catalytic rules in
a tissue P system allow for finding a hierarchical tree structure of membranes
such that symbols either stay in their membrane region or are sent out to the
surrounding membrane region or sent into an inner membrane, then we get the
classical catalytic P systems without priorities. Allowing regular sets checking for
the non-appearance of specific symbols instead of I, we even get the original P
systems with priorities. Catalytic P systems using only catalytic rules are called
purely catalytic P systems. As we know from [9], only two (three) catalysts in one
membrane are needed to obtain NRE with (purely) catalytic P systems without
priorities working in the maximally parallel transition mode, i.e., we can write
these results as follows:

Theorem 2. NRE = O∗C1 (max,H, gen,−2) [cat2]
= O∗C1 (max,H, gen,−3) [pcat3] .

If we now partition the rule set in a purely catalytic P system according to
the catalysts present in each membrane, this partitioning replaces the use of the
catalysts when working in the 1-restricted minimally parallel transition mode,
because by definition from each of these sets then – if possible – exactly one rule
(as with the use of the corresponding catalyst) is chosen: from the set of purely
catalytic rules R we obtain the corresponding set of noncooperative rules R′ as

R′ = {(a, i) → (y1, 1) . . . (yn, n) |
(c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) ∈ R}

as well as the corresponding partitioning of R′ as

R′i,c = {(a, i) → (y1, 1) . . . (yn, n) |
(c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) ∈ R} .

Considering purely catalytic P systems in one membrane, we therefore infer the
following quite astonishing result that when using the 1-restricted minimally paral-
lel transition mode for a suitable partitioning of rules we only need noncooperative
rules:

Transition and Halting Modes for Tissue P Systems 27

Theorem 3. NRE = O∗C1 (min1,H, gen,N) [noncoop] .

When sing the asynchronous or the sequential transition mode, we only obtain
regular sets:

Theorem 4. For every ϑ ∈ {asyn, sequ}, φ ∈ {H,h}, and γ ∈ {gen, acc},

NREG = O∗tC∗ (ϑ, φ, γ, N) [noncoop] .

4.3 Extended Spiking Neural P Systems

In extended spiking neural P systems (without delays, see [1]), the rules are applied
in a sequential way in each neuron, but on the level of the whole system, the
maximally parallel transition mode is applied (every neuron which may use a
spiking rule has to spike, i.e., to apply a rule, see the original paper [14]). When
partitioning the rule set according to the set of neurons, the application of the 1-
restricted minimally parallel transition mode exactly models the original transition
mode defined for spiking neural P systems.

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct Π = (m,S, R) where

• m is the number of neurons; the neurons are uniquely identified by a number
between 1 and m;

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron;

• R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m] (spec-

ifying that this rule is assigned to neuron i), E ⊆ REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed by
this rule, and P is a (possibly empty) set of productions of the form (l, aw)
where l ∈ [1..m] (thus specifying the target neuron), w ∈ N is the weight of the
energy sent along the axon from neuron i to neuron l.

A configuration of the ESNP system is described by specifying the actual num-
ber of spikes in every neuron. A transition from one configuration to another one
is executed as follows: for each neuron i, we non-deterministically choose a rule(
i, E/ak → P

)
that can be applied, i.e., if the current value of spikes in neuron

i is in E, neuron i “spikes”, i.e., for every production (l, w) occurring in the set
P we send w spikes along the axon from neuron i to neuron l. A computation
is a sequence of configurations starting with the initial configuration given by S.
An ESNP system can be used to generate sets from NRE (we do not distinguish
between NRE and RE ({a})) taking the contents, i.e., the number of spikes, of a
specific neuron called output neuron in halting computations.

We now consider the ESNP system Π = (m,S, R) as a tissue P system Π ′ =
(m, {a} , S, R′) working in the 1-restricted minimally parallel transition mode, with

28 R. Freund

R′ =
{(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) |(

i, E/ak → (l1, aw1) . . . (ln, awn)
) ∈ R

}

and the partitioning R′i, 1 ≤ i ≤ m, of the rule set R′ according to the set of
neurons, i.e.,

R′i =
{(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) |(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) ∈ R′

}
.

The 1-restricted minimally parallel transition mode chooses one rule – if possible
– from every set Ri and then applies such a multiset of rules in parallel, which
directly corresponds to applying one spiking rule in every neuron where a rule can
be applied. Hence, it is easy to see that Π ′ and Π generate the same set from
RE {a} if in both systems we take the same cell/neuron for extracting the output.
Due to the results valid for ESNP systems, see [1], we obtain the following result:

Theorem 5. NRE = O1tC3 (min1,H, gen, N) [ESNP] .

4.4 A General Result

For any tissue P system using rules of type α, with a transition mode ϑ, ϑ ∈
{allasetmin, asyn, sequ}, and partial halting, we only get Parikh sets of matrix
languages (regular sets of non-negative integers), provided the checking set for
each rule can be simulated by checking the (independent) applicability of a finite
set of rules (fixed for each rule):

Theorem 6. For every ϑ ∈ {allasetmin, asyn, sequ},
O∗tC∗ (ϑ, h, gen, T) [α] ⊆ PsMAT and
O∗tC∗ (ϑ, h, gen, N) [α] ⊆ NREG.

The proof follows the ideas of a similar result proved for a general variant of P
systems with permitting contexts in [3] and therefore is omitted. We do not know
whether a similar result also holds true for the transition mode min itself instead
of allasetmin.

5 Conclusions

In the general framework considered in this paper, many variants of static tissue
P systems (and P systems as well) can be represented. Although during the last
decade, a great variety of such systems working in different transition mode has
been considered, many specific models of (tissue) P systems still wait for being
considered with other transition modes, for example, with the k-restricted mini-
mally parallel transition mode. Moreover, different variants of halting, especially
partial halting, should be considered for a lot more models of (tissue) P systems
in the future.

Transition and Halting Modes for Tissue P Systems 29

Acknowledgements

I am very grateful to the coauthors of those papers from which most of the defi-
nitions and results have been taken for this paper, especially to Artiom Alhazov,
Marion Oswald, and Sergey Verlan, yet most of all to Gheorghe Păun, whose great
ideas have inspired myself to develop many new variants of P systems.

References

1. A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended spiking neural P systems
generating strings and vectors of non-negative integers, in: H.J. Hoogeboom, Gh.
Paun, G. Rozenberg (Eds.): Pre-proceedings of Membrane Computing, International
Workshop, WMC7, Leiden, The Netherlands, 2006, 88–101.

2. A. Alhazov, R. Freund, M. Oswald, S. Verlan: Partial versus total halting in P sys-
tems, in: M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez (Eds.): Cellular
Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Edito-
rial, Sevilla, 2005, 1–20.

3. A. Alhazov, R. Freund, M. Oswald, S. Verlan: Partial halting in P systems using
membrane rules with permitting contexts, in: J.O. Durand-Lose, M. Margenstern
(Eds.): Proc. of MCU 2007, Orléans, France, LNCS 4664, Springer, 2007, 110–121.

4. M. Beyreder, R. Freund: (Tissue) P systems using noncooperative rules without
halting conditions, in: P. Frisco et al. (Eds.): Pre-Proc. Ninth Workshop on Membrane
Computing (WMC9), Edinburgh, 2008, 85–94.

5. F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan: Networks of Cells and Petri
Nets, in: M. A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez, A. Riscos-Núñez
(Eds.): Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, 2007,
33–62.

6. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal paral-
lelism, Theoretical Computer Science 378 (1) (2007), 117–130.

7. E. Csuhaj-Varjú: Networks of Language Processors. Current Trends in Theoretical
Computer Science (2001), 771–790.

8. J. Dassow, Gh. Păun: On the power of membrane computing, Journal of Universal
Computer Science 5 (2) (1999), 33–49.

9. R. Freund, L. Kari, M. Oswald, P. Sośık, Computationally universal P systems with-
out priorities: two catalysts are sufficient, Theoretical Computer Science 330 (2005),
251–266.

10. R. Freund, M. Oswald: Partial halting in P systems. Intern. J. Foundations of Com-
puter Sci. 18 (2007), 1215–1225.

11. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science 330 (2005), 101–116.

12. R. Freund, S. Verlan, A formal framework for P systems, in: G. Eleftherakis, P.
Kefalas, Gh. Paun (Eds.): Pre-proceedings of Membrane Computing, International
Workshop – WMC8, Thessaloniki, Greece, 2007, 317–330.

13. R. Freund, S. Verlan, (Tissue) P systems working in the k-restricted minimally
parallel derivation mode, in: E. Csuhaj-Varjú, R. Freund, M. Oswald, K. Salomaa
(Eds.): Proceedings of the International Workshop on Computing with Biomolecules,
Österreichische Computer Gesellschaft, 2008, 43–52.

30 R. Freund

14. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems, Fundamenta Infor-
maticae 71, 2–3 (2006), 279–308.

15. A. Păun, Gh. Păun: The power of communication: P systems with symport/ antiport,
New Generation Computing 20 (3) (2002), 295–306.

16. Gh. Păun: Computing with membranes, J. of Computer and System Sciences 61, 1
(2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

17. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
18. Y. Rogozhin, A. Alhazov, R. Freund: Computational power of symport/antiport:

history, advances, and open problems. In: R. Freund, Gh. Păun, G. Rozenberg, A.
Salomaa (Eds.): Membrane Computing. 6th International Workshop WMC 2005, Vi-
enna, Austria, Lecture Notes in Computer Science 3850, Springer-Verlag, 2006, 1–30.

19. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

20. Gh. Păun, Y. Sakakibara, and T. Yokomori: P systems on graphs of restricted forms.
Publicationes Matimaticae 60, 2002.

21. Gh. Păun and T. Yokomori: Membrane computing based on splicing, in: E. Winfree
and D. K. Gifford (Eds.): DNA Based Computers V, volume 54 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, 217–232. American
Mathematical Society, 1999.

22. The P Systems Web Page: http://ppage.psystems.eu.

Conformon P Systems and
Topology of Information Flow

Pierluigi Frisco

School of Mathematical and Computer Sciences, Heriot-Watt University
EH14 4AS Edinburgh, UK
pier@macs.hw.ac.uk

The ten years young field of Membrane Computing saw, in between other things,
the definition of a number of formal models of computation all sharing a well de-
fined topological structure, locality of interaction and parallel processing [10, 6, 1].
These models allowed us to broaden our understanding of computation. Now, for
instance, we know that the simple passage of symbols from one compartment
to another in P systems with symport/antiport is sufficient to compute [9], that
conformon P systems with either positive or negative values have similar compu-
tational power [4], that dissolution can play an important role in the computing
power of P systems with active membranes [8], etc.

All these results told us a lot about how to perform computation. One impor-
tant question that often went unanswered is why a certain model of P system could
or could not compute a specific set of numbers. The answer to this why if from the
one hand would be an abstract answer (because it would not immediately link a
formal model with the biological reality that inspired it or with possible implemen-
tations) from the other hand it would be a deep answer. This answer would allow
us to understand more fundamental features that have to be present in a formal
system in order to compute, it would allow us to classify different formal systems
in a uniform way, it would possibly give us new tools to prove the computational
power and other properties of different kinds of systems, etc.

Recently a way to answer this why, using the topology of information flow,
has been suggested [3, 5, 6, 7] In this paper we survey the links between topology
of information flow and conformon P systems. At the same time we show how a
similar answer could be given for other formal models of computations (P systems
and not). The given directions of research and open problems are meant to inspire
further developments in this line of research.

References

1. G. Păun, editor. The Oxford Handbook of Membrane Computing. Oxford University
Press, 2010. in press.

32 P. Frisco

2. R. Freund, G. Lojka, M. Oswald, and G. Păun, editors. Membrane Computing. 6th

International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Revised
Selected and Invited Papers, volume 3850 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Heidelberg, New York, 2006.

3. P. Frisco. P systems, Petri nets, and Program machines. In Freund et al. [2], pages
209–223.

4. P. Frisco. Conformon-P systems with negative values. In G. Eleftherakis, P. Ke-
falas, G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing. 8th

International Workshop, WMC 2007, Thessaloniki, Greece, June 2007, Revised Se-
lected and Invited Papers, volume 4860 of Lecture Notes in Computer Science, pages
331–344. Springer-Verlag, Berlin, Heidelberg, New York, 2007.

5. P. Frisco. A hierarchy of computational processes. Technical report, Heriot-
Watt University, 2008. HW-MACS-TR-0059 http://www.macs.hw.ac.uk:8080/

techreps/index.html.
6. P. Frisco. Computing with Cells. Advances in Membrane Computing. Oxford Uni-

versity Press, 2009.
7. P. Frisco and O. H. Ibarra. On languages accepted by P/T systems composed of joins.

In DCFS 2009, 11th workshop on Descriptional Complexity of Formal Systems, 2009.
To appear in EPTCS.

8. M. A. Gut́ırrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, and F. J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In
Freund et al. [2], pages 226–242.

9. A. Păun and G. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3):295–306, 2002.

10. G. Păun. Computing with membranes. Journal of Computer and System Science,
1(61):108–143, 2000.

Formal Verification and Testing
Based on P Systems

Marian Gheorghe1, Florentin Ipate2, Ciprian Dragomir1

1 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
m.gheorghe@dcs.shef.ac.uk

2 Department of Computer Science and Mathematics
University of Pitesti, Romania
florentin.ipate@ifsoft.ro

Summary. In this paper it is surveyed the set of formal verification methods and testing
approaches utilised for applications based on P systems.

P systems (also called membrane systems) represent a class of parallel and dis-
tributed computing devices which are inspired by the structure and the functioning
of living cells [11], [12]. The model has been used for theoretical investigations as
well as a vehicle to represent different problems from various domains [13]. A rich
set of software tools have been produced to implement various simulators [7].

As a consequence of using membrane systems to specify, model and simulate
various systems, certain methods and techniques have been employed to verify
they work properly.

Formal methods have been used for various types of systems and using different
formalisms. Petri nets based methods have been studied with respect to translating
various classes of P systems into this formalism. Tools and techniques developed
for Petri nets become available for the description, analysis, and verification of
behavioral properties of membrane systems, and in particular for the investigation
of the structure of the behavior of P systems [10]. It also allows to study causality
and (a)synchrony, as basic properties of such systems.

Structural operational semantic allowing to systematically translate certain
classes of P systems into a specific rewriting logic formalism called Maude [6],
[2], has been provided. This approach allows to formally verify properties of the
systems specified with these classes of P systems by using linear temporal logic
model checking approaches [1].

For probabilistic and stochastic P systems special relationships with classes of
stochastic process algebras and Petri nets have been investigated and a special
purpose model checking approach based on Prism has been studied [3].

34 M. Gheorghe, F. Ipate, C. Dragomir

A complementary approach to formal verification is usually based on testing.
More specifically, model based testing has been investigated for simple classes of
P systems [8], [9] and ways to devise adequate test sets have been proposed. These
techniques are somehow similar to studies investigating the role of the so called
observers [4], [5] for certain classes of P systems.

This paper will present a survey on the main verification methods and testing
tools applied to P systems and their advantages and limitations will be revealed.

Acknowledgements. The research of MG and FI is supported by CNCSIS grant
no.643/2009, An integrated evolutionary approach to formal modelling and testing.

References

1. O. Andrei, G. Ciobanu, D. Lucanu, (2005) Executable specifications of P systems, in
G. Mauri et al, eds., 5th Workshop on Membrane Computing, LNCS 3365, 126–145.

2. O. Andrei, G. Ciobanu, D. Lucanu, (2007) A rewriting logic framework for opera-
tional semantics of membrane systems, Theoretical Computer Science, 373, 163–181.

3. F. Bernardini, M. Gheorghe, R. Romero-Campero, N. Walkinshaw, (2007) Hybrid
approach to modeling biological systems, in G. Eleftherakis et al., eds., 8th Workshop
on Membrane Computing, LNCS 4860, 138–159.

4. M. Cavaliere, (2008) Computing by observing: A brief survey, in A. Beckmann, C.
Dimitracopoulos, B. Lowe, eds., Computability in Europe 2008, CiE 2008, LNCS
5028, 110–119.

5. M. Cavaliere, R. Mardare (2006) Partial knowledge in membrane systems: A logical
approach, in H.J. Hoogeboom et al., eds., 7th Workshop on Membrane Computing,
LNCS 4361, 279–297.

6. G. Ciobanu, (2009) Semantics of P Systems, in Gh. Păun, G. Rozenberg, A. Salomaa
(eds.) Handbook of membrane computing, Chapter 16, 413–436, Oxford University
Press (to appear).

7. D. Dı́az-Pernil, C. Graciani, M. A. Gutiérrez-Naranjo, I. Pérez-Hurtado, M. J. Pérez-
Jiménez, (2009) Software for P systems, in Gh. Păun, G. Rozenberg, A. Salomaa
(eds.) Handbook of membrane computing, Chapter 17, 437–454, Oxford University
Press (to appear).

8. M. Gheorghe, F. Ipate, (2008) On testing P systems, in D. W. Corne, P. Frisco, Gh.
Păun, G. Rozenberg, A. Salomaa (eds.) 9th Workshop on Membrane Computing,
LNCS 5391, 204–216.

9. F. Ipate, M. Gheorghe, (2008) Testing non-deterministic stream X-machine models
and P systems, Electronic Notes in Theoretical Computer Science, 227, 113–226.

10. J. Kleijn, M. Koutny, (2009) Petri nets and membrane computing, in Gh. Păun,
G. Rozenberg, A. Salomaa (eds.) Handbook of membrane computing, Chapter 15,
389–412, Oxford University Press (to appear).

11. Gh. Păun, (2000) Computing with membranes, Journal of Computer and System
Sciences, 61, 108–143.

12. Gh. Păun and G. Rozenberg, (2002) A guide to membrane computing, Theoretical
Computer Science, 287, 73–100.

13. Gh. Păun, (2002) Membrane computing. An introduction, Springer, Berlin.

A Look Back at Some Early Results in Membrane
Computing ?

Oscar H. Ibarra

Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
Email: ibarra@cs.ucsb.edu

There have been tremendous research activities in the area of membrane computing
initiated by Gheorghe Păun in a seminal paper [1] ten years ago (see also [2]).
Membrane computing identifies an unconventional computing model, namely a P
system, from natural phenomena of cell evolutions and chemical reactions. Due to
the built-in nature of maximal parallelism inherent in the model, P systems have a
great potential for implementing massively concurrent systems in an efficient way
that would allow us to solve currently intractable problems in much the same way
as the promise of quantum and DNA computing, once future bio-technology (or
silicon-technology) gives way to a practical bio-realization (or chip-realization).

A P system is a computing model, which abstracts from the way the living cells
process chemical compounds in their compartmental structure. The regions defined
by a membrane structure contain objects that evolve according to specified rules.
The objects can be described by symbols or by strings of symbols, and multisets
of these objects are placed in the regions of the membrane structure. The mem-
branes themselves are organized as a Venn diagram or a tree structure where one
membrane may contain other membranes. By using the rules in a nondeterminis-
tic, maximally parallel manner, transitions between the system configurations can
be obtained. A sequence of transitions shows how the system is evolving. Various
ways of controlling the transfer of objects from a region to another and applying
the rules, as well as possibilities to dissolve, divide or create membranes have been
studied. P systems were introduced with the goal to abstract a new computing
model from the structure and the functioning of the living cell (as a branch of the
general effort of Natural Computing – to explore new models, ideas, paradigms
from the way nature computes). Membrane computing has been very successful:
many models have been introduced, most of them Turing complete and/or able
to solve computationally intractable problems (NP-complete, PSPACE-complete)
in a feasible time, by trading space for time; development of software and sim-
ulations; proposals for various potential applications. See the P system website
? This research was supported in part by NSF Grant CCF-0524136.

36 O.H. Ibarra

at http://ppage.psystems.eu/ for a large collection of papers in the area, and in
particular the monograph [3].

On this tenth anniversary of the Workshop on Membrane Computing, it seems
appropriate and fitting to look back at some early basic contributions in the area.
In this talk, we will give a brief summary of results (mostly by the author and
his collaborators: Zhe Dang, Andrei Păun, Gheorghe Păun, Hsu-Chun Yen, Sara
Woodworth), some of which answered fundamental open questions in the field.
These concern complexity issues such as universality versus non-universality, de-
terminism versus nondeterminism, various notions of parallelism, membrane and
alphabet-size hierarchies, and characterizations of some classes of P systems. We
will also discuss some related open problems.

References

1. Gh. Păun. Computing with membranes. Turku University Computer Science Research
Report No. 208, 1998.

2. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

3. Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, 2002.

From P to MP Systems

Vincenzo Manca

Department of Computer Science
University of Verona
vincenzo.manca@univr.it

Summary. Metabolic P systems (MP systems) represent metabolic processes in a dis-
crete mathematical framework based on P systems. MP systems are presented, with a
special emphasis to their roots and to their relationship with P systems, which provided
the right conceptual framework for their development. A synthetic algebraic formulation
of MP system is given, and the log-gain theory of MP systems is outlined, by discussing
the research perspectives and the methodological aspects of this approach.

1 Introduction

Metabolism is one of the basic phenomenon on which life is based. Any living
organism has to maintain processes which introduce matter of some kind from the
external environment, transform internal matter by changing its distribution in a
number of biochemical species, and expel outside matter which is not useful or
dangerous for the organism. Of course life cannot be reduced to this basic cycle of
matter transformation, but no life can exist without such a kind of basic mecha-
nism. To be more realistic, metabolism is not a unique process, but a network of
strictly related processes, usually indicated as metabolic pathways. They differ for
the involved substances, for the reactions and the enzymes performing them, for
the shapes of the dynamical curves they determine (the amount of substances dur-
ing time). The main question on the essence of life processes need to understand
the origins of metabolic processes, their reliability, their integration and their re-
lationship with other essential life functionalities which need metabolism as their
basic energetic fuel.

A (finite) multiset is a collection of elements where the same kind of element
may occur many times, therefore a chemical reaction is representable by a multiset
rewriting rule. In a wide sense, metabolism is any kind of matter transformation
which changes (bio)molecules of some types into molecules of other types (possibly
allowing molecules come/go from/to the external environment).

A metabolic P system, shortly an MP system, is essentially a multiset grammar
with maps regulated by functions. As it will results evident from the next section,

38 V. Manca

the letter P of MP systems comes from the theoretical framework of P systems
introduced by Păun, in the context of membrane computing [39]. In fact, MP
systems are a special class of P systems introduced for expressing metabolism in
a discrete mathematical setting.

A peculiar aspect of MP systems is given by the Log-gain theory, specifically
devised for them [28]. This theory, provides tools for solving the inverse dynamical
problem for real metabolic processes. This means that, given a time series of the
states of an observed metabolic system (at a specified time interval τ), then it
is possible to deduce, by suitable algebraic manipulations, the functions regulat-
ing the rules which represent the metabolic transformations in terms of multiset
rewriting. In this manner, an MP system can be defined which coincides, within
a certain approximation, with the observed real system. This coincidence is, in
many cases, an evidence of adequacy between the systemic logic of the observed
real system and the mathematical structure of the deduced MP system.

Many phenomena were reconstructed in terms of MP systems (e. g., Gold-
beter’s mitotic oscillator, Belousov-Zhabotinski reaction in the Nicolis and Pri-
gogine’s formulation, and Lotka-Volterra’s Prey-Predator model [15, 30, 16]). In
all these cases a complete concordance with the classical models was found. More-
over, some synthetic oscillators with interesting behaviors were easily discovered
[27, 28, 33], and some MP models were directly deduced by using the Log-gain
theory (a part of the photosynthetic NPQ phenomenon of NonPhotochemical
Quencing, for which no standard reliable model is known) [36]. A specific soft-
ware was developed for MP systems, starting from a prototypal version developed
by Luca Bianco (Psim, MPsim, MetaPlab) [9, 11, 35, 31] which is downloadable
from http://mplab.sci.univr.it, and http://www.cbmc.it).

In this paper we give a quick presentation of the theory of MP systems, with a
special emphasis to its roots and to its relationship with P systems which provided
the right conceptual framework for its development.

2 Historical backgrounds

The occasion for writing this paper, the decennial anniversary of Membrane Com-
puting, suggested me to briefly reconstruct the initial ideas underlying the MP
systems, aimed at developing a discrete theory of metabolic processes based on P
systems. Along the line of this historical reconstruction it is possible to grasp in
a deeper way the link between P systems and MP system, which rather than of
a technical nature is based on the essential assimilation of P perspective in the
context of symbolic analysis of metabolism.

My interests in this direction date around the late years 1990. The initial
intuition of such a kind of research was the apparent similarity between processes
of symbol transformation, typical of logic or formal language theory, with the
processes of matter transformations typical of chemistry and biochemistry. If we
represent atoms and molecules by suitable symbols, then any chemical reaction is
directly translated by a rule of symbol manipulation.

From P to MP Systems 39

Let me report an example which was a sort of initial formalization exercize.
It describes a famous process known as Daniell’s cell, a variant of Volta’s pile. I
presented this example during my invited talk in a meeting organized in 1997 by
Gheorghe Păun in Mangalia (not so far from Curtea de Arges) [21].

Daniell’ cell is constituted by two rods of two different metals, zinc and copper
(Zn,Cu) which are partially immersed in two solutions where the respective salts
in ionic state ZnSO4, CuSO4 are present (see Fig 1). The two salt solutions are
separated, but a salt bridge allows ions to pass through the two compartments.
In the zinc compartment, the Zn metal molecules prefer to pass from the metal
state to the ion state Zn++, therefore some electrons are in abundance on the zinc
rod. If a conductor wire connects the two metal rods, these electrons, according
to the greater electron affinity (electronegativity) of copper with respect to the
zinc, flow from the zinc rod to the copper rod. After that, the copper ions in
the copper solutions, after attracting these exceeding electrons, pass from the ion
state to the metal state. At this point, a different electrical charge is present
in the two solutions, because in the zinc compartment is present a quantity of
SO−−4 ions which are not balanced by Zn++, while in the copper solution, the
opposite phenomenon happens, because a quantity of Cu++ is not balanced by the
corresponding SO−−4 ions. In this situation, a passage happens of SO−−4 ions from
the copper to the zinc compartment, in order to restore the electrical equilibrium.
In conclusion, an electrical flow along the conductor wire between the rods is
coupled with the ion flows through the salt bridge. This provides a cycle which
persists, consuming the metal zinc, producing metal copper, and moving ions.
In principle the cycle continues until zinc is available, and both kinds of ions
are present in both compartments. The membrane perspective of this example is
apparent. According to Păun’s terminology, in this case a neuron-like membranes
system represents the process, which is essentially based on transformation and
passage of object symbols through membranes.

In my formalization the concept of membrane was explicit, but the symbol
manipulation was based on a special kind of Post rules, which I was very familiar
with, and which are a powerful formalism for symbol manipulation. But this is
exactly the crucial point which made my formalization unsatisfactory in many
aspects. Post rules are too powerful, and moreover, in this context strings are not
the right data structure for expressing the chemical reactions.

Maybe Gheorghe Păun got some suggestions from my conference in Mangalia in
August of 1997 (the paper [34]) including the Daniell’s cell example was published
in 1999). However, Gheorghe Păun (informally, George) sent me a preliminary
version of his seminal paper on Membrane Computing [38] in the October of 1998.
In his paper membrane were acutely conjugated with multiset rewriting, and from
it I surely got the idea of using multisets in the representation of biochemical
reactions.

This perspective emerged to me quite slowly, because I spent almost one year
by searching the right form of a combinatorial mechanism for molecule manipula-
tions, by essentially considering special forms of Post rules (with string variables

40 V. Manca

Fig. 1. A Daniell’s cell (on the right) and its membrane representation (on the left).

and suitable constraints) [22]. In any case, in 2001, I realized what now seems to
me almost obvious: that molecule populations and their transformations are the
essence of metabolism and that multiset rewriting is the natural way to mathe-
matically express this reality. However, an aspect of Paun’s P systems was not
the exact ingredient to use. The original way of applying rules in P systems was
the nondeterministic maximal parallel approach. This perspective is mathemati-
cally clear and elegant, moreover allows the proof of computational universality
for many variants of P systems. But it is not realistic to assume that biochemical
reactions work in this way. For example, if a so efficient approach were applied to
the ATP → ADP molecule transformation in our cells, then our bodies would al-
most instantaneously burned. Therefore, the next step, for a P system perspective
to metabolism was the molar perspective and the mass partition principle which
we will briefly recall in the next section. Another aspect deserves to be prelimi-
narily remarked. Biological processes are subjected to noise, fluctuations, external
influxes, but at large, they are essentially deterministic. This determinism is of
statistical nature. In fact, the individual behavior is strongly variable, but popula-
tions obey to strict laws. This introduces a second level of considering multiset. A
rule W + 6C → Z + 6O (we use multiset polynomial notation) has to be read not
only as one molecule occurrence of W (water) and six of C (carbon) to be replaced
by one of Z (sugar) and six of O (oxygen), but rather, as a replacement of popula-
tions of N and 6N objects. The size N is the (molar) reaction unit, depending, in
general, on the state of the system. This perspective of multiset rewriting changed
completely the discrete mathematical point of view about metabolism, providing
the right conceptual framework for quantitative analysis of metabolic processes.

In 2004, I started to apply this idea during the supervision of Luca Bianco’s
Phd thesis [4] (in the meantime I moved from Pisa to Verona). Luca was asked
to model some biological phenomena where differential models were available, by
trying to find the same dynamics given by these known models, by using a P
system perspective (a similar attempt, more devoted to aspects of biological local-
ization, was afforded in [18]). Finding the rules was generally a simple task, but

From P to MP Systems 41

the definition of the strategy for rewriting rules was very hard. Finally, we found a
procedure, later called “Metabolic P Algorithm” (MPA), which was adequate for
the example we considered, and which was based on a multiset representation of
chemical transformations (I realized in [27] that they were an abstract formulation
of Avogadro and Dalton principles in chemistry). The “official” appearance of MP
system was in 2004 [30], but Initially, their focus was on a new rewriting strategy
for P systems [5, 6, 7]. Later it was clear that this was only an aspect of the MP
approach, because other radical changes were necessary, and MPA was a particular
case of a regulation mechanism based on the notion of population mole. In fact,
the name of MP systems was introduced in 2006, when this awareness emerged
[23, 24]. In the membrane computing community, rewriting strategies different
from maximal parallel rewriting were proposed, especially according to probabilis-
tic approaches [40, 41], however neither of them adopted the molar perspective,
which is peculiar to the development of the log-gain theory of MP systems. The
interest in metabolism was a specific aspect of a more general interest in a dynam-
ical, rather than computational, perspective in the study of P systems, addressed
in [2], and more recently in [33]. The paper [42] was particularly influential in
drawing my attention toward oscillatory phenomena.

3 The molar perspective in multiset rewriting

Let us give a first intuition of the molar perspective in the multiset representation
of biochemical reactions. A reaction 2a + b → c identifies a transformation such
that, when it is applied to a population of objects where types a and b occur in
more than 20000 and 10000 elements respectively, and when its flux regulation map
specifies a reaction unit of, say 10000 elements, then, in the passage from two time
instants at a given time distance τ , these 30000 elements are replaced by 10000 new
objects of type c. For example, 20000 molecules of Hydrogen, plus 10000 molecules
of Oxygen, are transformed into 10000 molecules of water. Time interval between
consecutive instants depends on the macroscopic level is chosen for considering the
dynamics of the system in question. The state, on which reaction units depend,
is given by the value of some magnitudes, called parameters, which can influence
the reactions (e.g., temperature and pressure) and on the sizes of the different
populations inside the system, in correspondence to the different kinds of objects.

A metabolic P system is a discrete representation of a metabolic system. It is
essentially given by a set of reactions, each of them equipped with a corresponding
flux regulation map. Such a map provides, for any state of the system, a (flux)
reaction unit (rules and reactions are often used synonymously, and also fluxes
and reaction units will be equivalently used).

The notion of MP system was explicitly defined, as a special class of P sys-
tems, during the Brainstorming Week on Membrane Computing, held in Sevilla
in 2006 [23]. The initial formulations of MP systems were based on the usual
string notation of P systems (sometimes using the additive notation). in Table

42 V. Manca

1 is given an example of this notation for Golbeter’s model of mitotic oscillator,
which we will consider later on. In this case, the rules are based on five substances
{C,M,Mp, X,Xp} (Cyclin, M-active kinase, M-inactive kinase, X-protease, X–
inactive protease) .

However, the same multiset grammar can be easily expressed in algebraic no-
tation. In fact any multiset over {C,M,Mp, X,Xp} is easily denoted by a vector
of N having as its first component the multiplicity of C, as second component
the multiplicity of M , and so forth (in tis context, an implicit order is assumed
over substances). In this manner a multiset rewriting rule αr → βr becomes repre-
sentable by a pair of vector (r−, r+) (left and right vector), where r− is the vector
expressing the multiset αr, and r+ is the vector expressing the multiset βr. For
example the rule r3 : C +Mp → C +M is denoted by the pair of vectors

1
0
1
0
0

1
1
0
0
0

r1 : λ→ C
r2 : C → λ
r3 : C +Mp → C +M
r4 : C +X → X
r5 : M →Mp
r6 : Xp +M → X +M
r7 : X → Xp

Table 1. The rules of a mitotic oscillator.

The algebraic sum of the right component minus the left one provides the
stoichiometric balance of the rule. It is important to distinguish in a rule its left
part, its right part, and its stoichiometric balance. The left part (left vector) ex-
presses the reactants necessary for activating the rule, the right part expresses the
products replacing the reactants, while the stoichiometric balance expresses the
effective variation performed by the application of the rule. Even if two rules have
the same stoichiometric balance, they can be different in the amount of matter
they need for their activation. For example the rule 2C +Mp → 2C +M has the
same stoichiometric balance of the rule C + Mp → C + M , but the latter needs
half of the quantity of c necessary for the activation of the former.

1
1
0
0
0

 –

1
0
1
0
0

 =

0
1
−1
0
0

From P to MP Systems 43

This algebraic representation of rules remarkably simplify the definition of MP
system. The reader is advised to compare the next definition with the previous
definitions of MP system [27, 28, 32]. However, it is not only matter of notation
simplification. In fact, important properties of reactions need to be expressed by
usual linear algebra concepts. For example, as it will be explained, the linear
independence of some reactions is an essential requirement for discovering the
fluxes responsible of a given dynamics.

Definition 1. Let Rn be the vector (phase) space of n substance quantities (con-
sidered with a certain order). An MP system of type (n,m, k) is a deterministic
discrete dynamical system, specified by a structure:

(R,H,Φ,X[0], τ, ν, µ)

where:
• R is a pair (R−, R+) of matrices n×m over N, constituted by the m (column)
vectors of Nn denoted by r−1 , . . . , r

−
m and r+1 , . . . , r

+
m respectively. A pairs (r−j , r

+
j)

for 1 ≤ j ≤ m specifies a reaction of the system (left and right vectors). The
n×m matrix A = R+−R− over Z (the componentwise algebraic difference of the
matrices R+ and R−) is the stoichiometric matrix associated to R;
• H : N→ Rk is the function providing, at each step, the parameter vector;
• Φ : Rn × Rk → Rm is the (vector) function (ϕ1, . . . , ϕm) providing the flux
vector corresponding to a state vector of Rn and to a parameter vector of Rk;
• X[0] ∈ Rn is the initial state of the system;
• τ ∈ R is the time interval between two consecutive steps;
• ν ∈ R is the molar population (conventional) unit;
• µ :∈ Rn is the vector of the molar masses of substances.

The dynamics of this system, that is, its state X[i], at step i ∈ N, i > 0, is given
by the following recurrent vector equation, called EMA[i] (Equational Metabolic
Algorithm)

X[i] = A× Φ(X[i− 1], H[i− 1]) +X[i− 1] (1)

for any step i, Φ(X[i], H[i]) is abbreviated by U [i], called the flux vector at step i.

�

The intuition behind the previous definition is that of a system defined by:
reactions (among substances), parameters, regulations, initial state, and scale fac-
tors (time and population units, plus molecular masses). Reactions transform sub-
stances, while flux regulation maps regulate the amount of matter transformed
by each reaction at each step, and parameters, which are not directly involved
in reactions, together with the substance quantities, influence the flux regulation
maps. Scale factors do not enter in the mathematical description of the dynamics,
but they define its physical interpretation, according to an adequate time/mass
scale of the phenomenon under investigation.

MP systems can be depicted by means of MP graphs [29, 19] with five kinds
of nodes and four kinds of edges (see Fig. 3). Nodes are: substance nodes, reaction

44 V. Manca

nodes, regulation nodes, parameter nodes, and gate nodes denoting matter fluxes
from/to the external environment (lambda rules). Edges are: transformation edges,
regulation edges and dependency edges.

Table 2 specifies, an MP model, of type (5, 7, 1), for a famous oscillator oc-
curring in the mitosis of early amphibian embryos, established by Goldbeter in
terms of differential equations [20]. In the order, are indicated: i) the constants
(used for e better reading of formulae and including the temporal interval τ and
the population unit ν, but leaving unspecified the molar weights), ii) the initial
values of substance quantities, iii) the rules with the corresponding flux regula-
tion maps, and iv) the parameters with their evolution functions (i ∈ N are the
steps). This MP formulation is obtained by extending a procedure introduced in
[17] and provides the same dynamics of the original differential model (see [27, 28]
for Goldbeter’s differential equations, for other MP models, and for discussions
concerning their identification).

K1 = 0.005 ν K2 = 0.005 ν K3 = 0.005 ν
K4 = 0.005 ν VM1 = 3 ν Vi = 0.025 · 10−6 ν
V2 = 1.5 ν V4 = 0.5 ν Qd = 0.02 · 10−6 ν
Vd = 0.25 Kc = 0.5 · 10−6 ν τ = 0.001 min
Kd = 0.01 S = 0.001 ν = 6.02× 1023

C = 0.01 · 10−6 ν M = 0.01 ν Mp = 0.99 ν X = 0.01 ν Xp = 0.99 ν

r1 : λ→ C ϕ1 = S · Vi

r2 : C → λ ϕ2 = S ·Kd · C
r3 : C +Mp → C +M ϕ3 = (S · V1 ·Mp)/(K1 +Mp)
r4 : C +X → X ϕ4 = (S · Vd ·X · C)/(Qd + C)
r5 : M →Mp ϕ5 = (S · V2 ·M)/(K2 +M)
r6 : Xp +M → X +M ϕ6 = (S ·M ·Xp)/(K3 +Xp)
r7 : X → Xp ϕ7 = (S · V 4 ·X)/(K4 +X)

V1[i] = (C[i] · VM1)/(Kc + C[i])

Table 2. MP formulation of Goldbeter’s mitotic oscillator.

4 The log-gain theory of MP Systems

The main question, at beginning of the log-gain theory for MP systems, is the
following inverse dynamic problem. Given a time series (X[i], H[i]) ∈ Rn+k (for
i = 0, 1, 2, . . . t) of some consecutive states and parameters of a metabolic system
(at a time interval τ), is it possible to deduce a corresponding time series of

From P to MP Systems 45

vectors U [i] ∈ Rm (for i = 0, 1, 2, . . . t − 1) giving the reaction units at any step,
which put in the equation (1) provide the time series of substance quantities (for
i = 1, 2, . . . t)? This is the discrete dynamical problem of reaction flux discovery.
The deduction of time series U [i] implies the knowledge, at the time granularity τ ,
of the systemic logic governing the matter transformations underlying the observed
metabolic states. When vectors U [i] are known, the discovery of maps Φ which
provide U [i], in correspondence to the vectors (X[i], H[i]), is a typical problem
of approximation which can be solved with standard techniques of mathematical
regression. Fig. 2 expresses graphically the two procedures, going in the opposite
verses, of generation of a dynamics from a given MP system, and of providing an
MP system fitting with an observed dynamics. The equation linear systems EMA
provide the dynamics of an MP system, while the equation linear system OLGA,
allow us to perform the opposite task. In the following, we will outline the log-gain
theory, which determines the methods for construct the OLGA systems.

Fig. 2. Synthesis and analysis of dynamics by means of MP systems: direct and inverse
dynamical problems.

An important remark is due in this context (which will be more extensively
reconsidered, in the final section). The approach of flux discovery is essentially
observational, macroscopic, and global, in a sense which is opposite to the per-
spective of differential models, which is infinitesimal, microscopic and local. In
fact, we do not pretend to discover the real kinetic responsible, at a microscopic
level, of the biochemical dynamics of each reaction, but we are determined to cap-
ture the global pattern of reaction ratios of an observed dynamics. In other words,
leaving unknown the real local internal dynamics, we decide to consider the system
at an abstraction level which is sufficient to reveal the logic of the behavior we

46 V. Manca

observe. This more abstract approach can be less informative, with respect to spe-
cific important details, but such a more generic information could be very useful
in discriminating important aspects of the reality, and often, especially in the case
of very complex systems, is the only way for grasping a kind of comprehension of
the reality under investigation. From a mathematical point of view, the searched
vectors U [i] are the solutions of the equation system (1) (for i = 0, 2, . . . t− 1).

We call it EMA (Equational Metabolic Algorithm) when it is used for calcu-
lating the substance quantities, from the knowledge of flux regulation maps, while
we call it ADA (Avogadro and Dalton Action), when we search so determine U [i]
from the knowledge of substance quantities (Avogadro refers to the integer stoi-
chiometric coefficients, and Dalton to the summation of the effects of reactions).
Unfortunately, often, ADA is not sufficient to provide the solutions because the
number m of reactions is greater than the number n of substances. Therefore, we
need to extend ADA by adding new equations.

The log-gain principle assist us in the search of further equations for identifying
the fluxes. This principle derives from a general biological principle called allom-
etry, according to which, in a living organism, the global variation of its typical
magnitudes follow a sort of harmonic rule according to which their relative vari-
ations are proportional to the relative variations of the magnitudes related them.
In differential terms the relative variation in time of a magnitude coincides with
the variation of its logarithm, therefore we used the term “log-gain” for any law
grounded on this assumption. In the specific context of our problem, we assume
that the relative variations of a reaction flux is a linear combination of the relative
variations of substance quantities and parameters affecting the reaction, and in a
more restrict case, it is the sum of the relative variations of the reactants of the
reaction. We refer to the papers [28] for a detailed account on the log-gain theory
of MP systems. The principle was initially formulated starting from its general
form. Then, in three subsequent transformations, it provided an equation system
COLG (Covering Offset Log-Gain), involving fluxes, with a number of equations
equal to the number of reactions, but with additional unknown variables, called
offset log-gain, equal to the number of substances. This means that the whole sys-
tem constituted by ADA and COLG has 2m+n variables. Moreover, if we consider
the two systems, at the same observation step i, then it results a nonlinear system.

Here, an induction argument helps us to obtain a further reduction of variables,
in order to get a square equation linear system. In fact, if we consider ADA[i+ 1]
and COLG[i], assuming to know the fluxes at step i, we contemporarily reduce
the variables to n+m and remove the nonlinearity of the system.

Now we report the final form of a system of equations called OLGA which
solves our initial problem of flux discovery (× is the usual matrix product, while
+, ·,−, / are the componen-twise vector operations of sum, product, difference and
division, respectively).

X[i+ 2] = A× U [i+ 1] +X[i+ 1] (2)
(U [i+ 1]− U [i])/U [i] = B × (W [i+ 1]−W [i])/W [i] + C · P (3)

From P to MP Systems 47

where W is the (n+k) dimensional vector of substances and parameters, B is
a boolean matrix choosing, for any reaction, its tuners, that is the magnitudes
affecting its flux, and P is an m-dimensional vector of reals, expressing the reaction
offsets, that is, the errors introduced in the log-gain approximations of fluxes, while
C is a boolean m-dimensional vector, such that

∑
C = n, that is, the sum of its

components is equal to n.
We assume that the stoichiometric matrix A has maximum rank. This as-

sumption is not restrictive because it implies that no substance variation is linear
combination of the variations of other substance. If this were the case we can re-
move the substance variation which is combination of other variations, without
loss of information, by obtaining a stoichiometric matrix of maximum rank.

We say that a rule is linearly dependent on other rules if its stoichiometric
balance is a vector which is linearly dependent on the stoichiometric balance of
other rules. A set of rules are linearly independent if no rule of this set is dependent
on other rules of the set. We say that a subset R0 of n rules is a covering of the
set R of rules, if any substance is reactant o product of some rule in R0.

The following theorems are a natural consequence of the algebraic formulation
of rules and of the dynamics of MP system defined by EMA (we omit the proofs
here).

Theorem 1. Given a set of rules with stoichiometric matrix of maximum rank,
then there exits a covering of linearly independent rules.

Theorem 2. Let R0 subset of rules of R which are linearly independent. Let
OLGA be a system with a covering vector C corresponding to R0 (C(i) = 1 iff
ri ∈ R0). Then, OLGA has one and only one solution.

The previous theorems show that the problem of finding fluxes of a metabolic
system is solvable under very general assumptions.

However, given the inductive nature of our method, in order to generate the
time series of U [i], we need the knowledge of U [0]. An algorithm for achieving
this task was recently found [37], which was tested in many cases with a good
success. This problem is essentially an optimum problem based on the notion of
activation matrix. This matrix is the right component of the matrix R of rules.
If we multiply it with the flux vector U [i], then we get, for each component, the
amount of a substance necessary, at step i, to activate all the rules which need that
substance. Other constraints regard the positivity of fluxes and a sort of Lavoisier
principle (the absolute variation of matter between two consecutive states has
to equate the absolute difference between the sums of in-coming and out-coming
fluxes).

The determination of the covering vector C is another important aspect in
the construction of the OLGA system. Some investigations are in progress for the
search of an optimal covering, or for showing that, under suitable conditions, the
goodness of solutions can be independent on the choice of a specific covering. How-
ever, in the study of this aspect it seems useful to consider the Galois connection

48 V. Manca

arising between substances and reactions. Given a substance x, we denote by R(x)
the set of reactions where x occurs (as product or reactant), but symmetrically,
given a reaction r, we can define S(r) as the set of substances involved in the reac-
tion r. If we extend R,S as functions from set of substances to set of reactions, and
viceversa, we get a Galois connection, which is a very general and powerful alge-
braic concept. It seems possible that, rule covering, and other metabolic concepts,
are related to properties which can be analyzed in this algebraic setting.

The following theorem shows a relevant aspect of the notion of covering. In
fact, for the application of the log-gain principle, the flux log-gain of a rule should
consider non only its reactants, but its tuners, that is, all magnitudes (substances
and parameters) which influence the rule. Unfortunately, the knowledge of tuners
of reactions is very often not available. The following theorem (we omit the proof)
ensures that fluxes can be deduced even with this lack of knowledge. Therefore, the
analysis about tuners, for determining fluxes, could be focused on the uncovered
reactions.

Theorem 3. Consider an OLGA system based on a linearly independent covering
R0. The fluxes which are solutions of this system do not depend on the tuners
which are chosen for the rules of R0 in the flux log-gains of these rules.

In conclusion, tuners of rules of R0 can be reduced only to the reactants of
there rules, and the solutions of OLGA systems, one for each step, provide the
time series U [i] that solve the flux discovery problem, posed at the beginning of
our discourse.

Results of equivalence of MP systems with other formalisms were developed
[17, 13, 14]. However, the more relevant feature of MP system is the availability of
the log-gain method here outlined, for the solution of the flux discovery problem.

5 Fluxes, reactivity, inertia, and differential models

The analysis process which provides an MP system from an observed dynamics
is directly related to the notion of reaction fluxes. However, in the process of
synthesizing dynamics is more natural to associate to every reaction a reactivity
parameter determining a sort of score in the competition for getting the reactants
necessary for the activation of the reaction. This competition concerns the part
of matter available in a given state, therefore another parameter is necessary, for
each substance, which provides the amount of substance that, in a given state, can
be partitioned among all reactions competing for it, or equivalently, the amount of
substance that is not transformed, called the inertia of the substance (at a given
step). These systems were the first kind of MP systems formally defined [27], and
correspond to the special class of reactive MP systems. In a reactive MP system
of type (n,m, k), the inequality k ≥ n+m holds, because there is a parameter for
each substance, providing its inertia and a parameter for each reaction, providing
its reactivity. The evolutions of these parameters are specified by inertial maps

From P to MP Systems 49

(ψx|x ∈ X) and by reaction maps (fr|r ∈ R) respectively. In reactive MP systems,
the flux regulation maps Φ = {ϕr|r ∈ R} are defined by the following equations for
any q ∈ Rn (see [27, 28] for intuition and motivations of this class of MP systems)

ϕr(q) =

{
fr(q) if αr = λ;
min{wr,y(q)·q(y)|αr|x | y ∈ αr} otherwise.

(4)

where

wr,x(q) =
fr(q)

ψx(q) +
∑
r′∈Rα(x) fr′(q)

(5)

In reactive MP systems, being flux regulation maps ϕr (r ∈ R) completely deter-
mined by the reaction maps and inertias, it is enough to specify only them (usually
indicated fr and ψr (r ∈ R). In Fig. 3, an MP graph is given, which describes the
simple metabolic oscillator Sirius ternarius, a variant of an oscillator widely stud-
ied in the context of MP systems [27, 28, 33]. The core of this oscillations is the
reaction from A→ B, with a flux which linearly depends on the amount of B. In
fact, when this quantity increases too much, then the reactant of A→ B is greatly
consumed, and consequently also the reaction flux diminishes. In such a way A,
which is produced by C → A can increase and consequently also the reaction
A → B returns again to work actively, so that the condition for a new cycle is
restored.

Fig. 3. The MP system Sirius ternarius. Big circles are substances, small circles are re-
actions, rectangles are reactivity parameters, and triangles indicate matter flows from/to
the external environment. Fluxes are not indicated because determined by the reactivity
parameters of reactions by means of Formula (4). The inertias of A,B,C are 100, 100,
and 1 respectively (all values are expressed in conventional moles of unspecified size).

In Fig. 4 is given the oscillatory dinamics of the MP system of Fig. 3, computed
by Psim software.

50 V. Manca

Fig. 4. Sirius ternarius’ dynamics where EMA of Definition 1 is computed by Psim
software (see: http://www.cbmc.it and http://mplab.sci.univr.it)

If we avoid the rule consuming C, the dynamics changes dramatically, even if
we reduce sensibly the value of rule introducing C. This show that the analysis
of metabolic processes is very complex and very often the behavior of a system is
hardly deducible by the MP graph, without a direct inspection of its dynamics.
The form of trajectories are related to the graph structure, but very often their
shape is very robust for big changes of regulation maps and initial values, but
very fragile with respect to some parameters. This kind of investigations applied
to real metabolic oscillators are very important for establishing the key features
responsible for maintain some dynamical regimes of interest.

Fig. 5. Sirius ternarius’ dynamics where the reaction λ→ C is removed.

From P to MP Systems 51

The following theorem (see [28] for a proof) states the dynamical equivalence
between any MP system and a suitable reactive reactive MP system (starting by
the same state they provide the same sequence of states).

Theorem 4. For any MP system there exists a reactive MP system which is dy-
namically equivalent to it.

A notion of abstraction order can be defined for MP systems, which result
useful in the determination of models. A system M is more abstract of a system
M’ if the substance of M are a subset of those of M’ and the dynamics of M
coincide with the dynamics of M’ on their common substances. In many cases a
right abstraction level could be more informative of a too detailed system where
it is difficult to grasp the main feature of the logic governing a dynamics. Some
investigations are in progress about some basic mechanisms on which oscillatory
phenomena are based, in particular, on the relationship between the MP graph
and the corresponding oscillatory pattern, and on the numerical values and ranges
ensuring some oscillatory forms. In some numerical experiments we found cases
where few parameters have a crucial role in determining the dynamics, and some
threshold values of them are discriminant for very specific behaviors.

Many special forms of reactions can be identified: left-monic, right-monic,
monic, assimilative, dispersive, cooperative, synthetic, dissociative, catalytic, repli-
cative, monogenic [33]. Monic refers to a rule involving only one substance (in the
left, right, or both sides), assimilative to a rule producing without consuming sub-
stances, dispersive to a rule consuming without producing substances, cooperative
to a rule with more than one reactant, synthetic to a rule with more than one
reactant and only one product, dissociative to a rule with one reactant and more
than one product, catalytic to a rule with a substance occurring contemporarily as
reactant and as product, replicative to a rule where a substance occurs as product
more times than as reactant, monogenic to a rule where any product and reactant
occurs only once. These properties correspond to important biochemical aspects,
and equivalence properties can be easily proved in the context of MP systems. The
following theorem involves aspects peculiar to MP systems (we omit the proof).

Theorem 5. For any MP system there exists a reactive MP system which is dy-
namically equivalent to it having only assimilative and dispersive rules.

The notion of inertia is naturally related to the relationship between reactive
MP models and differential models. In [17] equivalence results between these two
kind of models were proven. In fact, it turns out that the inertia is inversely
proportional to the discretization time of numerical integration methods. This
equivalence holds by means of a limit process along a sequence of increasing values
of inertia, which is supposed to be equal for all substances.

A general theorem can be easily proved stating an equivalence between the
dynamics of a differential model, computed by the Euler method of numerical in-
tegration, and the dynamics computed by EMA for an MP model which is deduced
by means of a straightforward “rule-driven translation” of the right members of

52 V. Manca

differential equations (the procedure used in Sect. 3 for the MP formulation of
Goldbeter’s mitotic oscillator). In this case, the MP time interval coincides with
the discretization time of the numerical integration.

However, a deeper relationship can be established between differential and MP
models. In fact, let us suppose, to have an ODE (Ordinary Differential Equation)
model of a metabolic process. According to it, any derivative of substance quantity
is the sum of some additive terms relative to the infinitesimal fluxes of the rules
consuming and producing that substance. Assume to use a numerical integration
method, and to solve the differential equations with a discretization time ∆t. Now,
if we consider a time interval τ and perform τ/∆t numerical integration steps (the
natural number rounding this value), then we can deduce the fluxes of all the
reactions involved in the system in the time interval τ . This means that we get
exactly what the log-gain theory provides by solving the OLGA systems along a
number of observation steps. In other words, we get the macroscopic fluxes from
the ODE microscopic ones. From these fluxes, by approximation and correlation
techniques we can derive the flux regulation maps of an MP system which provides
the same dynamics along the steps separated at the time interval τ . It would be
possible, that at this different temporal grain, some systemic effects emerge which
could shed new light on the analysis of the modeled phenomenon.

6 Reconsidering membranes

MP system are described by focusing on the reactions, but disregarding the com-
partmetalization aspect of membrane computing. However, if we look at the MP
graph we can see a neuron-like membrane structure given by the nodes along which
the matter flows. This means that if we model substances as different membranes,
and we fill them of a unique kind of substance (e. g. water) we are in a perfect
membrane setting. This is a general aspect which it would be interesting to an-
alyze in general terms. Objects and membrane are dual concepts which can be
reciprocally reduced (an analogous situation arises in set theory). This duality is
a special case of the space/matter duality formulated in the context of a discrete
framework. In fact a physical object, having a spatial extension comprises a portion
of space, the internal space occupied by it, that can be separated by an implicit
membrane delimiting its internal region. Conversely, a membrane is an object with
an internal region which can include other objects. Therefore, we may consider an
object of type a as equivalent to an empty membrane []a. Analogously an object
a inside the membrane of label j, [a]j , is represented by as an object aj with the
index denoting the localization of a. In general, we may reverse the relationship of
containment of membranes and objects, by expressing the localization of an ob-
ject by putting its membrane address (for example, a string of membrane labels).
Here we do not enter into further details. However, many aspects deserve a careful
analysis. Namely, a sharp examination of the notion of object distinguishability
could show some subtle implicit pitfalls. In multisets, this feature refers to object
individuality, rather than to their enumerability (two undistinguishable balls are

From P to MP Systems 53

different from only one of them). An important aspect of the relationship between
objects and membrane concerns just the possibility of considering for them (or for
some types of them) different processes of distinguishability.

According to the perspective of addressed objects, moving an object from a
membrane to another one results to be a transformation acting on the index part
of the object. In many modeling context this is the natural approach adopted for
expressing localization changes. For example a protein p which can be localized
in two places A,B is modeled by two species pA and pB and its displacement is
assimilated to a transformation of matter. This discussion shows that the more
appropriate way to model a reality depends on the specific aspects we are inter-
ested to model, but in principle “membranization” or “demembranization”, or a
mixing of the two strategies, are possible, and different viewpoints open different
perspective of investigation.

In [1, 2] the boundary notation for membrane rules was introduced in order to
cope with more general membrane rules. In fact, in Păun’s original formulation,
rules are inside membrane and everything is unknown to a rule, if it is outside
the membrane where the rule is located. However, in many cases a transformation
depends on the possibility of recognize configurations which can be defined only
if the actors of the transformation have a visibility which is wider than interiors
(windows could be necessary). The essential point of boundary representation is
the idea of rules with a greater level of localization knowledge about the objects
which they apply to. This idea can be further generalized, but the two perspectives
could also be integrated for coping with different contexts of application.

Another natural generalization of P rules concerns the possibility of high-order
multisets. This is not a mathematical generalization, but expresses a natural ne-
cessity for representing biochemical transformations. In fact, in many reactions
two or three level multisets occur. Even in the simple case of water formation, the
usual chemical notation is 2H2+O2 → 2H2O. Here we have multiplicative numeric
coefficients and numerical indexes, that we could express, by using parentheses,
as 2(2H) + (2O)→ 2((2H)O). In this case, parentheses are not membrane paren-
theses, but express a two level multiset. In fact, the rule transforms a multiset of
objects which are multisets too, that is, a second order (finite) multiset into in
another one of the same kind.

In many phenomena the localization aspect is predominant, but in a way that
membranes are not adequate. It is the case of gradients in morphogenesis. In this
case, what is important, rather than containment relations, are the distances with
respect to some coordination points, therefore indices memorizing these values are
the natural way for handling this aspect.

In a discrete setting, loci could be represented by (localization) binders at-
tached to the objects, which become relevant in relocation rules, while they are
dummy when internal transformations are performed. Binders, for expressing loci,
are useful for objects as far as for membranes where the importance of specific
parameters for encoding physical feature was already investigated in membrane
computing (e. g. polarization and thickness).

54 V. Manca

In conclusion, a very synthetic way for expressing the original P-system per-
spective could be: grammars of “parenthesized strings with commutative concate-
nation”, or more simply, grammars of “parenthesized multisets”. The passage from
boundaries to binders and all the aspects mentioned above could enlarge the spec-
trum of modeling possibilities of P and MP systems toward the study of dynamics
of high level discrete spatial complexity.

7 Open problems and methodological issues

Many lines of development emerged, in the context of MP systems. Some of them,
as it was argued in the previous section, are related to the theory of P systems.
Other research lines are specifically focused on the log-gain theory. The hot points
in this direction are: i) the determination of the initial fluxes, ii) the determination
of the more appropriate covering for the OLGA systems, iii) the determination of
the tuners of reactions (initially for uncovered rules, and, after OLGA solutions, for
all the rules), and iv) the determination of the flux regulation maps associated to
the fluxes and to their tuners. Some investigations are in progress and some partial
results are available. It is interesting that in the search of solutions a variety of
methods naturally occurs, going from vector algebra and vector optimization to
artificial neural networks [12, 37]. The next kinds of modeling applications which
we intend to realize are phenomena related to gene regulation networks and to
signal transduction mechanisms. From the computational side, many plugins are
under development for extending the MetaPlab software, according to specific
needs of the experiments which could orientate the theoretical and applicative
research. Presently, a plug-in is available for computing MP dynamics by means of
EMA, moreover a plug-in is also available for the flux discovery by means of OLGA,
other visualizations and format translation plug-ins are available, and prototypal
plug-ins for polynomial regression and artificial neural network correlation plug-ins
were developed [11, 12, 31].

Other research lines of MP systems theory are more specifically related to
the metabolism and to the population perspective of biological phenomena. Many
aspects of metabolic dynamics can be expressed and abstractly studied on MP
systems [33]. In particular, a general study of metabolic oscillators seems to be
especially adapt to be investigated by using reactive MP systems. This class of
systems are especially suited for synthesizing specific behaviors, in order to identify
the specific structural features related to some dynamical properties. For example,
a catalog of basic MP metabolic oscillators is under investigation, which is aimed
to instantiate experiments of computational synthetic biology.

I want to conclude by stressing an important methodological aspect which is
very often source of misunderstanding, because it remarkably differs from the usual
modeling approaches in computational biology.

When we design an MP model by using the log-gain theory we start with time
series of observations. The model we get at end of the process is a model of what

From P to MP Systems 55

we observed. In the case of ODE models, from data kinetic rates of biochemical
reactions are deduced. It is not the case for MP regulation maps. Although the term
reaction is used, our reactions have to be more properly seen as transformations.

We adopt a perspective which could be described as the Boltzmann’s analogy.
According to Boltzmann’s mechanical statistics, the macroscopic state of a ther-
modynamic system (a gas inside a volume at a given pressure and temperature) is
given by the distribution function f(z) providing the number of molecules in the
ensemble z (a kind of energetic level). In our case, we claim that in a biochemical
system, with a number of chemical species, its macroscopic state depends on the
number of molecules which are present for each species. The passage from a state
to another one is completely due to the change of molecule distribution per species.

We do non know and we do not pretend to describe what happens at the
microscopic reaction level. We observe that some species are related by some rea-
sonable transformatios and we assume that the variations are due to the action
of these transformations. These transformations could be executed in many ways
and maybe they involve other underlying very complex transformations, at differ-
ent sublevels. However, this is outside the objective of the model. It tries to find
the logic underlying the specified species and the chosen transformations. In other
words, we explain what is observed in terms of the species and the transformations
under investigation. If the choice of the species and of the transformations is not
the right one, this means that the model was not adequate, but this is indepen-
dent from the methodology, it is only a matter of the specific modeling design.
In conclusion, MP modeling, according the log-gain analysis, is deliberately at a
different, more abstract, level with respect to ODE models. This does not means
that it is less adherent to the reality, but simply that it is focused on a different
level of reality.

A model is either good or bad only if it helps us in predicting and explaining
what we can observe. No other criterion can be discriminant, and it is ingenuous to
adopt a mirror analogy with an absolute character. In fact, many mirrors could be
available, and some could be more useful than others in certain contextes. Reality
is different when it is considered at different levels of observation. When the level
of phenomena under investigation is very different (too small or too big, or too
complex) with respect to the observer level, the true scientific ability concerns
the right theoretical and experimental choices about what has to be observed and
about how the observation results have to be related. A priori is very hard to chose
the “pertinent aspects” of a phenomenon and to disregard what is not relevant.

What is the reality adherence of the physical theories at quantum levels or
at cosmological level? What is the reality of the probability wave in Shrödinger
equation? We trust them because they work. No mirror principle can assist us for
their evaluation. They are creations of the human invention. Modeling is an art,
and it cannot follow easy prefixed procedures. This art is based on the right choice
of what has to be observed, what relationships are relevant among the observed
features, how translate them in a chosen conceptual universe, and how to interpret
the findings which result from this translation.

56 V. Manca

References

1. F. Bernardini, V. Manca: P Systems with boundary rules. WMC-CdeA 2002, LNCS
2597, 107118, Springer, 2003.

2. F. Bernardini, V. Manca: Dynamical aspects of P systems. Biosystems, 70: 85-93,
2003.

3. L. von Bertalanffy: General Systems Theory: Foundations, Developments, Applica-
tions. George Braziller Inc., New York, 1967.

4. L. Bianco: Membrane models of biological systems, Ph.D. Thesis, University of
Verona, April, 2007.

5. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
[10], 81–126.

6. L. Bianco, F. Fontana, V. Manca: Reaction-driven membrane systems. Advances in
natural computation, LNCS 3611, 2005, 1155–1158.

7. L. Bianco, F. Fontana, V. Manca: P systems with reaction maps. Intern. J. Found.
Computer Sci., 17, 2006, 27–48.

8. L. Bianco, V. Manca: Encoding-Decoding Transitional Systems for Classes of P Sys-
tems. Membrane Computing, WMC 2005, LNCS 3850, 2006, 134–143.

9. L. Bianco, V. Manca, L. Marchetti, M. Petterlini: Psim: a simulator for biochemical
dynamics based on P systems. 2007 IEEE Congress on Evolutionary Computation,
Singapore, September 2007.

10. G. Ciobanu, G. Păun, M. J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer, 2006.

11. A. Castellini, V. Manca: MetaPlab: A Computational Framework for Metabolic P
Systems. Membrane Computing, WMC9, LNCS 5391, Springer, 2008, 157-168.

12. A. Castellini, V. Manca. Learning Regulation Functions of Metabolic Systems by
Articial Neural Networks, Electronic Notes in Theoretical Computer Science, 2009,
URL: www.elsevier.nl/locate/entcs.

13. A. Castellini, G. Franco, V. Manca: Hybrid functional Petri nets as MP systems.
Natural Computing, 2009, DOI 10.1007/s11047-009-9121-4.

14. A. Castellini, V. Manca, L Marchetti: MP systems and hybrid Petri nets. Studies in
Computational Intelligence, 129, 2008, 53–62.

15. F. Fontana, L. Bianco, V. Manca: P systems and the modeling of biochemical oscil-
lations. Membrane Computing, WMC 2005, LNCS 3850, 2006, 199–208.

16. F. Fontana, V. Manca: Predator-prey dynamics in P systems ruled by metabolic
algorithm. BioSystems, 91, 2008, 545–557.

17. F. Fontana, V. Manca: Discrete solutions to differential equations by metabolic P
systems. Theoretical Computer Sci., 372, 2007, 165–182.

18. G. Franco, V. Manca: A membrane system for the leukocyte selective recruitment.
Membrane Computing, WMC 2003, LNCS 2933, 2004, 180–189.

19. G. Franco, P.H. Guzzi, T. Mazza, V. Manca: Mitotic oscillators as MP graphs. Mem-
brane Computing, WMC 2006, LNCS 4361, 2006, 382–394.

20. A Goldbeter: A minimal cascade model for the mitotic oscillator involving cyclin and
cdc2 kinase. PNAS, 88, 1991, 9107–9111.

21. V. Manca: String rewriting and metabolism: A logical perspective. Computing with
Bio-Molecules (Gh. Păun, ed.), Springer, 1998, 36–60.

22. V. Manca: Monoidal Systems and Membrane Systems. C.S. Calude, M.J. Dinneen,
Gh. Păun (eds),WMC-CdeA 2000, Workshop on Multiset Processing, CDMTCS Re-
search Report Series, August, 2000, 176–190.

From P to MP Systems 57

23. V. Manca: Topics and Problems in Metabolic P Systems. M. A. Gutiérrez-Naranjo,
Gh. Păun, A. Riscos-Núñez, F. J. Romero-Campero (eds), Proc. of the Fourth Brain-
storming Week on Membrane Computing, Sevilla (Spain), January 30 - February 3,
2006, 173-183.

24. V. Manca: MP systems approaches to biochemical dynamics: Biological rhythms and
oscillations. Membrane Computing, WMC 2006, LNCS 4361, 2006, 86–99.

25. V. Manca: Metabolic P systems for biochemical dynamics. Progress in Natural Sci-
ences, 17, 2007, 384–391.

26. V. Manca: Discrete simulations of biochemical dynamics. DNA Computing, DNA13,
LNCS 4848, 2008, 231–235.

27. V. Manca: The metabolic algorithm for P systems: Principles and applications. The-
oretical Computer Sci., 404, 1-2, 2008, 142–157.

28. V. Manca: Log-Gain Principles for Metabolic P Systems, CHAPTER 28, A. Condon
et al. (eds.). Algorithmic Bioprocesses, Natural Computing Series, Springer, 2009.

29. V. Manca, L. Bianco: Biological networks in metabolic P systems. BioSystems, 91,
2008, 489–498.

30. V. Manca, L. Bianco, F. Fontana: Evolutions and oscillations of P systems: Appli-
cations to biological phenomena. Membrane Computing, WMC 2004, LNCS 3365,
2005, 63–84.

31. V. Manca et. al. MetaPlab 1.1 Official Guide, http://mplab.sci.univr.it (Tutorials),
2009.

32. V. Manca. Fundamentals of Metabolic P Systems, Gh. Paun, G. Rozenberg, A. Sa-
lomaa (eds.), Handbook of Membrane Computing, CHAPTER 19, Oxford University
Press, 2009, 475-498.

33. V. Manca. Metabolic P Dynamics, Gh. Paun, G. Rozenberg, A. Salomaa (eds.).
Handbook of Membrane Computing, CHAPTER 20, Oxford University Press, 2009,
499-528.

34. V. Manca, M. D. Martino: From String Rewriting to Logical Metabolic Systems, G.
Păun, A. Salomaa(eds). Grammatical Models of Multiagent Systems, London, Gordon
and Breach Science Publishers, 1999, 297-315.

35. V. Manca, L. Marchetti. XML Representation of MP Systems, 2009 IEEE Congress
on Evolutionary Computation (CEC 2009) Trondheim, Norway, 18-21 May 2009,
3103-3110.

36. V. Manca, R. Pagliarini, S. Zorzan: A photosynthetic process modelled by a metabolic
P system. Natural Computing, 2009, DOI 10.1007/s11047-008-9104-x.

37. R. Pagliarini, G. Franco, V. Manca: An Algorithm for Initial Fluxes of Metabolic
P Systems, Int. J. of Computers, Communications & Control, Vol. IV, 2009, No. 3,
263-272.

38. Gh. Păun: Computing with membranes. J. Comput. System Sci., 61, 2000, 108–143.
39. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
40. M.J. Pérez-Jiménez, F.J. Romero-Campero: A study of the robustness of the EGFR

signalling cascade using continuous membrane systems. IWINAC 2005, LNCS 3561,
Springer, 2005, 268–278.

41. D. Pescini, D. Besozzi, G. Mauri, C. Zandron: Dynamical probabilistic P systems.
Intern. J. Found. Computer Sci., 17, 2006, 183–204.

42. Y. Suzuki, H. Tanaka: A symbolic chemical system based on an abstract rewriting
system and its behavior pattern. J. of Artificial Life and Robotics, 6, 2002, 129–132.

Bridging Membrane Computing and Biosemiotics

Solomon Marcus

Romanian Academy, Bucharest, Romania
solomon.marcus@imar.ro

The syntagma “membrane computing” was invented in 1998, by Gheorghe Păun,
at a moment when G.P. already accumulated a considerable work in the field of
formal languages and their applications to economics, linguistics and mainly to
biology, related to DNA computing; see his joint monograph (with G. Rozenberg
and A. Salomaa) on DNA computing at Springer. It happened that in the same
year 1998, when membrane computing emerged, the biological membrane became
a more important actor in the field of second order cybernetics and in biosemiotics.
This fact stimulated us to try to bridge these two lines of development; see the
following articles we have published in this respect:

1. Membrane vs DNA. Fundamenta Informaticae, 49, 1/3 (2002), 223–227.
2. An emergent triangle: semiotics, genomics, computation. Proc. Of the Inter-

national Congress of German Semiotic Society, Kassel 2002, CD-ROM, 2003.
3. Bridging P systems and genomics. In Membrane Computing (G. Păun, G.

Rozenberg, A Salomaa, C. Zandron, eds.), LNCS 2597, Springer, Berlin, 2003,
371–376.

4. The duality of patterning in molecular genetics. In Aspects of Molecular Com-
puting (N. Janoska et al., eds) LNCS 2950, Springer, Berlin, 2004, 318–321.

5. The semiotics of the infinitely small: molecular computing and quantum com-
puting. In Semiotic Systems and Communication-Action-Interaction-Situation
and Change. Proc. Of the 6th National Congress of the Hellenic Semiotic So-
ciety (K. Tsoukala et al., eds.), Thessaloniki, 2004, 15–32.

6. Semiotic perspectives in the study of cell. In Proceedings of the Workshop on
Computational Models for Cell Processes (Ralph-Johan Back, Ion Petre, eds.),
TUCS General Publication No.47, 2008, Turku, Finland, 2008, 63–68.

In the following we will extract and supplement some basic ideas related to
the biosemiotic line of development related to membranes. Bridging this line with
Păun’s membrane computing seems to be an attractive, if not also a necessary
investigation.

Bridging Membrane Computing and Biosemiotics 59

Our aim is to reach the metaphorical slogan Life is DNA software + membrane
software.

Let us first refer to Jesper Hoffmeyer (“Surfaces inside surfaces”, in Cybernetics
and Human Knowing, 5, 1 (1998), 33–42 and, the same author “The biology of
signification”, in Perspectives in Biology and Medicine, 43, 2 (2000), 252–268),
claiming that “life is a surface activity”, “life is fundamentally about insides and
outsides”. Hoffmeyer has in view the membrane and quotes in this respect Heinz
von Foerster, one of the pioneers of the second order cybernetics, who proposed
the Moebius strip as a topological representation of the kind of logic pertaining
to self-referential cybernetic systems. Living systems may be seen as consisting
essentially of surfaces inside of the surfaces. In this framework, we can speak of
an outside interior and of an inside exterior. These categories are realized through
semiotic loops.

Relevant parts of the environment are internalized as an inside exterior/inner
outside (the so-called Uexkull’s Umwelt (see J. Uexkull, “The theory of meaning”,
Semiotica, 42, 1 (1982) [1940], 25–82. The representation of certain environmental
features inside an organism by various means, while the interior becomes exter-
nalized as an outside interior/outer inside, in the form of the “semiotic niche”
(Hoffmeyer 1998), as informes and changed by the inside needs of the organism per-
taining to that niche; see C. Emmeche, K. Kull, F. Stjernfelt, Reading Hoffmeyer,
rethinking biology, Tartu Semiotic Library 3, Tartu University Press, 2002. This
inside/outside interplay is made possible by the membrane strictly governing the
traffic between them. Now we can claim that P systems (Gheorghe Păun, Mem-
brane computing: An Introduction, Springer, Berlin, 2002) find their starting point
in this biological reality, to which a computational dimension is added. In agree-
ment with the ideas of DNA computing and membrane computing, S. Wolfram (A
new kind of science, Wolfram Media, Inc, October 2001) proposed to see life as a
universal Turing machine, to which G. Chaitin (In Bulletin of the EATCS, 2002)
adds the condition of a high program-size complexity. So, the project of bridging
genomics and P systems could have the slogan announced above: Life is DNA
software + Membrane software.

Energy-based Models of P Systems

Giancarlo Mauri, Alberto Leporati, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{mauri,leporati,zandron}@disco.unimib.it

Summary. Energy plays an important role in many theoretical computational models.
In this paper we review some results we have obtained in the last few years concern-
ing the computational power of two variants of P systems that manipulate energy while
performing their computations: energy-based and UREM P systems. In the former, a
fixed amount of energy is associated to each object, and the rules transform objects
by manipulating their energy. We show that if we assign local priorities to the rules,
then energy–based P systems are as powerful as Turing machines, otherwise they can be
simulated by vector addition systems and hence are not universal. We also discuss the
simulation of conservative and reversible circuits of Fredkin gates by means of (self)–
reversible energy–based P systems. On the other side, UREM P systems are membrane
systems in which a given amount of energy is associated to each membrane. The rules
transform and move single objects among the regions. When an object crosses a mem-
brane, it may modify the associated energy value. Also in this case, we show that UREM
P systems reach the power of Turing machines if we assign a sort of local priorities to
the rules, whereas without priorities they characterize the class PsMAT λ, and hence are
not universal.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [13] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain multisets of objects (represented by symbols of an alphabet) and
evolution rules. Using these rules, the objects may evolve and/or move from a
region to a neighboring one. Usually, the rules are applied in a nondeterministic
and maximally parallel way. A computation starts from an initial configuration of
the system and terminates when no evolution rule can be applied. The result of
a computation is the multiset of objects contained into an output membrane, or

Energy-based Models of P Systems 61

emitted from the skin of the system. For a systematic introduction to P systems
we refer the reader to [14], whereas the latest information can be found in [17].

Since the introduction of P systems, many investigations have been performed
on their computational properties: in particular, many variants have been pro-
posed in order to study the contribution of various ingredients (associated with
the membranes and/or with the rules of the system) to the achievement of the
computational power of these systems. In this paper we review some computa-
tional features of two models of membrane systems that manipulate energy while
performing their computations: energy-based P systems and UREM P systems.

In energy–based P systems, a given amount of energy is associated to each
object. Moreover, instances of a special symbol are used to denote free energy units
occurring inside the system. These energy units can be used to transform objects,
through appropriate rules that manipulate energy, while satisfying the principle of
energy conservation. In particular, if the object to which the rule is applied contains
less (more) energy than the one which has to be produced, then the necessary free
energy units can be taken from (released to) the region where the rule is applied.
We assume that the application of rules consumes no energy: in particular, objects
can be moved between adjacent regions of the system without energy consumption.
Rules are applied in a sequential manner: at each computation step, one of the
enabled rules is nondeterministically selected and applied. We show that, if a
potentially infinite amount of free energy units is available, then energy–based P
systems are able to simulate register machines (hence, the model is universal).
This is done by assigning a form of local priorities to the rules: if two or more
rules can be applied in a given region, then the one which consumes or releases the
largest amount of free energy units is applied (if two or more of the enabled rules
manipulate exactly the same maximal amount of free energy, then one of them
is nondeterministically chosen). Instead, if we disregard priorities, then energy–
based P systems can be simulated by vector addition systems, and hence are not
universal. On the other hand, if we do not allow the presence of an infinite amount
of energy, then the power of energy–based P systems reduces to that of finite state
automata, both when considering priorities associated with the rules and when
disregarding them. We also show that energy–based P systems can be used to
simulate reversible and conservative (that is, energy–preserving) boolean circuits
composed of Fredkin gates; the simulating P systems are themselves reversible and
logically complete, and so we have the possibility to compute any boolean function
by energy–based P systems in a reversible way.

The second model of membrane systems we consider are P systems with unit
rules and energy assigned to membranes (UREM P systems, for short). In these
systems, the rules are directly assigned to membranes (and not to the regions, as
it is usually done in membrane computing). Every membrane carries an energy
value that can be changed during a computation by objects passing through the
membrane. Also in this case, rules are applied in the sequential way. The input, as
well as the result of a successful computation, are considered to be the distribu-
tions of energy values carried by the membranes in the initial and in the halting

62 G. Mauri, A. Leporati, C. Zandron

configuration, respectively. We show that UREM P systems using a sort of local
priority relation on the rules are Turing–complete. On the contrary, by omitting
the priority relation we obtain a characterization of PsMATλ, the family of Parikh
sets generated by context–free matrix grammars (with λ-rules and without occur-
rence checking). Alternatively, we can obtain Turing–completeness without using
priorities, by applying rules in the maximally parallel mode.

The paper is organized as follows. In section 2 we recall the definition of three
computational models that will be used throughout the paper, to study the com-
putational power of energy–based and UREM P systems: register machines, vector
addition systems, and Fredkin circuits. In sections 3 and 4 we review the compu-
tational power of energy–based and of UREM P systems, respectively. Section 5
concludes the paper and gives some directions for further research.

2 Preliminaries

In the following subsections we briefly recall the definition of three computational
models that will be used in the rest of the paper to study the computational power
of UREM and energy–based P systems.

2.1 Deterministic register machines

A deterministic n–register machine is a construct M = (n, P, m), where n > 0
is the number of registers, P is a finite sequence of instructions (program) bijec-
tively labelled with the elements of the set {1, 2, . . . , m}, 1 is the label of the first
instruction to be executed, and m is the label of the last instruction of P . Regis-
ters contain non–negative integer values. The instructions of P have the following
forms:

• j : (INC(r), k), with j, k ∈ {1, 2, . . . , m} and r ∈ {1, 2, . . . , n}
This instruction, labelled with j, increments (by 1) the value contained in
register r, and then jumps to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ {1, 2, . . . , m} and r ∈ {1, 2, . . . , n}
If the value contained in register r is positive, then decrement it (by 1) and
jump to instruction k. If the value of r is zero, then jump to instruction l
(without altering the contents of the register).

• m : HALT
Stop the execution of the program. Note that, without loss of generality, we
may assume that this instruction always appears exactly once in P , with label
m.

Computations start by executing the first instruction of P (labelled with 1), and
terminate when they reach instruction m. Register machines provide a simple
universal computational model [12]. In particular, the results proved in [5] imme-
diately lead to the following proposition.

Energy-based Models of P Systems 63

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label m with registers 1 to β
containing r1 to rβ, and all other registers being empty. If the final label cannot be
reached, then f(n1, . . . , nα) remains undefined.

2.2 Vector addition systems

Vector addition systems were introduced in [7] as a mathematical tool for analyzing
systems of parallel processes. It is known that they are not Turing–complete, as
they are equivalent to self–loop–free Petri nets [16]. Formally, a vector addition
system (VAS, for short) is a pair V = (B, s), where B = {b1, b2, . . . , bm} is a set
of m vectors, called basis or displacement vectors, and s is the start vector. All
vectors consist of n integer values. The elements of s are non–negative (in what
follows, we denote this as s ≥ 0). The reachability set R(V) for a VAS V is the
smallest set of vectors such that: (1) s ∈ R(V), and (2) if x ∈ R(V), bj ∈ B and
x+bj ≥ 0, then x+bj ∈ R(V). By considering a subset of β ≥ 1 components as the
output places, we can generate a set of vectors of β components by means of a VAS
as follows. The VAS is started in the initial configuration. At each computation
step the VAS, being in a configuration described by a vector x ∈ R(V), chooses
in a nondeterministic way a basis vector bj ∈ B such that x + bj ≥ 0 and goes
to the resulting configuration x + bj . The computation halts when no basis vector
bj satisfies the condition x + bj ≥ 0, for the current configuration x. In such a
case, the values occurring at the output places of x constitute the output of the
computation. Non–halting computations produce no output.

2.3 Fredkin gates and circuits

The Fredkin gate is a three–input/three–output boolean gate, whose input/output
map FG : {0, 1}3 → {0, 1}3 is logically reversible (that is, its inputs can always
be deduced from its outputs) and preserves the number of 1’s given as input. The
map FG associates any input triple (αi, βi, γi) with its corresponding output triple
(αo, βo, γo) according to the following relations: αo = αi, βo = (¬αi∧βi)∨(αi∧γi),
γo = (αi ∧ βi) ∨ (¬αi ∧ γi) (see the truth table in Figure 1). It is worth noting
that the Fredkin gate behaves as a conditional switch, since αi can be considered
as a control line whose value determines whether the input values βi and γi have
to be exchanged or not: FG(1, βi, γi) = (1, γi, βi) and FG(0, βi, γi) = (0, βi, γi) for
every βi, γi ∈ {0, 1}.

The Fredkin gate is functionally complete for boolean logic: by fixing γi = 0
we obtain γo = αi ∧ βi, whereas by fixing βi = 1 and γi = 0 we obtain βo = ¬αi.
By inspecting the truth table, we can see that the Fredkin gate is also logically
reversible, since the map FG is a bijection on {0, 1}3. Moreover, it is conservative:
for every input/output pair the number of 1’s in the input triple is the same as the

64 G. Mauri, A. Leporati, C. Zandron

αi βi γi 7→ αo βo γo

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Fig. 1. The Fredkin gate: its behavior as a conditional switch (left) and its truth table
(right)

number of 1’s in the output triple. In other words, the output triple is obtained
by applying an appropriate (input–dependent) permutation to the input triple.

The Fredkin gate is the basis of the model of conservative logic introduced in
[2], which describes computations by considering some notable properties of micro-
dynamical laws of physics, such as reversibility and the conservation of the inter-
nal energy of the physical system by which computations are performed. Within
that model, computations are performed by reversible Fredkin circuits, which are
acyclic and connected directed graphs made up of layers of Fredkin gates. Figure
2 depicts an example of Fredkin circuit having three gates arranged in two layers.
The evaluation of a Fredkin circuit in topological order (i.e. layer by layer) defines

x

x

x

x

2

3

4

5

x1 y1

y2

y3

y4

y5

FG x

x

x

x

2

3

4

5

x1

x6

x7

FG

FG

y6

y7

FG

FG

y1

y2

y3

y4

y5

FG

x6

x7

y6

y7

Fig. 2. A reversible Fredkin circuit (on the left) and its normalized version

the boolean function computed by the circuit, which is obtained as the composi-
tion of the functions computed by each layer. The conservativeness of the circuit
(preservation of the number of 1’s) is equivalent to the requirement that the output
n-tuple is obtained by applying an appropriate (input–dependent) permutation to
the corresponding input n-tuple.

A reversible n–input Fredkin circuit is a Fredkin circuit FCn which computes
a bijective map fFCn : {0, 1}n → {0, 1}n. Note that the function computed by
a reversible Fredkin circuit is also conservative: in fact, every layer of FCn is

Energy-based Models of P Systems 65

composed by Fredkin gates, which are conservative, and by wires, which obviously
preserve the number of 1’s given as input.

3 Energy–based P systems

In this section we consider energy–based P systems [11, 10], a model of mem-
brane systems whose computations occur by manipulating the energy associated
to the objects, as well as the free energy units occurring inside the regions of the
system. These energy units can be used to transform objects, using appropriate
rules, which are defined according to conservativeness considerations. Formally,
an energy–based P system of degree m ≥ 1, as defined in [10], is a construct
Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout) where:

• A is an alphabet; its elements are called objects;
• ε : A → N is a mapping that associates to each object a ∈ A the value ε(a) (also

denoted by εa), which can be viewed as the “energy value of a”. If ε(a) = `,
we also say that object a embeds ` units of energy;

• µ is a hierarchical membrane structure consisting of m membranes, each la-
belled in a unique way with a number in the set {1, . . . , m};

• e 6∈ A is a special symbol that denotes one free energy unit, that is, one unit
of energy which is not embedded into any object;

• wi, with i ∈ {1, . . . , m}, specifies the multiset (over A∪{e}) of objects initially
present in region i. In what follows we will sometimes assume that the number
of e’s in some regions of the system is unbounded. In any case, the number of
objects from A will always be bounded;

• Ri, with i ∈ {1, . . . , m}, is a finite set of multiset rewriting rules over A ∪ {e}
associated with region i. Rules can be of the following types:

aek → (b, p) , a → (b, p)ek , e → (e, p) , a → (b, p)

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer.
Rules satisfy the conservativeness condition, whereby the sum of all (free and
embedded) energy values appearing in the left hand side of each rule equals
the sum of all (free and embedded) energy values in the corresponding right
hand side;

• iin is an integer between 1 and m and specifies the input membrane of Π;
• iout is an integer between 0 and m and specifies the output membrane of Π. If

iout = 0 then the environment is used for the output, that is, the output value
is the multiset of objects over A ∪ {e} ejected from the skin.

When a rule of the type aek → (b, p) is applied, the object a, in presence of k
free energy units, is allowed to be transformed into object b (note that εa +k = εb,
for the conservativeness condition). If p = here, then the new object b remains in
the same region; if p = out, then b exits from the current membrane. Finally, if
p = in(name), then b enters into the membrane labelled with name, which must

66 G. Mauri, A. Leporati, C. Zandron

be directly contained inside the current membrane in the membrane hierarchy.
The meaning of rule a → (b, p)ek, where k is a positive integer number, is similar:
the object a is allowed to be transformed into object b by releasing k units of free
energy (here, εa = εb + k). As above, the new object b may optionally move one
level up or down into the membrane structure. The k free energy units might then
be used by another rule to produce “more energetic” objects from “less energetic”
ones. When k = 0 the rule aek → (b, p), also written as a → (b, p), transforms the
object a into the object b (note that in this case εb = εa) and moves it (if p 6= here)
upward or downward into the membrane hierarchy, without acquiring or releasing
any free energy unit. Analogously, rules e → (e, p) simply move (if p 6= here) one
unit of free energy upward or downward into the membrane structure.

An important observation concerns the application of rules. In the original
definition of energy–based P systems, given in [11], the rules were applied in the
maximally parallel way, as it usually happens in membrane systems. In the next
section we will assume instead that the rules are applied in the sequential manner:
at each computation step (a global clock is assumed), exactly one among the
enabled rules is nondeterministically chosen and applied in the system. We will
return to the maximally parallel mode of application in the subsequent section,
where we will simulate Fredkin gates and circuits.

A configuration of Π is the tuple (M1, . . . , Mm) of multisets (over A ∪ {e}) of
objects contained in each region of the system; (w1, . . . , wm) is the initial config-
uration. A configuration where no rule can be further applied is said to be final.
A computation is a sequence of transitions between configurations of Π, starting
from the initial one. A computation is successful if and only if it reaches a final
configuration or, in other words, it halts. The multiset wiin of objects occurring
inside the input membrane is the input for the computation, whereas the multi-
set of objects occurring inside the output membrane (or ejected from the skin, if
iout = 0) in the final configuration is the output of the computation. A non–halting
computation produces no output. As an alternative, we can consider the Parikh
vectors associated with the multisets, and see energy–based P systems as com-
puting devices that transform (input) Parikh vectors to (output) Parikh vectors.
Optionally, we can disregard the number of free energy units that occur in the
input and in the output region of the system, when defining the input and the
output multisets (or Parikh vectors).

Since energy is an additive quantity, it is natural to define the energy of a
multiset as the sum of the amounts of energy associated to each instance of the
objects which occur into the multiset. Similarly, the energy of a configuration is
the sum of the amounts of energy associated to each multiset which occurs into
the configuration. A conservative computation is a computation where each con-
figuration has the same amount of energy. A conservative energy–based P system
is an energy–based P system that performs only conservative computations.

In what follows we will sometimes consider a slightly modified version of
energy–based P systems as defined above, in which there are α ≥ 1 input mem-
branes and β ≥ 1 output membranes. As it will become clear in the following,

Energy-based Models of P Systems 67

this modification does not increase the computational power of energy–based P
systems; this is due to the fact that, for any fixed value of α ≥ 1 (resp., β ≥ 1),
the set Nα (resp., Nβ) is isomorphic to N, as it is easily shown by using the Can-
tor mapping. Sometimes we will also use energy–based P systems as generating
devices: we will disregard the input membrane, and will consider the multisets
(or Parikh vectors) produced in the output membrane at the end of the (halting)
nondeterministic computations of the system.

3.1 Computational power

In this section we recall some results, taken from [8], concerning the computational
power of energy–based P systems.

Let Π be an energy–based P system as formally defined above. First of all
we observe that if we assume that the number of free energy units is bounded
in each region of Π, then only a finite number of distinct configurations can be
obtained, starting from the initial configuration. In fact, each object of Π can only
be transformed into another object (it can never be created or destroyed), and
possibly moved to another region, according to the rules listed in the definition
of the system. In the “worst” case, every object can be transformed into any
other object, and can be sent to any region of Π; however, also in this case the
number of possible combinations is finite, and thus we obtain a finite number of
configurations. By associating a state to each possible configuration of Π, it is not
difficult to see that bounded energy–based P systems can be simulated by finite
state automata: an arc of the state diagram connects two vertices u and v if and
only if the configuration of Π that corresponds to v can be obtained in one step
(that is, by applying one rule) from the configuration that corresponds to u.

In order to compare the computational power of energy–based P systems with
that of Turing machines, from now on we assume that, in the initial configuration,
some regions of the system contain an unlimited number of free energy units.
Moreover, we define the following local priorities associated to the rules of the
system: in each region, if two or more rules can be applied at a given computation
step, then one of the rules that manipulate the maximum amount of free energy
units is nondeterministically chosen and applied. Clearly, even if we impose this
policy on energy–based P systems that have a bounded amount of free energy
units in each region, we cannot go beyond the computational power of finite state
automata.

Assuming an infinite amount of free energy units in the initial configuration,
energy–based P systems with priorities assigned to the rules are universal, as stated
in the following theorem.

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed by an
energy–based P system with an infinite supply of free energy units and priorities
assigned to rules, with (at most) max{α, β}+ 3 membranes.

68 G. Mauri, A. Leporati, C. Zandron

Proof. We prove this proposition by simulating deterministic register machines.
Let M = (n, P, m) be a deterministic n–register machine that computes f . Observe
that, according to Proposition 1, n = max{α, β}+ 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers of
M , and the output values are expected to be in registers 1 to β at the end
of a successful computation. Moreover, without loss of generality, we may as-
sume that at the beginning of a computation all registers except (possibly)
registers 1 to α contain zero. We construct the energy–based P system Π =
(A, ε, µ, e, ws, w1, . . . , wn, Rs, R1, . . . , Rn) where:

• A = {pj : j ∈ {1, 2, . . . ,m}} ∪ {p̃j : j ∈ {1, 2, . . . , m− 1} and j is the label of
an INC instruction} ∪ {p′j : j ∈ {1, 2, . . . ,m− 1} and j is the label of a DEC
instruction};

• ε : A → N is defined as follows:
– ε(pj) = 2 for all j ∈ {1, 2, . . . ,m};
– ε(p̃j) = 1 for all j ∈ {1, 2, . . . ,m − 1} such that j is the label of an INC

instruction;
– ε(p′j) = 3 for all j ∈ {1, 2, . . . ,m − 1} such that j is the label of a DEC

instruction;
• µ = [s[1]1 · · · [α]α · · · [n]n]s (note that label s denotes the skin membrane);
• ws = {p1}, plus an infinite supply of free energy units;

• wi =

{
{exi} if 1 ≤ i ≤ α

∅ if α + 1 ≤ i ≤ n

• Rs = {pj → (pj , in(r)) : j ∈ {1, 2, . . . , m − 1} and the j-th instruction of P
operates on register r} ∪ {p̃je → (p`, here) : j ∈ {1, 2, . . . , m− 1} and j is the
label of an INC instruction that jumps to label `}∪ {p′j → (p`1 , here)e : j ∈
{1, 2, . . . ,m−1} and j is the label of a DEC instruction whose first jump label
is `1};

• Ri = {pj → (p̃j , out)e : j ∈ {1, 2, . . . , m − 1} and j is the label of an INC
instruction that affects register i}∪ {pje → (p′j , out) : j ∈ {1, 2, . . . , m−1} and
j is the label of a DEC instruction that affects register i}∪ {pj → (p`2 , out) :
j ∈ {1, 2, . . . , m−1} and j is the label of a DEC instruction that affects register
i and whose second jump label is `2}, for all i ∈ {1, 2, . . . , n}.
Informally, the system is composed of the skin membrane, that contains one

elementary membrane for each register of M . At each moment during the com-
putation, the value ri contained in register i, 1 ≤ i ≤ n, is represented by the
number of free energy units contained in the i-th elementary membrane. Hence,
the elementary membranes from 1 to α contain the input at the beginning of the
computation, whereas the elementary membranes from 1 to β contain the output
if and when the computation halts. The region enclosed by the skin contains one
object of the kind pj , j ∈ {1, 2, . . . ,m}, which represents the value j (that is,
the instruction labelled with j) of the program counter of M . To simulate the
instruction j : (INC(r), `), the object pj enters into the region r thanks to the
rule pj → (pj , in(r)). In this region, pj is transformed into p̃j by means of the

Energy-based Models of P Systems 69

rule pj → (p̃j , out)e, thus releasing one free energy unit, while the resulting ob-
ject p̃j is sent back to the region enclosed by the skin. There, a rule of the kind
p̃je → (p`, here) produces the object which represents the label of the next in-
struction to be executed. As we can see, the application of this rule requires the
presence of a free energy unit in the region enclosed by the skin.

To simulate the instruction j : (DEC(r), `1, `2), the object pj , which occurs
in the region enclosed by the skin, enters into region r by means of the rule
pj → (pj , in(r)). Assuming that there is at least one free energy unit inside region
r, the object pj can be transformed into p′j thanks to the rule pje → (p′j , out).
One free energy unit is thus consumed in region r, and the resulting object is sent
back to the region enclosed by the skin. There, it is transformed into p`1 thanks
to the rule p′j → (p`1 , here)e, by releasing one unit of free energy. On the other
hand, if membrane r does not contain free energy units (and only in this case)
then object pj – just arrived from the region enclosed by the skin – is transformed
into p`2 by means of the rule: pj → (p`2 , out). In this case no free energy units
are involved in the transformation, and the resulting object is immediately sent
to the region enclosed by the skin. Note that the correct simulation of the DEC
instruction is guaranteed by the priorities associated with the rules: when object
pj enters into membrane r, then the rule pje → (p′j , out) has priority over the rule
pj → (p`2 , out), since it manipulates more free energy units than the other.

The halt instruction is simply simulated by doing nothing with the object pm

when it appears in region s. It is apparent from the description given above that,
after the simulation of each instruction, the number of free energy units contained
into membrane i equals the value contained in register i, with 1 ≤ i ≤ n. Hence,
when the halting symbol pm appears in region s, the contents of membranes 1 to
β equal the output of the program P . ut

The following corollary is an immediate consequence of Theorem 1, by taking
β = 0.

Corollary 1. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be accepted by an energy–based P system with
an infinite supply of free energy units and priorities assigned to rules, with (at
most) α + 3 membranes.

For the generating case we have to simulate nondeterministic register machines,
which are defined exactly as the deterministic version, the only difference being in
the INC instruction, that now has the form j : (INC(r), k, `); when executing this
instruction, after incrementing register r, the computation continues nondetermin-
istically either with the instruction labelled by k or with the instruction labelled
by `. The necessary changes in the above simulation are obvious, and hence are
here omitted. Under this setting, the following corollary is also an immediate con-
sequence of Theorem 1, by taking α = 0.

Corollary 2. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by an energy–based P system with

70 G. Mauri, A. Leporati, C. Zandron

an infinite supply of free energy units and priorities assigned to rules, with (at
most) β + 3 membranes.

On the other hand, if we assume that an infinite amount of free energy units
occurs in the initial configuration but no priorities are assigned to the rules, then
energy–based P systems are not universal, as proved in the following theorem.

Theorem 2. Energy–based P systems with an infinite supply of free energy units,
and without priorities assigned to the rules, can be simulated by vector addition
systems.

Proof. Let Π be an energy–based P system that contains an infinite supply of free
energy units in its initial configuration. Denoted by m the degree of Π, by n the
cardinality of the alphabet A, and by R the total number of rules in Π, we define
a vector addition system V = (B, s), with B = {b1, b2, . . . , bR}, as follows. The
vectors s, b1, b2, . . . , bR have one component for each possible object/region pair
(a, i) of Π, that is, for all a ∈ A∪{e} and i ∈ {1, 2, . . . , m} (note that here we treat
e just like the objects of A). The start vector s reflects the initial configuration of
Π: for all a ∈ A ∪ {e} and for all i ∈ {1, 2, . . . , m}, the component of s associated
with the pair (a, i) is set to the number of copies of a in the i-th region of Π.
The only exception is given for those regions of Π where an infinite number of
free energy units occur: the corresponding components of s are initialized with E,
which is defined as the maximum number of free energy units which are necessary
to execute any rule of Π (formally, E = max{k | aek → (b, p) is a rule of Π}). So
doing, we are able to initialize every component of s with a finite value.

Each rule of the kind aek → (b, p) ∈ Ri is translated into a basis vector
bl ∈ B, l ∈ {1, . . . , R}, as follows: since one copy of a and k copies of e are
removed from region i, the component of bl that corresponds to the pair (a, i)
will be equal to −1, and the component that corresponds to (e, i) will be equal
to −k. Similarly, denoted by j the region determined by the target p, since one
copy of b will be sent to region j, the corresponding component of bl will be
equal to 1. Rules of the kind a → (b, p)ek, as well as rules of the kind a → (b, p)
and e → (e, p), are translated into appropriate basis vectors in a similar way. An
important observation is that each component of the basis vectors that corresponds
to a pair (e, i), such that region i of Π contains an infinite supply of free energy
units in its initial configuration, is set equal to E. So doing, at each computation
step E copies of e are added to those components of the VAS which correspond
to the regions of Π that contain an infinite amount of e. Thus, at the beginning
of the next computation step, such components have a value which is finite but
sufficiently high to simulate any rule of Π.

It is clear that any feasible sequential computation of Π corresponds to a
sequence of applications of basis vectors of V , and that for each pair (a, i), with
a ∈ A∪ {e} and i ∈ {1, 2, . . . , m}, the number of copies of object a in the region i
of Π after the application of a rule matches the value of the component of the state
vector that corresponds to (a, i), with the exception of the pairs (e, i) for those
regions i of Π that contain an infinite number of free energy units in the initial

Energy-based Models of P Systems 71

FG

[0,1]
ID

ID
[b,2] [b,2]

[0,1]

ID

EXC

[b,3] [b,3]

[b,3] [b,3]

[b’,1]ee [b,1] out

[b’,2] e[b,2] out

oute[b,3][b’,3]

[1,1] [1,1]
EXC

EXC
[b,2] [b,2]

EXC

ID

[b,2]e
out

[b’,3]

[b,3]e
out

[b’,2]

[b,2] [b,2]
out

out
[b,3] [b,3]

[1,1]
out

[1’,1] ee

[b,2]e
out

[b,3]e
out

[b,2] [b,2]
out

out
[b,3] [b,3]

out
[0,1] [0’,1] ee

[b’,2]

[b’,3]

Fig. 3. An energy–based P system which simulates the Fredkin gate

configuration. However, any multiset (or its corresponding Parikh set) generated
by Π can also be generated by V by means of the above simulation. ut

3.2 Simulating the Fredkin gate

Let us now describe an energy–based P system which simulates the Fredkin gate.
The results contained in this section are taken from [11, 10]; as stated above, we
switch to the maximally parallel mode of applying the rules.

The system, illustrated in Figure 3, is defined as follows. The alphabet contains
12 kinds of objects. For the sake of clarity, we denote these objects by [b, j] and
[c, j], with b ∈ {0, 1}, c ∈ {0′, 1′} and j ∈ {1, 2, 3}. Intuitively, [b, j] and [c, j]
indicate the boolean value which occurs in the j-th line of the Fredkin gate. It
will be clear from the simulation that we need two different symbols to represent
each of these boolean values. Every object of the kind [b, j], with b ∈ {0, 1} and
j ∈ {1, 2, 3}, has energy equal to 3, whereas the objects [c, 1] have energy equal to
1 and the objects [c, 2] and [c, 3] (with c ∈ {0′, 1′}) have energies equal to 4.

The simulation works as follows. The input values [x1, 1], [x2, 2], [x3, 3], with
x1, x2, x3 ∈ {0, 1}, are injected into the skin. If x1 = 0 then the object [0, 1]
enters into membrane id, where it is transformed to the object [0′, 1] by releasing
2 units of energy. The object [0′, 1] leaves membrane id and waits for 2 energy units
to transform back to [0, 1] and leave the system. The objects [x2, 2] and [x3, 3],
with x2, x3 ∈ {0, 1}, may enter nondeterministically either into membrane id or
into membrane exc; however, if they enter into exc they cannot be transformed
to [x′2, 3] and [x′3, 2] since in exc there are no free energy units. Thus the only
possibility for objects [x2, 2] and [x3, 3] is to leave exc and choose again between
membranes id and exc in a nondeterministic way. Eventually, after some time they

72 G. Mauri, A. Leporati, C. Zandron

enter (one at the time or simultaneously) into membrane id. Here they have the
possibility to be transformed into [x′2, 2] and [x′3, 3] respectively, using the 2 units
of free energy which occur into the region enclosed by id (alternatively, they have
the possibility to leave id and choose nondeterministically between membranes
id and exc once again). When the objects [x′2, 2] and [x′3, 3] are produced they
immediately leave id, and are only allowed to transform back to [x2, 2] and [x3, 3]
respectively, releasing 2 units of energy. The objects [x2, 2] and [x3, 3] just produced
leave the system, and the 2 units of energy can only be used to transform [0′, 1]
back to [0, 1] and expel it from the skin.

On the other hand, if x1 = 1 then the object [1, 1] enters into membrane
exc where it is transformed into the object [1′, 1] by releasing 2 units of energy.
The object [1′, 1] leaves membrane exc and waits for 2 energy units to transform
back to [1, 1] and leave the system. Once again the objects [x2, 2] and [x3, 3], with
x2, x3 ∈ {0, 1}, may choose nondeterministically to enter either into membrane id
or into membrane exc. If they enter into id they can only exit again since in id
there are no free energy units. When they enter into exc they can be transformed
to [x′2, 3] and [x′3, 2] respectively, using the 2 free energy units which occur into the
region, and leave exc. Now objects [x′2, 3] and [x′3, 2] can only be transformed into
[x2, 3] and [x3, 2] respectively, and leave the system. During this transformation 2
free energy units are produced; these can only be used to transform [1′, 1] back to
[1, 1], which leaves the system.

It is apparent from the simulation that the system can be defined to work
on any triple of lines of a circuit, by simply modifying the values of the second
component of the objects manipulated by the system.

The proposed P system is conservative: the number of energy units present
into the system (both free and embedded into objects) during computations is
constantly equal to 9. At the end of the computation, all these energy units are
embedded into the output values. The system is also reversible: it is immediately
seen that if we inject into the skin the output triple just produced as the result of a
computation, the system will expel the corresponding input triple. This behavior is
trivially due to the fact that the Fredkin gate is self–reversible, meaning that fg ◦
fg = id3 (equivalently, fg = fg−1), where id3 is the identity function on {0, 1}3.
Notice that, in general, this property does not hold for the functions f : {0, 1}n →
{0, 1}n computed by n–input reversible Fredkin circuits. This means that in general
the P system that simulates a given Fredkin circuit must be appropriately designed
in order to be self–reversible.

3.3 Simulation of reversible Fredkin circuits

Basing upon the simulation of the Fredkin gate we have exposed in the previous
section, in [10] we have shown that any reversible Fredkin circuit can be simulated
by an appropriate energy–based P system. Since the construction is quite involved,
in what follows we just give a few details.

Let FCn be an n–input reversible Fredkin circuit of depth d, and let L1, L2,
. . . , Ld denote the layers of FCn. As we can see on the left side of Figure 2, each

Energy-based Models of P Systems 73

layer is composed by some number of Fredkin gates and some non–intersecting
wires. Let kj , with j ∈ {1, 2, . . . , d}, be the number of Fredkin gates occurring
in layer Lj . First of all we define the P systems Gj,i, for j ∈ {1, 2, . . . , d} and
i ∈ {1, 2, . . . , kj}, by modifying the P system FG exposed in the previous section
as follows. The objects of Gj,i are denoted by [b, `, j] and [c, `, j], with b ∈ {0, 1},
c ∈ {0′, 1′}, ` ∈ {`1, `2, `3} ⊆ {1, 2, . . . , n} such that `1 6= `2 6= `3, and j ∈
{1, 2, . . . , d}. Intuitively, Gj,i simulates the i-th Fredkin gate occurring in layer Lj

of FCn, and [b, `, j], [c, `, j] indicate the boolean value which occurs in the `-th
line of Lj . The values `1, `2 and `3 correspond to the three lines of the circuit
upon which the Fredkin gate operates. The objects [b, `, j] have energy equal to 3,
whereas the energy of objects [c, `1, j] is 1 and the energy of [c, `2, j] and [c, `3, j] is
equal to 4. The system Gj,i processes the objects [b, `, j] given as input exactly as
FC would process the corresponding objects [b, `], with the only difference that,
when it expels the results of the computation in its enviroment, it changes objects
[b, `, j] to [b, `, j + 1]. This is done in order to indicate that the simulation of FCn

can continue with the next layer.
We can now build an energy–based P system Pn which simulates FCn as

follows. To simplify the exposition, we will consider the P systems Gj,i defined
above as black boxes that, when fed with input values (represented as appropriate
objects), after some time produce their results. The objects of Pn are denoted by
[b, i, j], with b ∈ {0, 1}, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d+1}. The energy of all
these objects is equal to 3. As before, [b, i, j] indicates the presence of the boolean
value b on the i-th input line of the j-th layer of FCn. Note that some of these
objects are also used in subsystems Gj,i. The system Pn, illustrated in Figure 4, is
composed by a main membrane (the skin) that contains a subsystem Fj for each
layer Lj of FCn. Every subsystem Fj simulates the corresponding layer Lj of the
circuit, using the subsystems Gj,1, Gj,2, . . . , Gj,kj to simulate the Fredkin gates
which occur in Lj . The region associated to the skin membrane contains the rules:

[b, i, j] → [b, i, j]Fj (1)

and the rules:
[b, i, d + 1] → [b, i, d + 1]out (2)

for every b ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. The application of rules
(1) makes the objects representing the boolean values occurring in the i-th input
line of layer Lj move into subsystem Fj , whereas rules (2) expel the result of
the simulation to the environment. The region associated to membrane Fj , for
j ∈ {1, 2, . . . , d}, contains the rules:

[b, i, j] → [b, i, j]Gj,ri
(3)

where ri ∈ {1, 2, . . . , kj} is the number of the Fredkin gate in Lj which has i as an
input line, as well as the rules:

[b, i, j + 1] → [b, i, j + 1]out (4)

74 G. Mauri, A. Leporati, C. Zandron

Pn

G

G

G

G

G
1

G1,1

1,k

F1 F2 Fd

2,1

2,k 2

d,1

d,k d

Fig. 4. Structure of the P system Pn which simulates an n–input reversible Fredkin
circuit FCn. Every subsystem Fj simulates the corresponding layer Lj of FCn, whereas
the subsystems Gj,i simulate the Fredkin gates occurring in Lj

which expel the results towards the skin membrane when they appear. For all the
objects [b, i, j] which have not to be processed by a Fredkin gate (since the i-th
line of Lj is a wire) the region enclosed by membrane Fj contains the rules:

[b, i, j] → [b, i, j + 1]out (5)

Hence, the simulation of FCn works as follows. At the beginning of the compu-
tation the objects [x1, 1, 1], [x2, 2, 1], . . . , [xn, n, 1], representing the input n-tuple
(x1, x2, . . . , xn) of FCn, are injected into the skin. The application of rules (1)
makes these objects move into subsystem F1. If a given object [b, i, 1] hasn’t to be
processed by a Fredkin gate (since the i-th line of L1 is a wire) then the correspond-
ing rule from (5) expels the object [b, i, 2] to the region enclosed by membrane F1.
On the other hand, using rules (3), the objects [b, i, 1] that must be processed by
a Fredkin gate are dispatched to the correct subsystems G1,ri . Eventually, after
some time the objects corresponding to the result of the computation performed
by each gate of L1 leave the corresponding systems G1,1, G1,2, . . . , G1,k1 , with the
third component incremented by 1. These objects are expelled from F1 using rules
(4). As objects [b, i, 2] are expelled from F1, rules (1) dispatch them to subsys-
tem F2. The simulation of FCn continues in this way until the objects [b, i, d + 1]
leave the subsystem Fd. Here they activate rules (2), that expel them into the
environment as the result of the computation performed by Pn.

Energy-based Models of P Systems 75

The formal definition of Pn can be found in [10]. Let us note that the system
is conservative, since the amount of energy units present into the system (both
free and embedded into objects) during computations is constantly equal to 3n.
The number of rules and the number of membranes in the system are directly
proportional to the number of gates in FCn. Differently from the other approaches
seen in literature, the depth of hierarchy µ in system Pn is constant; in particular,
it does not depend upon the number of gates occurring in FCn.

Reverse computations

If a Fredkin circuit FCn is reversible, then there exists a Fredkin circuit FC ′n
which computes the inverse function f−1

FCn
: {0, 1}n → {0, 1}n. This circuit can

be easily obtained from FCn by reversing the order of all layers. Actually, in
[10] we have shown that the P system Pn that simulates FCn can be modi-
fied in order to become self–reversible, that is, able to compute both fFCn

and
f−1

FCn
. To this aim, we add a further component k ∈ {0, 1} to the objects of Pn,

which is used to distinguish between “forward” and “backward” computations.
Precisely, the objects which are used to compute fFCn

have k = 0, and those
used to compute f−1

FCn
have k = 1. A forward computation starts by injecting

the objects [x1, 1, 1, 0], [x2, 2, 1, 0], . . . , [xn, n, 1, 0] into the skin of Pn. The compu-
tation proceeds as described above, with the rules modified in order to consider
the presence of the new component k = 0. The objects produced in output are
[y1, 1, d + 1, 0], . . . , [yn, n, d + 1, 0], where (y1, . . . , yn) = fFCn(x1, . . . , xn).

Analogously, a “backward” computation should start by injecting the objects
[y1, 1, 1, 1], [y2, 2, 1, 1], . . . , [yn, n, 1, 1] into the skin. The computation of f−1

FCn
can

be accomplished by incorporating the rules of the region enclosed by the skin and
the subsystems of P ′n (both modified in order to take into account the presence
of the new component k = 1) into Pn. Interferences between the rules concerning
forward and backward computations do not occur since they act on different kinds
of objects.

A further improvement is obtained by observing that each layer of FCn is
self–reversible, and that the layers of FC ′n are the same as the layers of FCn,
in reverse order. Hence we can merge each subsystem Fj , which simulates layer
Lj of FCn, with the subsystem F ′d−j+1, which simulates layer L′d−j+1 of FC ′n.
The merge operation consists in putting the rules and the subsystems of F ′d−j+1

into Fj . Of course we have also to modify the rules in the region enclosed by the
skin so that the objects that were previously moved to F ′d−j+1 are now dispatched
to Fj . Recursively, since each Fredkin gate is self–reversible, we can merge also
subsystems Gj,1, . . . , Gj,kj occurring into Fj with the corresponding subsystems
G′d−j+1,1, . . . , G

′
d−j+1,kj

which occur into F ′d−j+1. In this way, we obtain a self–
reversible P system which is able to compute both fFCn and f−1

FCn
. The new system

has the same number of membranes as Pn, and the double of rules.

76 G. Mauri, A. Leporati, C. Zandron

Reducing the number of subsystems

As we have seen in the previous sections, the number of membranes and the
number of rules of the P system Pn that simulates the reversible Fredkin circuit
FCn grow linearly with respect to the number of gates occurring in the circuit.
Actually, the number of membranes in Pn can be made linear with respect to n,
independently of the number of gates occurring in the simulated Fredkin circuit
FCn. To compensate the reduced number of membranes, the number of rules
in the system will grow accordingly. For the sake of simplicity, let us consider
only forward computations, involving objects of the kind [b, i, j], with b ∈ {0, 1},
i ∈ {1, . . . , n} and j ∈ {1, . . . , d + 1}.

First of all, every n–input reversible Fredkin circuit FCn can be “normalized”
by moving the Fredkin gates contained into each layer as upward as possible, as
illustrated on the right side of Figure 2. The resulting layers are called normalized
layers. In order to keep track of which input value goes into which gate, we pre-
cede each normalized layer by a fixed (that is, non input–dependent) permutation,
which is realized by rearranging the wires as required. A final fixed permutation,
occurring after the last normalized layer, allows the output values of FCn to appear
on the correct output lines. Observe that the number of possible n–input normal-
ized layers of Fredkin gates is bn

3 c. We can thus number all possible normalized
layers with an index ` ∈ {1, . . . , bn

3 c}, and describe a normalized Fredkin circuit
by a sequence of indexes `1, `2, . . . , `d together with a corresponding sequence of
fixed permutations π1, π2, . . . , πd+1.

The normalization of every layer Lj of FCn can be performed in linear time
with respect to n, as described in [10]. The time needed to normalize the entire
circuit is thus bounded by O(n · d), the size of the circuit.

An energy–based P system that simulates a normalized Fredkin circuit can be
built by composing (at most) the bn

3 c subsystems F1, . . ., Fbn/3c, each one capable
to simulate a fixed normalized layer of Fredkin gates. The region enclosed by the
skin contains the rules [b, i, j] → [b, πj(i), j]F`j

for all b ∈ {0, 1}, i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, as well as the rules [b, i, d + 1] → [b, πd+1(i), d + 1]out. These
rules implement the fixed permutations, move the objects to the subsystem that
simulates the next normalized layer, and expel the results of the computation
into the environment. The simulation of each normalized layer is analogous to the
simulation of the layers of a non–normalized Fredkin circuit, as described above.
Note that the objects emerge from subsystems F1, . . . , Fbn/3c with the j component
incremented by 1, so that they are ready for the next computation step. If the same
normalized layer occurs in two or more positions in the normalized Fredkin circuit,
then the corresponding subsystem must contain the rules which allow to process
all the objects which appear in these positions.

A further transformation of the Fredkin circuit allows to perform the simula-
tion with just one subsystem. Starting from a normalized n–input Fredkin circuit
NFCn, we transform each normalized layer so that in the resulting circuit ev-
ery layer contains the same number of gates. Figure 5 shows the result of this
transformation, applied to the normalized Fredkin circuit illustrated in Figure 2.

Energy-based Models of P Systems 77

Informally, the transformation is performed as follows. Considering one normal-

x

x

x

x

2

3

4

5

x1

FG

FG

y1

y2

y3

y4

y5

FG

x6

x7

y6

0

0

FG
(aux)

FG
(aux)

FG
(aux)

y7

0

0

Fig. 5. A normalized Fredkin circuit with auxiliary lines and gates. The number of gates
is the same in each layer

ized layer at a time, we first add a number of auxiliary lines, fed with the boolean
constant 0. The number of auxiliary lines added depends upon the number of free
lines (that is, lines not affected by any gate) in the given layer. As a result, the
total number of lines is a multiple of 3. We can thus add an appropriate number
of auxiliary Fredkin gates (denoted by “FG (aux)” in Figure 5) to the layer, each
one taking an auxiliary line as its first input, so that every auxiliary gate com-
putes the identity function. At the end of this process, we add (if needed) to each
layer further auxiliary lines, in order to obtain the same number of input/output
lines for all the layers. Since the auxiliary lines have been added at the bottom
of the circuit, we have to permute them together with the original free lines to
feed them correctly to the transformed layer. The details can be found in [10].
The energy–based P system that simulates a transformed Fredkin circuit is the
same as described in the previous section, but now it contains only the subsystem
which simulates a full layer of Fredkin gates. If desired, also the membrane which
encloses such subsystem can be removed, thus lowering the depth of the membrane
hierarchy by 1. The new system has again bn/3c subsystems, each one simulating
a Fredkin gate. Of course, the rules in the skin must be modified so that they
dispatch the objects directly to the correct subsystem.

4 UREM P Systems

Let us now consider UREM P systems [4], that is, P systems with unit rules and
energy assigned to membranes. A UREM P system of degree d + 1 is a construct
Π of the form Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd), where:

• A is an alphabet of objects;

78 G. Mauri, A. Leporati, C. Zandron

• µ is a membrane structure, with the membranes labelled by numbers 0, . . . , d
in a one-to-one manner;

• e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d. In
what follows we assume that e0, . . . , ed are non–negative integers;

• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of µ;
• R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule or Ri has the form (αi : a,∆e, b), where α ∈ {in, out}, a, b ∈ A,
and |∆e| is the amount of energy that — for ∆e ≥ 0 — is added to or — for
∆e < 0 — is subtracted from ei (the energy assigned to membrane i) by the
application of the rule.

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by nondeterministically
choosing one rule from some Ri and applying it (hence we consider the sequen-
tial mode of applying the rules). Applying (ini : a,∆e, b) means that an object a
(being in the membrane immediately outside of i) is changed into b while entering
membrane i, thereby changing the energy value ei of membrane i by ∆e. On the
other hand, the application of a rule (outi : a, ∆e, b) changes object a into b while
leaving membrane i, and changes the energy value ei by ∆e. The rules can be
applied only if the amount ei of energy assigned to membrane i fulfills the require-
ment ei + ∆e ≥ 0. Moreover, we use a sort of local priorities: if there are two or
more applicable rules in membrane i, then one of the rules with max |∆e| has to
be used.

A sequence of transitions is called a computation; it is successful if and only if
it halts. The result of a successful computation is considered to be the distribution
of energies among the membranes in the halting configuration. A non–halting
computation does not produce a result. If we consider the energy distribution
of the membrane structure as the input to be analysed, we obtain a model for
accepting sets of (vectors of) non–negative integers.

4.1 Computational power

The following result, proved in [4], establishes computational completeness for this
model of P systems.

Theorem 3. Every partial recursive function f : Nα → Nβ (α ≥ 1, β ≥ 1) can be
computed by a UREM P system with (at most) max{α, β}+ 3 membranes.

As in the case of energy–based P systems, the proof of this proposition is
obtained by simulating register machines. In the simulation, a P system is defined
which contains one subsystem for each register of the simulated machine. The
contents of the register are expressed as the energy value ei assigned to the i-th
subsystem. A single object is present in the system at every computation step,
which stores the label of the instruction of the program P currently simulated.
Increment instructions are simulated in two steps by using the rules (ini : pj , 1, p̃j)
and (outi : p̃j , 0, pk). Decrement instructions are also simulated in two steps, by

Energy-based Models of P Systems 79

using the rules (ini : pj , 0, p̃j) and (outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use of
priorities associated to these last rules is crucial to correctly simulate a decrement
instruction. For the details of the proof we refer the reader to [4].

When taking β = 0 in the proof of the above proposition, we get the accepting
variant of P systems with unit rules and energy assigned to membranes:

Corollary 3. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be accepted by a UREM P system having (at
most) α + 3 membranes.

The above results were obtained by simulating deterministic register machines
by means of deterministic UREM P systems, where at each step only one rule
is enabled and can be applied. As we did with energy–based P systems, for the
generative case we have to pass to a nondeterministic choice of rules, and simulate
nondeterministic register machines. Under this setting, the following corollary is
also a simple consequence of Theorem 3, by taking α = 0. As a technical detail
we mention that the nondeterministic INC instruction j : (INC(i), k, `) is sim-
ulated in two steps by using the rules (ini : pj , 1, p̃j) and then (outi : p̃j , 0, pk) or
(outi : p̃j , 0, p`).

Corollary 4. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by a UREM P system having (at
most) β + 3 membranes.

Once again, when omitting the priority feature we do not get systems with
universal computational power. This time, however, we obtain a characterization
of the family PsMATλ of Parikh sets generated by context–free matrix grammars,
without occurrence checking and with λ-rules. The proof is quite involved, and
hence we refer the reader to [4, 10].

However, even without the priority feature UREM P systems can obtain uni-
versal computational power, provided that their rules are applied in the maximally
parallel mode instead of the sequential mode:

Theorem 4. Each partial recursive function f : Nα → Nβ (α ≥ 1, β ≥ 1) can be
computed by a UREM P system with (at most) max{α, β} + 4 membranes when
working in the maximally parallel mode without priorities on the rules.

Once again, the proof is obtained by simulating register machines. This time,
however, the simulation is more complicated, and requires the use of an auxiliary
membrane which is used as a “pacemaker” to drive the correct simulation of INC
and DEC instructions. We refer the reader to [10] for the details.

The following results are immediate consequences of Theorem 4 as Corollaries
3 and 4 were immediate consequences of Theorem 3:

Corollary 5. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors
of) non–negative integers. Then L can be accepted by a UREM P system with (at
most) α + 4 membranes in the maximally parallel mode without priorities on the
rules.

80 G. Mauri, A. Leporati, C. Zandron

Corollary 6. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by a UREM P system with (at
most) β + 4 membranes in the maximally parallel mode without priorities on the
rules.

5 Conclusions

In this paper we have reviewed some results obtained in the last few years, con-
cerning the computational power of two models of computation defined in the
framework of membrane computing: energy–based P systems and UREM P sys-
tems. Such models are inspired from the functioning of some physical laws, that
consider the computation devices as physical objects that manipulate energy dur-
ing their computations.

We believe that these P systems have the potential to generate further stim-
ulating research. Two spin–offs of UREM P systems we have not mentioned in
this paper are tissue–like UREM P systems, whose study has begun in [10], and
quantum–like UREM P systems, introduced in [9]. A tissue–like version of energy–
based P systems is missing, as well as a comparison with other models of P systems
that use energy in their computation steps (such as [15, 3, 6]).

References

1. A. Alhazov, R. Freund, A. Leporati, M. Oswald, C. Zandron. (Tissue) P Systems
with Unit Rules and Energy Assigned to Membranes. Fundamenta Informaticae,
74:391–408, 2006.

2. E. Fredkin, T. Toffoli. Conservative Logic. International Journal of Theoretical
Physics, 21(3-4):219–253, 1982.

3. R. Freund. Energy–Controlled P Systems. In Membrane Computing, Proceedings of
the International Workshop WMC–CdeA 2002, LNCS 2597, Springer–Verlag, Berlin,
2003, 247–260.

4. R. Freund, A. Leporati, M. Oswald, C. Zandron. Sequential P Systems with Unit
Rules and Energy Assigned to Membranes. In Machines, Computations and Univer-
sality (MCU 2004), Saint–Petersburg, Russia, September 21–24, 2004, LNCS 3354,
Spriger–Verlag, Berlin, 2005, pp. 200–210.

5. R. Freund, M. Oswald. GP Systems with Forbidding Context. Fundamenta Infor-
maticae, 49(1-3):81–102, 2002.

6. P. Frisco. The Conformon–P System: a Molecular and Cell Biology–inspired Com-
putability Model. Theoretical Computer Science, 312:295–319, 2004.

7. R. Karp, R. Miller. Parallel Program Schemata. Journal of Computer and System
Science, 3(4):167–195, 1969. Also RC2053, IBM T.J. Watson Research Center, New
York, April 1968.

8. A. Leporati, D. Besozzi, P. Cazzaniga, D. Pescini, C. Ferretti. Computing with En-
ergy and Chemical Reactions. Natural Computing, to appear.

Energy-based Models of P Systems 81

9. A. Leporati, G. Mauri, C. Zandron. Quantum Sequential P Systems with Unit Rules
and Energy Assigned to Membranes. In Membrane Computing: 6th International
Workshop (WMC 2005), Vienna, Austria, July 18–21, 2005, LNCS 3850, Springer–
Verlag, Berlin, 2006, pp. 310–325.

10. A. Leporati, C. Zandron, G. Mauri. Reversible P Systems to Simulate Fredkin Cir-
cuits. Fundamenta Informaticae, 74:529548, 2006.

11. A. Leporati, C. Zandron, G. Mauri. Simulating the Fredkin Gate with Energy-based
P Systems. Journal of Universal Computer Science, 10(5):600–619, 2004.

12. M.L. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

13. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

14. Gh. Păun: Membrane computing. An introduction. Springer-Verlag, Berlin, 2002.
15. Gh. Păun, Y. Suzuki, H. Tanaka. P Systems with Energy Accounting. International

Journal Computer Math., 78(3):343–364, 2001.
16. J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1981.
17. The P systems Web page: http://ppage.psystems.eu

A Computational Complexity Theory in
Membrane Computing

Mario J. Pérez–Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Summary. In this paper, a computational complexity theory within the framework
of Membrane Computing is introduced. Polynomial complexity classes associated with
different models of cell-like and tissue-like membrane systems are defined and the most
relevant results obtained so far are presented. Many attractive characterizations of P 6=
NP conjecture within the framework of a bio-inspired and non-conventional computing
model are deduced.

1 Introduction

The main objective of Computability Theory is to define the informal idea of me-
chanical/algorithmic problems resolution in a rigorous way. Each formal definition
of the said concept provides a computing model. However, a basic question is to
determine the class of all the problems that can be solved by a computing model
when using the algorithms defined in it. In any computing model which captures
the informal idea of algorithm, there are undecidible problems, that is, problems
that cannot be solved by using the algorithms of the model.

Analyzing an algorithm which solves a problem consists of determining an
upper bound for the minimal resource requirements with which the problem can
be solved. The said upper bound will be a function of the size of the instance
of the problem. One of the main goals of Computational Complexity Theory is
to provide bounds on the amount of resources necessary for every mechanical
procedure (algorithm) that solves a given problem.

Usually, complexity theory deals with decision problems which are problems
that require a “yes” or “no” answer. A decision problem, X, is a pair (IX , θX) such
that IX is a language over a finite alphabet (whose elements are called instances)
and θX is a total boolean function (that is, a predicate) over IX .

Many abstract problems are not decision problems. For example, in combina-
torial optimization problems some value must be optimized (minimized or maxi-

A Computational Complexity Theory in Membrane Computing. 83

mized). In order to deal with such problems, they can be transformed into roughly
equivalent decision problems by supplying a target/threshold value for the quan-
tity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages can be
established as follows. Given a decision problem X = (IX , θX), its associated
language is LX = {w ∈ IX : θX(w) = 1}. Conversely, given a language L, over an
alphabet Σ, its associated decision problem is XL = (IXL , θXL), where IXL = Σ∗,
and θXL = {(x, 1) : x ∈ L} ∪ {(x, 0) : x /∈ L}.

The solvability of decision problems is defined through the recognition of the
languages associated with them. Let M be a Turing machine with a working alpha-
bet Γ and L a language over Γ . Assume that the result of any halting computation
of M is yes or no. If M is a deterministic device, then we say that M recognizes
or decides L whenever, for any string u over Γ , if u ∈ L, then the answer of M on
input u is yes (that is, M accepts u), and the answer is no otherwise (that is, M
rejects u). If M is a non-deterministic device, then we say that M recognizes or
decides L if for any string u over Γ , u ∈ L if and only if there exists a computation
of M with input u such that the answer is yes.

Throughout this paper, it is assumed that each abstract problem has an associ-
ated fixed reasonable encoding scheme that describes the instances of the problem
by means of strings over a finite alphabet. We do not define reasonable in a formal
way, however, following [8], instances should be encoded in a concise way, without
irrelevant information, and where relevant numbers are represented in binary form
(or any fixed base other than 1). It is possible to use multiple reasonable encoding
schemes to represent instances, but it is proved that the input sizes differ at most
by a polynomial. The size |u| of an instance u is the length of the string associated
with it, in some reasonable encoding scheme.

Membrane computing is a young branch of natural computing initiated by
Gh. Păun at the end of 1998 [20]. Membrane systems are very flexible and versatile
devices.

P systems take multisets as input, usually in a unary fashion. Hence, it is
important to be careful when asserting that a problem is polynomial-time solvable
by membrane systems. In this context, polynomial-time solutions to NP–complete
problems in the framework of membrane computing can be considered as pseudo-
polynomial time solutions in the classical sense (see [8] and [25] for details).

The paper is organized as follows. In the next section, basic concepts are in-
troduced related to cell-like membrane systems that are necessary to define the
solution of decision problems in polynomial time. In Section 3, limitations to ba-
sic transition P systems are described from the point of view of computational
efficiency. Section 4 presents the most relevant results on P systems with active
membranes both with and without polarization. Section 5 is devoted to the study
of polarizationless tissue P systems with active membranes from the point of view
of computational efficiency. In this Section, important results which provide bor-
derlines between efficiency and non-efficiency are presented. The paper ends with

84 M.J. Pérez–Jiménez

the proposal of several open problems within the framework of computational
complexity in Membrane Computing.

2 Cell–like Recognizer Membrane Systems

Membrane Computing is a young branch of Natural Computing providing dis-
tributed parallel computational devices called membrane systems, which are in-
spired in some basic biological features of living cells, as well as in the cooperation
of cells in tissues, organs and organisms.

In this area there are basically two ways to consider computational devices:
cell–like membrane systems (P systems) and tissue–like membrane systems (tissue
P systems). The first one uses membranes arranged hierarchically, inspired from
the structure of the cell, and the second one uses membranes placed in the nodes
of a graph, inspired from the cell inter–communication in tissues.

In the last years several computing models using powerful tools from Nature
have been developed (because of this, they are known as bio-inspired models) and
several solutions in polynomial time to NP–complete problems have been pre-
sented, making use of non-determinism and/or of an exponential amount of space.
This is the reason why a practical implementation of such models (in biological,
electronic, or other media) could provide a significant advance in the resolution of
computationally hard problems.

Definition 1. A P system (without input) of degree q ≥ 1 is a tuple of the form
Π = (Γ,H, µ,M1, . . . ,Mq, R, iout), where:

1. Γ is a working alphabet of objects, and H is a finite set of labels;
2. µ is a membrane structure (a rooted tree) consisting of q membranes injectively

labeled by elements of H;
3.M1, . . . ,Mq are strings over Γ describing the initial multisets of objects placed

in the q initial regions of µ;
4. R is a finite set of developmental rules;
5. iout ∈ H or iout = env indicates the output region: in the case iout ∈ H, for

a computation to be successful there must be exactly one membrane with label
iout present in the halting configuration; in the case iout = env, iout is usually
omitted from the tuple.

Many variants of P systems can be obtained depending on the kind of devel-
opmental rules and the semantics which are considered. The length of a rule is the
number of symbols necessary to write it, both its left and right sides.

If h is the label of a membrane, then f(h) denotes the label of the father of
the membrane labeled by h. We assume the convention that the father of the skin
membrane is the environment (env).

Definition 2. A P system with input membrane is a tuple (Π,Σ, iin), where:
(a) Π is a P system; (b) Σ is an (input) alphabet strictly contained in Γ such

A Computational Complexity Theory in Membrane Computing. 85

that the initial multisets are over the alphabet Γ \ Σ; and (c) iin is the label of a
distinguished (input) membrane.

The difference between P systems with and without input membrane is not
related to their computations, but only to their initial configurations. A P system
Π without input has a single initial configuration (µ,M1, . . . ,Mq). A P system
(Π,Σ, hi) with input has many initial configurations: for each multiset m ∈ Σ∗,
the initial configuration associated with m is (µ,M1, . . . ,Mhi ∪ m, . . . ,Mq).

In order to solve decision problems, we define recognizer P system.

Definition 3. A recognizer P system is a P system such that: (a) the working
alphabet contains two distinguished elements yes and no; (b) all computations halt;
and (c) if C is a computation of the system, then either object yes or object no (but
not both) must have been sent to the output region of the system, and only at the
last step of the computation.

For recognizer P systems, a computation C is said to be an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears (only) in the output region associated with the corresponding halting
configuration of C.

For technical reasons all computations are required to halt, but this condition
can often be removed without affecting computational efficiency.

Throughout this paper, R denotes an arbitrary class of recognizer P systems.

2.1 Uniform families of P systems

Many formal machine models (e.g. Turing machines or register machines) have
an infinite number of memory locations. At the same time, P systems, or logic
circuits, are computing devices of finite size and they have a finite description
with a fixed amount of initial resources (number of membranes, objects, gates,
etc.). For this reason, in order to solve a decision problem a (possibly infinite)
family of P systems is considered.

The concept of solvability in the framework of P systems also takes into account
the pre-computational process of (efficiently) constructing the family that provides
the solution. In this paper, the terminology uniform family is used to denote that
this construction is performed by a single computational machine.

In the case of P systems with input membrane, the term uniform family is
consistent with the usual meaning for Boolean circuits: a family Π = {Π(n) :
n ∈ N} is uniform if there exists a deterministic Turing machine which constructs
the system Π(n) from n ∈ N (that is, which on input 1n outputs Π(n)). In such
a family, the P system Π(n) will process all the instances of the problem with
numerical parameters (reasonably) encoded by n – the common case is that Π(n)
processes all instances of size n. Note that this means that, for these families of P
systems with input membrane, further pre–computational processes are needed in
order to (efficiently) determine which P system (and from which input) deals with

86 M.J. Pérez–Jiménez

a given instance of the problem. The concept of polynomial encoding introduced
below tries to capture this idea.

In the case of P systems without input membrane a new notion arises: a family
Π = {Π(w) : w ∈ IX} associated with a decision problem X = (IX , θX) is
uniform (some authors [15, 34, 37] use the term semi-uniform here) if there exists a
deterministic Turing machine which constructs the system Π(w) from the instance
w ∈ IX . In such a family, each P system usually processes only one instance, and
the numerical parameters and syntactic specifications of the latter are part of the
definition of the former.

It is important to point out that, in both cases, the family should be constructed
in an efficient way. This requisite was first included within the term uniform family
(introduced by Gh. Păun [21]), but nowadays it is preferred to use the term poly-
nomially uniform by Turing machines to indicate a uniform (by a single Turing
machine) and effective (in polynomial time) construction of the family.

Definition 4. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) :
n ∈ N}) of recognizer membrane systems without input membrane (resp., with
input membrane) is polynomially uniform by Turing machines if there exists a
deterministic Turing machine working in polynomial time which constructs the
system Π(w) (resp., Π(n)) from the instance w ∈ IX (resp., from n ∈ N).

2.2 Confluent P systems.

In order for recognizer P systems to capture the true algorithmic concept, a condi-
tion of confluence is imposed, in the sense that all possible successful computations
must give the same answer. This contrasts with the standard notion of accepting
computations for non-deterministic (classic) models.

Definition 5. Let X = (IX , θX) be a decision problem, and Π = {Π(w) : w ∈
IX} be a family of recognizer P systems without input membrane.

• Π is said to be sound with respect to X if the following holds: for each instance
of the problem, w ∈ IX , if there exists an accepting computation of Π(w), then
θX(w) = 1.

• Π is said to be complete with respect to X if the following holds: for each
instance of the problem, w ∈ IX , if θX(w) = 1, then every computation of
Π(w) is an accepting computation.

The concepts of soundness and completeness can be extended to families of
recognizer P systems with input membrane in a natural way. However, an efficient
process of selecting P systems from instances must be made precise.

Definition 6. Let X = (IX , θX) be a decision problem, and Π = {Π(n) : n ∈ N}
a family of recognizer P systems with input membrane. A polynomial encoding
of X in Π is a pair (cod, s) of polynomial–time computable functions over IX
such that for each instance w ∈ IX , s(w) is a natural number (obtained by means
of a reasonable encoding scheme) and cod(w) is an input multiset of the system
Π(s(w)).

A Computational Complexity Theory in Membrane Computing. 87

Polynomial encodings are stable under polynomial–time reductions [28].

Proposition 1. Let X1, X2 be decision problems, r a polynomial–time reduction
from X1 to X2, and (cod, s) a polynomial encoding from X2 to Π. Then, (cod ◦
r, s ◦ r) is a polynomial encoding from X1 to Π.

Next, the concepts of soundness and completeness are defined for families of
recognizer P systems with input membrane.

Definition 7. Let X = (IX , θX) be a decision problem, Π = {Π(n) : n ∈ N}
a family of recognizer P systems with input membrane, and (cod, s) a polynomial
encoding of X in Π.

• Π is said to be sound with respect to (X, cod, s) if the following holds: for each
instance of the problem, w ∈ IX , if there exists an accepting computation of
Π(s(w)) with input cod(w), then θX(w) = 1.

• Π is said to be complete with respect to (X, cod, s) if the following holds: for
each instance of the problem, w ∈ IX , if θX(w) = 1, then every computation
of Π(s(w)) with input cod(w) is an accepting computation.

Notice that if a family of recognizer P systems is sound and complete, then
every P system of the family is confluent, in the sense previously mentioned.

2.3 Semi-Uniform Solutions versus Uniform Solutions

The first results showing that membrane systems could solve computationally hard
problems in polynomial time were obtained using P systems without input mem-
brane. In that context, a specific P system is associated with each instance of the
problem. In other words, the syntax of the instance is part of the description of
the associated P system. Thus this P system can be considered special purpose.

Definition 8. A decision problem X is solvable in polynomial time by a family of
recognizer P systems without input membrane Π = {Π(w) : w ∈ IX}, denoted by
X ∈ PMC∗R, if the following holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is polynomially bounded; that is, there exists a natural number

k ∈ N such that for each instance w ∈ IX , every computation of Π(w) performs
at most |w|k steps.

• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi–uniform solution to the problem X.
Next, recognizer P systems with input membrane are defined to solve problems

in a uniform way in the following sense: all instances of a decision problem of the
same size (via a given reasonable encoding scheme) are processed by the same
system, to which an appropriate input is supplied.

88 M.J. Pérez–Jiménez

Definition 9. A decision problem X = (IX , θX) is solvable in polynomial time
by a family of recognizer P systems with input membrane Π = {Π(n) : n ∈ N},
denoted by X ∈ PMCR, if the following holds:

• The family Π is polynomially uniform by Turing machines.
• There exists a polynomial encoding (cod, s) of X in Π such that:

– The family Π is polynomially bounded with respect to (X, cod, s); that is,
there exists a natural number k ∈ N such that for each instance w ∈ IX ,
every computation of the system Π(s(w)) with input cod(w) performs at
most |w|k steps.

– The family Π is sound and complete with respect to (X, cod, s).

The family Π is said to provide a uniform solution to the problem X.
As a direct consequence of working with recognizer membrane systems, these

complexity classes are closed under complement. Moreover, they are closed under
polynomial–time reductions [28].

Obviously, every uniform solution of a decision problem provides a semi–
uniform solution using the same amount of computational resources. That is,
PMCR ⊆ PMC∗R, for any class R of recognizer P systems.

Remark: It is interesting to distinguish the concept of polynomially uniform by
Turing machines from the concepts of semi–uniform and uniform solutions. The
first concept is related with the resources required to construct the family of P sys-
tems solving a decision problem. The last two refer to the way in which the family
processes the instances. In semi-uniform solutions, every instance is processed by
a special purpose P system. While in uniform solutions, each P system processes
all instances of a given size.

3 Efficiency of Basic Transition P Systems

In this section, the computational efficiency of P systems whose membrane struc-
ture does not increase is studied.

First of all, in order to formally define what means that a family of P systems
simulates a Turing machine, we shall introduce for each Turing machine a decision
problem associated with it.

Definition 10. Let M be a Turing machine with input alphabet ΣM . The decision
problem associated with M is the problem XM = (IM , θM), where IM = Σ∗M , and
for every w ∈ Σ∗M , θM (w) = 1 if and only if M accepts w.

Obviously, the decision problem XM is solvable by the Turing machine M .

Definition 11. We say that a Turing machine M is simulated in polynomial time
by a family of recognizer P systems from R if XM ∈ PMCR.

A Computational Complexity Theory in Membrane Computing. 89

A basic transition P system is a P system with only evolution, communication,
and dissolution rules, which do not increase the size of the membrane structure.
Let T denote the class of recognizer basic transition P systems.

M.A. Gutiérrez–Naranjo et al. [12] gave an efficient simulation of deterministic
Turing machines by recognizer basic transition P systems.

Proposition 2. (Sevilla theorem) Every deterministic Turing machine work-
ing in polynomial time can be simulated in polynomial time by a family of recognizer
basic transition P systems with input membrane.

They also proved that each confluent basic transition P system can be (effi-
ciently) simulated by a deterministic Turing machine [12]. As a consequence, these
P systems efficiently solve at most tractable problems.

Proposition 3. If a decision problem is solvable in polynomial time by a family
of recognizer basic transition P systems with input membrane, then there exists a
deterministic Turing machine solving it in polynomial time.

These results are also verified for recognizer basic transition P systems without
input membrane. Therefore, the following holds.

Theorem 1. P = PMCT = PMC∗T .

Thus, the ability of a P system in T to create exponential workspace (in terms
of number of objects) in polynomial time (e.g. via evolution rules of the type
[a→ a2]h) is not enough to efficiently solve NP–complete problems (unless P =
NP). Theorem 1 provides a tool to attack conjecture P = NP in the framework
of membrane computing.

Corollary 1. P 6= NP if and only if every, or at least one, NP–complete problem
is not in PMCT = PMC∗T .

4 P Systems with Active Membranes

P systems with active membranes having associated electrical charges with mem-
branes were first introduced by Gh. Păun [22]. Replication is one of the most im-
portant functions of a cell and, in ideal circumstances, a cell produces two identical
copies by division (mitosis). Bearing in mind that the reactions which take place
in a cell are related to membranes, rules for membrane division are considered.

Definition 12. A P system with active membranes of degree q ≥ 1 is a tuple
Π = (Γ,H, µ,M1, . . . ,Mq, R, iout), where:

1. Γ is a working alphabet of objects, and H is a finite set of labels for membranes;
2. µ is a membrane structure (a rooted tree) consisting of q membranes injectively

labeled by elements of H, and with electrical charges (+,−, 0) associated with
them;

90 M.J. Pérez–Jiménez

3.M1, . . . ,Mq are strings over Γ describing the initial multisets of objects placed
in the q initial regions of µ;

4. R is a finite set of rules, of the following forms:
a) [a → u]αh , for h ∈ H,α ∈ {+,−, 0}, a ∈ Γ , u ∈ Γ ∗ (object evolution

rules).
b) a []α1

h → [b]α2
h , for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–in commu-

nication rules).
c) [a]α1

h → []α2
h b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–out

communication rules).
d) [a]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).
e) [a]α1

h → [b]α2
h [c]α3

h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ (divi-
sion rules for elementary membranes).

f) [[]α1
h1
. . . []α1

hk
[]α2
hk+1

. . . []α2
hn

]αh → [[]α3
h1
. . . []α3

hk
]βh [[]α4

hk+1
. . . []α4

hn
]γh, for k ≥

1, n > k, h, h1, . . . , hn ∈ H, α, β, γ, α1, . . . , α4 ∈ {+,−, 0} and {α1, α2} =
{+,−} (division rules for non–elementary membranes).

5. iout ∈ H or iout = env indicates the output region.

These rules are applied as usual (see [21] for details).
Note that these P systems have some important features: (a) they use three

electrical charges; (b) the polarization of a membrane, but not the label, can be
modified by the application of a rule; and (c) they do not use cooperation neither
priorities.

In the framework of P systems without input membrane, C. Zandron et al. [39]
proved that confluent recognizer P systems with active membranes making use of
no membrane division rule, can be efficiently simulated by a deterministic Turing
machine.

Proposition 4. (Milano theorem)
A deterministic P system with active membranes but without membrane division
can be simulated by a deterministic Turing machine with a polynomial slowdown.

Let NAM be the class of recognizer P systems with active membranes which
do not make use of division rules. As a consequence of the previous result, the
following holds:

Corollary 2. PMC∗NAM ⊆ P.

A.E. Porreca [33] provides a simple proof of each tractable problem being able
to be solved (in a semi–uniform way) by a family of recognizer P systems with
active membranes (without polarizations) operating in exactly one step and using
only send–out communication rules. That proof can be easily adapted to uniform
solutions.

Proposition 5. P ⊆ PMCNAM.

Thus, we have a version of Theorem 1 for the class NAM.

A Computational Complexity Theory in Membrane Computing. 91

Theorem 2. P = PMCNAM = PMC∗NAM.

The first efficient solutions to NP–complete problems by using P systems with
active membranes were given in a semi–uniform way (where the P systems of
the family depend on the syntactic structure of the instance) by S.N. Krishna et
al. (Hamiltonian Path, Vertex Cover [13]), A. Obtulowicz (SAT [16]), A. Păun
(Hamiltonian Path [19]), Gh. Păun (SAT [22, 23]), and C. Zandron et al. (SAT,
Undirected Hamiltonian Path [39]).

Let AM(+n) (respectively, AM(−n)) be the class of recognizer P systems
with active membranes using division rules for elementary and non–elementary
membranes (respectively, only for elementary membranes).

In the framework of AM(−n), efficient uniform solutions to weakly NP–
complete problems (Knapsack [27], Subset Sum [26], Partition [10]), and
strongly NP–complete problems (SAT [32], Clique [4], Bin Packing [30], Common
Algorithmic Problem [29]) have been obtained.

Proposition 6. SAT ∈ PMCAM(−n).

Since PMCR is closed under complement and polynomial–time reductions, for
any class R of recognizer P systems, the following result is obtained.

Proposition 7. NP ∪ co-NP ⊆ PMCAM(−n).

In the framework of AM(+n), P. Sośık [37] gave an efficient semi–uniform
solution to QBF-SAT (satisfiability of quantified propositional formulas), a well
known PSPACE–complete problem [8]. Hence, the following is deduced.

Proposition 8. PSPACE ⊆ PMC∗AM(+n).

This result has been extended by A. Alhazov et al. [5] showing that QBF-SAT
can be solved in a linear time and in a uniform way by a family of recognizer P
systems with active membranes (without using dissolution rules) and using division
rules for elementary and non–elementary membranes.

Proposition 9. PSPACE ⊆ PMCAM(+n).

A.E. Porreca et al. [34] described a (deterministic and efficient) algorithm sim-
ulating a single computation of any confluent recognizer P system with active
membranes and without input. Such P systems can be simulated by a determin-
istic Turing machine working with exponential space, and spending a time of the
order O(2p(n)), for some polynomial p(n). Thus,

Proposition 10. PMC∗AM(+n) ⊆ EXP.

Therefore, PMCAM(+n) and PMC∗AM(+n) are two membrane computing
complexity classes between PSPACE and EXP.

Corollary 3. PSPACE ⊆ PMCAM(+n) ⊆ PMC∗AM(+n) ⊆ EXP.

92 M.J. Pérez–Jiménez

P. Sośık et al. [36] have proven that the reverse inclusion of Proposition 8 holds
as well. Nevertheless, the concept of uniform family of P systems considered in
that paper is different from that of Definition 4, although maybe the proof can be
adapted to fit into the framework presented in this paper. In this case the following
would hold: PSPACE = PMC∗AM(+n).

Previous results show that the usual framework of P systems with active mem-
branes for solving decision problems is too powerful from the computational com-
plexity point of view. Therefore, it would be interesting to investigate weaker mod-
els of P systems with active membranes able to characterize classical complexity
classes below NP and providing borderlines between efficiency and non–efficiency.

Efficient (semi–uniform and/or uniform) solutions to computationally hard
problems have been obtained within different apparently weaker variants of P
systems with active membranes:

• P systems with separation rules instead of division rules, in two different cases:
first one, using polarizations without changing membrane labels; and second
one, without polarizations but allowing change of membrane labels (SAT, uni-
form solution [18]).

• P systems using division for elementary membranes, without changing mem-
brane labels, without polarizations, but using bi–stable catalysts (SAT, uniform
solution [31]).

• P systems using division for elementary membranes, without label changing,
but using only two electrical charges (SAT, uniform solution [2], Subset Sum,
uniform solution [35]).

• P systems without polarizations, without label changing, without division, but
using three types of membrane rules: separation, merging, and release (SAT,
semi–uniform solution [17]).

• P systems without dissolution nor polarizations, but allowing to change the
labels of membranes in division rules (SAT, uniform solution [3]).

• P systems without dissolution nor polarizations, but allowing to change the
labels of membranes in send–out rules (SAT, uniform solution [3]).

• P systems without polarizations, but using division for elementary and non–
elementary membranes (SAT, semi–uniform solution [3]).

4.1 Polarizationless P systems with active membranes

Next, several classes of recognizer P systems with active membranes without elec-
trical charges and with different kinds of membrane division rules are studied from
a computational complexity point of view.

Definition 13. A polarizationless P system with active membranes of degree q ≥
1 is a tuple Π = (Γ,H, µ,M1, . . . ,Mq, R, iout), where:

1. Γ is a working alphabet of objects, and H is a finite set of labels for membranes;

A Computational Complexity Theory in Membrane Computing. 93

2. µ is a membrane structure (a rooted tree) consisting of q membranes injectively
labeled by elements of H;

3.M1, . . . ,Mq are strings over Γ describing the multisets of objects placed in
the q initial regions of µ;

4. R is a finite set of developmental rules, of the following forms:
(a) [a→ u]h, for h ∈ H, a ∈ Γ , u ∈ Γ ∗ (object evolution rules).
(b) a []h → [b]h, for h ∈ H, a, b ∈ Γ (send–in communication rules).
(c) [a]h → []h b, for h ∈ H, a, b ∈ Γ (send–out communication rules).
(d) [a]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules).
(e) [a]h → [b]h [c]h, for h ∈ H, a, b, c ∈ Γ (division rules for elementary or

weak division rules for non-elementary membranes).
(f) [[]h1 . . . []hk []hk+1 . . . []hn]h → [[]h1 . . . []hk]h [[]hk+1 . . . []hn]h, where k ≥

1, n > k, h, h1, . . . , hn ∈ H (strong division rules for non-elementary
membranes).

5. iout ∈ H or iout = env indicates the output region.

These rules are applied according to usual principles of polarizationless P sys-
tems (see [11] for details).

Notice that in this polarizationless framework there is no cooperation, pri-
ority, nor changes of the labels of membranes. Besides, throughout this paper,
rules of type (f) are used only for k = 1, n = 2, that is, rules of the form
(f) [[]h1 []h2]h → [[]h1]h [[]h2]h. They can also be restricted to the case where
they are controlled by the presence of a specific membrane, that is, rules of the
form (g) [[]h1 []h2 []p]h → [[]h1 []p]h [[]h2 []p]h.

The class of recognizer polarizationless P systems with active membranes
(resp., which do not make use of division rules) is denoted by AM0

(resp., NAM0), and AM0(α, β, γ, δ), where α ∈ {−d,+d}, β ∈ D =
{−n,+nw,+ns,+nsw,+nsr}, γ ∈ {−e, +e}, and δ ∈ {−c,+c}, denotes the class
of all recognizer P systems with polarizationless active membranes such that:

(a) if α = +d (resp., α = −d) then dissolution rules are permitted (resp., forbid-
den);

(b) if β = +nw or +ns (resp., β = +nsw) then division rules for elementary
and non–elementary membranes, weak or strong (resp., weak and strong) are
permitted; if β = +nsr then division rules of the types (e), (f) and (g) are
permitted; if β = −n then only division rules for elementary membranes are
permitted.

(c) if γ = +e (resp., γ = −e) then evolution rules are permitted (resp., forbidden);
(d) if δ = +c (resp., δ = −c) then communication rules are permitted (resp.,

forbidden).

Proposition 5 can be adapted to polarizationless P systems with active mem-
branes which do not make use of division nor evolution rules, providing a lower
bound about their efficiency.

Proposition 11. P ⊆ PMCNAM0(−d,−e,+c).

94 M.J. Pérez–Jiménez

4.2 A conjecture of Păun

At the beginning of 2005, Gh. Păun (problem F from [24]) wrote:

My favorite question (related to complexity aspects in P systems with active
membranes and with electrical charges) is that about the number of polariza-
tions. Can the polarizations be completely avoided? The feeling is that this
is not possible – and such a result would be rather sound: passing from no
polarization to two polarizations amounts to passing from non–efficiency to
efficiency.

This so–called Păun’s conjecture can be formally formulated in terms of mem-
brane computing complexity classes as follows:

P = PMC[∗]
AM0(+d,−n,+e,+c)

where the notation PMC[∗]
R indicates that the result holds for both PMCR and

PMC∗R.
Let Π be a recognizer polarizationless P system with active membranes which

do not make use of dissolution rules. A directed graph can be associated with Π
verifying the following property: every accepting computation of Π is characterized
by the existence of a path in the graph between two specific nodes.

Each rule of Π can be considered as a dependency relation between the
object triggering the rule and the object(s) produced by its application. We
can consider a general pattern for rules of types (a), (b), (c), (e) in the form
(a, h) → (a1, h

′)(a2, h
′) . . . (as, h′), where the rules of type (a) correspond to the

case h = h′, the rules of type (b) correspond to the case h = f(h′) and s = 1, the
rules of type (c) correspond to the case h′ = f(h) and s = 1, and the rules of type
(e) correspond to the case h = h′ and s = 2. A formal definition of the dependency
graph associated with a P system can be found in [11].

Note that a P system can dynamically evolve according to its rules, but the
dependency graph associated with it is static. Furthermore, rules of the kind (f)
and (g) do not provide any node nor arc to the dependency graph.

Let ∆Π be the set of all pairs (a, h) ∈ Γ × H such that there exists a path
(within the dependency graph) from (a, h) to (yes, env) – the environment is
considered to be the output region, although the results obtained are also valid
for any output membrane.

In [11] the following results are shown.

Proposition 12. Let Π be a recognizer polarizationless P systems with active
membranes not using dissolution rules, and where every kind of division rules
is permitted. Then,

• There exists a Turing machine that constructs the dependency graph associated
with Π in a time bounded by a polynomial function depending on the total
number of rules and the maximum length of the rules.

A Computational Complexity Theory in Membrane Computing. 95

• There exists a Turing machine that constructs the set ∆Π in a time bounded by
a polynomial function depending on the total number of rules and the maximum
length of the rules.

Given a family Π = {Π(n) : n ∈ N} of recognizer P systems solving a decision
problem in a uniform way (with (cod, s) being the associated polynomial encoding),
the acceptance of a given instance of the problem, w, can be characterized by using
the set ∆Π(s(w)) associated with Π(s(w)).

Let Mj = {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ q and m = {(a, hi) : a ∈ m}, for
each input multiset m over Σ (recall that hi is the label of the input membrane).
Then, the following holds [11]:

Proposition 13. Let X = (IX , θX) be a decision problem, and Π = {Π(n) : n ∈
N} a family of recognizer polarizationless P systems and not using dissolution rules
solving X in a uniform way. Let (cod, s) be a polynomial encoding associated with
that solution. Then, for each instance w of the problem X the following statements
are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b)∆Π(s(w))∩
(
cod(w)∪

q⋃
j=1

Mj

)
6= ∅, where M1, . . . ,Mq are the initial multisets

of Π(s(w)).

A similar result holds for semi–uniform solutions [11] and the following theorem
can be deduced.

Theorem 3. P = PMC[∗]
AM0 (−d,β,+e,+c), where β ∈ D.

Thus, polarizationless P systems with active membranes which do not make
use of dissolution rules are non–efficient in the sense that their cannot solve NP–
complete problems in polynomial time (unless P=NP).

Let us now consider polarizationless P systems with active membranes making
use of dissolution rules. Will it be possible to solve NP–complete problems in that
framework?

N. Murphy et al. [15] gave a negative answer in the case that division rules are
used only for elementary membranes and being symmetric, in the following sense
[a]h → [b]h[b]h.

Theorem 4. P = PMC[∗]
AM0 (+d,−n(sym),+e,+c)

.

D. Woods et al. [38] have recently provide a P upper bound on polarizationless
P systems with dissolution and division only for elementary membranes, without
evolution and communication rules, where at the initial timestep, the depth of
membrane nesting is equal to the total number of membranes.

96 M.J. Pérez–Jiménez

Theorem 5. If D is the class of systems in AM0 (+d,−n,−e,−c), having an
initial membrane structure that is a single (linear) path, then P = PMC[∗]

D .

Several authors [3, 11] gave a positive answer when division for non–elementary
membranes, in the strong sense, is permitted. The mentioned papers provide semi–
uniform solutions in a linear time to SAT and Subset Sum, respectively. Thus, we
have the following result:

Proposition 14. NP ∪ co-NP ⊆ PMC∗AM0 (+d,+ns,+e,+c).

As a consequence of Theorems 3 and 14, a partial negative answer to Păun’s
conjecture is given: assuming that P 6= NP and making use of dissolution rules
and division rules for elementary and non–elementary membranes, computation-
ally hard problems can be efficiently solved avoiding polarizations. The answer is
partial because efficient solvability of NP–complete problems by polarizationless
P systems with active membranes making use of dissolution rules and division only
for elementary membranes is unknown.

The result of Theorem 14 was improved by A. Alhazov et al. [1] giving a family
of recognizer polarizationless P systems with active membranes using dissolution
rules and division for elementary and (strong) non–elementary membranes solving
QBF-SAT in a uniform way and in a linear time. Then,

Proposition 15. PSPACE ⊆ PMCAM0 (+d,+ns,+e,+c).

Next, we present some results about the efficiency of polarizationless P sys-
tems with active membranes when evolution rules and/or communication rules
are forbidden.

First, one can adapt a solution given in [3] to provide a semi-uniform solution to
SAT in a linear time by a family of recognizer polarizationless P systems with active
membranes by using evolution, dissolution and division rules for elementary and
non–elementary membranes (both in the strong and weak versions), and avoiding
communication rules. That is, we have the following:

Proposition 16. NP ∪ co-NP ⊆ PMC∗AM0 (+d,β,+e,−c), where β ∈
{+nw,+ns}.

Evolution and communication rules can be avoided without loss of efficiency.
Indeed, in [40] a semi–uniform solution to 3-SAT in a linear time by a family
of polarizationless recognizer P systems with active membranes by using only
dissolution rules and division rules for elementary and non–elementary membranes
of the types (e) and (f), is presented. Thus, the following holds:

Proposition 17. NP ∪ co-NP ⊆ PMC∗AM0 (+d,+nsw,−e,−c).

Moreover, Proposition 17 can be extended when non–elementary membrane di-
vision controlled by the presence of a membrane is allowed. In [14] it was presented
a semi–uniform solution to QBF-3-SAT in a linear time by a family of polarization-
less recognizer P systems with active membranes by using only dissolution rules
and division rules of the types (e), (f) and (g). Thus, the following holds:

A Computational Complexity Theory in Membrane Computing. 97

Proposition 18. PSPACE ⊆ PMC∗AM0 (+d,+nsr,−e,−c).

Figure 1 graphically summarize the results known related with complexity
classes associated with polarizationless P systems with active membranes making
use of dissolution rules. In the picture, −u (resp. +u) means semi–uniform (resp.
uniform) solutions, −n (resp. +ns or +nsw)) means using division only for elemen-
tary membranes (resp. division for elementary and non–elementary membranes in
the strong version or strong and weak version), −n(sym) means using division only
for elementary membranes and being symmetric, −ev (resp. +ev) means that evo-
lution rules are forbidden (resp. permitted), and −comm (resp. +comm) means
that communication rules are forbidden (resp. permitted). A standard class inside
(respectively, over) a dark node means that the corresponding membrane comput-
ing class is equal (resp., is a lower bound) to the standard class.

?

?

?

?

? ?

?

??

NP

− comm
− ev

+ comm
− ev

+ comm
+ ev

− comm
+ ev

PSPACE PSPACE

co−NP

co−NPNP

NP co−NP

PP

(+ns,+u)

(−n(sym),+u)

(+nsw,−u)

(−n,+u)

(−n,+u)

(+nsw,−u) (+ns,+u)

(+ns,−u) (+ns,+u)

(−n,−u)

(−n(sym),−u)

(−n,−u)

(−n,−u)

(+ns,−u)

(+ns,+u)

(−n,+u)

Fig. 1. Polarizationless active membranes using dissolution rules

5 Tissue–like Recognizer P systems with cell division

In this section, we consider computational devices inspired in cell inter–
communication in tissues and we add the ingredient of cell division rules as we did
to polarizationless P systems with active membranes (and with input membrane).

98 M.J. Pérez–Jiménez

Definition 14. A polarizationless tissue–like membrane system (tissue P system,
for short) with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin, iout)

where:

1. Γ is the working alphabet containing two distinguished objects yes and no;
2. Σ is an (input) alphabet strictly contained in Γ .
3. Ω ⊆ Γ \ Σ is a finite alphabet, describing the set of objects located in the

environment in an arbitrary number of copies each;
4.M1, . . . ,Mq are multisets over Γ−Σ, describing the objects placed in the cells

of the system (we suppose that at least one copy of yes and no is in some of
these multisets);

5. R is a finite set of developmental rules, of the following forms:
a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , p}, i 6= j, and u, v ∈ Γ ∗; 1, 2, . . . , p iden-

tify the cells of the system, 0 is the environment: When applying a rule
(i, u/v, j), the objects of the multiset represented by u are sent from region
i to region j and the objects of the multiset v are sent from region j to
region i simultaneously;

b) [a]
i
→ [b]

i
[c]

i
, where i ∈ {1, 2, . . . , p} and a, b, c ∈ Γ : Under the influence

of object a, the cell labeled by i is divided in two cells with the same label;
object a is replaced by b in the first copy, object a is replaced by c in the
second copy; all the other objects are replicated and copies of them are
placed in the two new cells.

6. iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.

Let m be a multiset over Σ. The initial configuration of Π with input m is
tuple (M1, . . . ,Miin ∪m, . . . ,Mp).

The rules of a tissue–like membrane system as the one above are used in a non-
deterministic maximally parallel way as customary in membrane computing. At
each step, we apply a set of rules which is maximal (no further rule can be added),
with the following important restriction: if a cell is divided, then the division rule
is the only one which is applied for that cell at that step, and so its objects do not
participate in any communication rule.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the number
of objects in the output cell iout in the last configuration. From now on, we will
consider that the output is collected in the environment (that is, iout = 0, and
thus, we will omit iout in the definition of tissue P systems). In this way, if Π is a
tissue P system and C = {Ci}i<r is a halting computation of Π, then the answer
of the computation C is

Output(C) = ΨΓ\Ω(Mr−1,0)

where Ψ is the Parikh function, and Mr−1,0 is the multiset over Γ \Ω associated
with the environment at the halting configuration Cr−1.

A Computational Complexity Theory in Membrane Computing. 99

Definition 15. A polarizationless tissue–like membrane system with cell division
is said to be a recognizer system if: (a) the working alphabet contains two dis-
tinguished elements yes and no; (b) all computations halt; and (c) if C is a com-
putation of the system, then either object yes or object no (but not both) must
have been sent to the output region of the system, and only at the last step of the
computation.

Given a recognizer tissue P system with cell division, and a computation C =
{Ci}i<r of Π (r ∈ N), we define the result of C as follows:

Output(C) =

yes, if Ψ{yes,no}(Mr−1,0) = (1, 0)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2
no, if Ψ{yes,no}(Mr−1,0) = (0, 1)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

That is, C is an accepting computation (respectively, rejecting computation) if the
object yes (respectively, no) appears (only) in the environment associated with
the halting configuration.

We denote by T DC (respectively, T DC(k)) the class of recognizer tissue–like
membrane systems with cell division (by using communication rules whose length
is, at most, k). We also denote by T C the class of recognizer tissue–like recognizer
membrane systems without cell division.

The concepts of polynomially uniform by Turing machines, polynomial encod-
ing, polynomially bounded, soundness and completeness introduced at definitions
4, 6, 7 and 9 can be naturally generalized to the framework of recognizer tissue P
systems. This allows us to define the concept of uniform solvability in polynomial
time by using systems in T DC.

Definition 16. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue P systems with
cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine which constructs the system Π(n) from n ∈ N
in polynomial time with respect to n.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
(called a polynomial encoding of IX in Π) such that:
– For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u)).
– The family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps.

– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1.

100 M.J. Pérez–Jiménez

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

We denote by PMCR the set of all decision problems which can be solved by
means of recognizer tissue P systems of R in polynomial time. This class is closed
under complement and polynomial–time reductions (see [28] for a similar result
for cell-like P systems).

In [7] a polynomial time solution of the Vertex Cover problem was given by
using a family of recognizer tissue P systems with cell division and communication
rules of length at most 3. Then

Proposition 19. NP ∪ co-NP ⊆ PMCTDC(3).

5.1 Allowing communication rules of length at most 1

For recognizer tissue P systems with cell division and communication rules with
length at most 1, it can be generalized the concept of dependency graph in a
natural way.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, i 6= j, and a, b ∈ Γ . Communication rules correspond to the case
s = 1 and b1 = a, and division rules correspond to the case s = 2 and j = i 6= 0.
The above pattern can be interpreted as follows: from the object a in the cell (or
in the environment) labeled by i we can reach objects b1, . . . , bs in the cell (or in
the environment) labeled by j.

By using the concept of dependency graph associated with P systems with cell
division and communication rules with length at most 1, it has been proved that
this kind of tissue P systems can only efficiently solve tractable problems (see [9],
for details).

Theorem 6. P = PMCTDC(1)

From Proposition 19 and Theorem 6, we deduce that in the framework of
recognizer tissue P systems with cell division the length of the communication
rules provides a borderline between efficiency and non-efficiency. Specifically, a
frontier is obtained when we pass from length 1 to length 3.

6 Efficiency of Tissue P Systems without cell division

A family of recognizer tissue P systems with symport/antiport rules which solves
a decision problem can be efficiently simulated by a family of basic recognizer P

A Computational Complexity Theory in Membrane Computing. 101

systems solving the same problem. This simulation allows us to transfer the result
about the limitations in computational power, from the model of basic cell–like P
systems to this kind of tissue–like P systems.

Definition 17. Let Π and Π ′ be recognizer cellular systems (cell–like and/or
tissue–like).We say that Π ′ efficiently simulates Π if the following holds:

• Π ′ can be constructed from Π by a deterministic Turing machine working in
polynomial time.

• There exists a bijective function, f , from the set Comp(Π) of computations
of Π onto the set Comp(Π ′) of computations of Π ′ such that:
– A computation C ∈ Comp(Π) is an accepting computation if and only if

f(C) ∈ Comp(Π ′) is an accepting one.
– There exists a polynomial p(n) such that for each C ∈ Comp(Π) we have
|f(C)| ≤ p(|C|).

Next, for every recognizer tissue P system with symport/antiport rules we
design a basic recognizer P systems efficiently simulating it, according to Definition
17.

Definition 18. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a recognizer tissue P
system of degree q ≥ 1 with communication rules and without cell division. Let us
consider the basic recognizer P system S(Π) = (Γ ′, Σ′, µ,M′1,R′, i′in) defined as
follows:

• Γ ′ = {(a, i) : a ∈ Γ ∧ i ∈ {1, . . . , q}} ∪ {(a, 0) : a ∈ Γ \Ω} ∪ {yes, no}.
The objects of S(Π) are ordered pairs encoding objects of Π and cells where the
objects are placed. From the environment, we only consider objects with finite
multiplicity, that is, belonging to Γ \Ω.

• Σ′ = {(a, iin) : a ∈ Σ}.
• µ = []1.

• M′1 =
q∑
i=1

∑
a∈Γ\Σ

(
a, i)Mi(a).

For each cell i of Π and for each object a ∈ Γ \ Σ belonging to that cell, we
consider in the membrane of S(Π) the pair (a, i) with the same multiplicity.

• In the set R′ the following rules associated with S(Π) are included:
– For each rule r

Π
≡ (i, a1 . . . am / b1 . . . bn, j) ∈ R with i, j 6= 0, associated

with Π, we consider the following rule (denoted by r
S(Π))

(a1, i) . . . (am, i)(b1, j) . . . (bn, j)→ (b1, i) . . . (bn, i)(a1, j) . . . (am, j)
– For each rule r

Π
≡ (i, a1 . . . am / b1 . . . bn, 0) ∈ R with i 6= 0, associated with

Π, we consider the following rule (denoted by r
S(Π))

(a1, i) . . . (am, i)(b1, 0) . . . (bs, 0)→ (b1, i) . . . (bn, i)(a1, 0) . . . (ar, 0)
where a1, . . . , ar, b1, . . . , bs /∈ Ω and ar+1, . . . , am, bs+1, . . . , bn ∈ Ω.

– For each rule r
Π
≡ (0, a1 . . . am / b1 . . . bn, i) ∈ R with i 6= 0, associated with

Π, we consider the following rule (denoted by r
S(Π))

(a1, 0) . . . (ar, 0)(b1, i) . . . (bn, i) → (b1, 0) . . . (bs, 0)(a1, i) . . . (am, i)
where a1, . . . , ar, b1, . . . , bs /∈ Ω and ar+1, . . . , am, bs+1, . . . , bn ∈ Ω.

102 M.J. Pérez–Jiménez

– (yes, 0) → (yes, out); (no, 0) → (no, out).
These rules translate the answer provided by the system Π to an answer for
the system S(Π).

• i′in = 1, that is, the membrane of the system is the input membrane.

Proposition 20. Let Π be a recognizer tissue P system with communication rules
and without cell division. The system S(Π) is a basic recognizer P system that
efficiently simulates Π.

This result provides us a limitation concerning the efficiency of tissue P systems
with communication rules and without cell division. Within this framework, it is
only possible to efficiently solve tractable problems, that is, problems belonging to
the complexity class P [6].

Theorem 7. P = PMCT C.

7 Conclusions

In this paper, we have described the basic concepts and the main results that
pertain to pioneering computational complexity in the membrane computing field.

We conclude by presenting new research directions within membrane comput-
ing complexity theory by listing some of the current open questions.

(A)Are there significant differences between uniform and semi–uniform solutions?
Namely, is there some class R of recognizer P systems such that the inclusion
PMCR ⊆ PMC∗R is strict?

(B)Efficient uniform solutions to NP–complete problems have been given by mod-
els of AM(−n). Is it possible to efficiently solve PSPACE–complete problems
by using families of P systems from AM(−n)?

(C)What is the efficiency of P systems with active membranes and electrical
charges where evolution and communication rules are forbidden? Are there
any relations with the results obtained for polarizationless P systems?

(D)Dissolution rules provide a borderline between tractability and intractabil-
ity in the framework of polarizationless P systems with active membranes
making use of division rules for elementary and non–elementary membranes.
What happens if division for only elementary membranes is allowed? Is P =
PMC[∗]

AM0(+d,−n,+e,+c) true?
(E)It is well known that PSPACE ⊆ PMC∗AM0(+d,+nsr,−e,−c). Determine an

upper bound for that membrane computing complexity class.
(F)It is known that P = PMCTDC(1) and NP ∪ co-NP ⊆ PMCTDC(3). What

is the complexity class PMCTDC(2)? In the solution provided in [7], antiport
rules of length at most 3 were used. Would it be possible to provide another
efficient solution in which all rules of length 3 were symport?

A Computational Complexity Theory in Membrane Computing. 103

Acknowledgements

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. A. Alhazov, M.J. Pérez–Jiménez: Uniform solution of QSAT using polarizationless
active membranes. Lecture Notes in Computer Science, 4664 (2007), 122-133.

2. A. Alhazov, R. Freund, Gh. Păun: P systems with active membranes and two po-
larizations. Second Brainstorming Week on Membrane Computing (Gh. Păun et al.
eds.), Report RGNC 01/04, 2004, pp. 20–35.

3. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Acta Informaticae, 41, 2-3 (2004), 111-144.

4. A. Alhazov, C. Mart́ın–Vide, L. Pan: Solving graph problems by P systems with
restricted elementary active membranes. Lecture Notes in Computer Science, 2950
(2004), 1–22.

5. A. Alhazov, C. Mart́ın–Vide, L. Pan: Solving a PSPACE–complete problem by rec-
ognizing P systems with restricted active membranes. Fundamenta Informaticae, 58
(2003), 67–77.

6. D. Dı́az–Pernil, M.A. Gutiérrez–Naranjo, M.J. Pérez-Jiménez, A. Romero–Jiménez:
Efficient Simulation of Tissue–like P Systems by Transition Cell–like P systems.
Natural Computing, online version http://dx.doi.org/10.1007/s11047-008-9102-z.

7. D. Dı́az–Pernil, M.J. Pérez–Jiménez, A. Riscos–Núñez and A. Romero–Jiménez.
Computational Efficiency of Cellular Division in Tissue-like Membrane Systems. Ro-
manian Journal of Information Science and Technology, 11, 3 (2008), 229–241.

8. M.R. Garey, D.S. Johnson: Computers and Intractability. A guide to the theory of
NP-completeness. W.H. Freeman and Company, New York, 1979.

9. R. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, M. Rius–Font. Characterizing tractabil-
ity by tissue–like P systems. In R. Gutiérrez–Escudero, M.A. Gutiérrez–Naranjo, Gh.
Păun, I. Pérez–Hurtado and A. Riscos Núñez (eds.) Proceedings of the Seventh Brain-
storming Week on Membrane Computing, Fénix Editora, Seville, 2009, pp. 169–180.

10. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system for
finding a balanced 2-partition. Soft Computing, 9, 9 (2005), 673–678.

11. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez, F.J. Romero–
Campero: On the power of dissolution in P systems with active membranes. Lecture
Notes in Computer Science, 3850 (2006), 224–240.

12. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez, F.J. Romero–
Campero, A. Romero–Jiménez: Characterizing tractability by cell–like membrane
systems. In K.G. Subramanian, K. Rangarajan, M. Mukund (eds.) Formal models,
languages and applications, World Scientific, Singapore, 2006, pp. 137–154.

13. S.N. Krishna, R. Rama: A variant of P systems with active membranes: Solving NP–
complete problems. Romanian Journal of Information Science and Technology, 2, 4
(1999), 357–367.

104 M.J. Pérez–Jiménez

14. A. Leporati, C. Ferretti, G. Mauri, M.J. Pérez–Jiménez, C. Zandron: Complexity
aspects of polarizationless membrane systems. Submitted 2008.

15. N. Murphy, D. Woods: Active membrane systems without charges and using only
symetric elementary division characterise P. Lecture Notes in Computer Science,
4860 (2007), 367–384.

16. A. Obtulowicz: Deterministic P systems for solving SAT problem. Romanian Journal
of Information Science and Technology, 4, 1–2 (2001), 551–558.

17. L. Pan, A. Alhazov, T.-O. Ishdorj: Further remarks on P systems with active mem-
branes, separation, merging, and release rules. Second Brainstorming Week on Mem-
brane Computing (Gh. Păun et al. eds.), Report RGNC 01/04, 2004, pp. 316–324.

18. L. Pan, T.-O. Ishdorj: P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

19. A. Păun: On P systems with membrane division. In I. Antoniou, C.S. Calude, M.J.
Dinneen (eds.) Unconventional Models of Computation, Springer, London, 2000, pp.
187–201.

20. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

21. Gh. Păun: Membrane Computing. An introduction. Springer-Verlag, Berlin, 2002.
22. Gh. Păun: P systems with active membranes: Attacking NP–complete problems.

Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.
23. Gh. Păun: Computing with membranes: Attacking NP–complete problems. In I.

Antoniou, C.S. Calude, M.J. Dinneen (eds.) Unconventional Models of Computation,
Springer, London, 2000, pp. 94–115.

24. Gh. Păun: Further twenty six open problems in membrane computing. Third Brain-
storming Week on Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix Editora,
Sevilla, 2005, pp. 249–262.

25. M.J. Pérez–Jiménez: An approach to computational complexity in Membrane Com-
puting. Lecture Notes in Computer Science, 3365 (2005), 85–109.

26. M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem by active
membranes. New Generation Computing, 23, 4 (2005), 367–384.

27. M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear–time solution to the Knapsack prob-
lem using P systems with active membranes. Lecture Notes in Computer Science,
2933 (2004), 250–268.

28. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics, 11, 4 (2006), 423-434.

29. M.J. Pérez-Jiménez, F.J. Romero–Campero: Attacking the Common Algorithmic
Problem by recognizer P systems. Lecture Notes in Computer Science, 3354 (2005),
304–315.

30. M.J. Pérez–Jiménez, F.J. Romero–Campero: An efficient family of P systems for
packing items into bins. Journal of Universal Computer Science, 10, 5 (2004), 650–
670.

31. M.J. Pérez–Jiménez, F.J. Romero-Campero: Trading polarizations for bi-stable cata-
lysts in P systems with active membranes. Lecture Notes in Computer Science, 3365
(2005), 373–388.

32. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini: Complexity classes
in cellular computing with membranes. Natural Computing, 2, 3 (2003), 265–285.

33. A. E. Porreca: Computational Complexity Classes for Membrane Systems, Master
Degree Thesis, Universita’ di Milano-Bicocca, Italy, 2008.

A Computational Complexity Theory in Membrane Computing. 105

34. A.E. Porreca, G. Mauri, C. Zandron: Complexity classes for membrane systems.
Informatique théorique et applications, 40, 2 (2006), 141–162.

35. A. Riscos–Núñez: Cellular Programming: efficient resolution of NP–complete numer-
ical problems. PhD. Thesis, University of Sevilla, Spain, 2004.

36. P. Sośık, A. Rodŕıguez–Patón: Membrane computing and complexity theory: A char-
acterization of PSPACE. Journal of Computer and System Sciences, 73 (2007), 137–
152.

37. P. Sośık: The computational power of cell division. Natural Computing, 2, 3 (2003),
287–298.

38. D. Woods, N. Murphy, M.J. Pérez-Jiménez, A. Riscos-Núñez: Membrane disoolution
and division in P. Lecture Notes in Computer Science, 5715 (2009), 263-277.

39. C. Zandron, C. Ferretti, G. Mauri: Solving NP–complete problems using P systems
with active membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen (eds.) Unconven-
tional Models of Computation, Springer, Berlin, 2000, pp. 289–301.

40. C. Zandron, A. Leporati, C. Ferretti, G. Mauri, M.J. Pérez–Jiménez: On the compu-
tational efficiency of polarizationless recognizer P systems with strong division and
dissolution. Fundamenta Informaticae, 87, 1 (2008), 79-91.

Evolving by Maximizing the Number of Rules:
Complexity Study

Oana Agrigoroaiei, Gabriel Ciobanu, and Andreas Resios

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

2 “A.I.Cuza” University, Blvd. Carol I no.11, 700506 Iaşi, Romania
oanaag@iit.tuiasi.ro, gabriel@info.uaic.ro, andreas.resios@iit.tuiasi.ro

Summary. This paper presents the complexity of finding the multiset of rules in a P
system in such a way to have a maximal number of rules applied. It is proved that the
decision version of this problem is NP-complete. We study a number of subproblems
obtained by considering that a rule can be applied at most once, and by considering the
number of objects in the alphabet of the membrane as being fixed. When considering P
systems with simple rules, the corresponding decision problem is in P. When considering
P systems having only two types of objects, and P systems in which a rule is applied at
most once, their corresponding decision problems are NP-complete. We compare these
results with those obtained for maxO evolution.

1 Introduction

The reader is assumed to have basic knowledge of membrane computing; a good
reference is [6]. Here we just mention the main biological inspiration of P systems,
and some terminology concerning the variants of maximal parallelism we consider
in this paper.

P systems are inspired by the structure and the functioning of the living
cells. Inside the cell, several membranes define compartments where specific bio-
chemical processes take place. Each compartment contains substances (ions, small
molecules, macromolecules) and specific reactions. The substances are represented
by multisets of objects, and the reactions by rules of form u → v, where u and v
are multisets of objects. The multisets are represented by strings, with the under-
standing that all permutations of a string represent the same multiset. We denote
by O the alphabet of objects, and by Ri the set of rules associated with a com-
partment i. When such a system is evolving, the objects and the rules are chosen
in a nondeterministic manner, and the rules are applied in parallel.

The most investigated way of using the rules in a P system is the maximal
parallelism: in each membrane a multiset of rules is chosen which can be applied
to the objects from that membrane and is maximal in the sense of inclusion, i.e.,

Evolving by Maximizing the Number of Rules 107

no further rule can be added such that the enlarged multiset is still applicable. We
use “maxP” to refer to this evolution strategy.

Another natural idea is to apply the rules in such a way to have a maximal num-
ber of objects consumed in each membrane. This manner of evolution is denoted
by “maxO”. This strategy was explicitly considered in [1, 2], where it is proved
that the problem of finding a multiset of rules consuming a maximal number of
objects is NP-complete.

Yet a third idea is to apply the rules in such a way to have a maximal number
of rules applied. We call this type of evolution “maxR”. Note that any evolution
of type maxR or maxO is also of type maxP .

The computing power of these strategies of applying a multiset of rules in mem-
branes is studied in [3]. Specifically, P systems having multiset rewriting rules (with
cooperative rules), symport/antiport rules, and active membranes are considered.
The universality of the system is proved for any combination of type of system
and type of evolution.

In previous papers [1, 2], two variants of membrane systems called simple P
systems and maximum cooperative P systems are considered. They evolve at each
step by consuming the maximum number of objects. The problem of distributing
objects to rules in order to achieve a maximum consuming and non-deterministic
evolution of simple P systems is studied in [1]; using the knapsack problem, the
decision version of the resource mapping problem for simple P systems is proved to
be NP-complete. In [2] the integer linear programming problem is used to prove
that the resource mapping problem for maximum cooperative P systems is also
NP-complete.

In this paper we study the complexity of finding a multiset of rules which
evolves the membrane in the sense of maxR. We study a number of subproblems
obtained by considering the number of objects in the alphabet of the membrane as
being fixed or by considering that a rule can be applied at most once. We compare
the results with those obtained for maxO evolution.

2 maxR Complexity

We recall a number of notations for multisets and P systems. We represent multi-
sets as strings of elements over their support alphabet together with their multi-
plicities (for example w = a2b5c is a multiset over {a, b, c, d}). The union v +w of
two multisets over a set O is given by the sum of multiplicities for each element
of O. We define w(a) ∈ N to be the multiplicity of a in w. We say that w ≤ w′ if
w(a) ≤ w′(a) for each element a of the multiset w. In this case we define w′−w to
be the multiset obtained by subtracting the multiplicity in w of an element from
its multiplicity in w′.

We use the notation i = 1, n to denote i ∈ {1, . . . , n}.

Definition 1. A transition P system of degree n, n ≥ 1 is a construct

108 O. Agrigoroaiei, G. Ciobanu, A. Resios

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn)

where

• O is an alphabet of objects;
• µ is a membrane structure, with the membranes labelled by natural numbers

1, . . . ,m, in a one-to-one manner;
• wi are multisets over O associated with the regions 1, . . . ,m defined by µ;
• R1, . . . , Rm are finite sets of rules associated with the membranes with labels

1, . . . ,m; the rules have the form u → v, where u is a non-empty multiset of
objects and v a multiset over messages of the form (a, here), (a, out), (a, inj).

A configuration of the system is given by the membrane structure and the
multisets contained in each membrane. For a rule r = u→ v we use the notations
lhs(r) = u and rhs(r) = v. These notations are extended naturally to multisets
of rules: given a multiset of rules R, the left hand side of the multiset lhs(R) is
obtained by adding the left hand sides of the rules in the multiset, considered with
their multiplicities.

We define the three evolution strategies as follows:

Definition 2. Let i = 1, n. A multiset R of rules over Ri is applicable (in mem-
brane i) with respect to the multiset wi if lhs(R) ≤ wi and for each message
(a, inj) present in rhs(R) we have that j is one of the children of membrane i.

A multiset R of rules over Ri which is applicable with respect to the multiset
wi is called:

• maxP -applicable with respect to wi if there is no rule r in Ri such that R+ r
is applicable with respect to wi;

• maxO-applicable with respect to wi if for any other multiset R′ of rules which
is applicable with respect to wi we have that∑

a∈O

lhs(R)(a) ≥
∑
a∈O

lhs(R′)(a);

• maxR-applicable with respect to wi if for any other multiset R′ of rules which
is applicable with respect to wi we have that∑

r∈Ri

R(r) ≥
∑
r∈Ri

R′(r).

In other words, when choosing the maxP evolution strategy we only apply
multisets of rules which are maximal with respect to inclusion; when choosing
maxO we only apply multisets of rules which are maximal with respect to the
number of objects (considered with their multiplicities) in the left hand side of
the multiset; when choosing maxR we only apply multisets of rules which are
maximal with respect to the number of rules in the multiset (considered with
their multiplicities). Note that any multiset of rules which is either maxR or

Evolving by Maximizing the Number of Rules 109

maxO-applicable is also maxP -applicable. P systems generally employ the maxP
evolution strategy; however, a convincing case can be made for maxO and maxR.

As it is mentioned in [3], maximizing the number of objects or the number
of rules can be related to the idea of energy for controlling the evolutions of P
systems. In the same paper, the complexity of finding the multiset of rules in a P
system in the case of maxR was presented as an open problem.

We denote by PO and PR the problems of finding a maxO or maxR-applicable
multiset of rules, with respect to a given multiset of objects w. We could consider
similar problems for the entire system, but they are solved by splitting the problems
into smaller ones, one for each membrane. So for our purposes we can just as well
consider the system contains only one membrane, i.e. the degree of the P system
is n = 1. In other words, all multisets of rules we consider from now on are over a
set of rules R. We use the following notations:

• m is the cardinal of the alphabet O and we consider the objects to be denoted
by o1, . . . , om;

• d is the number of rules associated to the membrane, and the rules are denoted
by r1, . . . , rd;

• Ca is the multiplicity of oa in the multiset w which is in the membrane;
• ki,a is the multiplicity of oa in the left hand side of the rule ri.

The problem PO can be described in the form of an integer linear programming
problem as follows. Given the positive integers m, d, ki,a, Ca for i = 1, d and a =
1,m, find positive integers xi such that

•
∑

i=1,d(
∑

a=1,m ki,a)xi is maximal;
•

∑
i=1,d xi · ki,a ≤ Ca, for all a = 1,m.

The decision version of this problem was shown to be NP-complete in [1, 2].
The proofs are based on the knapsack problem and integer linear programming [4,
5].

The problem PR can be described as follows. Given the positive integers
m, d, ki,a, Ca for i = 1, d and a = 1,m, find positive integers xi such that

•
∑

i=1,d xi is maximal;
•

∑
i=1,d xi · ki,a ≤ Ca, for all a = 1,m.

The decision version of PR is denoted by DPR: being given positive integers
m, d, t, ki,a and Ca, find whether there exist positive integers xi such that

•
∑

i=1,d xi ≥ t;
•

∑
i=1,d xi · ki,a ≤ Ca, for all a = 1,m.

The length of this instance of the problem can be considered to be
m+ d+ maxa,i{logCa, log ki,a}.

Proposition 1. DPR is NP-complete.

110 O. Agrigoroaiei, G. Ciobanu, A. Resios

Proof. First, we prove that DPR is in NP. To show this we construct a Turing
machine that computes the result in nondeterministic polynomial time by either
accepting (output YES) or rejecting (output NO) the input string. The machine
operates as follows:

1. nondeterministically assign values for xi, i = 1, d;
2. if the assigned values verify the constraints
3. and

∑
i=1,d xi ≥ t, then output YES;

4. in any other case, output NO.

It can be easily seen that the number of steps performed by the machine is poly-
nomial with respect to the input size. Thus DPR is in NP.

Secondly, we construct a polynomial-time reduction from 3CNFSAT to DPR.
The 3CNFSAT [4] problem asks whether a formula φ given in conjunctive nor-
mal form with 3 variables per clause is satisfiable, i.e. if there exists a variable
assignment which makes the formula true.

Consider a formula φ with variables x1, . . . , xr and clauses c1, . . . , cs. We de-
scribe a corresponding instance of DPR:

• d = 2r, m = r + s, t = r;
• for each variable xi of φ we consider two variables yi and zi and an inequality

yi + zi ≤ 1 in the instance of DPR;
• for each clause ca we consider the inequality∑

i=1,r

qi,ayi +
∑

i=1,r

li,azi ≤ 2

such that:
– qi,a = 0, li,a = 1 if the literal xi appears in ca;
– qi,a = 1, li,a = 0 if the literal ¬xi appears in ca;
– qi,a = li,a = 0 if neither xi nor ¬xi appear in ca.

Since we have t=r, the first inequality in this instance of DPR is
∑

i=1,r yi+zi ≥ r.
This can be computed in polynomial time with respect to the size of the input.
The idea behind the reduction is to set xi = 1 if and only if yi = 1, zi = 0 and
xi = 0 if and only if yi = 0, zi = 1.

For example, consider the formula φ = c1∧ c2∧ c3∧ c4 with c1 = x1∨¬x2∨x3,
c2 = ¬x1 ∨¬x2 ∨¬x3, c3 = x1 ∨¬x2 ∨¬x3, c4 = ¬x1 ∨x2 ∨x3. The corresponding
instance of DPR is: find positive integers yi, zi, i = 1, 3 positive integers such that∑

i=1,3 yi + zi ≥ 3, yi + zi ≤ 1, and
z1 + y2 + z3 ≤ 2
y1 + y2 + y3 ≤ 2
z1 + y2 + y3 ≤ 2
y1 + z2 + z3 ≤ 2

Evolving by Maximizing the Number of Rules 111

We notice that yi + zi = 1, and that a solution is y1 = 0, y2 = 0, z3 = 0, to-
gether with the corresponding values for z1, z2, y3. This means that we consider
the assignment x1 = 0, x2 = 0, x3 = 1 for which the formula φ is satisfiable.

We now prove that a formula φ is satisfiable if and only if there is a vector of
positive integers (y1, . . . , yr, z1, . . . , zr) which is a solution for the above instance
of DPR. First, suppose there is a satisfying assignment for φ. If xi = 1 we set
yi = 1, zi = 0, and if xi = 0 we set yi = 0, zi = 1. Thus we have yi + zi ≤ 1, for all
i = 1, r, and also

∑
i=1,r yi + zi ≥ r. Consider now one of the inequalities∑

i=1,r

qi,ayi +
∑

i=1,r

li,azi ≤ 2

We notice that it contains in its left hand side exactly three variables with coeffi-
cient 1, one for each literal appearing in Ca. If the literal with value 1 in Ca is xj ,
then its corresponding variable is zj which is 0. If the literal with value 1 in Ca is
¬xj , then its corresponding variable is yj which is 0. Thus there are at most two
terms equal to 1, meaning that the inequality is satisfied.

Now suppose there is a solution (y1, . . . , yr, z1, . . . , zr) for the DPR instance.
Since yi + zi ≤ 1 for all i = 1, r and

∑
i=1,r yi + zi ≥ r, it follows that yi + zi = 1

for all i. We consider the assignment xi = 1 if yi = 1, zi = 0 and xi = 0 if
yi = 0, zi = 1. As previously noted, the inequality corresponding to a clause ca has
exactly three variables, each with coefficient 1, in its left hand side. Thus at least
one of them must be equal to 0. If that variable is zj , it means that the literal xj

with assignment xj = 1 appears in Ca. If that variable is yj , it means that the
literal ¬xj with assignment xj = 0 appears in Ca. Thus φ is satisfied. ut

We can also consider the problem 1DPR obtained from DPR by restricting the
possible values of the variables to 0 or 1. This corresponds to requesting that in a
membrane a rule can be applied at most once. Then exactly the same reduction
can be made from 3CNFSAT to 1DPR thus placing 1DPR in the category of
NP-complete problems.

3 Certain Subproblems

We denote by DP k
R the problem obtained from DPR by considering m = k fixed.

A similar notation is used for DP k
O.

We start by looking at the case of a P system which has only simple rules,
i.e. rules which have only one type of object in their right hand side. Then DP 1

R

describes the decision version of the problem of finding a multiset of simple rules
which is maxR-applicable: given d, t, ki,1, C1 find xi such that

∑
i=1,d xi ≥ t and∑

i=1,d xi · ki,1 ≤ C1.

Proposition 2. DP 1
R is in P.

112 O. Agrigoroaiei, G. Ciobanu, A. Resios

Proof. Note that all ki,1 6= 0 by definition, since rules always have a non-empty
left hand side. Let j be chosen such that kj,1 = mini=1,d{ki,1}. A solution is given

by setting xj =
[

C
kj,1

]
(the integer part of C

kj,1
) and xi = 0, i 6= j. ut

On a side note, consider the problem 1DP 1
R obtained by restricting the possible

values of xi to 0 or 1. This problem is in P, as can be seen by following this
algorithm. First we renumber the coefficients ki,1 (together with the variables xi)
such that k1,1 ≤ k2,1 ≤ . . . ≤ kd,1. Then we set s1 = k1,1, si+1 = si + ki+1,1. If
sd ≤ C1 then the maximum value for

∑
i xi is d. Otherwise, there exists an unique

j such that sj ≤ C1 < sj+1. Therefore the maximum value for
∑

i xi is j, since
however we choose j+ 1 different coefficients kr1,1, kr2,1, . . . krj+1,1 randomly, their
sum will be greater than sj+1.

We now consider that the membrane whose maxR evolution we are studying
has only two types of objects, i.e. #O = 2. The corresponding decision problem is
DP 2

R.

Proposition 3. DP 2
R is NP-complete.

To prove this result we consider the following auxiliary problem AP :
For s, r, k positive integers, are there positive integers x1, . . . , xs such that∑

i=1,s

xi = r,
∑
i=1,s

kixi = k.

Note that if we restrict this problem by imposing the condition that all xi ∈ {0, 1},
then we obtain a subproblem of the subset sum problem, namely: given a set S of
positive integers S = {ki | i = 1, s}, does exist a subset of S with r elements such
that the sum of its elements equals k? This provides a strong hint that AP is NP-
complete. The proof of Proposition 3 is based on constructing a polynomial-time
reduction from X3C to AP , and another one from AP to DP 2

R.

Proof. First, note that both DP 2
R and AP are in NP. This can be easily proved by

constructing a Turing machine similar to the one used in the proof of Proposition
1. Secondly, we give a a polynomial-time reduction from X3C to AP . The exact
cover by 3-sets problem (X3C) asks if, given a set X with 3q elements and a
collection C of 3-element subsets of X, there is a subcollection C ′ of C which is an
exact cover for X, i.e. any element of X belongs to exactly one element of C ′ [4].

In order to reduce X3C to AP , we do the following. Let l be the number of
elements of C, and consider indexing the elements of C by c1, . . . , cl. For each ci
we consider a variable xi in the AP problem, thus setting s = l. To construct the
coefficients ki, we employ the notations eij = #ci∩cj for i, j = 1, l, and M = 3q+1.
We set s = l, r = q, ki =

∑
j=1,l eij ·M l−j and k =

∑
j=1,l 3 ·M l−j . For a solution

C ′ to X3C we set xi = 1 whenever ci ∈ C ′, and xi = 0 otherwise. We prove that
this yields a solution of the constructed instance of AP and moreover, that any
solution of the instance has xi ∈ {0, 1} and provides a solution of X3C.

Evolving by Maximizing the Number of Rules 113

Example. Consider the problem X3C for X = {1, . . . , 9} and c1 = {1, 2, 3},
c2 = {1, 3, 4}, c3 = {4, 5, 6}, c4 = {1, 6, 8}, c5 = {4, 7, 9}, c6 = {7, 8, 9}. Then
M = 10 and the coefficients ki are written in base 10 such that they have a digit
for each variable xj :

x1 x2 x3 x4 x5 x6

k1 3 2 0 1 0 0
k2 2 3 1 1 1 0
k3 0 1 3 1 1 0
k4 1 1 1 3 0 1
k5 0 1 1 0 3 2
k6 0 0 0 1 2 3
k 3 3 3 3 3 3

An exact cover of X is c1, c3, c6. Looking at this example, we see why any solution
to AP has all xi ∈ {0, 1}: all coefficients have at least a digit equal to 3 and the
basis M is chosen such that, when adding coefficients, no carries can occur from
lower digits to higher digits.

We first prove that a solution C ′ for X3C provides a solution for AP . Let
I = {i | ci ∈ C ′}. Since C ′ is an exact cover for X, it follows that I has q elements
and that eij = 0, i, j ∈ I, i 6= j. Moreover, if j 6∈ I we have that cj = cj∩(∪i∈Ici) =
∪(cj ∩ ci), thus

∑
i∈I eij = 3. Since xi = 1, i ∈ I and xi = 0, i 6∈ I it follows that

indeed
∑

i=1,m xi = q. We also have∑
i=1,l

kixi =
∑
i∈I

(
∑
j=1,l

eijM
l−j) =

=
∑
i∈I

(eiiM
l−i +

∑
j 6∈I

eijM
l−j) =

∑
i∈I

3 ·M l−i +
∑
j 6∈I

(
∑
i∈I

eij)M l−j

Using the previous observation, we obtain that the term of the second sum is
3 ·M l−j , thus

∑
i=1,m kixi = k.

Secondly, consider a solution (xi)i=1,s for the instance of AP with s, r, ki, k as
above. Let I = {i |xi = 1}. We prove that if j 6∈ I then xj = 0 and that eij = 0
for i, j ∈ I, i 6= j. This is sufficient to prove that C ′ = {ci | i ∈ I} is an exact
cover, since it follows from the above statement that C ′ has exactly q elements
and c ∩ c′ = ∅ for all c, c′ ∈ C ′, c 6= c′. We have∑

i=1,l

3 ·M l−j = k =
∑
i=1,l

kixi =
∑
j=1,l

(
∑
i=1,l

eijxi)M l−j (1)

Since
∑

i=1,l eijxi ≤
∑

i=1,l 3xi = 3q < M , the two sides of equation (1)
represent two decompositions in base M of the same number k. Therefore we have∑

i=1,l eijxi = 3, for any j = 1, l. For i = j we get eiixi = 3xi ≤ 3, i.e. all xi ∈
{0, 1}. Thus 3 =

∑
i∈I eij ; considering j ∈ I we obtain that 3 = 3 +

∑
i∈I,i6=j eij ,

namely that eij = 0, i, j ∈ I, i 6= j, concluding the second part of the reduction.

114 O. Agrigoroaiei, G. Ciobanu, A. Resios

We still have left to show that AP reduces to DP 2
R. We recall the data of

DP 2
R: given d, t, C1, C2, ki,1, ki,2 for i = 1, d, do exist positive integers x1, . . . , xd

such that
∑

i=1,d xi ≥ t∑
i=1,d ki,1xi ≤ C1∑
i=1,d ki,2xi ≤ C2 ?

(2)

The reduction is as follows: let K = maxi=1,dki and set d = s, t = r, ki,1 = ki,
ki,2 = K − ki, C1 = k and C2 = Kr − k. If x1, . . . , xs represent a solution for
the instance of AP , it clearly is a solution for this instance of DP 2

R. Reversely,
if x1, . . . , xs represent a solution for this instance of DP 2

R, we add the last two
inequalities of (2), obtaining

∑
i=1,sK · xi ≤ Kr. Since

∑
i=1,d xi ≥ t, we obtain

that
∑

i=1,s xi = r and also that
∑

i=1,s kixi = k. ut
We compare these results with those for DPO and its analogous subproblems.

Both DPR and DPO are NP-complete, yet we obtain significant differences when
restricting to the case of P systems with simple rules. Namely, while DP 1

O is NP-
complete, DP 1

O is in P. When we employ cooperative rules with a fixed maximum
number k of objects in the left hand side, the decision problems thus obtained,
DP k

O and DP k
R, are all NP-complete.

4 Conclusion

The most investigated way of applying the rules in a P system is the maximal par-
allelism (maxP case). Two other strategies of applying the rules are also possible.
One strategy is to maximize the number of objects consumed in each membrane
(maxO case), and the other is to maximize the number of rules applied in each
membrane (maxR case).

The maxO strategy was explicitly considered in [1] and [2] where it is proved
that the problem of finding a multiset of rules which consume a maximal number
of objects is NP-complete for both so called simple P systems and cooperative P
systems.

In this paper we consider the maxR strategy, and study the complexity of
finding the multiset of rules in a P system in such a way to have a maximal
number of rules applied. We prove that the decision version of this problem is
NP-complete. However, in contrast to the results for maxO strategy, the problem
for P systems with simple rules is in P.

Together with the results presented in [1, 2, 3], this paper provides the possi-
bility of studying complexity and computability for new classes of P systems. It
also facilitates a complexity comparison between various classes of P systems.

Acknowledgements

This work has been partially supported by research grants CNCSIS IDEI 402/2007
and CNMP D1/1052/2007.

Evolving by Maximizing the Number of Rules 115

References

1. G. Ciobanu, A. Resios. Computational Complexity of Simple P Systems. Fundamenta
Informaticae vol.87, 49-59, 2008.

2. G. Ciobanu, A. Resios. Complexity of Evolution in Maximum Cooperative P Systems.
Natural Computing, 2009 (to appear).

3. G. Ciobanu, S. Marcus, Gh. Păun. New Strategies of Using the Rules of a P System
in a Maximal Way. Romanian Journal of Information Science and Technology vol.12,
21-37, 2009.

4. M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H.Freeman & Co. 1979.

5. C.H. Papadimitriou, K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, 1998.

6. Gh. Păun. Computing with Membranes: An Introduction, Springer, 2002.

Modelling Inflections in Romanian Language
by P Systems with String Replication

Artiom Alhazov1,2, Elena Boian1, Svetlana Cojocaru1, Yurii Rogozhin1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
{artiom,lena,sveta,rogozhin}@math.md

2 IEC, Department of Information Engineering

Graduate School of Engineering

Hiroshima University, Higashi-Hiroshima 739-8527 Japan

3 Research Group on Mathematical Linguistics, Rovira i Virgili University

Av. Catalunya, 35, Tarragona 43002 Spain

Summary. The aim of this article is the formalization of inflection process for the
Romanian language using the model of P systems with cooperative string replication
rules, which will make it possible to automatically build the morphological lexicons as a
base for different linguistic applications.

1 Introduction

Natural language processing has a wide range of applications, the spectrum of
which varies from a simple spell-check up to automatic translation, text and speech
understanding, etc. The development of appropriate technology is extremely diffi-
cult due to the specific feature of multidisciplinarity of the problem. This problem
involves several fields such as linguistics, psycholinguistics, computational linguis-
tics, philosophy, computer science, artificial intelligence, etc.

As in many other fields, solving of a complex problem is reduced to finding
solutions for a set of simpler problems. In our case among the items of this set we
find again many traditional compartments of the language grammar. The subject
of our interest is the morphology, and more specifically, its inflectional aspect.

The inflectional morphology studies the rules defining how the inflections of
the words of a natural language are formed, i.e., the aspect of form variation (of
the inflection, which is the action of words modification by gender, number, mood,
time, person) for various expressing grammatical categories.

In terms of natural language typology the morphological classification can be
analytical and synthetic. Of course, this classification is a relative one, having,
however, some irrefutable poles: Chinese, Vietnamese, as typical representatives

Modelling Inflections in Romanian Language 117

of the analytical group, and Slavic and Romance languages serving as examples of
synthetic ones. The English language, with a low degree of morpheme use, is often
among the analytical ones, sometimes is regarded as synthetic, indicating how-
ever that it is “less synthetic” comparatively with other languages from the same
group. It is evident that it is the inflectional morphology of synthetic languages
that presents special interest, being a problem more complex comparatively with
analytical class.

The object of our studies is the Romanian language, which belongs to the
category of synthetic flective languages. The last notion stresses the possibility to
form new words by declension and conjugation. Moreover, the Romanian language
is considered a highly inflectional language, because the number of word-forms is
big enough.

The inflection simplicity in English makes that the majority of researchers
in the field of computational linguistics neglect the inflection morphology. For
efficient processing of other natural languages, including Romanian, it is necessary
to develop suitable computational models of morphology of each language. In the
case of Romanian language, some inflectional models are known [24], [18],[6].

In [24] it is certified an advanced number of morpho-syntactic specifications for
Romanian language, namely 34 for nouns, 44 for verbs, 24 for adjectives, 15 for
pronouns, etc. The aim of our paper is to describe the process of inflection (i.e. the
process of obtaining both the derivative words and their morphological attributes)
by P systems [16].

2 Description of the inflection process

To develop a formalism for the inflection process description we invoke a num-
ber of definitions and notions which allow us to understand the essence of this
process. Inflection is a part of morphology - the science which “includes the rules
considering the word forms and the formal modifications of the words” [23]. From
the morphological point of view the words are classified corresponding to the part
of speech, and their structure is described in terms of inflection, derivation and
composition. Inflection is the systematic variation of the word form which allows
to obtain different semantic and syntactic functions [9]. The words combine in
themselves two components: a constant and a variable [11]].

The root of primary lexical units is called the constant. For the derivative ones
the term lexical theme is used. Since in our study this distinction does not play
any role, for both cases we use a single term “root”.

The variable is the bearer of grammatical meanings, it consists of one or more
morphemes being called also flective. This term will be used in exposure below. In
accordance with [23] we identify three ways of achieving the inflections:

analytical : the flective is a free morpheme (separated from root) and the root
remains invariable (e.g., adverb, bine – mai bine (engl. well - better));

118 A. Alhazov et al.

synthetic: the flective is a conjunctive morpheme (group of morphemes), related
to the root (e.g., for noun, pronoun; studentă – studente – studentei; care-
căreia-căruia-cărora (engl. student – students – student’s, who-whose-whom),
etc.).

synthetic and analytical : the flective consists of free and conjunctive morphemes
(e.g., adjective, verb, frumos – frumoasă – mai frumoasă; cântasem – am
cântat (engl. beautiful – beautiful – more beautiful, singing – I sang), etc.).

In the following we will deal with the synthetic method, the analytical one
is effectuated relatively easy through a set of simply formulated rules. Following
the model from [9] we present in Figure 1 the classification of Romanian language
parts of speech in terms of the inflection process.

Fig. 1. The classification of the Romanian language parts of speech (in terms of the
inflection process.)

The class of opened productive parts of speech is the most interesting in terms
of inflection, and it will be the primary object of our investigations.

Indeed, opened classes, containing tens of thousands of elements, are charac-
terized by a productive process of inflection, derivation and composition, while
the closed ones include a reduced number of items (practically excluding the pos-
sibility of the new ones apparition), because the morphological processes of word
formation are poorly productive [12]. Moreover, in the case of opened classes the
problem is complicated not only because we cannot enumerate the elements, ex-
isting at the moment, but also because a successful formalism should be able to
“serve” the future neologisms that could occur in language development process.
In the following we will operate with the paradigms of inflection, by which we
imply the systematic arrangement of all inflection forms of a word [13].

For our purposes we will work not with the whole words, but with their variable
parts. Hereinafter by paradigm we mean a list of flectives.

Modelling Inflections in Romanian Language 119

For each flective we can put into correspondence a set of morphological at-
tributes.

Example. Let us examine the morphological attributes for masculine nouns of
Romanian language [24].

N noun (part of speech),
m masculine gender,
s singular number,
p plural number,
d direct (nominative – accusative cases),
o oblique (genitive – dative cases),
v vocative case,
y yes – definiteness,
n no – definiteness.

(Given that the Romanian forms for nominative and accusative cases coincide,
as well as for the genitive and dative ones, we reduced the paradigm merging both
word forms, and respective attributes.)

Thus, the list of flectives F = {−,−,−, ul, ului, ule, i, i, i, ii, ilor, ilor}, where
“−” denotes the empty word, can be regarded as a morphologically annotated one.

Fmorf = { (−, Nmsdn), (−, Nmson), (−, Nmsvn),
(ul, Nmsdy), (ului, Nmsoy), (ule, Nmsvy),
(i, Nmpdn), (i, Nmpon), (i, Nmpvn),
(ii, Nmpdy), (ilor, Nmpoy), (ilor, Nmpvy)}.

Let us mention the use of paradigmatic model for the Romanian language
[7, 8, 19, 20, 21].

We will refer also to the works [17] and [10], which treat the subject of gen-
eration of the flectioned forms for the Romanian language. The authors do not
provide the inflection algorithms, but offer some useful suggestions for generation
of flectioned forms. In paper [17] it is proposed a method of encoding vowel and
consonant alternations in the root, taken by the authors from researches of acad.
G. Moisil, namely: each alternation is presented in the root by a distinct code.
In paper [10] it is found a (incomplete) set of rules, which indicates the way of
concatenation of flective for nouns and adjectives without concerning the problem
of the alternations in the root. Therefore, having the aim to achieve the synthetic
model of inflection, we must develop a formalism, which should include two pro-
cesses:

- making the alternation in the root, and
- concatenation of a flective.
The starting point of our approach was the dictionary [12], in which the flective

words of Romanian language are classified according to the way of inflections
formation. There were set 100 groups of inflection for masculine nouns, 273 – for

120 A. Alhazov et al.

verbs, etc. A dictionary of about 30,000 words with the specification of the number
of the group was constructed. The classification was made taking into account all
linguistic aspects, e.g. accents. In our case we will focus only on the way of writing
a word, which in equal measure simplifies and complicates the problem. However
this classification is extremely useful suggesting us the idea of defining a special
class of grammars to formalize the inflection process [1, 2, 3, 4].

In general case, from a whole variety of inflection groups, we can identify two
classes:

– without alternations, and
– with alternations.
In the first case the inflection is made in the following manner. Let = be a

set formed from lists of flectives, F = {f1, f2, · · · , fn}, w = w′α is a word-lemma,
where |α| ≥ 0. In the simplest case the inflected words will be those of the form
w′fi, fi ∈ F , (i = 1, · · · , n).

General case: Let w = w1a1w2a2 · · ·wmα. The inflected words will be of the
form:

w(1) = w1 a1 w2 a2 · · · wmfi1 ,

w(2) = w1 u
(2)
1 w2 u

(2)
2 · · · wmfi2 ,

· · ·
w(s) = w1 u

(s)
1 w2 u

(s)
2 · · · wmfis ,

where wi, ai ∈ V +, u
(j)
i ∈ V ∗, fi1 ∈ F (1), . . . , fis ∈ F (s), and F (1) ∪ . . . ∪ F (s)

forms a complete paradigm.
Note: the analysis of inflection rules allowed us to ascertain that for the Ro-

manian language m ≤ 4, s ≤ 3.

Example 1. Inflection of masculine nouns without alternations.
Let F = {−,−,−, ul, ului, ule, i, i, i, ii, ilor, ilor} – a list of flectives, where ’-’

denotes the empty word. Let w =‘stejar’ (engl. oak), |α| = 0, |F | = 12. The set of
inflected words supplied by morphological attributes will be:

{ (stejar, Nmsdn), (stejar, Nmson), (stejar, Nmsvn),
(stejarul, Nmsdy), (stejarului, Nmsoy), (stejarule, Nmsvy),
(stejari, Nmsdn), (stejari, Nmpon), (stejari, Nmpvn),
(stejarii, Nmpdy), (stejarilor, Nmpoy), (stejarilor, Nmpvy) }.

Taking advantage of paradigmatic ordering of the elements from the list of flec-
tives, in what follows we will omit the explicit writing of morphological attributes
implying their conformity to respective flectives.

Example 2. Inflection of masculine nouns with alternations.
Let w =tânăr (engl. young), |α| = 0. The vowel alternations â→ i and ă→ e

will be used. The obtained roots w =‘tânăr’ and w′ =‘tiner’ are respectively
annexed by the endings: F1 = {−,−, ul, ului, ule} and F2 = {e, i, i, i, ii, ilor, ilor},
|F1|+ |F2| = 12.

Modelling Inflections in Romanian Language 121

{ (tânăr, Nmsdn), (tânăr, Nmson), (tânărule, Nmsvy),
(tânărul, Nmsdy), (tânărului, Nmsoy), (tinere, Nmsvn),
(tineri, Nmsdn), (tineri, Nmpon), (tineri, Nmpvn),
(tinerii, Nmpdy), (tinerilor, Nmpoy), (tinerilor, Nmpvy) }.

Note: In most cases (for 80 groups of inflexion from [12]), when declining the
masculine noun, 12 words are obtained. Exceptions are the following nouns:

– irregular, for example, those which can not have the plural definite form
(instance, the word gnu);

– those which are singularia tantum (nouns which appear only in the singular
form), ianuarie etc.;

– those which are pluralia tantum (nouns that appear only in the plural and
do not have a singular form), for example, ochelari, pantaloni etc.

In general, the 100 groups of inflection of masculine nouns in relation to the
number of words produced at inflection, present the following table:

Forms of the lemma Number of forms Number of groups
all forms 12 80
singularia tantum 6 13
pluralia tantum 6 4
irregular 6-8 3

Modern dictionaries contain hundreds of thousands of words–lemma. Their
forms of inflexion (the amount of which exceeds millions) are needed for devel-
oping various applications based on natural language: from the spell-checker up
to the systems understanding the speech. Obviously, to solve the problem of cre-
ating a dictionary with a morphologically representative coverage, as well as to
build various applications based on it, effective mechanisms are needed, especially
those that allow parallel processing. One of the possible ways to perform parallel
computation is based on biological models.

Let us mention a series of works that used the biological calculation approaches
for solution of linguistic problems. In [14] are presented some attempts to construct
linguistic membrane systems and some applications related to analyze of conversa-
tional acts, a bio-inspired for dealing with semantics. In [15] two parsing methods
using P automata are presented. The first method uses P automata with active
membranes for parsing natural language sentences into dependency trees. The sec-
ond method uses a variant of P automata with evolution and communication rules
for parsing Marcus contextual Languages[13].

Our paper tries to expand the area of potential applications of P systems
to linguistics problems, introducing a formalism to capture inflections with their
morphological attributes.

To formalize the inflection process for the Romanian language the model of
cooperative membrane P systems with replication will be used [16].

122 A. Alhazov et al.

3 P systems with string replication and input

Let us recall the basics of P systems with string objects and input. The membrane
structure µ is defined as a rooted tree with nodes labeled 1, · · · , p. The objects of
the system are strings (or words) over a finite alphabet O. A sub-alphabet Σ ⊆ O
is specified, as well as the input region i0, 1 ≤ i0 ≤ p. In this paper we need to use
cooperative rewriting rules (i.e. string rewriting rules, not limited by context-free
ones) with string replication and target indications.

A rule a → u1, where a ∈ O+ and u1 ∈ O∗, can transform any string of the
form w1aw2 into w1u1w2. Application of a rule a → u1||u2|| · · · ||uk transforms any
string of the form w1aw2 into the multiset of strings w1u1w2, w1u2w2, · · ·, w1ukw2.
If in the right side of the rule (ui, t) is written instead of some ui, 1 ≤ i ≤ k,
t ∈ {out} ∪ {inj | 1 ≤ j ≤ p}, then the corresponding string would be sent to the
region specified by t.

Hence, such a P system is formally defined as follows:

Π = (O,Σ, µ, M1, · · · ,Mp, R1, · · · , Rp, i0), where
Mi is the multiset of strings initially present in region i, 1 ≤ i ≤ p,

Ri is the set of rules of region i, 1 ≤ i ≤ p,

and O,Σ, µ, i0 are described above.

The initial configuration contains the input string(s) over Σ in region i0 and
strings Mi in regions i. The computation consists in non-deterministic application
of the rules of a region to a string of that region, in parallel to all the strings in
the system. The computation halts when no rules are applicable. The result of the
computation is the set of all words sent out of the outermost region (called skin).

4 Describing the inflection process by P systems

Let us define the P system performing the inflection process. Let L be the set
of words which form opened productive classes. We will start by assuming that
the words in L are divided into groups of inflection, i.e. for each w ∈ L the
number of inflection group is known [12]. The inflection group is characterized
by the set G = {α,RG, FG}, where |α| ≥ 0 is the length of ending which is
reduced in the process of inflection, FG is the set of the lists of flectives, the
assembly of which forms complete paradigm, RG is the set of the rules, which
indicate vowel/consonant alternation of type a → u, a ∈ V +, u ∈ V ∗, and also the
conformity of the roots obtained by the lists of flectives from FG. To each group
of inflexion a membrane system ΠG will be put into correspondence.

As it was mentioned earlier, we will investigate two cases:
– without alternations, and
– with vowel/consonant alternation.

Modelling Inflections in Romanian Language 123

The first model is very simple. For any group G = (α, ∅, {f1G
, f2G

, · · · , fnG
})

of inflection without alternation,

ΠG = (O,Σ, []1, ∅, R1, 1), where
O = Σ = V ∪ {#},
V = {a, · · · , z} is the alphabet of the Romanian language, and

R1 = {α# → (f1G , out)||(f2G , out)|| · · · ||(fnG , out)}

If this system receives as an input the words w′α#, where w′α corresponds to
the inflection group G, then it sends all its inflected words out of the system in
one step. Clearly, ΠG is non-cooperative if α = λ, but non-cooperativeness is too
restrictive in general, since then the system would not be able to distinguish the
termination to be reduced from any other occurrence of α.

The general model will require either a more complicated structure, or a
more sophisticated approach. Let G be an arbitrary inflection group, with m −
1 alternations a1 = a

(1)
1 a

(1)
2 · · · a(1)

n1 , · · · , am = a
(m)
1 a

(m)
2 · · · a(m)

nm . Let the set of
flectives consist of s subsets, and for subset FkG

= {f (k)
1 , · · · , f (k)

p1 }, 1 ≤ k ≤ s,
the following alternations occur: a1 → u

(k)
1 , · · ·, am → u

(k)
m (the alternations are

fictive for k = 1), and
⋃s

k=1 FkG corresponds to a complete paradigm. For instance,
Example 2 corresponds to s = 2 sublists (singular and plural), and m − 1 = 2
alternations.

The associated P system should perform the computation

w# =
m−1∏

j=1

(wjaj) wmα# ⇒∗

m−1∏

j=1

(
wju

(k)
j

)
wmfik

| 1 ≤ k ≤ s, fik
∈ F (k)

 ,

where u
(1)
j = aj , 1 ≤ j ≤ m.

The first method is assuming the alternating subwords aj are present in
the input word in just one occurrence, or marked. Moreover, we assume that
carrying out previous alternations does not introduce more occurrences of the
next alternations.

For modeling such process of inflection for the group G we define the following
P system with 1 + (s− 1)m membranes

Π ′
G = (O, Σ, µ, ∅, · · · , ∅, R1, · · · , R1+(s−1)m, 1), where
Σ = V ∪ {#},
O = Σ ∪ E,

µ = [[]2[]3 · · · []1+(s−1)m]1,

E = {#k | 2 ≤ k ≤ s} ∪ {Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m},
V = {a, · · · , z} is the alphabet of the Romanian language,

124 A. Alhazov et al.

(V can be extended by marked letters if needed), and the rules are given below.

R1 = {α# → A1,m||(#2, in2)|| · · · ||(#s, ins)}
∪ {Ak,j → (λ, ink+(s−1)j) | 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1}
∪ {Ak,m → (f (k)

1 , out)|| · · · ||(f (k)
pm

, out) | 1 ≤ k ≤ s},
Rk+(s−1)(j−1) = {aj → (u(k)

j Ak,j , out)}, 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1,

Rk+(s−1)(m−1) = {#k → (Ak,m, out)}, 2 ≤ k ≤ s.

The work of P system Π ′
G is the following. First, s copies of the string are made,

and the first one stays in the skin, while others enter regions 2, · · · , s. Each copy
in region k is responsible to handle the k-th subset of inflections. The first one
simply performs a replicative substitution in the end, and sends the results out, in
the same way as ΠG works. Consider a copy of the input in region k, 2 ≤ k ≤ s.
When j-th alternation is carried out, the string returns to the skin, and symbol
Ak,j is additionally produced. This symbol will be used to send the string in the
corresponding region to carry out alternation j + 1. Finally, if j = m, then the
system performs a replicative substitution in the end, and sends the results out.

Assuming s ≥ 2, the system halts in 2m + 1 step, making an efficient use
of scattered rewriting with parallel processing of different inflection subsets. For
instance, the inflection group from Example 2 would transform into a P systems
with 4 membranes, halting in 7 steps. Notice that this system is non-cooperative
if α = λ and |aj | = 1, 1 ≤ j ≤ m. It is also worth noticing that it is possible to
reduce the time to m + 1 steps by using tissue P systems with parallel channels.

The second method avoids the limiting assumptions of the first methods.
More exactly, it performs the first alternation at its leftmost occurrence, the sec-
ond alternation at its leftmost occurrence which is to the right of the first one,
etc. Formally, such a P system discovers the representation of the input string
as

∏m−1
j=1 (wjaj)wmα, where aj has no other occurrences inside wjaj except as a

suffix.
A theoretical note: overlapping occurrences or occurrences with context can

be handled by rules with a longer left-hand side. A different order of occurrences
of the alternations can be handled by renumbering the alternations. Should the
specification of a group require, e.g., second-leftmost occurrence for a → u, this can
be handled by inserting a fictive substitution a → a before a → u, etc. Therefore,
this is the most general method.

We construct the following P system, which takes the input in the form

#lw#r = #l

m−1∏

j=1

(wjaj)wmα#r.

Π ′′
G = (O,Σ, []

1
, ∅, R1, 1), where

Σ = V ∪ {#l,#r},

Modelling Inflections in Romanian Language 125

O = Σ ∪ E,

E = {Ak,j | 1 ≤ k ≤ s, 0 ≤ j ≤ m},
V = {a, · · · , z} is the alphabet of the Romanian language,

and the rules are given below.

R1 = {#l → A1,0|| · · · ||As,0} (1)

∪ {Ak,j−1γ → γAk,j−1 | γ ∈ V \ {a(j)
1 }, 1 ≤ k ≤ s, 1 ≤ j ≤ m} (2)

∪ {Ak,j−1a
(j)
1 vγ → a

(j)
1 Ak,j−1vγ | a(j)

1 v ∈ Pref(aj),

|v| < |aj | − 1, γ ∈ V \ {a(|v|+2)
1 }, 1 ≤ k ≤ s, 1 ≤ j ≤ m} (3)

∪ {Ak,j−1aj → u
(k)
j Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m} (4)

∪ {αAk,m#r → (f (k)
1 , out)|| · · · ||(f (k)

pm
, out) | 1 ≤ k ≤ s}. (5)

The rules are presented as a union of 5 sets. The rule in the first set replicates
the input for carrying out different inflection subsets. The symbol Ak,j is a marker
that will move through the string. Its index k corresponds to the inflection subset,
while index j tells how many alternations have been carried out so far.

The rules in the second set allow the marker to skip a letter if it does not
match the first letter needed for the current alternation. The rules in the third set
allow the marker to skip one letter if some prefix of the needed subword is found,
followed by a mismatch. The rules in the fourth set carry out an alternation, and
the last set of rules perform the replicative substitution of the flectives.

This system halts in at most |w|+ 2 steps.

5 Determining the inflection group

The rules of the systems described above define, in fact, the way of inflection at
algorithmic level:

– deleting the given number of symbols at the end of the word (α),
– obtaining the roots by making substitutions (vowel and consonant alterna-

tions),
– attachment of the respective endings to each root.
But this method can be applied only for the case when the number of the

inflexion group is known. Otherwise there appears the problem of inflexion model
establishing, knowing the graphical representation of the word. Is it possible to
solve algorithmically this problem? The answer is negative. The first obstacle is
the determination of part of speech: there are several examples of homonyms which
mean different parts of speech. (Example: abate – masculine noun (abbat) and verb
(to divert). In English this phenomenon is very common, and most nouns are the
verbs too.) Let us restrict the formulation of the problem: is it possible to establish

126 A. Alhazov et al.

the model of inflection (in the conditions indicated above) knowing the part of
speech? The answer is negative in this case too. For confirmation we can bring
a list of examples, which show us that without invoking phonetic information or
the etymological one we cannot determine the model of inflection. Let us illustrate
this assertion by analyzing female noun masă. Following the meaning of furniture
object we will form plural mese, using the model with vowel alternation a → e.
But if you are following the meaning “compact crowd of people” [22], the plural
mase will be produced without alternation. The origin of this phenomenon is
etymological: in the first case the origin of the word is from Latin mensa, and in
the second – from the French word masse [22]. But the problem can be tackled in
another way: we can set certain criteria that allow us as a result of analysis of the
word structure to conclude, if it is possible to determine the inflection model or
not. If so, we determine precisely which is the respective model.

In [5] the algorithm had been proposed, which, analyzing the dictionary of
classification into morphological groups with entries of type (w, σ), where w is a
word in natural language, and σ – number (label) of inflection group, constructs
two groups of sets A = {A1, A2, . . . , Ak} and P = {P1, P2, . . . Ps}, ∩k

i=1Ai = ∅,
∩s

i=1Pi = ∅. Ai ∩ Pj = ∅.
These sets consisted of subwords αi of the words w = w′αj , where 1 ≤ |αj | ≤

|w|. In [5] it is shown that for certain categories of words it is possible to construct
such sets Ai, that from the fact that αj ∈ Ai it results unequivocally that the
word w belongs to the single inflection group σ, and these words being named
“absolutely regular”. With the help of the same algorithm there are constructed
also such sets Pi, that from the fact that αj ∈ Pi it results that w = w′αj can
belong to several inflection groups σ1, . . . , σm, and the respective words being
named “partially regular”.

So, in the case of an arbitrary word w, using the algorithm mentioned above,
the inflection group is established at first, and then with the help of membrane
system described above, the inflection is carried out obtaining word forms (with
respective morphological attributes).

6 Conclusions

The membrane system to describe the inflexional process when the inflexional
morphological model is known is investigated in this article.

In the case when the model is not known in advance, it can be determined by
using the algorithm from [5]. The membrane systems presented in this paper can
be also adapted for other natural languages with high level of inflection, such as
Italian, French, Spanish etc., having structured morphological dictionaries, similar
to the Romanian one.

Future work: we plan to also consider the problem of representation of the
algorithm determining the inflection group by membrane systems.

Modelling Inflections in Romanian Language 127

Acknowledgments

The authors acknowledge the support of the Science and Technology Center in
Ukraine, project 4032 “Power and efficiency of natural computing: neural-like P
(membrane) systems”. The first author also acknowledges the support of the Japan
Society for the Promotion of Science, and the Grant-in-Aid, project 20·08364. The
fourth author gratefully acknowledges the support of the European Commission,
project MolCIP, MIF1-CT-2006-021666.

References

1. E. Boian, S. Cojocaru. The Inflexion Regularities for the Romanian Language. Com-
puter Science Journal of Moldova, 4, 1, 1996, 40–58.

2. E. Boian, S. Cojocaru, L. Malahova. Tools for Linguistic Applications (Instruments
pour Applications Linguistiques). in: La terminologie en Roumanie et en Republique
de Moldova, Hors serie, N4, 2000, 42–44 (in French).

3. E. Boian, A. Danilchenco, L. Topal. The Automation of Speech Parts Inflexion Pro-
cess. Computer Science Journal of Moldova, 1(2), 1993, 14–26.

4. S. Cojocaru. Romanian Lexicon: Tools, Implementation, Utilization. in Language
and Technology. (Lexicon român: instrumentar, implementare, utilizare. In: Limbaj
şi tehnologie), Academia Română, Bucureşti, 1996, 37–40 (in Romanian).

5. S.Cojocaru. The Ascertainment of the Inflexion Models for Romanian. Computer
Science Journal of Moldova, 14, 1(40), 2006, 103–112.

6. S. Cojocaru, M. Evstiunin, V. Ufnarovski. Detecting and Correcting Spelling Errors
for Romanian Language. Computer Science Journal of Moldova, 1(1), 1993, 3–22.

7. C. Coşman. Paradigmatic Morphology of Romanian language. Environment of de-
velopment – actualization. (Morfologia paradigmatică a limbii române. Mediu de
dezvoltare-actualizare. Teză de licenţă), Facultatea de Informatică, Universitatea
“A.I.Cuza”, Iaşi, 2002. (http://consilr.info.uaic.ro) (in Romanian).

8. D. Cristea, C. Forăscu. Linguistic Resources and Technologies for Romanian Lan-
guage. Computer Science Journal of Moldova, 14, 1(40), 2006, 34–73.

9. R. Hausser. Foundations of Computational Linguistics. Human-Computer Commu-
nication in Natural Language. 2nd edition, revised and extended. Springer, 2001.

10. T. Hristea, C. Moroianu. Generation of Flexional Forms of Nouns and Adjective
for Romanian Language (Generarea formelor flexionare substantivale şi adjecti-
vale ı̂n limba română). in: Building Awareness in Language Technology. F.Hristea,
M.Popescu (eds.), Editura Universităţii din Bucureşti, 2003, 443–460 (in Romanian).

11. D. Irimia. The Grammar of Romanian Language (Gramatica limbii române). Ed.II-
a. Polirom, Bucureşti, 2004 (in Romanian).

12. A. Lombard, C.Gâdei. Morphological Romanian Dictionary (Dictionnaire mor-
phologique de la langue roumaine). Bucureşti, Editura Academiei, 1981 (in French).

13. S. Marcus, Gh. Păun , C. Martn-Vide, Contextual grammars as generative models
of natural languages, Computational Linguistics, v.24 n.2, June, 1998, 245–274.

14. G. Bel Enguix, M. D. Jimenez Lopez. Linguistic Membrane Systems and Appli-
cations. in Applications of Membrane Computing. G. Ciobanu, M. J.Prez-Jimnez,
Gh.Păun, (Eds.) 2006, 347–388.

128 A. Alhazov et al.

15. R.Gramatovici, G. Bel Enguix, Parsing with P automata. in Applications of Mem-
brane Computing. G. Ciobanu, M. J.Prez-Jimnez, Gh.Păun, (Eds.) 2006, 389–436.

16. Gh. Păun. Membrane Computing: an Introduction. Springer, 2002.
17. L. Peev, L. Bibolar, E. Jodal. A Formalization Model of Romanian Morphology.

in Language and Technology (Un model de formalizare a morfologiei limbii române.
ı̂n: Limbaj şi Tehnologie.) Editura Academiei Române, Bucureşti, 1996, 67–72 (in
Romanian).

18. L. Peev, F. Şerban. Methods of Romanian Text Linguistic for Terminologi-
cal Extraction. In Tools and Resources. (Metode de analiză lingvistică a tex-
telor ı̂n limba română pentru extragerea terminologică. Instrumente şi resurse.) -
in http://dtil.unilat.org/seminar bucuresti 2008/actes/peev serban.htm (in Roma-
nian)

19. D. Tufiş. Paradigmatic Morphology Learning. Computers and Artificial intelligence
9(3), 1990, 273–290.

20. D. Tufiş, A. M. Barbu, V. Pătraşcu, G. Rotariu, C. Popescu. Corpora and Corpus-
Based Morpho-Lexical Processing. In: D.Tufiŝ, P.Andersen (eds.). Recent Advances in
Romanian Language Technology, Editura Academie Române, Bucureşti, 1997, 115-
128.

21. D. Tufiş, L. Diaconu, C. Diaconu, A. M. Barbu. Morphology of Romanian Language,
a Reversible and Reusable Resource. In Language and Technology (Morfologia limbii
române, o resursă lingvistică reversibilă şi reutilizabilă. În: Limbaj şi Tehnologie).
Editura Academiei Române, Bucureşti, 1996, 59–65 (in Romanian).

22. The explanatory Romanian Dictionary (Dicţionarul explicativ al limbii române.)
Academia Română, Institutul de Lingvistică “Iorgu Iordan”, Editura Univers En-
ciclopedic, 1998 (in Romanian).

23. The Grammar of Romanian language (Gramatica limbii române), vol.I, Editura
Academiei Republicii Populare Române, Bucureşti, 1963 (in Romanian).

24. nl.ijs.si/ME/V3/msd/html/
25. http://www.thefreedictionary.com/paradigm/

On Reversibility and Determinism in P Systems

Artiom Alhazov1,2, Kenichi Morita1

1 IEC, Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima 739-8527 Japan
morita@iec.hiroshima-u.ac.jp

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

Summary. Membrane computing is a formal framework of distributed parallel comput-
ing. In this paper we study the reversibility and maximal parallelism of P systems from
the computability point of view. The notions of reversible and strongly reversible systems
are considered. The universality is shown for one class and a negative conjecture is stated
for a more restricted class of reversible P systems. For one class of strongly reversible P
systems, a very strong limitation is shown, and it is shown that this limitation does not
hold for a less restricted class.

Another concept considered is strong determinism, which is a syntactic property, as
opposed to the determinism typically considered in membrane computing. A limitation
is shown of one class, while a less restricted class is universal.

1 Introduction

Reversibility is an important property of computational systems. It has been well
studied for circuits of logical elements ([4]), circuits of memory elements ([8]),
cellular automata ([9]), Turing machines ([2], [11]), register machines ([7]). Re-
versibility as a syntactical property is closely related to the microscopic physical
reversibility, and hence it assumes better miniaturization possibilities for potential
implementation.

A slightly different view on reversible systems is given for type-0 grammars
([10]). In this case, the so-called uniquely parsable grammars are studied. In very
simple words, this property (still being syntactical) implies that the generation of
any word in the language is unique (modulo the order of applying the rules in case
when the composition of applying them is commutative). The advantage of having
such a property is that it is easier to analyze their behavior.

Clearly, this reason is valid even if the property of reversibility becomes un-
decidable (just like the property of determinism in certain membrane systems).

130 A. Alhazov, K. Morita

Moreover, reversibility essentially is backward determinism. Reversible P systems
already were considered ([5]), but the model is energy-based (so the parallelism is
invariant-driven rather than maximal) and the main result is the simulation of the
Fredkin gate and thus of reversible circuits (so construction of a universal system
in this way would use an infinite structure). In this paper we focus on the inter-
play between maximal parallelism and such fundamental notions as reversibility
and determinism, from the viewpoint of computability.

It is interesting that the description of some computational systems includes
the initial configuration (grammars, membrane systems), while it is not the case
for many others (cellular automata, Turing machines). We generalize reversibility
and determinism in such a way that these properties do not depend on the initial
configurations, and call them strong. Finally, we present a number of results. In
particular, we show that the power of strongly deterministic systems is weaker than
that of deterministic systems, and we conjecture that also the power of strongly
reversible systems is weaker than that of reversible systems.

2 Definitions

In this paper we illustrate the reversibility and determinism concepts on P sys-
tems with symport/antiport rules and one membrane, sometimes with promoters,
inhibitors or priorities. For simplicity, we also assume that the environment con-
tains an unbounded supply of all objects3. The system thus can be defined by
the alphabet, the initial multiset, the set of rules associated to the membrane
and the set of terminal objects. Throughout this paper we represent multisets by
strings. The union of multisets is defined by adding multiplicities of the symbols.
A comprehensive bibliography of membrane computing can be found at [13].

We write an antiport rule sending a multiset x out and bringing a multiset y in
as x/y, and the symport case corresponds to y = λ. If a rule has a promoter a, we
write it as x/y|a. If a rule has an inhibitor a, we write it as x/y|¬a. The priority
relationship is denoted by >. It is not difficult to generalize the definitions for the
models with multiple membranes and changing membrane structure, but it is not
important here.

We can define a P system in the above-mentioned normal form as

Π = (O, T,w,R),

where O is the object alphabet, T is the terminal subalphabet, w is the initial
multiset, and R is the set of rules. In the accepting case, T is replaced by Σ, which
3 It is well-known that symport/antiport systems can be represented as cooperative

rewriting on objects of the form (object,region). It is also known that, in case the
environment contains an unbounded supply of all objects, a rewriting rule u → v is
equivalent to a symport/antiport rule u/v. Therefore, one-membrane full-environment
is a normal form for symport/antiport P systems. Clearly, symport-in rules are not
allowed. Moreover, transition into this normal form preserves properties we consider
in this paper, so in the following we only consider this case.

On Reversibility and Determinism in P Systems 131

is the input subalphabet, the computation starts when an arbitrary multiset over
Σ is added to w.

Consider a P system Π with alphabet O. In our setting, a configuration is
defined by the multiset of objects inside the membrane, represented by some string
u ∈ O∗. The space C of configurations (i.e., of multisets over O) is essentially
|O|-dimensional space with non-negative integer coordinates. We use the usual
definitions of maximally parallel transition ([12]): no rule is applicable together
with a chosen multiset of rules. It induces an infinite graph of C. Notice that the
halting configurations (and only them) have out-degree zero.

Throughout this paper by reachable we mean reachable from the initial config-
uration. We now define two properties; extending the requirement from reachable
configurations to all configuration, we obtain their strong variants (in case of ac-
cepting systems the initial configurations are obtained by adding to a fixed multiset
arbitrary multisets over a fixed subalphabet; the extension is natural).

Definition 1. We call Π strongly reversible if every configuration has in-degree
at most one. We call Π reversible if every reachable configuration has in-degree
at most one. We call Π strongly deterministic if every configuration has out-
degree at most one. It is common in membrane computing to call Π deterministic
if every reachable configuration has out-degree at most one.

A property equivalent to reversibility is determinism of a dual P system ([1]).
We underline that the not-strong properties refer to the actual computation of the
system, where the strong ones do not depend on the initial configuration.

By a computation we mean a sequence of (maximally parallel) transitions,
starting in the initial configuration, and ending in some halting configuration if
it is finite. The result of a halting computation is the number of terminal objects
inside the membrane when the system halts (or the number of input objects when
the system starts, in the accepting case). The set N(Π) of numbers generated by
a P system Π is the set of results of all its computations. The family of number
sets generated by reversible P systems with features α is denoted by NROP1(α)T ,
where α ⊆ {sym∗, anti∗, pro, inh, Pri} and the braces of the set notation are
omitted. Subscript T means that only terminal objects contribute to the result
of computations; if T = O, we omit specifying it in the description and we then
also omit the subscript T in the notation. To bound the weight (i.e., maximal
number of objects sent in a direction) of symport or antiport rules, the associated
∗ is replaced by the actual number. In the case of accepting systems, we write Na
instead of N , and subscript T has no meaning. For strongly reversible systems,
we replace in the notation R by Rs. For deterministic (strongly deterministic)
systems, we replace R by D (Ds, respectively).

2.1 Register machines

In this paper we consider register machines with increment, unconditional decre-
ment and test instructions, [7], see also [6].

A register machine is defined by a tuple M = (n,Q, q0, qf , I) where

132 A. Alhazov, K. Morita

• n is the number of registers;
• I is a set of instructions bijectively labeled by elements of Q;
• q0 ∈ Q is the initial label;
• qf ∈ Q is the final label.

The allowed instructions are:

• (q : i?, q′, q′′) - jump to instruction q′′ if the contents of register i is zero,
otherwise proceed to instruction q′;

• (q : i+, q′, q′′) - add one to the contents of register i and proceed to either
instruction q′ or q′′, non-deterministically;

• (q : i−, q′, q′′) - subtract one from the contents of register i and proceed to
either instruction q′ or q′′, non-deterministically;

• (qf : halt) - terminate the computation; it is a unique instruction with label
qf .

As for subtract instructions, the computation is blocked if the contents of
the corresponding register is zero. Without restricting generality, we can assume
that a test of a register always precedes its subtraction. (A popular model where
test and subtraction are combined in a conditional subtraction instruction is not
suitable for defining reversibility.) A configuration of a register machine is defined
by the current instruction and the contents of all registers, which are non-negative
integers.

If q′ = q′′ for every instruction (q : i+, q′, q′′) and for every instruction (q :
i−, q′, q′′), then the machine is called deterministic. Clearly, this is necessary and
sufficient for the global transition (partial) mapping not to be multi-valued.

A register machine is called reversible if there is more than one instruction
leading to some instruction q, then exactly two exist, they test the same register,
one leads to q if the register is zero and the other one leads to q if the regis-
ter is positive. It is not difficult to check that this requirement is a necessary
and sufficient condition for the global transition mapping to be injective. Let us
formally state the reversibility of a register machine: for any two different instruc-
tions (q1 : i1α1, q

′
1, q
′′
1) and (q2 : i2α2, q

′
2, q
′′
2), it holds that q′1 6= q′2 and q′′1 6= q′′2 .

Moreover,
if q′1 = q′′2 or q′′1 = q′2, then α1 = α2 =? and i1 = i2.

It has been shown ([7]) that reversible register machines are universal (a
straightforward simulation of, e.g., reversible Turing Machines [2], would not be
reversible). It follows that non-deterministic reversible register machines can gen-
erate any recursively enumerable set of non-negative integers as a value of the first
register by all its possible computations starting from all registers having zero
value.

3 Examples and universality

We now present a few examples to illustrate the definitions.

On Reversibility and Determinism in P Systems 133

Example 0: Consider a P system Π0 = ({a, b}, a, {a/ab}). It is strongly re-
versible (for a preimage, remove as many copies of b as there are copies of a, in
case it is possible and there is at least one copy of a), but no halting configuration
is reachable. Therefore, ∅ ∈ NRsOP1(anti2).

Example 1: Consider a P system Π1 = ({a, b, c}, a, {a/ab, a/c}). It generates
the set of positive integers since the reachable halting configurations are cb∗, and
it is reversible (for the preimage, replace c with a or ab with b), but not strongly
reversible (e.g., aa⇒ cc and ac⇒ cc). Hence, N+ ∈ NROP (anti2).

Example 2: Consider a P system Π2 = ({a, b}, aa, {aa/ab, ab/bbb}). It is re-
versible (aa has in-degree 0, while ab and bbb have in-degree 1, and no other configu-
ration is reachable), but not strongly reversible (e.g., aab⇒ abbb and aabb⇒ abbb).

Example 3: Any P system containing a rule x/λ, x ∈ O+ is not reversible.
Therefore, symport rules cannot be actually used in reversible P systems with one
membrane.

Example 4: Any P system containing rules x1/y, x2/y that applied at least one
of them in some computation is not reversible.

We now show that reversible P systems with either inhibitors or priorities are
universal.

Theorem 1. NROP1(anti2, P ri)T = NROP1(anti2, inh)T = NRE.

Proof. We reduce the theorem statement to the claim that such P systems simulate
the work of any reversible register machine M = (n,Q, q0, qf , I). Consider a P
system

Π = (O, {r1}, q0, R), where
O = {ri | 1 ≤ i ≤ n} ∪Q,
R = {q/q′ri, q/q′′ri | (q : i+, q′, q′′) ∈ I}
∪ {qri/q′, qri/q′′ | (q : i−, q′, q′′) ∈ I} ∪Rt,

Rt = {q/q′′|¬ri , qri/q
′ri | (q : i?, q′, q′′) ∈ I}.

Inhibitors can be replaced by priorities by redefining Rt as follows.

Rt = {qri/q′ri > q/q′′ | (q : i?, q′, q′′) ∈ I}.

Since there is a bijection between the configurations of Π containing one sym-
bol from Q and the configurations of M , the reversibility of Π follows from the
correctness of the simulation, the reversibility of M and from the fact that the
number of symbols from Q is preserved by transitions of Π.

The universality leads to the following undecidability.

Corollary 1. It is undecidable whether a system from the class of P systems with
either inhibitors or priorities is reversible.

134 A. Alhazov, K. Morita

Proof. We recall that the halting problem for register machines is undecidable.
Add instructions qf/F1, qf/F2, F1/F , F2/F to the construction presented above,
where F1, F2, F are new objects; the system is now reversible if and only if some
configuration containing F is reachable, i.e., when the underlying register machine
does not halt, which is undecidable.

A more restricted property of strong reversibility is much easier to check, since
checking that at most one preimage exists for any configuration is no longer related
to the reachability. However, the problem of specifying an algorithmic criterion for
strong reversibility is currently open.

4 Limitations

The construction in the theorem above uses both cooperation and additional con-
trol. It is natural to ask whether both inhibitors and priorities can be avoided.
Yet, consider the following situation. Let (p : i?, s, q′′), (q : i?, q′, s) ∈ I. It is usual
for reversible register machines to have this, since the preimage of configuration
containing a representation of instruction s depends on register i. Nevertheless, P
systems with maximal parallelism without additional control can only implement
a zero-test by try-and-wait-then-check strategy. In this case, the object containing
the information about the register p finds out the result of checking after a pos-
sible action of the object related to the register. Therefore, when the instruction
represented in the configuration of the system changes to s, it obtains an erroneous
preimage representing instruction q. This leads to the following

Conjecture 1. Reversible P systems without priorities and without inhibitors are
not universal.

Now consider strongly reversible P systems. The following theorem establishes
a very serious limitation on such systems if no additional control is used.

Theorem 2. In strongly reversible P systems without inhibitors and without prior-
ities, every configuration is either halting or induces only infinite computation(s).

Proof. If the right-hand side of every rule contains a left-hand side of some rule,
then the claim holds. Otherwise, let x/y be a rule of the system such that y does not
contain the left-hand side of any rule. Then x⇒ y and y is a halting configuration.
It is not difficult to see that xy ⇒ yy (objects y are idle) and xx ⇒ yy (the rule
can be applied twice). Therefore, such a system is not strongly reversible, which
proves the theorem.

Therefore, the strongly reversible systems without additional control can only gen-
erate singletons, i.e., NRsOP1(anti∗)T = {{n} | n ∈ N}, and only in a degenerate
way, i.e., without actual computing.

On Reversibility and Determinism in P Systems 135

It turns out that the theorem above does not hold if inhibitors are used.
Consider a system Π3 = ({q, f, a}, q, {q/qaa|¬f}, {q/f |¬f}). If at least one ob-
ject f is present or no objects q are present, such a configuration is a halting
one. Otherwise, all objects q are used by the rules of the system. Therefore,
the only possible transitions in the space of all configurations are of the form
qm+nap−2m ⇒ qmfnap, m+ n > 0, p ≥ 2m and the system is strongly reversible.
Notice that N(Π) = {2k+ 1 | k ≥ 0}, since starting from q we apply the first rule
for k ≥ 0 steps and eventually the second rule.

5 Strong determinism

The concept of determinism common to membrane computing essentially means
that such a system, starting from the fixed configuration, has a unique computa-
tion. As it will be obvious later, this property is often not decidable. Of course,
this section only deals with accepting systems.

First, we recall from [3] that deterministic symport/antiport P systems with
restrictions mentioned in the preliminaries (one membrane, infinite supply of all
objects in the environment) are still universal, by simulation of register machines.

In general, if a certain class of non-deterministic P systems is universal even
in a deterministic way, then the determinism is undecidable for that class. This
applies to our model of one-membrane all-objects-in-environment P systems with
symport/antiport, similarly to Corollary 1.

Corollary 2. It is undecidable whether a given P system with symport/antiport
rules is deterministic.

Proof. Consider an arbitrary register machine M . There is a deterministic P sys-
tem Π simulating M . Without restricting generality we assume that an object qf
appears in the configuration of Π if and only if it halts. Add instructions qf/F1

and qf/F2 to the set of rules, where F1, F2 are new objects; the system is now
deterministic if and only if some configuration with qf is reachable, i.e., when the
underlying register machine does not halt, which is undecidable.

On the contrary, the strong determinism we now consider means that a system
has no choice of transitions from any configuration. We now claim that it is a
syntactic property. To formulate the claim, we need the following notions. We call
the domain of a rule x/y, x/y|a or x/y|¬a the set of objects in x (the multiplicities
of objects in x are not relevant for the results in this paper). We say that two rules
are mutually excluded by promoter/inhibitor conditions if the inhibitor of one is
either the promoter of the other rule, or is in the domain of the other rule.

Theorem 3. A P system is strongly deterministic if and only if any two rules with
intersecting domains are either mutually excluded by promoter/ inhibitor condi-
tions, or are in a priority relation.

136 A. Alhazov, K. Morita

Proof. Clearly, any P system with only one rule is strongly deterministic, because
the degree of parallelism is defined by exhausting the objects from the domain of
this rule.

The forward implication of the theorem holds because the rules with non-
intersecting domains do not compete for the objects, while mutually excluding
promoter/inhibitor conditions eliminate all competing rules except one, and so
does the priority relation. In the result, for any configuration the set of objects is
partitioned in disjoint domains of applicable rules, and the number of applications
of different rules can be computed independently.

We now proceed with the converse implication. Assume that rules p, p′ of the
system intersect in the domain, are not in a priority relation, and are not mutually
excluded by the promoter/inhibitor conditions. Let x, x′ be the multisets of objects
to be sent out by rules p, p′, respectively. Then consider the multiset C, which is the
minimal multiset including x, x′, and the configuration C ′, defined as the minimal
multiset including C ′ and promoters of p, p′, if any.

Starting from C ′, there are enough objects for applying either p or p′. Since the
rules neither are mutually excluded nor are in a priority relation, both rules are
applicable. However, both cannot be applied together because the rules intersect
in the domain and thus the multiset C is strictly included in the union of x, x′ (and
C ′ is only different from C if either promoter of p, p′ does not belong to C). The
sufficiency of the condition of this theorem follows from contradicting the strong
determinism.

Corollary 3. A P system without promoters, inhibitors, and without priority is
strongly deterministic if and only if the domains of all rules are disjoint.

We show an interesting property of strongly deterministic P systems without
additional control. To define it, we use the following notion for deterministic P
systems. Let C ⇒ρ1 C1 ⇒ρ2 C2 · · · ⇒ρn Cn, where ρi are multisets of applied
rules, 1 ≤ i ≤ n. We define the multiset of rules applied starting from configuration
C in n steps as

m(C, n) =
n⋃
i=1

ρi.

We write lhs(x/y) = x and rhs(x/y) = y, and extend this notation to the multiset
of rules by taking the union of the correspoding multisets. For instance, if C ⇒ρ C1,
then C1 = C ∪ rhs(ρ) \ lhs(ρ).

Lemma 1. Consider a strongly deterministic P system Π without promoters, in-
hibitors and without priorities. Consider also two configurations C,C ′ with C (C ′

and a number n. Then, m(C, n) ⊆ m(C ′, n).

Proof. We prove the statement by induction. It holds for n = 1 step because
strongly deterministic systems are deterministic, and if the statement did not
hold, then neither would the determinism.

Assume the statement holds for n− 1 steps, and

On Reversibility and Determinism in P Systems 137

C ⇒ρ1 C1 ⇒ρ2 C2 · · · ⇒ρn Cn,

C ′ ⇒ρ′
1 C ′1 ⇒ρ′

2 C ′2 · · · ⇒ρ′
n C ′n.

Then, after n− 1 steps the difference between the configurations can be described
by C ′n−1 = Cn−1 ∪D1 ∪D2 \D3, where

• D1 = C ′ \ C,
• D2 = rhs(m(C ′, n− 1) \m(C, n− 1)),
• D3 = lhs(m(C ′, n− 1) \m(C, n− 1)).

Therefore, Cn−1 \ C ′n−1 (D3. Because of the strong determinism property, these
objects will either be consumed by some rules from m(C ′, n− 1) \m(C, n− 1), or
remain idle. Therefore, m(Cn−1, 1) ⊆ m(C ′n−1, 1) ∪ (m(C ′, n − 1) \m(C, n − 1)).
It follows that m(C, n) ⊆ m(C ′, n), concluding the proof.

Example 5: For a P system Π = ({a}, a, {p : a3/a}),

a15 ⇒p5 a5 ⇒p a4 ⇒p a.

a14 ⇒p4 a6 ⇒p2 a2.

We now establish an upper bound for the power of strongly deterministic P
systems without additional control: any P system without promoters, inhibitors
or priorities accepts either the set of all non-negative integers, or a finite set of all
numbers bounded by some number.

Theorem 4. NaDsOP1(sym∗, anti∗) = {{k | 0 ≤ k ≤ n} | n ∈ N} ∪ {∅,N}.

Proof. A computation starting from a configuration C is not accepting if it does not
halt, i.e., if limn→∞m(C, n) = ∞. Due to Lemma 1, if the computation starting
from C is accepting, then any computation starting from a submultiset C ′ ⊆
C would also be accepting. This also implies that if the computation starting
from C is not accepting, then neither is any computation starting from a multiset
containing C. Therefore, the set of numbers accepted by a strongly deterministic P
system without additional control can be identified by the largest number of input
objects leading to acceptance, unless the system accepts all numbers or none.

The converse can be shown by the following P systems.

• System ({a}, {a}, a, {a/a}) accepts ∅ because of the infinite loop in its compu-
tation;

• system ({a}, {a}, a, {a/λ}) accepts N, i.e., anything, because it halts after eras-
ing everything in one step; and

• for any n ∈ N there is a system ({a}, {a}, λ, {an+1/an+1}) accepting {k | 0 ≤
k ≤ n}, because the system starts in a final configuration if and only if the
input does not exceed n, and enters an infinite loop otherwise.

Theorem 4 shows that the computational power of strongly deterministic P
systems without additional control is, in a certain sense, degenerate (it is subreg-
ular). We now show that the use of promoters and inhibitors lead to universality
of even the strongly deterministic P systems.

138 A. Alhazov, K. Morita

Theorem 5. NaDsOP1(sym∗, anti∗, pro, inh) = NRE.

Proof. We reduce the theorem statement to the claim that such P systems simulate
the work of any deterministic register machine M = (n,Q, q0, qf , I). Without
restricting generality, we assume that every subtracting instruction is preceded by
the testing instruction. Consider a P system

Π = (O, {r1}, q0, R), where
O = {ri, di | 1 ≤ i ≤ n} ∪ {q, q1 | q ∈ Q},
R = {q/q′ri | (q : i+, q′, q′) ∈ I}
∪ {q/q1di, q1/q′, diri/λ | (q : i−, q′, q′) ∈ I}
∪ {q/q′|ri

, q/q′′|¬ri
| (q : i?, q′, q′′) ∈ I}.

All rules using objects q, q′ have disjoint domains, except the ones in the last line,
simulating the zero/non-zero test. However, they exclude each other by the same
object which serves as promoter and inhibitor. Subtraction of register i is handled
by producing object di, which will “annihilate” (i.e., be deleted together with)
with ri. Therefore, different instructions subtracting the same ri are implemented
by the same rule diri/λ, hence all rules using objects di, ri have different domains.
It follows from Theorem 3 that the system is strongly deterministic, concluding
the proof.

6 Conclusions

We outlined the concepts of reversibility, strong reversibility and strong determin-
ism for P systems, concentrating on the case of symport/antiport rules (possibly
with control such as priorities or inhibitors) with one membrane, assuming that
the environment contains an unbounded supply of all objects, see Table 1. We
added the universality of the usual deterministic systems without control from [3]
for comparison.

We showed that reversible P systems with control are universal, and we con-
jectured that this result does not hold without control. Moreover, the strongly
reversible P systems without control do not halt unless the starting configuration
is halting, but this is no longer true if inhibitors are used.

We also gave a syntactic characterization for the strong determinism property.
Moreover, we showed that a corresponding system without control either accepts
all natural numbers, or a finite set of numbers. With the help of promoters and
inhibitors the corresponding systems become universal.

Showing related characterizations might be quite interesting. Many other prob-
lems are still open, e.g., cells with “C” and “?” in Table 1. Another interesting
problem is to formulate reversibility for P systems with active membranes and to
characterize their power.

On Reversibility and Determinism in P Systems 139

Property npro, ninh, nPri Pri inh pro, inh

D(acc) U U U U
Ds(acc) E (Th. 4) ? ? U (Th. 5)
R(gen) C (Conj. 1) U (Th. 1) U (Th. 1) U (Th. 1)
Rs(gen) E (Th. 2) C C C

Table 1. The power of P systems with different properties, depending on the features.
U - universal, E - degenerate, ? - open, C - conjectured to be non-universal.

Acknowledgments

Artiom Alhazov gratefully acknowleges the support of the Japan Society for
the Promotion of Science and the Grant-in-Aid for Scientific Research, project
20·08364. He also acknowledges the support by the Science and Technology Cen-
ter in Ukraine, project 4032.

References

1. O. Agrigoroaiei, G. Ciobanu: Dual P Systems, Membrane Computing - 9th Interna-
tional Workshop, LNCS 5391, 95–107, 2009.

2. C.H. Bennett: Logical Reversibility of Computation, IBM Journal of Research and
Development 17, 1973, 525-532.

3. C. Calude, Gh. Păun: Bio-steps beyond Turing, BioSystems 77, 2004, 175–194.
4. E. Fredkin, T. Toffoli: Conservative Logic, Int. J. Theoret. Phys. 21, 1982, 219-253.
5. A. Leporati, C. Zandron, G. Mauri: Reversible P Systems to Simulate Fredkin Cir-

cuits, Fundam. Inform. 74(4), 2006, 529–548.
6. M.L. Minsky: Computation: Finite and Infinite Machines, Prentice-Hall, Englewood

Cliffs, NJ, 1967.
7. K. Morita: Universality of a Reversible Two-Counter Machine, Theoret. Comput. Sci.

168 (1996) 303-320.
8. K. Morita: A Simple Reversible Logic Element and Cellular Automata for Reversible

Computing, Proc. 3rd Int. Conf. on Machines, Computations, and Universality,
LNCS 2055, Springer-Verlag, 2001, 102-113.

9. K. Morita: Simple Universal One-Dimensional Reversible Cellular Automata, J. Cel-
lular Automata 2, 2007, 159-165.

10. K. Morita, N. Nishihara, Y. Yamamoto, Zh. Zhang: A Hierarchy of Uniquely Parsable
Grammar Classes and Deterministic Acceptors, Acta Inf. 34(5), 1997, 389–410.

11. K. Morita, Y. Yamaguchi: A Universal Reversible Turing Machine, Proc. 5th Int.
Conf. on Machines, Computations, and Universality, LNCS 4664, Springer-Verlag,
2007, 90-98.

12. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
13. P systems webpage. http://ppage.psystems.eu/.

Typed Membrane Systems

Bogdan Aman and Gabriel Ciobanu

1 Romanian Academy, Institute of Computer Science
2 A.I.Cuza University of Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. We introduce and study typing rules and a type inference algorithm for P
systems with symport/antiport evolution rules. The main results are given by a subject
reduction theorem and the completeness of type inference. We exemplify how the type
system is working by presenting a typed description of the sodium-potassium pump.

1 Introduction

Membrane systems (also called P systems) were introduced by Gh. Păun; several
variants of P systems are presented in the monograph [8]. P systems are parallel
and nondeterministic computing models inspired by the compartments of eukary-
otic cells and by their biochemical reactions. The structure of the cell is represented
by a set of hierarchically embedded regions, each one delimited by a surrounding
boundary (called membrane), and all of them contained inside an external special
membrane called skin. The molecular species (ions, proteins, etc.) floating inside
cellular compartments are represented by multisets of objects described by means
of symbols or strings over a given alphabet, objects which can be modified or com-
municated between adjacent compartments. Chemical reactions are represented by
evolution rules which operate on the objects, as well as on the compartmentalized
structure (by dissolving, dividing, creating, or moving membranes).

A P system can perform computations in the following way: starting from an
initial configuration which is defined by the multiset of objects initially placed
inside the membranes, the system evolves by applying the evolution rules of each
membrane in a nondeterministic and maximally parallel manner. A rule is applica-
ble when all the objects that appear in its left hand side are available in the region
where the rule is placed. The maximally parallel way of using the rules means
that in each step, in each region of the system, we apply a maximal multiset of
rules, namely a multiset of rules such that no further rule can be added to the
set. A halting configuration is reached when no rule is applicable. The result is
represented by the number of objects from a specified membrane.

Typed Membrane Systems 141

Several variants of P systems are inspired by different aspects of living cells
(symport and antiport-based communication through membranes, catalytic ob-
jects, membrane charge, etc.). Their computing power and efficiency have been
investigated using the approaches of formal languages and grammars, register ma-
chines and complexity theory. An updated bibliography can be found at the P
systems web page [10].

P systems are known to be Turing complete [8]. They are also used to model
biological systems and their evolution [5]. A type description of calculus of looping
sequences, along with a type inference algorithm can be found in [2]. Related static
techniques have been applied to biological systems, such as Control Flow Analysis
[7] and Abstract Interpretation [6]. In this paper we define a typing system and a
type inference algorithm for P systems with symport/antiport evolution rules. To
exemplify how the introduced type system works, we use types in the description
of the sodium-potassium pump.

The cells of the human body have different types depending on the morpho-
logical or functional form [1]. A complete list of distinct cell types in the adult
human body may include about 210 distinct types. The chemical reactions inside
cells are usually expressed by using types of the components; for instance, a reac-
tion between an acid and a carbonate forms salt, carbon dioxide and water as the
only products. In this paper we enrich the symport/antiport P systems with a type
discipline. The key technical tools are type inference and principal typing [9]; we
associate to each reduction rule a minimal set of conditions that must be satisfied
in order to assure that applying this rule to a correct P system, we get a correct
membrane system as well. The type system for P systems with symport/antiport
rules is (up to our knowledge) the first attempt to control the evolution of P sys-
tems using typing rules. The presentation of the typed sodium-potassium pump is
an example how to introduce and use types in P systems.

The structure of the paper is as follows. A type system for membranes with
symport/antiport rules is introduced in Section 2. Section 3 contains an extension
of the description of the sodium-potassium pump using P systems [3] with the
newly introduced type system. The section ends with an example of a rule that
would be considered ill-typed for the pump. Conclusion and references end the
paper.

2 Typed Discipline for Membrane Systems

A type system is used to prevent the occurrences of errors during the evolution
of a system. A type inference procedure determines the minimal requirements to
accept a system or a component as well-typed. These are important concepts and
methods of programming languages and software engineering. In this paper, we
investigate the application of these concepts to a biologically inspired formalism,
namely to membrane systems.

We use membrane systems with symport/antiport rules. From biological ob-
servations we know that there are many cases where two chemicals pass through a

142 B. Aman, G. Ciobanu

membrane at the same time, with the help of each other, either in the same direc-
tion, or in opposite directions; in the former case we say that we have a symport,
in the latter case we have an antiport. Symport is standardly described by rules
of the form (ab, in) and (ab, out) associated with a membrane, that state that the
objects a and b can enter, respectively, exit the membrane together; antiport is
described by rules of form (a, out; b, in) associated with a membrane, that state
that a exits at the same time when b enters the membrane. Inspired by the rules for
active membranes [8], and the notation used in [3], we denote the symport rules by
ab[l→ [lab or [lab→ ab[l, and the antiport rules by b[la→ a[lb. Generalizing such
kinds of rules, we can consider rules of the unrestricted forms x[l→ [lx or [ly → y[l
(generalized symport rules), and x[ly → y[lx (generalized antiport rules), where
x, y are strings representing multisets of objects (without any restriction on the
length), and l is the label of the membrane in which the rules are placed. It is
worth to note that an antiport rule with one of x, y empty is just a symport rule.

Definition 1. A membrane system with symport/antiport rules is a construct
Π = (O,H, µ,w1, . . . , wn, E,R1, . . . , Rn, iO)

where:

• n ≥ 1 (the initial degree of the system);
• O is an alphabet (its elements are called objects);
• H is a finite set of labels for membranes;
• µ ⊂ H × H describes the membrane structure, such that (i, j) ∈ µ denotes

that the membrane labelled by j is contained in the membrane labelled by i; we
distinguish the external membrane (usually called the “skin” membrane) and
several internal membranes;

• w1, . . . , wn are strings over O, describing the multisets of objects placed in the
n regions of µ;

• E ⊆ O is the set of objects which are supposed to appear in the environment in
arbitrarily many copies;

• Ri, 1 ≤ i ≤ n is a finite set of symport and antiport rules over O associated
with the n membranes of µ;

• iO, 1 ≤ iO ≤ n is the output membrane.

Definition 2. The setM(Π) of membranes in a P system Π is inductively defined
as follows:

• if i is a label from H and w is a multiset over O then [w]i ∈ M(Π); [w]i is
called an elementary membrane;

• if i is a label from H, M1, . . . ,Mn ∈M(Π), n ≥ 1, and w is a multiset over O
then [w M1 . . .Mn]i ∈M(Π); [w M1 . . .Mn]i is called a composite membrane.

Definition 3. For a P system Π, if M and N are two membranes from M(Π),
we say that M reduces to N (M → N) if there exists a rule in a Ri, 1 ≤ i ≤ n,
applicable to membrane M such that we can obtain membrane N .

More details on membrane systems can be found in [8].

Typed Membrane Systems 143

2.1 Typed Membrane Systems

We introduce typing rules for the class of membrane systems with symport/ an-
tiport rules in Table 1 and Table 2. We use obj to denote objects, u and v to denote
multisets of objects, and mem to denote membranes. The main judgements nor-
mally take the form

Γ `M : T
indicating that a membrane denoted by M is a well-typed system having the type
T relative to a typing environment Γ .
The steps for defining a type system are as follows:

1. For each object obj we establish a certain type T .
2. A membrane mem has a type {S,D↑, D↓, L}, where:
• S is a set of object types representing the objects that are allowed to stay

in membrane mem during all the possible evolutions of the system;
• D↑ is a set of sets of object types representing the objects that are allowed

to be communicated up through membrane mem during all the possible
evolutions of the system;

• D↓ is a set of sets of object types representing the objects that are allowed
to be communicated down through membrane mem during all the possible
evolutions of the system;

• L is a set of labels denoting certain states of the membrane mem during
all the possible evolutions of the systems.

These steps are exemplified in Section 3 for a sodium-potassium pump.

Table 1: Typing Rules for Membrane Systems

obj : T ∈ Γ
Γ ` obj : T

(R1)

mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ [u1 . . . ui mem1 . . .memj]lmem

Γ ` u1 : T1 . . . Γ ` ui : Ti {T1, . . . , Ti} ⊆ Smem l ∈ Lmem

Γ ` mem1 : {S1, D
↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}

Γ ` mem : {Smem, D
↑
mem, D

↓
mem, Lmem}

(R2)

Rule (R1) states that an object is a well behaved object if it is typed in Γ . Rule
(R2) states that if we have some membranes (possibly none) and some objects ui

which together are well behaved in an environment Γ , and u1 . . . ui can stay in a
membrane mem which is also well formed in the environment Γ , and a label l can
be associated to the membrane mem, then also [u1 . . . ui mem1 . . .memj]lmem is
well formed under the assumptions of Γ .

Lemma 1 (Generation Lemma).

1. If Γ ` obj : T , then obj : T ∈ Γ .

144 B. Aman, G. Ciobanu

2. If Γ ` mem : {Smem, D
↑
mem, D

↓
mem, Lmem}, then we have that mem is a

membrane [u1 . . . ui mem1 . . .memj]lmem with Γ ` u1: T1 . . . Γ ` ui : Ti

Γ ` mem1 : {S1, D
↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}, {T1, . . . , Ti} ⊆

Smem, l ∈ Lmem, mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ .

Proof. By induction on the depth of the membranes.

In Table 2 we describe the type conditions the rules from the class of membrane
systems with symport/antiport rules must fulfill such that the evolution takes
place as expected. Some notations are necessary: mem1 is the parent membrane
of mem2, and by Tu = {Tu1 , . . . , Tui

} we denote the set of types of a multiset of
objects u = u1, . . . , ui. In these rules, l′ can be the same l (meaning that the state
of the membrane does not change).

Table 2: Typed Evolution Rules for Membrane Systems

u[lmem2→ [l
′

mem2u Γ ` u : Tu Tu ⊆ D↓mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R3)

[lmem2u→ u[l
′

mem2 Γ ` u : Tu Tu ⊆ D↑mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R4)

v[lmem2u→ u[l
′

mem2v Γ ` u : Tu Γ ` v : Tv Tu ⊆ D↑mem2 Tv ⊆ D↓mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 Tv ⊆ Smem1 Tv ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R5)

Denoting by M and N two membrane systems, we have the following result:

Theorem 1 (Subject Reduction).
If all the objects and membranes of M are well typed in an environment Γ , and
M → N by applying a rule of Table 2, then N is a membrane system such that all
its objects and membranes are well typed in the environment Γ .

Proof (Sketch). Case [ldepth2u → u[l
′

depth2. We consider depth1 to be the parent
membrane of depth2. If we apply this rule the only structure that changes is

Typed Membrane Systems 145

[[u . . .]ldepth2 . . .]depth1 which is transformed into [[. . .]l
′

depth2u . . .]depth1. If depth1 :
{Sdepth1, D↑depth1, D↓depth1, Ldepth1} then by Lemma 1 applied twice we have
depth1 : {Sdepth1, D↑depth1, D↓depth1, Ldepth1} ∈ Γ , depth2 : {Sdepth2, D↑depth2,
D↓depth2, Ldepth2} ∈ Γ , Γ ` u : Tu. Since the rule can be applied, then we get
Tu ⊆ Sdepth2, l′ ∈ Ldepth2 and Tu ⊆ Sdepth1. By applying (R4) we have that
Γ ` depth1 : {Sdepth1, D↑depth1, D↓depth1, Ldepth1} and Γ ` depth2 : {Sdepth2,
D↑depth2, D↓depth2, Ldepth2} which means that all the objects and membranes of N
are well typed in the environment Γ .

The other cases are treated similarly.

2.2 Type Inference Algorithm

Given a raw membrane system M , i.e., a well-formed membrane system in which
all type annotations have been erased, our type inference algorithm introduces the
needed type annotations and computes the environment satisfying the minimal
requirements on the typing of the objects and membranes occurring in M , thus
producing M ′ which is well typed with respect to such environment. The typing
given byM ′ is principal in the sense of [9], since all other possible typings which can
be given to membrane systems obtained from M by introducing type annotations
can be derived through a set of suitable operations from the inferred typing of M ′.
The inference algorithm is then proved to be sound and complete with respect to
the rules of Subsection 2.1.

Types and type environments of the algorithm are related to the structure of
the system; it has therefore to put together distinct environments whenever the
system has more than one parallel structure.

The type reconstruction procedure is represented by a judgement
`I M : 〈W,Γ 〉,

where M is a membrane structure, W is the type inferred for M from the environ-
ment Γ , and I represents the fact that this judgement results from the inference
algorithm. As before, we consider that mem1 is the parent membrane of mem2.
We define the domain of a set of typed names Γ as

dom(Γ) = {n | n : t ∈ Γ}.
where t is the name of an object or membrane.

We say that two typed sets of names Γ and Γ ′ are compatible (written Γ ./ Γ ′)
if and only if n : t ∈ Γ and n : t′ ∈ Γ ′, then it holds t = t′. The disjoint union of
Γ and Γ ′ is defined as

Γ] Γ ′ = {n : t ∈ Γ ∧ n 6∈ dom(Γ ′)} ∪ {n : t′ ∈ Γ ′ ∧ n 6∈ dom(Γ)}.
We also define a function that returns the type of an object or a membrane

with respect to a type environment Γ :
type(n, Γ) = {n : t | n : t ∈ Γ}

The inference procedure is defined in a natural semantic style. In all the type
inference rules, the objects and membrane types which appear in conclusions are
derived from those appearing in premises.

146 B. Aman, G. Ciobanu

Table 3: Type reconstruction

`I obj : 〈Obj, obj : Obj〉 (I1)

[u1 . . . ui mem1 . . .memj]lmem Γs ./ Γt, s 6= t, 1 ≤ s, t ≤ i+ j
`I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui , Γi〉

`I mem : 〈T, Γ 〉 `I mem1 : 〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉
`I mem : 〈T ′, Γ ′〉

where T ′ = {Smem ∪ {Tu1 , . . . , Tui}, D↑mem, D
↓
mem, Lmem ∪ {l}}

if T = {Smem, D
↑
mem, D

↓
mem, Lmem}

and Γ ′ = Γ ∪ (
⊎i+j

k=1 Γk\type(mem,
⊎i+j

k=1 Γk)) ∪ {mem : T ′}

(I2)

u[lmem2→ [l
′

mem2u Γ ./ Γ2 Γ ./ Γ1

`I u : 〈Tu, Γ 〉 `I mem1 : 〈{Smem1, D
↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((Γ1] Γ)\type(mem1, Γ] Γ1))∪
{mem1 : {Smem1 ∪ Tu, D

↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tu, D
↑
mem2, D

↓
mem2 ∪ Tu, Lmem2 ∪ {l′}}, Γ ′2〉

where Γ ′2 = ((Γ2] Γ)\type(mem2, Γ2] Γ))∪
{mem2 : {Smem2 ∪ Tu, D

↑
mem2, D

↓
mem2 ∪ Tu, Lmem2 ∪ {l′}}}

(I3)

[lmem2u→ u[l
′

mem2 Γ1 ./ Γ2 Γ ./ Γ1 Γ ./ Γ2}
`I u : 〈Tu, Γ 〉; ∅ `I mem1 : 〈{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((Γ] Γ1] Γ2)\type(mem1, Γ] Γ1] Γ2))∪
{mem1 : {Smem1 ∪ Tu, D

↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tu, D
↑
mem2 ∪ Tu, D

↓
mem2, Lmem2 ∪ {l′}}, Γ ′2〉

where Γ ′2 = ((Γ] Γ1] Γ2)\type(mem2, Γ] Γ1] Γ2))∪
{mem2 : {Smem2 ∪ Tu, D

↑
mem2 ∪ Tu, D

↓
mem2, Lmem2 ∪ {l′}}}

(I4)

v[lmem2u→ u[l
′

mem2v Γi ./ Γj , i 6= j `I u : 〈Tu, Γ3〉 `I v : 〈Tv, Γ4〉
`I mem1 : 〈{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((

4⊎
i=1;i 6=2

Γi)\type(mem1,

4⊎
i=1;i 6=2

Γi))∪

{mem1 : {Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tv, D
↑
mem2 ∪ Tu, D

↓
mem2 ∪ Tv, Lmem2 ∪ {l′}}, Γ ′2

whereΓ ′2 = ((

4⊎
i=2

Γi)\type(mem2,

4⊎
i=2

Γi))∪

{mem2 : {Smem2 ∪ Tv, D
↑
mem2 ∪ Tu, D

↓
mem2 ∪ Tv, Lmem2 ∪ {l′}}}

(I5)

Typed Membrane Systems 147

Using rules of the form (I1) to each object obj of a given membrane system,
we attach a fresh type Obj. If we add two different types Obj1 and Obj2 to the
same object obj when constructing the type of the whole membrane system using
rules of Table 3, by using the relation ./ we get Obj1 = Obj2. Rules (I3), (I4) and
(I5) are used to construct the types of the membranes with conditions given by
symport and antiport rules that can be applied, while rule (I2) is used to update
the type of membranes.

A subtyping relation ≤ is introduced to compare the environments. If we take
two type environments Γ = {a : K, b : Na} and ∆ = {a : K}, then Γ ≤ ∆.

Theorem 2 (Soundness of the Type Inference).
If `I M : 〈W,Γ 〉, then Γ `M : W .

Proof. By induction on the structure of deductions in `I .

• Case (I1): We have `I obj : 〈Obj, obj : Obj〉, from where it results that obj :
Obj ∈ Γ . Applying rule (R1) it results that Γ ` obj : Obj.

• Case (I2): We have
(i) the membrane structure [u1 . . . uimem1 . . .memj]lmem;
(ii) from `I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui , Γi〉; Γk ./ Γt, 1 ≤ k, t ≤ i; Γ ≤ Γk,

1 ≤ k ≤ i applying the induction we have that Γ ` u1 : Tu1 . . . Γ ` ui : Tui
;

(iii) from `I mem : 〈T, Γi〉 `I mem1 : 〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉;
Γk ./ Γt, i+1 ≤ k, t ≤ i+j; Γ ≤ Γk, i+1 ≤ k ≤ i+j applying the induction
we have that Γ ` mem1 : {S1, D

↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj};

(iv) mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ ;

(v) {Tu1 , . . . , Tui
} ⊆ Smem, l ∈ Lmem.

Using (i), (ii), (iii), (iv), and (v), we can apply rule (R2), and so obtaining
Γ ` mem : {Smem, D

↑
mem, D

↓
mem, Lmem}.

• Case (I3): For membrane mem2 we have
(i) the rule u[lmem2→ [l

′

mem2u;
(ii) from `I u : 〈Tu, Γ 〉, Γ ./ Γ ′2, Γ ′2 ≤ Γ applying the induction we have that

Γ ′2 ` u : Tu;
(iii) mem2 : {Smem2, D

↑
mem2, D

↓
mem2, Lmem2} ∈ Γ ′2;

(iv) Tu ⊆ D↓mem2, Tu ⊆ Smem2, l′ ∈ Lmem2.
Using (i), (ii), (iii) and (iv), we can apply rule (R3) and obtain Γ ` mem2 :
{Smem2, D

↑
mem2, D

↓
mem2, Lmem2}.

For membrane mem1 we have
(i) the rule u[lmem2→ [l

′

mem2u;
(ii) from `I u : 〈Tu, Γ 〉, Γ ./ Γ ′1, Γ ′1 ≤ Γ applying the induction we have that

Γ ′1 ` u : Tu;
(iii) mem1 : {Smem1, D

↑
mem1, D

↓
mem1, Lmem1} ∈ Γ ′1;

(iv) Tu ⊆ Smem1.
Using (i), (ii), (iii) and (iv), we can apply rule (R3) and obtain Γ ` mem1 :
{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}.

The other cases are treated in a similar manner.

148 B. Aman, G. Ciobanu

Theorem 3 (Completeness of the Type Inference).
If Γ ` M : W , then `I M : 〈W ′, Γ ′〉, and there is a a renaming function σ such
that:

1. σ(W ′) = W ;
2. σ(Γ ′) ≤ Γ .

Proof. By induction on the structure of deductions in `.

• Case (R1): From (R1) we have that Γ ` obj : Obj, while from (I1) we have
that `I obj : 〈Obj′, obj : Obj′〉. If we consider σ(Obj′) = Obj, σ(obj : Obj′) =
obj : Obj we get that `I obj : 〈Obj, obj : Obj〉.

• Case (R2): We have
(i) the membrane structure [u1 . . . uimem1 . . .memj]lmem;
(ii) from Γ ` u1 : Tu1 . . . Γ ` ui : Tui

applying the induction we have that
`I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui

, Γi〉; σ(Γk) ≤ Γ , 1 ≤ k ≤ i;
(iii) from Γ ` mem1 : {S1, D

↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}

applying the induction we have that `I mem : 〈T, Γi〉 `I mem1 :
〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉; σ(Γk) ≤ Γ , i+ 1 ≤ k ≤ i+ j;

(iv) mem : T ∈ Γ , where T = {Smem, D
↑
mem, D

↓
mem, Lmem};

(v) {Tu1 , . . . , Tui
} ⊆ Smem, l ∈ Lmem.

Using (i), (ii), (iii), (iv) and (v), we can apply rule (I2) and obtain `I mem :
〈T ′, Γ ′〉, where T ′ = {Smem, D

↑
mem, D

↓
mem, Lmem} and Γ ′ = Γ ∪

⊎i+j
k=1 Γk. We

have that T ′ = T and σ(Γ ′) ≤ Γ .

The other cases are treated in a similar manner.

3 Na-K Pump Modelled by Typed Membranes

The sodium-potassium pump is a primary active transport system driven by a cell
membrane ATPase carrying sodium ions out and potassium ions in. The descrip-
tion given in Table 4; it is known as the Albers-Post model. According to this
mechanism:

1. Na+ and K+ transport is similar to a ping-pong mechanism, meaning that
the two ions species are transported sequentially;

2. Na-K pump essentially exists in two conformations, E1 and E2, which may be
phosphorylated or dephosphorylated.

These conformations correspond to two mutually exclusive states in which the
pump exposes ion binding sites alternatively on the cytoplasmic (E1) and ex-
tracellular (E2) sides of the membrane. Ion transport is mediated by transitions
between these conformations. In Table 4 we use the following notations:

• A+B means that A and B are present together and could react;
• A ·B means that A and B are bound to each other non-covalently;

Typed Membrane Systems 149

• E2 ∼ P indicates that the phosphoryl group P is covalently bound to E2;
• Pi is the inorganic phosphate group;
•
 indicates that the process can also proceed in a reversible way.

Table 4: The Albers-Post Model

E1 +Na+
in
 Na+ · E1 (1)

Na+ · E1 +ATP
 Na+ · E1 ∼ P +ADP (2)
Na+ · E1 ∼ P
 Na+ · E2 ∼ P (3)
Na+ · E2 ∼ P
 E2 ∼ P +Na+

out (4)
E2 ∼ P +K+

in
 K+ · E2 ∼ P (5)
K+ · E2 ∼ P
 K+ · E2 + Pi (6)

K+ · E2
 K+ · E1 (7)
K+ · E1
 K+

in + E1 (8)

3.1 The Membrane Systems Model of the Pump

The environment and the inner region are characterized by multisets of symbols
over the alphabet V = {Na,K,ATP,ADP,P}, representing the substances float-
ing inside them. The conformations of the pump are described by means of labels
attached to the membrane, that is [|l with l ∈ L, L = {E1, E2, E

P
1 , E

P
2 }. The la-

bels E1, E2 correspond to the dephosphorylated conformations of the pump, while
EP

1 , E
P
2 correspond to the phosphorylated conformations. Note an important as-

pect of this system: the object P now becomes part of the membrane label, hence
it undergoes a structural modification by passing from being an element of the
alphabet V to being a component of the membrane labels in the set L.

Initially, the multiset inside the region consists of n sodium symbols, m symbols
of potassium and s symbols of ATP ; the multiset from the environment consists
of n′ sodium symbols and m′ symbols of potassium, while the bilayer does not
contain any symbols.

Denoting by RNa =
n′

n
, RK =

m′

m
the ratios of occurrences of sodium and

potassium ions outside and inside the membrane at any given step, we use this
values to describe the starting time for the functioning of the pump. We assume
that the activation of the pump is triggered by a change in the values of the ratios
evaluated at the current step. Once the following two conditions RNa > k1 and
RK > k2 (for some fixed k1, k2 ∈ R) are satisfied the pump is activated. In [3] a
description of the pump using membrane systems is as follows:

150 B. Aman, G. Ciobanu

Table 5: The Membrane Systems Model

Env[Bilayer | Reg | Bilayer] Env
r1 : [|E1Na

3 (RNa>k1)∧(RK>k2)→ [Na3|E1

r2 : [Na3|E1ATP → [Na3|EP
1
ADP

r3 : [Na3|EP
1
→ Na3[|EP

2

r4 : K2[|EP
2
→ [K2|EP

2

r5 : [K2|EP
2
→ [K2|E1P

r6 : [K2|E1 → [|E1K
2

3.2 Modelling the Pump with Typed Membrane Systems

The motivation for introducing a type system for membrane systems with sym-
port/antiport rules, namely the class used to model the sodium-potassium pump,
comes from the fact that we would like to increase the control in the evolution
of the pump. This would mean that if we had a larger set of rules used in the
description of the pump, only the ones assuring a correct evolution with respect
to the restrictions imposed by the environment would be applied. In this way we
increase the control over the evolution of the membrane system.

For the case of the pump we consider the following typing type environment:
Γ = Na : Na,K : K, P : P, ATP : ATP, ADP : ADP,

skin : {{Na,K}, ∅, ∅, ∅}, depth1 : {{Na,K}, {Na,Na,Na}, {K,K}, ∅},
depth2 : {{Na,K,P,ATP,ADP}, {Na,Na,Na}, {K,K}, {E1, E2, E

P
1 , E

P
2 }}

For the membrane configuration:
[K . . .Na . . . [[K . . .Na . . . ATP]E1

depth2]depth1]skin

and the environment Γ defined above, we have that

Lemma 2. Γ ` skin : {Sskin, D
↑
skin, D

↓
skin, Lskin}.

Proof.

K : K ∈ Γ
Γ ` K : K

Na : Na ∈ Γ
Γ ` Na : Na

depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2} ∈ Γ

{K,Na} ⊆ Sdepth2 E1 ∈ Ldepth2 [K . . .Na . . .]E1
depth2

Γ ` depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

Γ ` depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1} ∈ Γ [[K . . .Na . . .]E1

depth2]depth1

Γ ` depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1}

K : K ∈ Γ
Γ ` K : K

Na : Na ∈ Γ
Γ ` Na : Na

skin : {Sskin, D
↑
skin, D

↓
skin, Lskin} ∈ Γ

{K,Na} ⊆ Sskin Γ ` depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1}

[K . . .Na . . . [[K . . .Na . . . ATP]E1
depth2]depth1]skin

Γ ` skin : {Sskin, D
↑
skin, D

↓
skin, Lskin}

Typed Membrane Systems 151

The evolution rules from Table 6 state the conditions which must be satisfied
for a rule that describes the evolution of the pump to be applied correctly.

Table 6: Typed Evolution Rules for Pump

Na ∈ Sdepth1 {Na,Na,Na} ∈ D↑depth2

[E1
depth2Na3 → Na3[E1

depth2

(T1)

ADP ∈ Sdepth2 EP
1 ∈ Ldepth2

Na3[E1
depth2ATP→ Na3[E

P
1

depth2ADP
(T2)

Na ∈ Sskin EP
2 ∈ Ldepth2 {Na,Na,Na} ∈ D↑depth1

[depth1Na3[E
P
1

depth2→ Na3[depth1[E
P
2

depth2

(T3)

K ∈ Sdepth1 {K,K} ∈ D↓depth1

K2[depth1[E
P
2

depth2→ [depth1K2[E
P
2

depth2

(T4)

P ∈ Sdepth2 E1 ∈ Ldepth2

K2[E
P
2

depth2→ K2[E1
depth2P

(T5)

K ∈ Sdepth2 {K,K} ∈ D↓depth2

K2[E1
depth2→ [E1

depth2K
2

(T6)

In (T1), writing the rule using types, namely [E1
depth2Na3 → Na3[E1

depth2 we
indicate that any three objects of type Na can pass through membrane depth2.

Remark 1. Types are used to eliminate (statically) programs in which problems
could appear during execution. In the framework of P systems types are used to
increase the control, and in this way assuring that no typing problem appears
during the evolution of the membrane system. As a consequence, all the ill-typed
rules could be eliminated, and the description of the system could be simplified.
For example, let us consider the membrane depth2 which appears in the typed
description of the pump with the type

depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

where Sdepth2 = {Na,K,P,ATP,ADP}, D↑depth2 = {Na,Na,Na}, D↓depth2 =
{K,K} and Ldepth2 = {E1, E2, E

P
1 , E

P
2 }.

Using this typing for depth2 membrane, a rule of the form:
K[E1

depth2→ [E1
depth2K

would be rejected as ill typed since membrane depth2 contains in D↓depth2 only
tuples of two elements of type K, so it does not allow single elements of type K
to be sent inside it. In a similar manner, all the rules which do not satisfy the
requirements of the environment are rejected as ill-typed.

152 B. Aman, G. Ciobanu

4 Conclusion and Future Work

The novelty of this paper is that we introduce types over P systems. In fact we
enrich the symport/antiport P systems with typing rules that help to control
the evolution of P systems. According to these typing rules, for the typed sym-
port/antiport P systems we prove that if a system is well-typed and an evolution
rule is applied, then the obtained system is also well-typed. Another contribution
of the paper is the introduction of a type inference algorithm for symport/antiport
P systems for which soundness and completeness are proved. We use types in the
description of the sodium-potassium pump. This pump was modelled previously
using untyped π-calculus [4] and untyped P systems [3].

Our attempt to define a type system for P systems is the first of this kind, and
aims to control the evolution of P systems by using types. The type systems can be
used in defining generalized rules for P system. For example, by considering a set
of typed objects V = {X1 : N1, X2 : N1, X3 : N1, A : N2} where N1 and N2 are
some basic types, the evolution rules of the form Xi → Xj , Xj → A, 1 ≤ i, j ≤ 3
can be replaced by rules of a more general form:

1. N1 → N1 (any object of type N1 can evolve in any object of type N1);
2. N1 → N2 (any object of type N1 can evolve in any object of type N2).

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology
of the Cell, 5th Edition. Garland Science, Taylor & Francis Group, 2008.

2. B. Aman, M. Dezani-Ciancaglini, A. Troina. Type Disciplines for Analysing Biolog-
ically Relevant Properties. Electronic Notes in Theoretical Computer Science, vol.
227, 97–111, 2009.

3. D. Besozzi, G. Ciobanu. A P System Description of the Sodium-Potassium Pump.
Lecture Notes in Computer Science, vol. 3365, Springer, 210–223, 2005.

4. G. Ciobanu, V. Ciubotariu, B. Tanasa. A π-Calculus Model of the Na-K Pump.
Genome Informatics, 469–472, Universal Academy Press, Tokyo, 2002.

5. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Application of Membrane Computing.
Springer, 2006.

6. F. Fages, S. Soliman. Abstract Interpretation and Types for Systems Biology. The-
oretical Computer Science, vol. 403, 52–70, 2008.

7. F. Nielson, H. Riis-Nielson, C. Priami, D. Rosa. Control Flow Analysis for Bio-
Ambients. Electronic Notes in Theoretical Computer Science, vol. 180, 65–79, 2007.

8. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.
9. J. Wells. The Essence of Principal Typings. Lecture Notes in Computer Science, vol.

2380, Springer, 913–925, 2002.
10. Web page of the P systems: http://ppage.psystems.eu.

A P System Based Model of an Ecosystem
of Some Scavenger Birds

Mónica Cardona1, M. Angels Colomer1,
Antoni Margalida4, Ignacio Pérez-Hurtado2,
Mario J. Pérez-Jiménez2, Delf́ı Sanuy3,

1 Dpt. of Mathematics, University of Lleida
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
{mcardona,colomer}@matematica.udl.es

2 Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{perezh,marper}@us.es

3 Dpt. of Animal Production, University of Lleida
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
dsanuy@prodan.udl.cat

4 Bearded Vulture Study & Protection Group
Adpo. 43 E-25520 El Pont de Suert (Lleida), Spain
margalida@inf.entorno.es

Summary. The Bearded Vulture (Gypaetus Barbatus) is an endangered species in Eu-
rope that feeds almost exclusively on bone remains provided by wild and domestic ungu-
lates. In [1], we presented a P system in order to study the evolution of these species in
the Pyrenees (NE Spain). Here, we present a new model that overcomes some limitations
of the previous work incorporating other scavenger species (predatory) and additional
prey species that provide food for the scavenger intraguild and interact with the Bearded
Vulture in the ecosystem. After the validation, the new model can be a useful tool for
the study of the evolution and management of the ecosystem. P systems provide a high
level computational modelling framework which integrates the structural and dynamical
aspects of ecosystems in a compressive and relevant way. The inherent randomness and
uncertainty in ecosystems is captured by using probabilistic strategies.

1 Introduction

Since nature is very complex, the perfect model that explains it will be complex
too. A complex model is not practical or good to use, so we should obtain a simple
and useful model that keeps the most important natural factors.

154 M. Cardona et al.

The P system presented in [1] gives good results in order to study the evolution
of the ecosystem based on the Bearded Vulture in the Catalan Pyrenees in the
short term, but it does not take into account neither important factors such as the
population density or the feeding limitations, nor other species that coexist and
compete for space and feeding with the Bearded Vulture. Besides, it was accepted
at the said model that the population growth rate of the Bearded Vulture was
constant.

In the Catalan Pyrenees, in the North-east of Spain, three vulture species
inhabits sharing the geographic space and the existent food resources. In this
work, we present a P system for modelling an ecosystem based on three vulture
species and the prey species present from which scavengers obtain their food from.
Apart from adding two new predator species (the Egyptian Vulture Neophron
percnopterus and Eurasian Griffon Vulture Gyps fulvus), we introduce new prey
species (making a total of 13 species in comparison to the 5 species appearing at
[1]) in the new model that provide feeding resources for the scavenger community.
Besides, new rules are introduced to limit the maximum amount of animals that
can be supported by the ecosystem as well as the amount of grass available for
the herbivorous species. At the new model, it is considered that the population
growth rate of the Bearded Vulture varies depending on the surface and orography
of the system as well as on existing population. For a good management of the
ecosystem, it is suitable to know the biomass every species leaves annually. For
this reason, it is interesting to codify this information at the system output.

For the modelling of the ecosystem, we need the biological parameters that
are show in the Table 1. These parameters are obtained experimentally and they
quantify the biological basic processes of the species and the physical environment
of the ecosystem. The processes modelled are reproduction, feeding and mortality,
and the physical factors that have been considered are the geographical limitations.

It has been developed simulator of the model written in JAVA by using the
specification language P-Lingua [4]. This simulator allows us to experimentally
validate the model as well as study the ecosystem dynamics under different initial
conditions.

The paper is organized as follows. Next section shows a formal framework to
model ecosystems by means of probabilistic P systems, and a P system modelling
of the above mentioned ecosystem is presented. In Section 3, we experimentally
validate the model presented in this paper by using a P-lingua simulator [4] and
we also compare it to the one presented in [1].

2 A Formal Framework to Model Ecosystems

In this section, we present a model of the ecosystem described above by means of
probabilistic P systems.

A P System Based Model of an Ecosystem of Some Scavenger Birds 155

First, we define the P systems based framework (probabilistic P systems),
where additional features such as electrical charges which describe specific prop-
erties in a better way, are used.

Definition 1. A probabilistic P system of degree q is a tuple

Π = (Γ, µ,M1, . . . ,Mq, R, {cr}r∈R)

where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet);
• µ is a membrane structure (a rooted tree), consisting of q membranes, labelled

by 1, 2, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges with membranes from the set {0,+,−}, neutral, positive and negative;

• M1, . . . ,Mq are strings over Γ , describing the multisets of objects initially
placed in the q regions of µ;

• R is a finite set of evolution rules. An evolution rule associated with the mem-
brane labelled by i is of the form

r : u [v]αi
cr−→u′ [v′]α

′

i

where u, v, u′, v′ are multisets over Γ , α, α′ ∈ {0,+,−}, 1 ≤ i ≤ q, and cr is
a real number between 0 and 1. Besides, if r1, . . . , rt are rules whose left-hand
side is u [v]αi then it must verify

∑t
j=1 crj

= 1, being crj
the probabilistic

constant associated with rule rj.

We denote by [v cr−→ v′]αi rule u [v]αi
cr−→u′ [v′]α

′

i in the case u = u′ = λ, and
α = α′. In the same way, we denote by u [v]αi → u′ [v′]α

′

i rule u [v]αi
cr−→u′ [v′]α

′

i

in the case cr = 1.
We assume that a global clock exists, marking the time for the whole system

(for all compartments of the system); that is, all membranes and the application
of all the rules are synchronized.

The multisets of objects present at any moment in the n regions of the system
constitute the configuration of the system at that moment. Particularly, tuple
(M1, . . . ,Mq) is the initial configuration of the system.

The P system can pass from one configuration to another by using rules from
R as follows:

• A rule u [v]αi
cr−→u′ [v′]α

′

i is applicable (with a probability cr) to a membrane
labelled by i, and with α as electrical charge, when multiset u is contained in
the father of membrane i, and multiset v is contained in membrane i. When rule
u [v]αi

cr−→u′ [v′]α
′

i is applied, multiset u (resp. v) in the father of membrane
i (resp. membrane i) is removed from that membrane and multiset u′ (resp.
v’) is produced in it.

156 M. Cardona et al.

• The rules are applied in a maximal consistent parallelism, that is, all those rules
of type u1 [v1]αi

cr−→u′1 [v′1]α
′

i and u2 [v2]αi
cs−→u′2 [v′2]α

′

i must be applied
simultaneously in a maximal way.

• The constant cr associated with rule r indicates the affinity of the said rule for
its application.

2.1 A P System Based Model of the Ecosystem

Let D be a natural number higher than 0, which will represent the number of
years to be simulated in the evolution of the ecosystem. At the definition of a
probabilistic P system modelling the ecosystem described at Section 1, n = 17
represents the different types of animals of the 13 species which compose the
ecosystem under study. We considerer two types of animals for the Red Deer due
to the fact that males are very estimated by hunters and this implies the mortality
rate of males (i = 6) to be higher than that of females (i = 5). We also consider
two types of animals, denoted by A (annual) and P (periodical), for domestic ones
(except for horses) because some of them spend only six months in the mountain.

Next, we present a list of the constants associated with the rules where the
corresponding meanings are specified (index i represents the type of animal).

• gi,1: 1 for wild animals and 0 for domestic animals.
• gi,2: proportion of time they remain in the mountain during the year.
• gi,3: age at which adult size is reached. This is the age at which the animal eats

like and adult does, and at which if the animal dies, the amount of biomass it
leaves is similar to the total one left by an adult. Moreover, at this age it will
have surpassed the critical early phase during which the mortality rate is high.

• gi,4: age at which it starts to be fertile.
• gi,5: age at which it stops being fertile.
• gi,6: average life expectancy in the ecosystem.
• gi,7: maximum density of the ecosystem.
• gi,8: number of animals that survive after reaching maximum density of the

ecosystem.
• ki,1: proportion of females in the population (per one).
• ki,2: fertility rate (proportion of fertile females that reproduce).
• ki,3: number of descendants per each fertile female that reproduces.
• ki,4: it is equal to 0 when the species go through a natural growth and it is

equal to 1 when animals are nomadic (the Bearded Vulture moves from one
place to another until it is 6–7 years old, when it settles down).

• ki,5: population growth (per one).
• mi,1: natural mortality rate in the first years, age < gi,3 (per one).

A P System Based Model of an Ecosystem of Some Scavenger Birds 157

• mi,2: mortality rate in adult animals, age ≥ gi,3 (per one).
• mi,3: percentage of domestic animals belonging to non–stabilized populations

which are withdrawn in the first years.
• mi,4: is equal to 1 if the animal dies at the age of gi,6 and it is not retired, and

it is equal to 0 if the animal does not die at the age of gi,6 but it is retired from
the ecosystem.

• fi,1: amount of bones from young animals when they die, age < gi,3 .
• fi,2: amount of meat from young animals when they die, age < gi,3 .
• fi,3: amount of bones from adult animals when they die, age ≥ gi,3.
• fi,4: amount of meat from adult animals when they die, age ≥ gi,3.
• fi,5: amount of bones necessary per year and animal (1 unit is equal 0.5 kg of

bones).
• fi,6: amount of grass necessary per year and animal.
• fi,7: amount of meat necessary per year and animal.

The values of these constants appears at Table 1 and they have been obtained
experimentally, except for ki,4 and mi,4 (see [2], [3], [6], [5] for details). Constants k
are associated with reproduction rules, constants m are associated with mortality
rules, constants f are associated with feeding rules and constants g are associated
to the remaining rules.

It is important to highlight that the information associated with an animal is
assumed to be referred to units of individuals, except for scavenger birds which
are assumed to be referred to pairs.

Let us consider the following probabilistic P system of degree 2 with (only)
two electrical charges (neutral and positive)

ΠD = (Γ, µ,M1,M2, R, {cr}r∈R)

where:

• Γ = {Xij , Yij , Vij , Zij : 1 ≤ i ≤ n, 0 ≤ j ≤ gi,6} ∪
{B, G, M, B′, G′, M ′, C, C ′} ∪ {hs : 1 ≤ s}∪
{Hi, H

′
i, Fi, F

′
i , Ti, ai, b0i, bi, di, ei : 1 ≤ i ≤ n}

is the working alphabet.
Symbols X, Y , V and Z represent the same animal but in different states.
Index i is associated with the type of animal, index j is associated with their
age, and gi,6 is the average life expectancy. It also contains the auxiliary sym-
bols B, B′, which represent bones, M, M ′, which represent meat and G, G′,
which represent the amount of grass available for the feeding of the animals
in the ecosystem. Objects Hi, H

′
i represent the biomass of bones, and objects

Fi, F
′
i represent the biomass of meat left by species i in different states. Ob-

ject C enables the creation of objects B′, M ′ and G′ which codify bones and
meat (artificially added by human beings) as well as the grass generated by the

158 M. Cardona et al.

Table 1: Constants used in the P system based model
Specie i gi,1 gi,2 gi,3 gi,4 gi,5 gi,6 gi,7 gi,8 ki,1 ki,2 ki,3 ki,4

Bearded Vulture 1 1 1 1 8 20 21 60 60 0.5 0.08 1 1
Egyptian Vulture 2 1 0.5 1 5 24 25 80 80 0.5 0.593 1 0
Griffon Vulture 3 1 1 1 5 24 25 700 700 0.5 0.75 1 0
P. chamois 4 1 1 1 2 18 18 15000 7500 0.55 0.75 1 0
Red deer female 5 1 1 1 2 17 17 4615 3230 1 0.75 1 0
Red deer male 6 1 1 1 2 20 20 2885 2020 0 0 0 0
Fallow deer 7 1 1 1 2 12 12 3000 2400 0.75 0.55 1 0
Roe deer 8 1 1 1 1 10 10 15000 7500 0.67 1 1 0
Ovis Orientalis 9 1 1 1 2 12 12 1000 1000 0,5 0,9 2 0
Wild board 10 1 1 1 1 4 6 200000 200000 0,5 0,75 4 0
Sheep A 11 0 1 1 2 8 8 200000 200000 0.96 0.75 1 0
Sheep P 12 0 0.5 1 2 8 8 50000 50000 0.96 0.75 1 0
Bovine A 13 0 1 2 2 9 14 168500 168500 0.9 0.9 1 0
Bovine P 14 0 0.5 2 2 9 14 168500 168500 0.9 0.9 1 0
Goat A 15 0 1 1 2 8 8 17000 17000 0.97 0.9 1 0
Goat P 16 0 0.5 1 2 8 8 17000 17000 0.97 0.9 1 0
Horse 17 0 1 3 3 9 20 6600 6600 0.97 0.9 1 0

Specie i mi,1 mi,2 mi,3 mi,4 fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7

Bearded Vulture 1 0.06 0.12 0 1 0 0 0 0 920 0 0
Egyptian Vulture 2 0.17 0.07 0 1 0 0 0 0 0 0 332
Griffon Vulture 3 0.03 0.01 0 1 0 0 0 0 0 0 800
P. chamois 4 0.6 0.06 0 1 6 8 12 48 0 550 0
Red deer female 5 0.34 0.06 0 1 15 26 30 120 0 2540 0
Red deer male 6 0.34 0.36 0 1 24 30 48 192 0 2540 0
Fallow deer 7 0.5 0.06 0 1 2 28 4 74 0 1100 0
Roe deer 8 0.58 0.06 0 1 1 8 2 38 0 600 0
Ovis Orientalis 9 0,6 0,06 0 1 7 8 12 44 0 550 0
Wild board 10 0,69 0,35 0 1 8 12 24 120 0 730 0
Sheep A 11 0.15 0.030 0.59 0 7 8 14 56 0 1320 0
Sheep P 12 0.15 0.030 0.59 0 7 8 14 56 0 1320 0
Bovine A 13 0.057 0.045 0 0 21 119 12 1038 0 11000 0
Bovine P 14 0.057 0.045 0 0 21 119 12 1038 0 11000 0
Goat A 15 0.12 0.015 0.59 0 7 8 19 75 0 1400 0
Goat P 16 0.12 0.015 0.59 0 7 8 19 75 0 1400 0
Horse 17 0.034 0.014 0 0 21 119 18 1782 0 12000 0

ecosystem itself. Besides, object C produces objects C ′ which in turn generate
object C allowing the beginning of a new cycle. At the P system design, differ-
ent objects (i.e. G, G′) represent the same entity (in this case, grass) with the
purpose of synchronizing the model. Ti is an object used for counting the ex-
isting animals of species i. If a species overcomes the maximum density, values
will be regulated. Objects b0i, bi and ei allow us to control the maximum num-
ber of animals per species in the ecosystem. At the moment when a regulation
takes place, object ai allows us to eliminate the number of animals of species
i that exceeds the maximum density. Object di is used to put under control
domestic animals that are withdrawn from the ecosystem for their marketing.

• µ = [[]2]1 is the membrane structure. We consider two regions, the skin and
an inner membrane. The first region is important to control the densities of
every species do not overcome the threshold of the ecosystem. Animals repro-

A P System Based Model of an Ecosystem of Some Scavenger Birds 159

duce, feed and die in the inner membrane. For the sake of simplicity, neutral
polarization will be omitted.

• M1 and M2 are strings over Γ , describing the multisets of objects initially
placed in regions of µ (encoding the initial population and the initial food);

– M1 = {b0i, X
qij

ij , h
q1,j

t : 1 ≤ i ≤ n, 0 ≤ j ≤ gi,6}, where qij indicates the
number of animals of species i initially present in the ecosystem whose age

is j, and t =max{1, d
∑21

j=8 q1,j−6

1.352 e};
– M2 = {C}.

• The set R of evolution rules consists of:
– The first rule represents the contribution of energetic resources to the

ecosystem at the beginning of each cycle and it is essential for the system
to evolve. The second rule is useful to synchronize the process.

r0 ≡ [C → B′αM ′βG′γC ′]02,
where α and β are the double of kilos of bones and meat that are
externally introduced to the ecosystem, and γ is the amount of grass
produced by the ecosystem.

r1 ≡ [b0,i → bi]01.

– Variation rules of the population.
We consider two cases due to the fact that in nomadic species the said
variation is influenced by animals from other ecosystems.

· Case 1. Non–nomadic species (ki,4 = 0).
· Adult males:

r2 ≡ [Xij

(1−ki,1)·(1−ki,4)
−−−→ Yij]01, 1 ≤ i ≤ n, gi,4 ≤ j < gi,5.

· Adult females that reproduce:

r3 ≡ [Xij

ki,2·ki,1·(1−ki,4)
−−−→ YijY

ki,3
i0]01, 1 ≤ i ≤ 4, gi,4 ≤ j < gi,5.

r4 ≡ [Xij

ki,2·ki,1·(1−ki,4)
−−−→ YijY

ki,3
i0]01, 7 ≤ i ≤ n, gi,4 ≤ j < gi,5.

r5 ≡ [X5j

0.5·k5,1−−−→Y5jY
ki,3
50]01, g5,4 ≤ j < g5,5.

r6 ≡ [X5j

0.5·k5,1−−−→Y5jY
ki,3
60]01, g5,4 ≤ j < g5,5.

· Adult females that do not reproduce:

r7 ≡ [Xij

(1−ki,2)·ki,1·(1−ki,4)
−−−→ Yij]01, 1 ≤ i ≤ n, gi,4 ≤ j < gi,5.

· Old females and males that do not reproduce:
r8 ≡ [Xij

1−ki,4−−−→Yij]01, 1 ≤ i ≤ n, gi,5 ≤ j ≤ gi,6.

· Young animals that do not reproduce:

r9 ≡ [Xij

1−ki,4−−−→Yij]01, 1 ≤ i ≤ n, 1 ≤ j < gi,4.

160 M. Cardona et al.

· Case 2. Nomadic species (ki,4 = 1).

r10 ≡ [X1jhs
vs−−−→Y1(gi,4−1)Y1jh

2
s+1]01, 1 ≤ i ≤ n, gi,4 ≤ j ≤

gi,6, t ≤ s ≤ D1, being vs = 1.352/(1.352s+6) andD1=min{21, D+
t− 1}.

r11 ≡ [X1jhs
0.01−−−→Y1(gi,4−1)Y1jh

2
s+1]01, 1 ≤ i ≤ n, gi,4 ≤ j ≤

gi,6, D3 ≤ s ≤ D2, whereD2=max{21, D+t−1} andD3=max{21, t}.

r12 ≡ [X1jhs
1−vs−−−→Y1jhs+1]01, 1 ≤ i ≤ n, gi,4 ≤ j ≤ gi,6, t ≤ s ≤

D1.

r13 ≡ [X1jhs
0.99−−−→Y1jhs+1]01, 1 ≤ i ≤ n, gi,4 ≤ j ≤ gi,6, D3 ≤ s ≤

D2.

– Mortality rules.

· Young animals that survive:

r14 ≡ Yij []02
1−mi,1−mi,3−−−→ [VijTi]+2 , 1 ≤ i ≤ n, 0 ≤ j < gi,3.

· Young animals that die:

r15 ≡ Yij []02
mi,1−−−→[H ′fi,1·gi,2

i F
′fi,2·gi,2
i B′fi,1·gi,2M ′fi,2·gi,2]+2 , 1 ≤ i ≤

n, 0 ≤ j < gi,3.

· Young animals that are retired from the ecosystem:

r16 ≡ [Yij
mi,3−−−→λ]01, 1 ≤ i ≤ n, 0 ≤ j < gi,3.

· Adult animals that do not reach an average life expectancy and survive:

r17 ≡ Yijh
ki,4
s []02

1−mi,2−−−→[VijTih
ki,4
s]+2 , 1 ≤ i ≤ n, gi,3 ≤ j < gi,6, t+ 1 ≤

s ≤ D + t.

· Adult animals that do not reach an average life expectancy and die:

r18 ≡ Yijh
ki,4
s []02

mi,2−−−→[H
′fi,3·gi,2
i F

′fi,4·gi,2
i B′fi,3·gi,2M ′fi,4·gi,2V

ki,4
i,gi,4−1h

ki,4
s T

ki,4
i]+2 ,

1 ≤ i ≤ n, gi,3 ≤ j < gi,6, t+ 1 ≤ s ≤ D + t.

· Animals that reach an average life expectancy and die in the ecosystem:

r19 ≡ Yigi,6h
ki,4
s []02

c20−−−→[H
′fi,3·gi,2
i F

′fi,4·gi,2
i B′fi,3·gi,2M ′fi,4·gi,2V

ki,4
i,gi,4−1h

ki,4
s T

ki,4
i]+2 ,

1 ≤ i ≤ n, being c20 = ki,4 + (1−ki,4) · (mi,4 + (1−mi,4) ·mi,2), t+ 1 ≤
s ≤ D + t.

· Animals that reach an average life expectancy and are retired from the
ecosystem:

r20 ≡ [Yigi,6h
ki,4
s

(1−ki,4)·(1−mi,4)·(1−mi,2)
−−−→ λ]1, 1 ≤ i ≤ n, t+ 1 ≤ s ≤ D+ t.

– Density regulation rules.

A P System Based Model of an Ecosystem of Some Scavenger Birds 161

· Creation of objects that are going to enable the control of the maximum
number of animals in the ecosystem:

r21 ≡ bi[]02 → [bia
d0,9∗gi,7e
i e

d0,2∗gi,7e
i]+2 , 1 ≤ i ≤ n.

· Evaluation of the density of the different species in the ecosystem:

r22 ≡ [T gi,7
i a

(gi,7−gi,8)
i → λ]+2 , 1 ≤ i ≤ n.

· Generation of randomness in the number of animals:
r23 ≡ [ei

0,5−−−→ ai]+2 , 1 ≤ i ≤ n.

r24 ≡ [ei
0,5−−−→λ]+2 , 1 ≤ i ≤ n.

· Change of the names of the objects which represent animals:
r25 ≡ [Vij → Zij]+2 , 1 ≤ i ≤ n, 0 ≤ j < gi,6.

· Change of the names of the objects which represent food resources:
r26 ≡ [G′ → G]+2 .

r27 ≡ [B′ → B]+2 .

r28 ≡ [M ′ →M]+2 .

r29 ≡ [C ′ → C]+2 .

r30 ≡ [H ′i → Hi]+2 , 1 ≤ i ≤ n.

r31 ≡ [F ′i → Fi]+2 , 1 ≤ i ≤ n.

– Feeding rules.

r32 ≡ [Zijh
ki,4
s aiB

fi,5·gi,2Gfi,6·gi,2Mfi,7·gi,2]+2 → Xi(j+1)h
k1,4
s []02, 1 ≤

i ≤ n, 0 ≤ j ≤ gi,6, t+ 1 ≤ s ≤ D + t.

– Updating rules.
The purpose of the following rules is to make a balance at the end of the
year. That is, the leftover food is not useful for the next year, so it is
necessary to eliminate it. But if the amount of food is not enough, some
animals die.

· Elimination of the remaining bones, meat and grass:

r33 ≡ [G→ λ]02.

r34 ≡ [M → λ]02.

r35 ≡ [B → λ]02.

r36 ≡ [Ti → λ]02, 1 ≤ i ≤ n.

r37 ≡ [ai → λ]02, 1 ≤ i ≤ n.

r38 ≡ [ei → λ]02, 1 ≤ i ≤ n.

162 M. Cardona et al.

r39 ≡ [bi]02 → bi[]02, 1 ≤ i ≤ n.

r40 ≡ [Hi]02 → Hi[]02, 1 ≤ i ≤ n.

r41 ≡ [Fi]02 → Fi[]02, 1 ≤ i ≤ n.

· Young animals that die because of a lack of food:

r42 ≡ [Zij
gi,1−−−→H

′fi,1
i F

′fi,2
i B′fi,1M ′fi,2]02, 1 ≤ i ≤ n, 0 ≤ j < gi,3.

r43 ≡ [Zij]02
1−gi,1−−−→ di[]02, 1 ≤ i ≤ n, 0 ≤ j < gi,3.

· Adult animals that die because of a lack of food:

r44 ≡ [Zijh
k1,4
s

gi,1−−−→H
′fi,3
i F

′fi,4
i B′fi,3M ′fi,4]02, 1 ≤ i ≤ n, gi,3 ≤ j ≤

gi,6, t + 1 ≤ s ≤ D + t.

r45 ≡ [Zijh
k1,4
s

1−gi,1−−−→λ]02, 1 ≤ i ≤ n, gi,3 ≤ j ≤ gi,6, t + 1 ≤ s ≤
D + t.

The purpose of these rules is to eliminate objects H and F associated
with the quantity of biomass left by every species.

r46 ≡ [Hi → λ]01, 1 ≤ i ≤ n.

r47 ≡ [Fi → λ]01, 1 ≤ i ≤ n.

2.2 Structure of the P System Running

The model of the ecosystem presented in the previous Section includes new ingre-
dients with the aim to overcome the limitations found at the model described in
[1]. More specifically, the modifications made are the following:

• It has been added new species which have active roles in the ecosystem under
study, although their roles are perhaps less relevant that those of the first
species studied. These species are the ovis orientalis, the wild boar, the horse,
the goat and the cow. Besides, it has been included greedy species such as the
Egyptian Vulture and the Griffon Vulture which compete with the Bearded
Vulture.

• It is considered that the population growth rate of the Bearded Vulture varies
depending on the surface and orography of the system as well as on the existing
population.

• A new module has been added in order to regulate the population density of
the ecosystem.

• The mortality module has been modified in order to consider that after an
animal dies, in addition to the bones it leaves at the ecosystem, its meat serves
as food for other animals.

A P System Based Model of an Ecosystem of Some Scavenger Birds 163

• The feeding module has also been modified because the feeding resources for
the species at the ecosystem have been modelled in this new approach. For this
reason, new objects have been introduced representing, apart from the bones,
the amount of meat and grass available at the ecosystem.

In this model, a module devoted to control the density has been introduced.
From the point of view of the execution of the system, the module has been
incorporated between the Mortality and the Feeding modules. These are depicted
in Figure 1.

 MORTALITY

FEEDING

VARIATION OF POPULATION
AND

UPDATING

DENSITY REGULATION

Fig. 1. Modules of the P system

Let us recall that, objects X represent the different species along the execution
of the reproduction module. Objects X evolve to objects Y (mortality module)
when they pass to the mortality module, and these objects Y evolve to objects
V (density module), together with objects T which represent the number of indi-
viduals per each species. Then, objects V evolve to objects Z (feeding module).
Objects T will allow the activation of the process of auto–regulation of the ecosys-
tem when the number of individuals of a species exceed the threshold of maximum
density, which is codified by objects a.

When a cycle is produced, all objects which are not associated with species
are eliminated, except the biomass generated by the animals that have died due
to the process of regulation.

3 Results and Discussions

The software tool used for the purposes of this paper is based on P-Lingua 2.0
[4]. P-Lingua is a new programming language able to define P systems of different

164 M. Cardona et al.

types (from now on, frameworks). For instance, P-Lingua can define any P system
within the probabilistic framework mentioned in this paper.

Next, we describe how to implement in P–Lingua the applicability of the rules
to a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt

. In order to determine how these rules are applied to a give config-
uration, we proceed as follows:

– It is computed the greatest number N so that uN appears in the father
membrane of i and vN appears in membrane i.

– N random numbers x such that 0 ≤ x < 1 are generated.
– For each k (1 ≤ k ≤ t) let nk be the amount of numbers generated belonging

to interval [
∑k−1
j=0 crj

,
∑k
j=0 crj

) (assuming that cr0 = 0).
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

P-Lingua 2.0 provides a JAVA library that defines algorithms in order to sim-
ulate P system computations for each supported framework, so we are using a
common algorithm for all P systems within the probabilistic framework.

By defining the ecosystem model by a P system written in P-Lingua, it is
possible to check, validate and improve the model in a flexible way, instead of
developing a new “ad hoc” simulator for each new model.

The application has a friendly user-interface, which sits on the P-Lingua JAVA
library, allowing the user to change the initial parameters of the ecosystem in an
easy way without special knowledge about the P system or the initial multisets.
The main objetive is to make virtual experiments on the ecosystem.

The current version of this software is a prototype GPL licensed [8].
The model designed is experimentally validated by using the simulator previ-

ously described as well as the data from Table 2.

Specie 79 84 87 89 93 94 95 99 00 05 08 09
Bearded V. - 7 - 13 - - 21 - 28 34 35 -
Egyptian V. - - 29 - 34 - - - 40 - 66 -
Griffon V. 38 118 - - - - - 431 - - - 1125
Pyrenean C. - - - - - 9000 - - - - 12000 -
Red deer - - - - - 1000 - - - - 5500 -
Fallow deer - - - - - 600 - - - - 1500 -
Roe deer - - - - - 1000 - - - - 10000 -

Table 2. Number of animals in the Catalan Pyrenees (1979–2009)

At the validation process, we have focused on the evolution of savage species
populations. For that purpose, it has been validated the ecosystem dynamics for

A P System Based Model of an Ecosystem of Some Scavenger Birds 165

a period of 14 years, since 1994. The Bearded Vulture (respectively the Griffon
and the Egyptian Vultures) populations at the initial year has been considered
according to the data Table 2 by means of a logarithmic (respectively, exponential)
regression (see Figure 2).

Bearded Vulture

y = 2441,9Ln(x) - 18533

R2 = 0,9919

0

5

10

15

20

25

30

35

40

1980 1985 1990 1995 2000 2005 2010

Year

P
ai

r
Real data

Logarítmica (Real data)

Egyptian Vulture

y = 4E-32e0,0381x

R2 = 0,9388

0

10

20

30

40

50

60

70

1985 1990 1995 2000 2005 2010

Year

P
ai

r

Real data

Exponencial (Real data)

Griffon Vulture

y = 9E-98e0,1148x

R2 = 0,9968

0

200

400

600

800

1000

1200

1400

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

P
ai

r
Real data

Exponencial (Real data)

Fig. 2 Regression relationships between numbers of pairs and years

At the validation process, values obtained from the simulator running have been
compared to those obtained experimentally. It is important to remember that we
have focused on the population dynamics at savages species from which there are
only data about the initial (1994) and final (2008) years, except for scavengers
birds which we have more information about (see Table 2 for details).

Bearing in mind the model designed is probabilistic, the ecosystem evolution
throughout the period under study has been obtain by running the simulator for
100 times having the same input data. The simulator executions have allowed us to
estimate the standard deviation and compute the population confidence intervals
of the different species. The result presented in Figure 3 is the average of the 100
simulator executions.

Finally, we have compared the model presented in this work (we refer to it as
model II) to the model presented in [1] (we refer to it as model I). For that purpose,
we have used the simulator previously described studying the ecosystem evolution
for a period of 10 years from 1994 on. Some of the results are shown at the Figure 4.
Both models present good results until 2008, regarding experimental data (except
for the Pyrenees Chamois. Nonetheless, at the simulations corresponding to the
years later to 2008, it is noticed a great difference between models due to the fact
that model I did not consider the regulation of the populations.

166 M. Cardona et al.

Fig. 3 Experimental Validation

A P System Based Model of an Ecosystem of Some Scavenger Birds 167

Pyrenean Chamois

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Year

N
u

m
b

er
 o

f a
n

im
al

s Model I

Real data

Model II

Red Deer

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Year

N
u

m
b

er
 o

f
an

im
al

s

Model I (female) Model I (male)
Real data (female) Real data (male)
Model II (female) Model II (male)

Fallow Deer

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Year

N
um

b
er

 o
f

an
im

al
s Model I

Real data

Model II

Roe Deer

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Year

N
u

m
b

er
 o

f
an

im
al

s

Model I

Real data

Model II

Fig. 4 Result of both models

4 Conclusions and Future Works

At [1], it was presented a model of an ecosystem related to the Bearded Vulture
at the Catalan Pyrenees. The said model was based on a probabilistic P system
which included 5 species, did only consider the amount of food available for the
Bearded Vulture and did not consider the maximum number of animals that can
coexist in the ecosystem.

In this paper, a new model of the said ecosystem has been designed. This
model considers 13 species, including two new types of scavenger birds, autoregu-
lation, the energetic needs of all the species and the fact that the Bearded Vulture
population may not have a constant growth.

Nonetheless, we have considered some important restrictions at the design of
the new model. More specifically, we have assumed a uniform distribution of the
different species and population increases and decreases due to the fact that the
external flow of the ecosystem have not been considered.

A new simulator written in JAVA which uses the specification language P Lin-
gua [4] has been used to experimentally validate the model designed. The said
simulator has also been used in order to compare the results presented in this
paper with to those presented in [1]. This new simulator allows us to modify the
different parameters of the P system (constants associated with rules and the ini-
tial multisets) in order to study the ecosystem dynamics and the different initial
condition. In this way, once the model is considered to be experimentally validated,
it is possible to carry out virtual experiments in the system which can provide hy-
potheses about the possible evolution of the ecosystem. These hypotheses, filtered

168 M. Cardona et al.

by experts in a suitable way, can be useful for the ecologists when taking deci-
sions which favour both the balance of the ecosystem and the preservation of the
endangered species such as the Bearded Vulture.

In a future work, we hope to add new ingredients to this model which overcome
the restrictions imposed on it that where previously referred to. For that purpose,
we are studying the possibility of considering multienvironment P systems (see [7],
for details) as a new modelling scenario. This will imply an important revision of
the simulator and the searching of more efficient algorithms which simulate the
running of the the probabilistic strategy.

Acknowledgement

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. M. Cardona, M. A. Colomer, M.J. Pérez–Jiménez, D. Sanuy, A. Margalida. Modelling
ecosystems using P Systems: The Bearded Vulture, a case of study. Lecture Notes in
Computer Science, 5391 (2009), 137–156.

2. C.J.Brown. Population dynamics of the Bearded Vulture Gypaetus barbatus in south-
ern Africa. African Journal of Ecology, 35 (1997), 53–63.

3. J.A. Donázar. Los buitres ibéricos: bioloǵıa y conservación. J.M. Reyero Editor,
Madrid, Spain, 1993.

4. M. Garćıa–Quismondo, R. Gutiérrez–Escudero, M.A. Martnez, E. Orejuela, I. Pérez–
Hurtado. P–Lingua 2.0: A sofware framework for cell-like P systems. International
Journal of Computers, Comunications and Control, Vol. IV, 3 (2009), 234–243.

5. A. Margalida, J.Bertran, R. Heredia: Diet and food preferences of the endangered
Bearded Vulture Gypaetus barbatus: a basis for their conservation. Ibis 151 (2009),
235–243.

6. A. Margalida, D. Garćıa, A. Cortés-Avizanda. Factors influencing the breeding den-
sity of Bearded Vultures, Egyptian Vultures and Eurasian Griffon Vultures in Catalo-
nia (NE Spain): management implications. Animal Biodiversity and Conservation,
30, 2 (2007), 189–200.

7. F.J. Romero, M.J. Pérez–Jiménez. A model of the Quorum Sensing System in Vibrio
Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109.

8. GPL license: http://www.gnu.org/copyleft/gpl.html

Metabolic P System Flux Regulation by Artificial
Neural Networks

Alberto Castellini1, Vincenzo Manca1, Yasuhiro Suzuki2

1 Verona University, Dept. of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
{alberto.castellini, vincenzo.manca}@univr.it

2 Nagoya University, Dept. of Complex Systems Science
Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
ysuzuki@is.nagoya-u.ac.jp

Summary. Metabolic P systems are an extension of P systems employed for modeling
biochemical systems in a discrete and deterministic perspective. The generation of MP
models from observed data of biochemical system dynamics is a hard problem which
requires to solve several subproblems to be overcome. Among them, the flux tuners dis-
covery aims to identify substances and parameters involved in tuning reaction fluxes.
In this paper we propose a new technique for discovering flux tuners by using neural
networks. This methodology, based on backpropagation with weight elimination for neu-
ral network training and on an heuristic algorithm for computing tuning indexes, has
achieved encouraging results in a synthetic case study.

1 Introduction

Many kinds of models have been developed in order to provide new insight on chem-
ically reacting systems, among them, ordinary differential equations (ODE) [16, 35]
represent a milestone for continuous and deterministic modeling, while models
based on the Gillespie’s algorithm [13, 14] are widely used for discrete and stochas-
tic modeling. A key point in the development of new modeling frameworks seems to
be represented by the choice of the right abstraction level, since complex systems
usually show different characteristics when viewed from different “distances”. The
majority of models now available seem to be either very low level (too detailed), or
very high level (too coarse grain), while many biological systems seem to require
an intermediate level of abstraction. The executable biology approach [10] suggests
to employ computational models, namely, a new class of models that mimic natural
phenomena by executing algorithm instructions, rather than using computer power
to analyze mathematical relationships among the elements of biological systems.

Rewriting systems, in their basic form, consist of a set of terms and a set of
rewriting rules stating how terms can be transformed. Many extensions of these

170 A. Castellini, V. Manca, Y. Suzuki

systems have been applied to biological modeling, such as the well known L sys-
tems [19], developed in 1968 by the Hungarian theoretical biologist and botanist
Lindenmayer to provide a formal description of the growth patterns of various
types of algae. P systems [28, 29, 30], from the name of G. Păun who devised
them in 1998, represent a novel computational model originated from the combi-
nation of multisets rewriting systems and membrane compartmentalization. This
approach lends itself to be used as a computational model for biological systems,
wherein multisets of objects represent chemical elements, while rewriting rules
and rewriting application strategies represent a kind of algorithm to be executed
in order to mimic the phenomenon under investigation.

Several extensions of P systems have been developed so far [9, 32], some of
them also coping with biological systems modeling [25, 27, 33, 34]. In particular,
metabolic P systems, or MP systems, suggest a deterministic strategy, based on
the generalization of chemical laws, for computing the amount of objects moved
by rules at each computational step [20, 21, 23, 24, 25]. Equivalences between
MP systems and, respectively, autonomous ODE [11] and Hybrid Functional Petri
nets [5, 6] have been recently proved, and several biological processes have been
modeled by means of MP systems, such as the Lotka-Volterra dynamics [25], the
mitotic cycles in early amphibian embryos [24] and the lac operon gene regulatory
mechanism in glycolytic pathway [5]. These case studies show that, being intrinsi-
cally time-discrete and based on multiset rewriting, MP models are able to give a
different viewpoint on biological processes respect to traditional ODE models. A
software called MetaPlab has been also proposed [8, 26] which enables the user to
generate MP models by means of some useful graphical tools, and then to simu-
late their dynamics, to automatically estimate regulation functions and to perform
many other tasks.

An MP system involves i) a set of substances, ii) a set of parameters (e.g.,
temperature, pH, etc.) and iii) a set of reactions each equipped with a corre-
sponding flux regulation function. Such functions compute reaction fluxes, namely
the amount of substances transformed by each reaction given a specific state of
the system.

A crucial problem of MP model designing concerns the synthesis of flux regu-
lation functions from observed time evolutions. In particular, the question is the
following: “Given the time-series of substance concentrations and parameter val-
ues of a process observed every time interval τ , and given the stoichiometry of the
system under investigation, which are the flux regulation functions that make an
MP model evolve with the observed dynamics?” The log-gain theory [20, 21, 22]
supports the first step of the regulation function synthesis by enabling to deduce
the time-series of flux values from the time-series of substances and parameters
of an observed dynamics. Once flux time-series have been generated, the discov-
ery of functions that compute these fluxes can be accomplished by techniques of
mathematical regression.

In [7] a new approach is proposed to the synthesis of MP regulation functions re-
lying on artificial neural networks (ANNs) as universal function approximators [3],

Metabolic P System Flux Regulation by Artificial Neural Networks 171

and employing both traditional and evolutionary algorithms [4] for learning these
networks. Moreover, a plug-in tool for MetaPlab has been implemented to auto-
mate the learning stage. Here we extend this approach with a technique for weight
elimination in ANNs [3, 36] and an algorithm for identifying flux “tuners”, namely,
the set of substances and parameters actually involved in the regulation of each
flux. In the next section we formally introduce MP systems and the problem of
flux discovery, while Section 3 presents the usage of ANNs for flux regulation func-
tion synthesis. In Section 4 and 5 we report, respectively, the new technique for
discovering flux tuners and an application of this technique to a simple case study.

2 MP systems and MP graphs

In MP systems reactions transform substances, flux regulation maps establish the
amount of matter transformed by each reaction at each step, and parameters, which
are not directly involved in reactions, affect the flux regulation maps together with
substance quantities. We refer to [22] for a formal definition of these systems, where
also a detailed motivation of the principles underlying them is given.

The main intuition of MP dynamics is the mass partition principle, which
expresses a discrete deterministic and molar reading of metabolic transformations,
as opposite to the infinitesimal deterministic and local perspective of the mass
action principle of classical differential models. For our further discussion it is
useful to focus on the following simple example. Let r1, r2, r3, r4 be the following
set of reactions:

r1 : 2a+ b→ c

r2 : b→ c (1)
r3 : b+ c→ a

r4 : a→ 2b

We consider the substances a, b, c along the time instants i = 0, 1, 2, . . . (for the
sake of simplicity here we avoid to consider parameters) and ∆a[i], ∆b[i], ∆c[i] are
the variations of a, b, c, respectively, at time i. The quantities u1[i], u2[i], u3[i], u4[i],
are the number of molar units transformed by reactions r1, r2, r3, r4, respectively,
in the step from time i to time i+1. According to reactions (1) we get the following
linear system at time i:

∆a[i] = −2u1[i] + u3[i]− u4[i]
∆b[i] = −u1[i]− u2[i]− u3[i] + 2u4[i] (2)
∆c[i] = u1[i] + u2[i]− u3[i]

which becomes, in vector notation:

172 A. Castellini, V. Manca, Y. Suzuki

∆X[i] = A× U [i], (3)

where

∆X[i] = (∆a[i], ∆b[i], ∆c[i])′,
U [i] = (u1[i], u2[i], u3[i], u4[i])′,

A = (A(x, r)|x ∈ X, r ∈ R) =

−2 −1 1
0 −1 1
1 −1 −1
−1 2 0

The log-gain theory for MP systems [22] provides algebraic methods which,

from a time-series of vectors ∆X[i], generates the time-series of U [i]. When U [i]
are known, we face the problem of discovering some functions ϕ1, . . . , ϕm, as many
as the dimension of U [i], such that ϕ(X[i]) = U [i]. This problem of regulation
maps discovery can be split into two subproblems: i) discovering the arguments
on which each ϕj depends, ii) defining the right mathematical form of ϕj . In the
following sections we propose some new methodologies, based on ANNs, for solving
both these subproblems, while now, a graphical representation of MP systems
as bipartite graphs called MP graphs [24] is introduced. Substances, parameters,
reactions and fluxes (e.g., respectively, A, Pressure, R3 and Flux1 in Figure 1) are
depicted by different kind of nodes; stoichiometric (plain) arches connect reactant
to reactions (e.g., A → R3) or reactions to products (e.g., R3 → C) and they
possibly have labels denoting reaction stoichiometry if it is different from 1 (e.g.,
label 2 on arch R3 → C); regulatory (dashed) arches having a black arrow link
fluxes to the reaction they regulate (e.g., Flux1 → R1); finally, regulatory (dashed)
arches having a white arrow connect substances or parameters to the fluxes which
they regulate (e.g., C → Flux1). Notice that environment compartmentalization
is not considered in the current version of the model but this feature will be topic
of future work.

3 Artificial neural networks for flux regulation functions
synthesis

The choice a regression technique for synthesizing flux regulation functions from
substance, parameter and flux time-series deeply depends on the knowledge one has
about the form of the expected functions. In particular, if the function is known to
be a linear combination of its numerical parameters then linear regression analysis
is used [1], such as the least squares method, while if the function is a nonlinear
combination of its parameters then nonlinear regression analysis is employed [31].

Here we consider the very general case in which the form of regulation func-
tions is completely unknown. Artificial neural networks (ANNs) [3] turn out to
be a convenient approach in this situation, since they approximate very general

Metabolic P System Flux Regulation by Artificial Neural Networks 173

Fig. 1. An MP graph visualized by a graphical user interface of MetaPlab. Frame labels
point out MP system elements in the MP graph representation. Substances, reactions and
parameters describe the stoichiometry of the system, while fluxes regulate the dynamics.

maps just nonlinearly combining simple seed functions. An ANN is a mathemat-
ical model that takes its inspiration from the networks of interconnected neurons
constituting the central nervous system. It has two key elements: a set of neu-
rons, representing processing units, and a set of synapses, namely, weighted inter-
connections conveying information among neurons. A meaningful representation
for ANNs employs graphs, where nodes symbolize neurons and edges stand for
synapses, as displayed in Figure 2. Every neuron uj computes its output yj by
the equation yj = f(

∑
i wjiyi), where function f(·) is the activation function of

neuron uj , yi is the output value of neuron ui and wji is a real number repre-
senting the weight of the synapse connecting ui to uj . Activation functions are
usually nonlinear functions, such as the logistic sigmoid, f(x) = 1

1+e−x , or tanh,

f(x) = ex−e−x

ex+e−x , but also other kind of function can be considered. A particular
type of ANNs we consider here are feed-forward neural networks, which have no
feedback loops. In these networks, neurons are usually arranged in layers, where
the input-layer receives input from the environment, the output-layer returns its
output to the environment, and hidden layers process the information and pass it
on through the network.

174 A. Castellini, V. Manca, Y. Suzuki

Fig. 2. A feed-forward neural network having four layers of neurons, namely, an input
layer with four input neurons and one bias neuron; two hidden layers with, respectively,
four and two normal neurons, and one bias neuron; an output layer with four output
neurons. Every neuron of layer i is connected to every (non-bias) neuron of layer i + 1.
Normal neurons (gray nodes) compute an activation function (usually sigmoid) of a
weighted sum of their input. Bias neurons (white nodes) provide a constant unitary
input.

We employ ANNs for discovering flux regulation functions since they have a
natural ability to represent both linear and nonlinear relationships between a set
of input variables (in our case substance and parameters) and a set of output
variables (fluxes), and to learn these relationships from data sets. Moreover, it has
been proved [12] that ANNs having at least one hidden layer and sigmoid neurons
are able to approximate any continuous functional mapping, if no limit is imposed
on the number of hidden neurons.

Given an MP system with n substances, k parameters and m reactions we
connect to it m neural networks, each having n + k input neurons connected to
substance and parameter nodes, and one output neuron linked to a specific flux
node, as displayed in Figure 3. The number of hidden layers and hidden neurons
should be tuned according to the complexity of the functions under investigation.
As a rule of thumb, the more “complex” the regulation function, the higher the
number of hidden layers and hidden neurons. If the complexity of the searched

Metabolic P System Flux Regulation by Artificial Neural Networks 175

function is unknown, then different topologies should be tested, until a good ap-
proximation is found.

Fig. 3. MP system fluxes computed by one neural network for each reaction. Substances
and parameters are connected to input neurons while the only output neuron of each
network is connected to a specific flux [7].

Once the neural network topologies have been defined the information con-
tained into a training set of observed data, has to be stored within synaptic weights.
The process of weight tuning is called training and it is performed by the so called
learning algorithms, namely, optimization techniques able to search for a set of
weights which gives to the network a behavior defined by a set of examples, the
training set. In our case, a training set is represented by time-series of substances
and parameters, generally collected by observations, and flux time-series computed
by the log-gain method [20, 21, 22]. During the training stage, training data are
cyclically “observed” by neural networks which update their weight values at each
training epoch (according to some learning rules) in order to minimize the mean
square error between their outputs and the target outputs stored in the training
set.

In [7] a Java software called NeuralSynth has been presented which trains feed-
forward neural networks, within the MetaPlab suite, by means of four optimization
algorithms, namely, backpropagation [3], genetic algorithms (GA) [15, 37], particle
swarm optimization (PSO) [17] and a memetic algorithm [18]. In that work the
memetic algorithm has been proved to achieved the best performance in discovering
the regulation functions of an MP model of the mitotic cycle in early amphibian
embryos.

176 A. Castellini, V. Manca, Y. Suzuki

4 Flux tuners discovery by artificial neural networks

The problem we tackle in this section concerns the automatic discovery of flux
tuners from observed data. In the following we will call tuners of flux ϕ, the sub-
stances and the parameters which are involved in tuning ϕ during the time evolu-
tion of the system. In fact, it is known that every reaction of a biochemical system
transforms reactants into products with a rate depending on the instantaneous
value of some substances and parameters of the system itself. Discovering these
substances and parameters provides important understanding about the system
and can suggest new experiments. Moreover, this information is very important
also for generating sound MP systems, since regulation functions employed in these
models should have as few independent variables as possible in order to yield re-
liable predictions [1]. This statement could sound a bit counterintuitive since it
seems logical that, if our regulation functions incorporates as many variables as
possible, then the flux prediction should be more accurate. Actually, this is true
only if the number of data points to be fitted has no limitations (which is not real-
istic), indeed, as the dimensionality of the fitting surface increases also the degrees
of freedom of this surface increase, and the number of points needed to achieve a
good fitting surface increases as well. Therefore, functions generated by regression
methods have to be parsimonious in the number of independent variables in order
to capture the systematic trend of data while avoiding uncertainty and overfitting
typical of high-dimensional functions [1].

The methodology we present in the following for discovering flux tuners by
means of neural networks, consists of two steps: i) application of the weight elim-
ination technique [3, 36], during the network training, for removing unnecessary
synapse weights, ii) assignment, to each substance (parameter) of the MP sys-
tem, of a tuning index for each flux, rating the “propensity” of the substance
(parameter) to tune the flux itself.

4.1 Weight elimination

Weight elimination [3, 36] is a technique aiming to find a neural network which fits
a specific training set by using the smallest number of weights. The hypothesis on
which this method is based states that “if several networks fit the data equally well,
then the network having the smallest number of weights will on average provide
the best generalization”, that is, it will get the best predictions for new data.

The idea is to add to the backpropagation cost function (usually a square error),
a term which “counts” the number of weights, obtaining the new cost function [3]:

E =
∑
k∈T

(targetk − outputk)2 + λ
∑
i∈C

w2
i

ŵ2 + w2
i

. (4)

and then to minimize this function by means of backpropagation. The first term
of Equation (4), called performance term, represents the square error between
network output and target output over the entire training set T . The second term,

Metabolic P System Flux Regulation by Artificial Neural Networks 177

named complexity term, deals with the network size. Its sum, which extends over
all the synapses C, adds a penalty value close to unity (times λ) to each weight
wi ∈ R such that |wi| >> ŵ, while it adds a penalty term approaching to zero to
each weight wi such that |wi| << ŵ. The parameter λ ∈ R+ represents the relative
importance of the network simplicity with respect to the network performance.

When the classical backpropagation learning algorithm is employed with the
modified cost function of Equation (4), weights are updated at each step according
to the gradient of both the performance and the complexity terms, thus a trade-
off between a small fitting error and a small number of weights is found. In other
words, the complexity term tends to “push” every weight to zero with a strength
proportional to weight magnitudes and λ, while the performance term keeps far
from zero the weights actually needed to fit training data. Notice that, parameter
λ is a sensitive factor in this procedure, since if it is too small, then the complexity
term has no effect, while if it is too large then all the weights are driven to zero.
Moreover, the value of λ usually changes depending on the problem, thus, in [36]
some heuristic rules are presented for dynamically tuning the value of λ during
the training process in order to find a minimal network while achieving a desired
level of performance on training data.

The weight-elimination technique has been implemented in the NeuralSynth
plug-in [7], a Java software which can be employed within the MetaPlab virtual
laboratory to automatically learn neural networks from experimental data. The
first step of our tuner discovery strategy can be performed by this software, which
can be downloaded from [2], that is, neural networks are trained on time-series
data and, at the same time, their unnecessary weights are removed.

4.2 Tuning indexes assignment

The second step of the tuners discovery strategy proposed in this work involves the
analysis of the neural networks achieved at the first step, with the aim to evaluate
the sensibility of each flux to the variation of each substance and parameter. Given
a trained (and minimized) neural network encoding a regulation function ϕ(q), we
assign to each input neuron x (which is connected to a substance or a parameter
node according to the schema of Figure 3) a tuning index :

ξ(x) =
∑

p∈path(x,o)

∏
w∈p

|w| (5)

where path(x, o) is the set of all paths from the input neuron x to the (only) output
neuron o (which is connected to the flux node ϕ(q) according to the schema of
Figure 3), and each path p ∈ path(x, o) is, in turn, the set of weights of synapses
on the path from x to o. In other words, the tuning index ξ(x) rates the propensity
of the substance (parameter) connected to the input neuron x to tune the flux
connected to the output neuron o. This index is computed by summing, for every
path from the input neuron x to the output neuron o, the product of weights in
the path.

178 A. Castellini, V. Manca, Y. Suzuki

The idea behind this heuristic for computing tuning indexes is informally ex-
plained by means of Figure 4. In that picture, red thin arrows represent synapses
having weights with small absolute values, green thick arrows stand for synapses
having weights with large absolute values, and orange medium-thickness arrows
represent synapses having weights with medium size absolute values. From Fig-
ure 4 it is evident that the contribution of a single path from the input neuron
u1 (related to substance A) to the output neuron u9 (connected to flux F1), is
proportional to the product of the absolute values of weights on the path between
u1 and u9. Moreover, the overall contribution of input A in tuning output F1 is
related to the sum of the contributions of every path. This is because each neuron
computes a sigmoid function of the weighted sum of its inputs, as already described
in Section 3.

Fig. 4. Weight analysis of paths from the input neurons u1 (on the left) and u2 (on
the right), to the output neuron u9 for computing the tuning indexes of, respectively,
substance A and B in respect of flux F1.

Let us consider a simple example. On the left side of Figure 4, the contribution
of path u1 → u5 → u9, that is |w5,1| · |w9,5|, is lesser than the contribution of path
u1 → u6 → u9, that is, |w6,1| · |w9,6|, since |w5,1| and |w9,5| are lesser than |w6,1|
and |w9,6|. The tuning index of substance A with respect to flux F1 is the sum
|w5,1| · |w9,5|+ |w6,1| · |w9,6|+ |w7,1| · |w9,7|. On the right side of the same picture
it is showed that the contribution of substance B in tuning flux F1 is almost
insignificant, since the absolute values of all the weights on the paths between the
input neuron u2 (connected to B) and the output neuron u9 have small or medium
sizes. Accordingly, the tuning index of substance A will be greater than the tuning
index of substance B.

5 A case study: the Sirius model

In this section we report some preliminary results of the application of the tuners
discovery strategy explained above to a simple case study. The MP system we
investigate, called Sirius, does not have any biological counterpart but its analysis

Metabolic P System Flux Regulation by Artificial Neural Networks 179

is however interesting because of the oscillations it generates when specific regula-
tion functions are employed. As displayed in Figure 5, Sirius has three substances,
A, B and C, and five reactions R1, . . . , R5. In [20] the following flux regulation
functions have been manually generated:

F1 =
k1a

k1 + k2c+ k4b+ ka

F2 =
k2ac

k1 + k2c+ k4b+ ka

F3 =
k3b

k3 + kb
(6)

F4 =
k4ab

k1 + k2c+ k4b+ ka

F5 =
k5c

k5 + kc

where k1 = k3 = k5 = 4, k2 = k4 = 0.02, and ka = kb = kc = 100. Notice
that, functions F1, F2 and F4 have the same denominator but the numerator of
F1 is characterized by the tuner A, numerator of F2 by the tuners A and C,
and numerator of F4 is characterized by the tuners A and B. On the other side,
functions F3 and F5 are characterized, respectively, by the tuners B and C. The
oscillatory dynamics generated by these functions, displayed in Figure 5, is featured
by a very similar trend for substances B and C, which differ only in the first fifty
steps.

Fig. 5. On top: Sirius model. At the bottom: Sirius dynamics

180 A. Castellini, V. Manca, Y. Suzuki

We have sampled the dynamics of Figure 5 in order to obtain three substance
time-series (one for each substance), each having 1000 values, and we have com-
puted the related five flux time-series (one for each flux) by the log-gain theory.
Subsequently, these time-series have been employed to train five neural networks
(one for each regulation function) by means of backpropagation with weight elim-
ination. Specifically, substance values have been used as inputs and flux values as
target outputs during the training process performed by the software NeuralSynth.
We run the computation of the tuning indexes of each flux for five times and, subse-
quently, we have calculated the mean and the standard deviations of these indexes
for each flux regulation function. The best results, reported in Table 1, have been
achieved by employing λ = 0.0001 and w0 = 1.0 for weight elimination and neural
networks having one hidden layer with three neurons. This value of parameter w0

tends to eliminate weights between (about) −5.0 and 5.0, which is consistent with
the random initialization of neural network weights between −1.0 and 1.0. The
parameter λ has been manually tuned for this case study but some heuristics [36]
will be considered to dynamically tune its value during the training process. The
network topology has been adapted to the complexity of the searched regulation
function.

A B C
F1 0.918 (0.044) 0.043 (0.026) 0.038 (0.017)
F2 0.336 (0.001) 0.301 (0.209) 0.362 (0.209)
F3 0.018 (0.017) 0.971 (0.020) 0.010 (0.009)
F4 0.337 (0.006) 0.525 (0.292) 0.136 (0.292)
F5 0.020 (0.027) 0.084 (0.112) 0.895 (0.111)

Table 1. Mean tuning indexes and related standard deviations (in brackets) of substances
A, B and C with respect to fluxes F1, F2, F3, F4, F5. These results have been computed
by performing five tests for each flux.

Let us analyze the results of Table 1. The first row reports the mean relative
tuning indexes of flux F1 and, in brackets, the standard deviation of the relative
tuning indexes over the five tests performed. Value 0.918 in the first column, states
that substance A have obtained a mean tuning index of 91.8% for flux F1 over
the five tests. Substances B and C, respectively in the second and third columns,
have achieved mean tuning indexes of 4.3% and 3.8%. This result completely agrees
with the form of function F1, by which dynamics data have been generated, indeed
function F1 is deeply related with substance A, which appears in the numerator
of this function. By analyzing the third row of Table 1, related to flux F3, we
observe that substance B, which appears in the numerator of function F3, has
achieved a mean tuning index of 97.1%, while substances A and C, which are not
arguments of function F3, have scored only 1.8% and 1.0%. Quite good results have
been achieved for flux F4 (in the forth row), indeed the variables appearing in its
numerator, namely A and B, have scored mean tuning indexes of, respectively,

Metabolic P System Flux Regulation by Artificial Neural Networks 181

33.7% and 52.5% in contrast to the 13.6% scored by substance C. Flux F5, in
the last row of the table, has mean tuning indexes of 2.0% for A, 8.4% for B and
89.5% for C, according to the form of function F5 which includes only substance
C among its arguments. Instead, the result related to flux F2 (in the second row)
deserves further investigations, since the mean tuning indexes turned out to be
not informative enough. Indeed, they are 33.6 for A, 30.1 for B and 36.2 for C,
and the values are so close to each other that we cannot deduce A and C to be
the only tuners for F2 (as it clearly appears in the numerator of function F2). We
believe that this problem can be due to the high similarity between the dynamics
of substance B and C, which makes it difficult to distinguish between the two
inputs. This seems to be confirmed also by the high standard deviation values
achieved for substances B and C for both fluxes F2 and F4, which points out a
large variance in the relative tuning indexes computed over the five tests. The
dynamics trend of the model obtained by this approach, which is displayed in [7],
is very similar to the original one, showed in Figure 5.

6 Conclusions and future work

In this paper we have presented a new technique, based on artificial neural net-
works, for discovering flux tuners within the framework of MP systems. This strat-
egy involves a first training stage wherein each neural network learns a flux regula-
tion function from observed time-series by means of backpropagation with weight
elimination. Subsequently, for each flux a tuning index is associated to each sub-
stance and parameter of the MP system in order to evaluate its propensity to tune
the flux. The technique has achieved encouraging results in a synthetic case study
wherein data have been generated by known functions. Further work has to be
done in order to get a stronger validation for case studies involving real biological
systems. Moreover, some heuristic techniques employed in this paper to learn neu-
ral networks, i.e., evolutionary and swarm optimization, could be directly applied
for discovering flux tuners, without incorporating neural networks.

References

1. A. D. Aczel and J. Sounderpandian. Complete Business Statistics. McGraw-
Hill/Irwin, 2006.

2. WMC10 additional material.
Url: http://mplab.sci.univr.it/external/wmc10/page.html.

3. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

4. E.K. Burke and G. Kendall. Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support Techniques. Springer, 2005.

5. A. Castellini, G. Franco, and V. Manca. Hybrid functional Petri nets as MP systems.
Natural Computing, 9121, 2009. DOI: 10.1007/s11047-009-9121-4.

182 A. Castellini, V. Manca, Y. Suzuki

6. A. Castellini, G. Franco, and V. Manca. Toward a representation of hybrid functional
Petri nets by MP systems. In Y. Suzuki et al., editor, Natural computing, volume 1
of PICT, pages 28–37. Springer Japan, 2009.

7. A. Castellini and V. Manca. Learning regulation functions of metabolic systems by
artificial neural networks. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO-2009. ACM Publisher, 2009. Accepted.

8. A. Castellini and V. Manca. MetaPlab: A computational framework for metabolic P
systems. In D. W. Corne et al., editor, LNCS 5391, pages 157–168. Springer-Verlag,
2009.

9. G. Ciobanu, G. Păun, and M. J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Natural Computing Series. Springer-Verlag Berlin, 2006.

10. J. Fisher and T. A. Henzinger. Executable cell biology. Nature Biotechnology,
25(11):1239–1249, 2007.

11. F. Fontana and V. Manca. Discrete solutions to differential equations by metabolic
P systems. Theoretical Computer Science, 372(2-3):165–182, 2007.

12. K. Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183–192, 1989.

13. D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22:403–
434, 1976.

14. D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of Physical
Chemistry, 58:35–55, 2007.

15. J. H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI, 1975.

16. D. S. Jones and B. D. Sleeman. Differential Equations and Mathematical Biology.
Chapman & Hall/CRC Mathematical Biology and Medicine, 2003.

17. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf.
on Neural Networks, volume 4, pages 1942–1948, 1995.

18. N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Trans. Evolutionary Computation, 9(5):474–488,
2005.

19. A. Lindenmayer. Mathematical models for cellular interactions in development I. Fil-
aments with one-sided inputs. Journal of Theoretical Biology, 18(3):280–299, 1968.

20. V. Manca. The Metabolic Algorithm: Principles and applications. Theoretical Com-
puter Science, 404:142–157, 2008.

21. V. Manca. Fundamentals of metabolic P systems. In G. Păun et al., editor, Handbook
of Membrane Computing, chapter 16. Oxford University Press, 2009.

22. V. Manca. Log-gain principles for metabolic P systems. In A. Condon et al., editor,
Algorithmic Bioprocesses, Natural Computing Series, chapter 28. Springer, 2009.

23. V. Manca. Metabolic P dynamics. In G. Păun et al., editor, Handbook of Membrane
Computing, chapter 17. Oxford University Press, 2009.

24. V. Manca and L. Bianco. Biological networks in metabolic P systems. BioSystems,
91(3):489–498, 2008.

25. V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biochemical phenomena. In LNCS 3365, pages 63–84. Springer,
2005.

26. V. Manca, A. Castellini, G. Franco, L. Marchetti, and R. Pagliarini. Metaplab 1.1
user guide. Url: http://mplab.sci.univr.it. 2009.

Metabolic P System Flux Regulation by Artificial Neural Networks 183

27. M. J. Pérez-Jiménez and F. J. Romero-Campero. P systems: a new computational
modelling tool for systems biology. Transactions on Computational Systems Biology
VI, Lecture Notes in Bioinformatics, 4220, pages 176–197, 2006.

28. G. Păun. Computing with membranes. Technical Report 208, Turku Centre for
Computer Science, 1998.

29. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

30. G. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
31. G. A. F. Seber and C. J. Wild. Nonlinear Regression. Wiley, 2003.
32. The P Systems Web Site. Url: http://ppage.psystems.eu/.
33. Y. Suzuki, Y. Fujiwara, J. Takabayashi, and H. Tanaka. Artificial life applications of

a class of P systems: Abstract rewriting systems on multisets. In LNCS 2235, pages
299–346. Springer, 2000.

34. Y. Suzuki and H. Tanaka. Modeling p53 signaling pathways by using multiset pro-
cessing. In Ciobanu et al. [9], pages 203–214.

35. E. O. Voit. Computational Analysis of Biochemical Systems : A Practical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

36. A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-
elimination with application to forecasting. In R. Lippmann et al., editor, NIPS,
pages 875–882. Morgan Kaufmann, 1990.

37. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, September 1999.

A Novel Variant of Tissue P Systems for the
Modelling of Biochemical Systems

Paolo Cazzaniga1, Giancarlo Mauri1, Luciano Milanesi2

Ettore Mosca2, Dario Pescini1

1 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy

2 Consiglio Nazionale Ricerche
Istituto Tecnologie Biomediche
Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
cazzaniga/mauri/pescini@disco.unimib.it

ettore.mosca/luciano.milanesi@itb.cnr.it

Summary. In the last decade, different computing paradigms and modelling frameworks
for the description and simulation of biochemical systems have been proposed. Here, we
consider membrane systems, in particular, tissue P systems and τ -DPP, for the develop-
ment of a novel variant of membrane systems with dimensions associated to the volumes
involved in the structure and to the molecular species occurring inside the system. More-
over, this variant allows the communication of molecules among non adjacent membranes
arranged in a hybrid structure, that is, organised in a tissue-like fashion where nodes can
have a complex internal structure. The features presented in the new variant of P systems
can be used to describe, among others, reaction-diffusion systems, where molecules are
involved in chemical reactions and move among membranes and their movements depend
on the free space of the volumes, or systems where exist privileged pathways between
membranes, which are inspired to the role of microtubule in protein transport within
the intracellular space. We conclude presenting two test cases of biochemical systems in
which the features of the new variant are suitable for the modelling, and we discuss about
the modelling power and the possible developments of this work.

1 Introduction

Membrane systems, also known as P systems, introduced in [17], are one of the
computation models inspired by the structure and the functioning of living cells
presented in the recent years. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the skin.
Membranes divide the space into regions, that contain some objects (represented
by symbols over an alphabet) and evolution rules.

A Novel Variant of Tissue P Systems 185

The current variants of membrane systems used in the modelling of biochemical
systems provide a description where membranes can contain up to an infinite
number of molecules because the sizes of the structure components and of the
objects involved are not considered. Moreover, the communication channels are
limited to adjacent membranes. In particular, in the framework of tree-like P
systems, the communication is permitted from/to a membrane to/from another
one immediately inside or outside the first one. On the other hand, working with
tissue P systems (or tP systems), communication of objects is achieved using the
“synapses” defined among nodes. In addition, either variant of P systems use only
a tree-like or a tissue-like structure, while hybrid structures are not considered. For
instance, the description of tissues where nodes have a complex internal structure
or tree-like systems with membranes enclosing a tissue are not allowed. There exist
other works on P systems which use different strategies to represent the structure
and the communication channels, like Hyperdag P systems [16], or variants applied
to the economic processes [19].

In this paper, we present a novel variant of P systems where we exploit tP sys-
tems [15] to describe the topological organisation of the membranes and to denote
the possible communication channels of the system. Furthermore, for the descrip-
tion of the dynamics, we consider τ -DPP, presented in [7]. Within the framework
of τ -DPP, the probabilities are associated to the rules, following the method intro-
duced by Gillespie in [10]. In particular, τ -DPP extends the tau-leaping procedure
[5] in order to quantitatively simulate the behaviour of complex biological and
chemical systems, embedded in membrane structures composed by different vol-
umes.

Starting from the structure of tP systems and the description of the dynam-
ics provided by τ -DPP, we introduce a variant of tP systems with dimensions
associated to membranes and objects, representing respectively, the “size” of the
volume where the computation occurs and the amount of volume occupied by ob-
jects. Both the dimensions of membranes and objects are useful to describe any
real system where it is important to avoid the infinite accumulation of objects
inside the system membranes. The structure of a modelled system is independent
from the communication channels among membranes, that is, two different graphs
are used to denote the topology of the membranes involved in the system struc-
ture and the connections among membranes for the communication of objects.
Moreover, the structure of the system can be hybrid, as mentioned above, and the
communication can be performed between non adjacent membranes, to denote
privileged pathways between membranes. This formalism takes inspiration from a
specific component of living cells, microtubules; in particular, the formalism can
reproduce their role as intracellular “highways” for the transport of other cellular
components, such as vesicles and proteins [24].

The paper is organised as follows: in Section 2 we will recall the basic notions of
membrane systems, tP systems and τ -DPP variants; in Section 3 we will introduce
the novel variant of tP systems with membranes and objects dimensions; in Section
4 we will present some test cases of biochemical systems defined using the new

186 P. Cazzaniga et al.

variant; finally in Section 5 we will discuss the modelling power of our variant of
membrane systems and we will conclude with some possible future developments
for this work.

2 Membrane systems

In this section we describe the framework of membrane systems [18], recalling
their basic notions and definitions. We then present tissue P systems, a variant
consisting of a set of several cells connected through protein channels [15]. Finally,
we describe τ -DPP, a computational method introduced in [7], used to describe
and perform stochastic simulations of complex biological or chemical systems.

2.1 Basic notions of P systems

P systems, or membrane systems, have been introduced in [17] as a class of un-
conventional computing devices of distributed, parallel and nondeterministic type,
inspired by the compartmental structure and the functioning of living cells.

In order to define a basic P system, three main parts need to be introduced:
the membrane structure, the objects and the rules.

The membrane structure defines the topological and hierarchical organisation
of a system consisting of distinct compartments. The definition of membrane struc-
ture is given through a set of membranes with a distinct label (usually numbers),
hierarchically organised inside a unique membrane, named skin membrane. Among
others, a representation of a membrane structure is given by using a string of square
parentheses.

In particular, each membrane identifies a region, delimited by the membrane
itself and any other adjacent membrane possibly present inside it. The number
of membranes in a membrane structure is called the degree of the P system. The
whole space outside the skin membrane is called the environment.

The internal state of a P system is described by the objects (represented by
symbols taken from an alphabet V) occurring inside the membranes. In order
to denote the presence of multiple copies of the same object inside a membrane,
multisets are usually used.

The objects inside the membranes of a P system are transformed by means of
evolution rules. These are multiset rewriting rules of the form ri : u → v, where
u and v are multisets of objects. The meaning of the generic rule i is that the
multiset u is modified into the multiset v.

Moreover, it is possible to associate a target to v, representing the membrane
where the multiset v is placed when the rule is applied. There are three different
types of target. If the target is here, then the object remains in the region where the
rule is executed (usually, this target label is omitted in the systems description). If
the target is out, then the object is sent out from the membrane containing the rule
and placed to the outer region (the environment in the case of skin membrane).

A Novel Variant of Tissue P Systems 187

Finally, if the target is inj , where j is a label of a membrane, then the object is
sent into the membrane labelled with j. It is possible to apply this kind of rule,
only if the membrane j is placed immediately inside the membrane where the rule
is executed.

Starting from an initial configuration (described by a membrane structure con-
taining a certain number of objects and a fixed set of rules), and letting the system
evolve, a computation is obtained. A universal clock is assumed to exist: at each
step, all rules in all regions are simultaneously applied to all objects which can be
the subjects of evolution rules. So doing, the rules are applied in a maximal par-
allel manner, hence the membranes evolve simultaneously. If no further rule can
be applied, the computation halts. The result of a computation is the multiset of
objects contained into a previously specified output membrane or the environment.

For a complete and extensive overview of P systems, we refer the reader to
[18], and to the P Systems Web Page (http://ppage.psystems.eu).

2.2 tP Systems

The basic definition of P systems consists of a membrane structure organised in
a tree-like structure. In [15], tP systems were defined to describe a tissue-like
architecture, where cells are placed in the nodes of a (directed) graph, and objects
are communicated along the edges of the graph. These communication channels
are called synapses. Moreover, the communication of objects is achieved both in
a replicative and non-replicative manner, that is, the objects are sent to all the
adjacent cells or to only one adjacent cell, respectively.

In general, the structure of a tP system is composed by elementary membranes,
namely, each node of the system is represented by a membrane that does not
contain other membranes. Furthermore, the communication of objects is allowed,
as in standard P systems, only to/from adjacent membranes.

Tissue P systems have been further elaborated, for example in [9] and [20],
with recent results about both theoretical properties [1] and applications [13].
The variants of tP systems considered in the literature essentially differ in the
mechanisms used to communicate objects between cells. For instance, particular
sets of communication rules (i.e., symport and antiport rules) can be assigned to
the edges of the graph that defines the structure of the tissue, in order to model
the existence of communication channels among the cells [12, 9].

Alternatively, there are evolution-communication tP systems (adopting the ter-
minology introduced in [6]), where the objects produced by particular transforma-
tions occurring inside the cells are nondeterministically propagated from one place
to another one [14, 2].

2.3 τ -DPP

We recall now the basic definition of the stochastic simulation technique called τ -
DPP [7], where the probabilities are associated to the rules, following the method

188 P. Cazzaniga et al.

introduced by Gillespie in [10]. The aim of τ -DPP is to extend the single-volume
algorithm of tau-leaping [5], in order to simulate multi-volume systems, where
the distinct volumes are arranged according to a specified hierarchy. The struc-
ture of the system is required to be kept fixed during the evolution; note that
the framework of membrane system we consider satisfies this requirement. Hence,
the spatial arrangement of P system is exploited in the τ -DPP description. In
particular, τ -DPP has been defined starting from a variant of P systems called
dynamical probabilistic P systems (DPP). DPP, presented in [23], exploit the
membrane structure of P systems and associate probabilities with the rules, such
values vary (dynamically), according to a prescribed strategy, during the evolution
of the system. They have been introduced to take into account the stochasticity
of the modelled systems and to probe different levels of parallelism of the rules
executions. For the formal definitions of DPP and examples of simulated systems,
we refer the reader to [22, 21, 4, 3].

There is a difference between these two membrane systems variants: DPP pro-
vides only a qualitative description of the analysed system, that is, “time” is not
associated to the evolution steps, while τ -DPP is able to give a quantitative de-
scription tracing the time-stream of the evolution.

The τ -DPP approach is designed to share a common time increment among
all the membranes, used to accurately extract the rules that will be executed in
each compartment (at each step). This improvement is achieved using, inside the
membranes of τ -DPP, a modified tau-leaping algorithm, which gives the possibility
to simulate the time evolution of every volume as well as that of the entire system.

The internal behaviour of the membranes is therefore described by means of
a modified tau-leaping procedure. The original method, first introduced in [11],
is based on the stochastic simulation algorithm (SSA) presented in [10]. These
approaches are used to describe the behaviour of chemical systems, computing the
probabilities of the reactions placed inside the system and the length of the step
(at each iteration), according to the current system state. While SSA is proved
to be equivalent to the Chemical Master Equation (CME), therefore it provides
the exact behaviour of the system, the tau-leaping method describes an approxi-
mated behaviour with respect to the CME, but it is faster for what concerns the
computational time required.

To describe the correct behaviour of the whole system, all the volumes evolve
in parallel, through a strategy used to compute the probabilities of the rules (and
then, to select the rules that will be executed), and to choose the “common” time
increment that will be used to update the system state. The method applied for the
selection of the time step length is the following. Each membrane independently
computes a candidate time increment (exploiting the tau-leaping procedure), based
on its internal state. The smallest time increment among all membranes is then
selected and used to describe the evolution of the whole system, during the current
iteration. Since all volumes locally evolve according to the same time increment,
τ -DPP is able to correctly work out the global dynamics of the system. Moreover,
using the “common” time increment inside the membranes, it is possible to manage

A Novel Variant of Tissue P Systems 189

the communication of objects among them. This is achieved because the volumes
are naturally synchronised at the end of each iterative step, when all the rules are
executed.

3 The new variant

In this Section we will present the new variant of tissue P systems, based on the
structure definition of basic tP systems and the dynamics description of τ -DPP,
in which nodes can have a complex structure hierarchically organised in a tree-
like structure. Moreover, in this new variant we will consider dimensions both
for membranes and objects, and the rules defined inside each membrane will be
enabled only in the case there is sufficient space, for instance, to “create” new
objects or to send objects to other membranes. The dimensions considered here
can be used in the modelling of biochemical systems where diffusive processes
play an important role in the system dynamics and it is important to avoid the
unlimited accumulation of objects in a region of finite size.

In order to correctly describe the hierarchy of complex nodes of the system
we first need a directed graph representing the topology of the membranes. In
particular, undirected edges indicate that the two membranes are placed on the
same level (as in the first definition of tP systems). On the other hand, directed
edges denote that the target membrane is contained inside the source membrane.

Another directed graph is needed to represent the communication channels
among the membranes. Clearly, the arrows of the edges indicate the direction of
the (permitted) flow of objects among membranes. Note that, the communication
graph can contain edges which are not indicated inside the structure graph. The
meaning of these particular edges is to represent communication channels that
connect non adjacent membranes. Thanks to these arcs it is possible to create
privileged pathways of communication between membranes.

Considering its properties, this new variant can be used to represent (among the
other real life systems) reaction-diffusion systems [8], mathematical models which
capture the dynamics of a set of substances involved in a number of chemical
reactions, considering both the temporal and spatial dimension. In this case, the
membrane structure can be used to represent a reaction volume as a sum of a
number of finite size subvolumes and the communication graph will describe the
diffusion among the considered regions.

3.1 Definition

A tP systems with dimension associated with objects and membranes is defined
as

Π = (V, TG, CG,S,M,R, C,DX ,DV),

where:

190 P. Cazzaniga et al.

• V = {V0, . . . , VN} is the set of the volumes Vi of the system, N ∈ N;
• TG = (V, AT) is a directed graph representing the topological arrangement of

the volumes in V and AT is the set of the arcs (Vl,Vk) which describes the
inclusion structure of the volumes. It is useful to define the set of the volumes
enclosed in Vi as aT (Vi) = {Vl s.t. Vl ∈ V, (Vi, Vl) ∈ AT };

• CG = (V, AC) is a directed graph representing the connections (channels of
communication) among the volumes in V and AC is the set of the arcs (Vl,Vk)
which describes the existing connections;

• S = {X1, . . . , XM} is the set of molecular species, M ∈ N, that is, the alphabet
of the system;

• M = {M0, . . . , MN}, is the set of the multisets occurring inside the membranes
V0, . . . , VN , representing the internal state of the volumes. The multiset Mi

(0 ≤ i ≤ N) is defined over S∗;
• R = {R0, . . . , RN} is the set of the sets of rules defined in volumes V0, . . . , VN ,

respectively. A rule can be of internal or of communication type (as described
below);

• C = {C0, . . . , CN} is the set of the sets of stochastic constants associated to
the rules defined in volumes V0, . . . , VN .

• DX = {DX1 , . . . , DXM }, with DXj ∈ R+, is the set of the dimensions of the
molecular species X1, . . . , XM , respectively.

• DV = {DV0 , . . . , DVN
}, with DVi ∈ R+, is the set of the dimensions of the

volume V0, . . . , VN , respectively.

The multiset Mi, describing the state of volume Vi (i = 0, . . . , N), is defined
as Mi = (m0, . . . , mM) where mj denotes the number of molecules of the species
Xj occurring inside Vi (j = 0, . . . ,M).

Given the internal state Mi of a membrane Vi together with the species volumes
in DX , it is possible to define the occupied volume in Vi as:

O(Vi) =
M∑

j=1

(mj ·DXj) +
∑

Vl∈aT (Vi)

DVl
(1)

Hence, it is possible to define the value of the free space in Vi as:

F (Vi) = DVi −O(Vi) (2)

Note that, at each rule execution, the free space value has to be updated as
F (Vi) = F (Vi)−

∑M
j=1 βj ·DXj where βj are the stoichiometric coefficients of the

chemical species occurring in the right-hand side of the executed rule.
The sets R0, . . . , RN define the rules occurring inside the membranes of the

system. There are two different kind of rules which can be defined inside the
volumes Vi: internal and communication rules. Internal rules are used to modify
(evolve) the objects involved in their left-hand sides; communication rules send to
other membranes the objects occurring in their left-hand sides without modifying
them.

A Novel Variant of Tissue P Systems 191

Internal rules have the general form α1X1 + α2X2 + · · · + αMXM → β1X1 +
β2X2 + · · · + βMXM . Moreover, an internal rule is enabled inside Vi if F (Vi) −∑M

j=1 βj · DXj ≥ 0. On the contrary, a communication rule, having the general
form α1X1+α2X2+· · ·+αMXM → (β1,1X1+· · ·+βM,1XM , tgt1)+(β1,2X1+· · ·+
βM,2XM , tgt2)+· · ·+(β1,NX1+· · ·+βM,NXM , tgtN) is enabled inside membrane Vi

if, for each volume Vtgtk
, F (Vtgtk

)−∑M
j=1 βj,kDXj ≥ 0. Note that, communication

rules send objects to target volumes which are always different from the source
volume.

The sets of stochastic constants C0, . . . , CN , associated to the sets of rules
R0, . . . , RN , are needed to compute the probabilities of the rule applications (also
called propensity functions), along with a combinatorial function depending on
the left-hand side of the rule [10].

In order to obtain a correct description of the system dynamics, we need to
check if a rule rµ (internal or communicating) is applicable. Therefore, we need to
compute the effect of a rule on the free space of the volume affected by the rule.
It is clear that a rule can be executed only if the free space of the volume, after
the rule application, is greater or equal to zero. The rule applicability is computed
differently for internal and communication rules. Given an internal rule occurring
inside volume Vi, we need to check if:

F (Vi)−
M∑

j=1

(βj ·DXj) ≥ 0

For what concerns a communication rule rµ, we need to check the free space of
the targets indicated by the rule:

∀ tgtl of rµ, F (Vtgtl
)−

M∑

j=1

(βj ·DXj) ≥ 0

where the values βj are the stoichiometric coefficients of the molecular species
associated with Vtgtl

.
Note that, using a modified version of the tau-leaping algorithm to describe

the behaviour of the system, at each iteration step, a number of rules is applied
in parallel. Hence, the applicability of the parallel execution of the rules has to be
verified in order to update the state of the system.

3.2 The algorithm

We now describe the algorithm used to simulate the evolution of the entire sys-
tem. Each step is executed independently and in parallel within each volume Vi

(i = 0, . . . , N) of the system. In the following description, the algorithm execu-
tion naturally proceeds according to the order of instructions, when not otherwise
specified by means of “go to” commands.

192 P. Cazzaniga et al.

Step 1. Initialisation: load the description of volume Vi, which consists of the initial
quantities of all object types, the set of rules and their respective stochastic
constants, the volume and the objects dimensions.

Step 2. Compute the initial free space of the volume Vi using Equation 2.
Step 3. Compute the propensity function aµ of each rule rµ ∈ Ri, where µ =

1, . . . , l, and evaluate the sum of all the propensity functions in Vi, a0 =∑l
µ=1 aµ. If a0 = 0, then go to step 4, otherwise go to step 6.

Step 4. Set τi, the length of the step increment in volume Vi, to ∞.
Step 5. Wait for the communication of the smallest time increment τmin =

min{τ0, . . . , τN} among those generated independently inside all volumes
V0, . . . , VN , during the current iteration, then go to step 14.

Step 6. Generate the step size τi according to the internal state, and select the way
to proceed in the current iteration (i.e. SSA-like evolution, tau-leaping evolu-
tion with non-critical reactions only, or tau-leaping evolution with non-critical
reactions and one critical reaction), using the selection procedure defined in
[5].

Step 7. Wait for the communication of the smallest time increment τmin =
min{τ0, . . . , τN} among those generated independently inside all volumes, dur-
ing the current iteration.

Step 8. According to the evolution strategy of the current iteration:
- if the evolution is SSA-like and the value τi = τSSA generated inside the

volume is greater than τmin, then go to step 9 ;
- if the evolution is SSA-like and τi = τSSA is equal to τmin, then go to step

12 ;
- if the evolution is tau-leaping with non-critical reactions plus one critical

reaction, and τi = τnc1c is equal to τmin, then go to step 13 ;
- if the evolution is tau-leaping with non-critical reactions plus one critical

reaction and τi = τnc1c is greater than τmin, then go to step 14 ;
- if the evolution is tau-leaping with non-critical reactions only (τi = τnc),

then go to step 14.
Step 9. Compute τSSA = τSSA − τmin.
Step 10. Wait for possible communication of objects from other volumes, by means

of communication rules. If some object is received, then go to step 16, other-
wise go to step 11.

Step 11. Set τi = τSSA for the next iteration, then go to step 7.
Step 12. Using the SSA strategy [10], extract the rule that will be applied in the

current iteration, then go to step 15.
Step 13. Extract the critical rule that will be applied in the current iteration.
Step 14. Extract the set of non-critical rules that will be applied in the current

iteration.
Step 15. Check if the execution of the selected rules (considering all the volumes)

leads to an unfeasible state, namely, there are negative amounts of molecules,
or if there is not enough space either inside the volume Vi (for internal rules) or
inside the target volumes (for communication rules). If one of these conditions

A Novel Variant of Tissue P Systems 193

is satisfied, reduce τmin by half and send the new value to the other membranes,
then go to step 8.

Step 16. If a new value of τmin reduced by half is received, then go to step 8,
otherwise go to step 17.

Step 17. Update the internal state by applying the extracted rules (both internal
and communication) to modify the current number of objects, then check for
objects (possibly) received from the other volumes, and finally update the
value of the free space F (Vi).

Step 18. If the termination criteria is satisfied, then finish, otherwise go to step
3.

The algorithm described above is based on the τ -DPP procedure presented in
[7], this new version is obtained by considering the dimensions of the objects and
membranes and checking if the execution of the selected rules leads to unfeasible
states of the system. The original τ -DPP algorithm has been modified to take
into account the dimensions of volumes and objects, while the other features in-
troduced in the new variant of tP systems were already (implicitly) considered in
the algorithm.

The algorithm begins by loading the initial conditions of the membrane. The
next operation consists in the calculation of the free space of the volume and in
the computation of the propensity functions (and their sum a0) in order to check
if, inside the membrane, it is possible to execute some reaction. If the sum of the
propensity functions is zero, then the value of τ is set to∞ and the membrane waits
for the communication of the smallest τ computed among the other membranes
(τmin) in order to synchronise with them; then, it checks if it is the target of some
communication rule applied inside the other volumes. These operations are needed
in order to properly update the internal state of the membrane.

On the other hand, if the sum of the propensity functions is greater than zero,
the membrane will compute a τ value based only on its internal state, following
the first part of the original tau-leaping procedure [5]. Besides this operation, the
membrane selects the kind of evolution for the current iteration (like the compu-
tation of τ , this procedure is executed independently from the other volumes).

The algorithm proceeds to step 7, where the membrane receives the smallest
τ value computed by the volumes. This will be the common value used to update
the state of the entire system. It is necessary to proceed inside every membrane
using the same time increment, in order to manage the communication of objects.

At this stage, the membrane knows the length of the time step and the kind of
evolution to perform. The next step consists in the extraction of the rules that will
be applied in the current iteration. In order to properly extract the rules, several
conditions need to be checked.

In the case the membrane is evolving using the SSA strategy: if τmin is the
value generated inside itself, then it is possible to extract the rule, otherwise the
execution of the rule is not allowed, because the step is “too short”. In the next
stage, the membrane verifies for possible incoming objects, to update its inter-
nal state according to the communication rules (possibly) executed inside other

194 P. Cazzaniga et al.

regions. Finally, if its state is changed (according to some internal or communi-
cation rule), then the membrane, in the successive iteration, will compute a new
value of τ . On the contrary, the value of the time increment will be the result of
the application of step 9.

If the evolution strategy corresponds to a tau-leaping step with the application
of a set of non-critical reactions and one critical reaction, the algorithm verifies
if the value of τ computed by the membrane is equal to τmin. If this is true,
the membrane selects the set of non-critical reactions to execute as well as the
critical reaction. The execution of the critical reaction is allowed because, here
τmin represents the time needed to execute it. Otherwise, the application of the
critical reaction is forbidden and the membrane will execute non-critical reactions
only.

If the membrane is following the tau-leaping strategy with the execution of
non-critical reactions only, τmin is used to extract the rules (from the set of non-
critical) to apply in the current iteration.

In the next step, the algorithm checks if the execution of the rules selected inside
all volumes of the system leads to negative amounts of the molecular quantities
or if the entire set of rules is enabled, that is, the effects of the rules application
result in positive values of the free space of each volume. If these conditions are
not satisfied, then the set of selected rules cannot be executed, therefore, the value
of τ is reduced by half and the algorithm goes back to step 8 in order to select
a new (possibly smaller) set of rules. On the contrary, if the conditions on the
set of rules are satisfied, then the system can be updated. Here, every membrane
executes the selected rules and updates its state and free space according to both
internal and communication rules. This step is executed in parallel inside every
membrane, therefore it is possible to correctly manage the “passage” of objects
and to synchronise the volumes.

The last step checks if the termination criterion is satisfied in order to stop the
simulation. Here, conditions for the termination of the execution are related to the
time of the simulation, to the number of iteration executed or to the absence of
free space.

4 Test cases

In this section we will present two test cases showing how the properties introduced
in the variant of tP systems presented here are useful to describe systems in which
the dynamics is influenced by objects and volume size and by the presence of
privileged paths for objects movement.

4.1 A reaction-diffusion system

We consider the membrane system Π1, represented in Fig. 1, where;

• V = {V0, . . . , V9};

A Novel Variant of Tissue P Systems 195

• TG = (V, AT), AT = {(V0, V1), (V0, V2), (V0, V3), (V0, V4), (V0, V5), (V0, V6),
(V0, V7), (V0, V8), (V0, V9)};

• CG = (V, AC), AC = {(V0, V1), (V1, V0), (V0, V2), (V2, V0), (V0, V3), (V3, V0),
(V0, V7), (V7, V0), (V0, V8), (V8, V0), (V0, V9), (V9, V0), (V1, V2), (V2, V1), (V1, V4),
(V4, V1), (V1, V5), (V5, V1), (V2, V3), (V3, V2), (V2, V4), (V4, V2), (V2, V5), (V5, V2),
(V2, V6), (V6, V2), (V3, V5), (V5, V3), (V3, V6), (V6, V3), (V4, V5), (V5, V4), (V4, V7),
(V7, V4), (V4, V8), (V8, V4) (V5, V6), (V6, V5), (V5, V7), (V7, V5), (V5, V8), (V8, V5),
(V5, V9), (V9, V5), (V7, V8), (V8, V7), (V8, V9), (V9, V8)};

• S = {X1, X2, X3};
• M = {M0, . . . ,M9}, M0 = {X100

1 }, M1 = {X5
1 , X3

2}, M2 = {X5
1 , X3

2}, M3 =
{X5

1 , X3
2}, M4 = {X3

2}, M5 = {X3
2}, M6 = {X3

2}, M7 = {X3
2}, M8 = {X3

2},
M9 = {X3

2};
• R = {R0, . . . , R7}, R0 = {r0,0, . . . , r0,2}, R1 = {r1,0, . . . , r1,3}, R2 = {r2,0,

. . . , r2,5}, R3 = {r3,0, . . . , r3,3}, R4 = {r4,0, . . . , r4,5}, R5 = {r5,0, . . . , r5,8},
R6 = {r6,0, . . . , r6,5}, R7 = {r7,0, . . . , r7,5}, R8 = {r8,0, . . . , r8,6}, R9 =
{r9,0, . . . , r9,4}

• C = {C0, . . . , C9}, ci,j = 1 ∀i ∈ {0, . . . , 9}, j ∈ N
• DX = {1, 1, 1};
• DV = {200, 10, 10, 10, 10, 10, 10, 10, 10, 10}

Fig. 1. A membrane system, Π1, inspired to a reaction volume composed by a number of
subvolumes. a) Graphical representation, in which the arrows indicate the communication
possibilities; b) topological structure TG, note that arcs between adjacent nodes are not
drawn for clarity; c) communication channels CG of the system.

Π1 can be seen as a reaction-diffusion system composed by 9 regions with the
same dimension, V1 = V2 = · · · = V9, enclosed in the environment V0 (the set of
its rules is listed in Tab. 1). The communication possibilities within the regions
represent the free diffusion of molecules from the environment to the “top” of the

196 P. Cazzaniga et al.

Table 1. Rules of the membrane system Π1. The constants of the rules of Π1 are all set
to 1.

Reaction

r0,0 : X1 → (X1, 1)
r0,1 : X1 → (X1, 2)
r0,2 : X1 → (X1, 3)
r1,0 : X1 → (X1, 2)
r1,1 : X1 → (X1, 4)
r1,2 : X1 → (X1, 5)
r1,3 : X1 + X2 → (X1 + X3, 1)
r2,0 : X1 → (X1, 1)
r2,1 : X1 → (X1, 3)
r2,2 : X1 → (X1, 4)
r2,3 : X1 → (X1, 5)
r2,4 : X1 → (X1, 6)
r2,5 : X1 + X2 → (X1 + X3, 2)
r3,0 : X1 → (X1, 2)
r3,1 : X1 → (X1, 5)
r3,2 : X1 → (X1, 6)
r3,3 : X1 + X2 → (X1 + X3, 3)
r4,0 : X1 → (X1, 1)
r4,1 : X1 → (X1, 2)
r4,2 : X1 → (X1, 5)
r4,3 : X1 → (X1, 7)
r4,4 : X1 → (X1, 8)
r4,5 : X1 + X2 → (X1 + X3, 4)
r5,0 : X1 → (X1, 1)
r5,1 : X1 → (X1, 2)
r5,2 : X1 → (X1, 3)
r5,3 : X1 → (X1, 4)
r5,4 : X1 → (X1, 6)

Reaction

r5,5 : X1 → (X1, 7)
r5,6 : X1 → (X1, 8)
r5,7 : X1 → (X1, 9)
r5,8 : X1 + X2 → (X1 + X3, 5)
r6,0 : X1 → (X1, 2)
r6,1 : X1 → (X1, 3)
r6,2 : X1 → (X1, 5)
r6,3 : X1 → (X1, 8)
r6,4 : X1 → (X1, 9)
r6,5 : X1 + X2 → (X1 + X3, 6)
r7,0 : X1 → (X1, 0)
r7,1 : X1 → (X1, 4)
r7,2 : X1 → (X1, 5)
r7,3 : X1 → (X1, 4)
r7,4 : X1 → (X1, 8)
r7,5 : X1 + X2 → (X1 + X3, 7)
r8,0 : X1 → (X1, 0)
r8,1 : X1 → (X1, 4)
r8,2 : X1 → (X1, 5)
r8,3 : X1 → (X1, 6)
r8,4 : X1 → (X1, 7)
r8,5 : X1 → (X1, 9)
r8,6 : X1 + X2 → (X1 + X3, 8)
r9,0 : X1 → (X1, 0)
r9,1 : X1 → (X1, 5)
r9,2 : X1 → (X1, 6)
r9,3 : X1 → (X1, 8)
r9,4 : X1 + X2 → (X1 + X3, 9)

reaction volume, regions {V1, V2, V3}, within the 9 regions of the reaction volume
itself and from the “bottom”, {V7, V8, V9}, to the environment. Three types of
objects of the same dimension are included in the system. X1 is initially placed
outside of the system and once it enters in the reaction volume drives the produc-
tion of X3 starting from X2.

Note that in this example we structured the reaction volume in 9 regions to
simplify the description. However, a system analogue to Π1 with an appropriate
number of volumes of the appropriate size can be used to model the entrance of
a molecular signal in a cell leading to the activation of a biochemical reaction in
the different regions of the cell itself.

In this context the concepts of size and free space play a key role avoiding the
unlimited accumulation of objects within a particular volume. Moreover, the use
of two distinct graphs to capture the membranes structure and the communication
within the system enables the representation of adjacent membranes that do not

A Novel Variant of Tissue P Systems 197

communicate, like in the case of {V4, V5, V6} that are adjacent to V0 but do not
communicate with it.

In order to clarify how the algorithm handles the checking for the free space
during the rules execution, let us consider the potential situation in V1 at the first
step of computation. At this point we have M1 = {X5

1 , X3
2} and hence the free

space is F (V1) = 10− (5 + 3) = 2. Let us imagine that a τ has been selected such
that the set of enabled rules includes 12 · r0,0, 2 · r1,0, 2 · r1,1, 2 · r1,2, that is 12 ·X1

should enter and 6 ·X1 should exit. This situation leads to a negative value of the
free space, since 2 < (12−6). The value of τ will be updated such that τ ′ = τ/2 and
let us consider that the new set of enabled rules includes 4·r0,0, 1·r1,0, 1·r1,1, 1·r1,2,
that is 4 ·X1 should enter and 3 ·X1 exit; assuming that there is free space in the
target volumes {V2, V4, V6} the rules will be executed since 2 ≥ 1.

4.2 A system with preferential communication pathways

In the following example we show how the communication between not adjacent
membranes can be used to represent privileged pathways for the communication
of objects. We consider the membrane system Π2, represented in Fig. 2, where:

• V = {V0, . . . , V7};
• TG = (V, AT), AT = {V1 ⊂ V0, (V2, V3) ⊂ V1, (V4, V5) ⊂ V3, (V6, V7) ⊂ V5};
• CG = (V, AC), AC = {(V0, V1), (V1, V0), (V1, V2), (V1, V3), (V3, V1), (V3, V2),

(V3, V4), (V3, V5), (V5, V3), (V5, V4), (V5, V6), (V5, V7), (V7, V5), (V6, V7)};
• S = {X1, X2};
• M = {M0, . . . , M7}, M0 = {X20

1 , X20
2 }, M3 = M4 = . . . = M7 = ∅;

• R = {R0, . . . , R7}, R0 = {r0,0, r0,1}, R1 = {r1,0, . . . , r1,4}, R2 = {r2,0}, R3 =
{r3,0, . . . , r3,2, . . . , r3,4}, R4 = {r4,0}, R5 = {r5,0, . . . , r5,4}, R6 = {r6,0}, R7 =
{r7,0, . . . , r7,4}

• C = {C0, . . . , C7}, ci,j = 1 ∀i ∈ {0, . . . , 7}, j ∈ N
• DX = {1, 1};
• DV = {200, 100, 4, 50, 4, 25, 4, 10}

Π2 is a simplified version of a “cellular” system which describes the “move-
ment” of molecules X1 and X2 from the “extracellular space”, V0, to the “nucleus”,
V7, of the “cell”, represented by the volumes {V1, . . . , V7}, passing through nested
regions of the “cytoplasm”, {V1, V3, V5}, and “microtubules”, {V2, V4, V6}. The
rules, listed in Tab. 2, represent the diffusion of X1 and X2 through the consid-
ered regions. Note that, only X2 can enter in microtubule region and once it enters
in a microtubule region, its movement is possible only towards the nucleus. Con-
versely, in the other regions, the diffusion is enabled in both direction for both
molecules X1 and X2.

Hence, it is easy to predict that the evolution of the system will be characterised
by a faster movement of molecules of type X2 from the extracellular space to the
nucleus, since they will take advantage from the presence of microtubules that
constitute a privileged path towards V7.

198 P. Cazzaniga et al.

Fig. 2. A membrane system, Π1, with communication channels between not adjacent
membranes. a) Graphical representation, in which the arrows indicate the communication
possibilities; b) topological structure TG; c) communication channels CG of the system.

Table 2. Rules of the membrane system Π2. The constants of the rules of Π2 are all set
to 1.

Reaction

r0,0 : X1 → (X2, 1)
r0,1 : X2 → (X2, 1)
r1,0 : X1 → (X1, 0)
r1,1 : X2 → (X2, 0)
r1,2 : X1 → (X1, 2)
r1,3 : X1 → (X1, 3)
r1,4 : X2 → (X2, 3)
r2,0 : X1 → (X1, 4)
r3,0 : X1 → (X1, 1)
r3,1 : X2 → (X2, 1)

Reaction

r3,2 : X1 → (X1, 4)
r3,3 : X1 → (X1, 5)
r3,4 : X2 → (X2, 5)
r4,0 : X1 → (X1, 6)
r5,1 : X1 → (X1, 3)
r5,2 : X2 → (X2, 3)
r5,3 : X1 → (X1, 6)
r5,4 : X1 → (X1, 7)
r55 : X2 → (X2, 7)
r6,0 : X2 → (X1, 7)

5 Discussion and future developments

In this paper we presented a new variant of P systems inspired to tP systems
and τ -DPP. The novel properties consist in the representation of the membranes
structure and the communication within the system with two distinct directed
graphs, the possibility to define tissue-like structure where nodes have a complex
internal architecture, the association of a size to objects and membranes and the
consequent handling of the free space during the system evolution with a new
version of the τ -DPP simulation technique.

The introduction of the new properties enables the formalism to be used to
model a number of real systems in which, first of all, the unlimited accumulation

A Novel Variant of Tissue P Systems 199

of objects within membranes is not possible or, in other words, in which the free
space within regions is a critical resource for the system dynamics. In the first
test case we shown how the formalism can be used to model a reaction-diffusion
system, using the membranes to divide a reaction volume in a series of sub-volumes
of finite size.

Moreover, the use of two distinct graphs for describing the membranes struc-
ture and the communication within the system provides a formalism with a strong
expressive power: indeed it is possible to have communication channels between
membranes that are not adjacent and, conversely, it is possible that adjacent mem-
branes do not communicate. The first possibility allows the creation of preferential
paths of communication; this feature has been used in the second test case to re-
produce the role of microtubules in the protein transport within cells. On the
contrary, the second communication strategy has been used to model the first test
case. Finally, as already stated above, membranes can have a complex structure
hierarchically organised in a tree-like structure (this feature has been used in both
test cases).

As a future improvement of this work, we plan to better characterise and
study the role of space occupation and diffusion of molecules among the volumes
of the modelled systems. Furthermore, the simulation algorithm can be optimised
in order to obtain a more efficient procedure and, otherwise, alternative strategies
for the rules selection and to handle the rules applicability can be tested.

As a development of the proposed work, we are also studying the computational
power of this new variant of P systems, in order to prove if it is computationally
(Turing) complete.

Acknowledgement

This work has been supported by the NET2DRUG, EGEE-III, BBMRI, EDGE
European projects, by the MIUR FIRB LITBIO (RBLA0332RH), ITALBIONET
(RBPR05ZK2Z), BIOPOPGEN (RBIN064YAT), CNR-BIOINFORMATICS ini-
tiatives, and by the project FAR-08 “Modelli di calcolo naturale e applicazioni”.

References

1. A. Alhazov, R. Freund, and M. Oswald. Cell/symbol complexity of tissue p systems
with symport/antiport rules. Int. J. Found. Comput. Sci., 17(1):3–25, 2006.

2. F. Bernardini and M. Gheorghe. Cell communication in tissue p systems: universality
results. Soft Comput., 9(9):640–649, 2005.

3. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Seasonal variance in p system
models for metapopulations. Progress in Natural Science, 17:392 – 400, 2007.

4. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Modelling metapopulations
with stochastic membrane systems. Biosystems, 91(3):499 – 514, 2008. P-Systems
Applications to Systems Biology.

5. Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the
tau-leaping simulation method. J Chem Phys, 124(4):044109, Jan 2006.

200 P. Cazzaniga et al.

6. M. Cavaliere. Evolution-communication p systems. In WMC-CdeA ’02: Revised
Papers from the International Workshop on Membrane Computing, pages 134–145,
London, UK, 2003. Springer-Verlag.

7. P. Cazzaniga, D. Pescini, D. Besozzi, and G. Mauri. Tau leaping stochastic sim-
ulation method in p systems. In H. J. Hoogeboom, G. Paun, G. Rozenberg, and
A. Salomaa, editors, Workshop on Membrane Computing, volume 4361 of Lecture
Notes in Computer Science, pages 298–313. Springer, 2006.

8. A. De Wit. Spatial patterns and spatiotemporal dynamics in chemical systems. Adv.
Chem. Phys., 109:435 – 513, 1999.

9. R. Freund, G. Păun, and M. J. Pérez-Jiménez. Tissue p systems with channel states.
Theoretical Computer Science, 330(1):101 – 116, 2005.

10. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

11. D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. The Journal of Chemical Physics, 115:1716 – 1733, 2001.

12. M. Ionescu, C. Mart́ın-Vide, A. Păun, and G. Păun. Unexpected universality re-
sults for three classes of p systems with symport/antiport. Natural Computing: an
international journal, 2(4):337–348, 2003.

13. O. Marion. Independent agents in a globalized world modelled by tissue p systems.
Artificial Life and Robotics, 11(2):171–174, July 2007.

14. C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue p systems.
Theoretical Computer Science, 296(2):295 – 326, 2003.

15. C. Mart́ın-Vide, J. Pazos, G. Păun, and A. Rodŕıguez-Patón. A new class of symbolic
abstract neural nets: Tissue p systems. In COCOON ’02: Proceedings of the 8th
Annual International Conference on Computing and Combinatorics, pages 290–299,
London, UK, 2002. Springer-Verlag.

16. R. Nicolescu, M. Dinneen, and Y. Kim. Structured modeling with hyperdag p sys-
tems. In Proceedings of the 7th Brainstorming week on Membrane Computing, vol-
ume II, pages 85–108, 2009.

17. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61:108–143, 1998.

18. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
19. G. Păun and R. A. Păun. Membrane computing as a framework for modeling eco-

nomic processes. Symbolic and Numeric Algorithms for Scientific Computing, Inter-
national Symposium on, 0:11–18, 2005.

20. G. Păun, Y. Sakakibara, and T. Yokomori. P systems on graphs of restricted forms.
Publicationes Mathematicae Debrecen, 60:635–660, 2002.

21. D. Pescini, D. Besozzi, and G. Mauri. Investigating local evolutions in dynamical
probabilistic p systems. In Proc. Seventh International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing SYNASC 2005, page 440, 2005.

22. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic p systems.
International Journal of Foundations of Computer Science, 17:183 – 204, 2006.

23. D. Pescini, D. Besozzi, C. Zandron, and G. Mauri. Analysis and simulation of dy-
namics in probabilistic p systems. In A. Carbone and N. A. Pierce, editors, DNA,
volume 3892 of Lecture Notes in Computer Science, pages 236–247. Springer, 2005.

24. C. W. Pouton, K. M. Wagstaff, D. M. Roth, G. W. Moseley, and D. A. Jans. Targeted
delivery to the nucleus. Adv Drug Deliv Rev, 59(8):698–717, Aug 2007.

Eco-P Colonies?

Luděk Cienciala, Lucie Ciencialová,

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova}@fpf.slu.cz

Summary. Eco-P colonies are constructed as natural extension of P colonies with dy-
namical evolution of environment. P colonies are one of the kind of computational models
based on independent autonomous agents represented by membrane systems working and
evolving in a shared environment. These acts are based on the set of program associated
with every agent. There are two types of agents in eco-P colonies - senders and con-
sumers. They differ by the type of programs. The eco-P colonies have a mechanism (0L
scheme) which can change the objects in the environment. We show that eco-P colonies
with ”active” environment and with two agents consumers can generate every recursive
enumerable set of natural numbers and the family of sets of natural numbers computed
by partially blind register machine is subset of the family of sets of natural numbers
computed by eco-P colonies with ”static” environment and one agent sender and one
agent consumer.

1 Introduction

The computation model of eco-P colonies is based on two models of theoretical
computer science: membrane systems and eco-colonies. Membrane systems (P sys-
tems) were introduced by Gheorghe Păun in [9] in 1998. From this time there are
lots of types of P systems differing by type of rules, objects or by structure. More
information about P systems can reader find in [10, 11], about eco-colonies in [4].

There are three types of entities in eco-P colonies. (1) The objects are symbols,
they can be evolved or moved. (2) The agents (very simple one membrane systems)
work according to their programs. In one step the agent can consume one object
(transport it inside) or produce one object (transport it outside). Every agent
contain two objects and this number of objects inside of agent stay constant during
all the computation. (3) The environment of eco-P colony is used as communication
channel for agents. Through the environment the agents are able to affect the
behaviour of another agent. In the environment special objects occur, we call
? This research is partially supported by projects GAČR 201/09/P075, IGS 37/2009 (L.

Ciencialová) and by research plan MSM 4781305903 (L. Cienciala).

202 L. Cienciala, L. Ciencialová

them environmental and we denote them by e. There are sufficient number of
copies of the object e. The environment can change independently to the agents.
The evolution of the environment is independent from the states of agents and it
is done by parallel using context free rules of 0L scheme to all possible objects
placed in the environment.

The computation is parallel, in every step every agent nondeterministically
chooses one of its applicable programs, if it has any, and executes it. Each ob-
ject in the environment which is unused by agent is changed by 0L scheme. The
computation ends by halting when no agent has applicable program. With every
halting computation we associate the result of computation. It is the number of
copies of specific object placed in the environment at the moment of halting of
computation. We have to note, that at the end of computation some rules of 0L
scheme are still applicable.

2 Definitions

Throughout the paper we assume the reader is familiar with basic of formal au-
tomata and language theory. We introduce notation used in the paper.

We use NRE to denote the family of recursively enumerable set of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet Σ
(except empty word ε). For the length of the word w ∈ Σ∗ we use notation |w|
and for the number of occurrences of symbol a ∈ Σ in w |w|a.

A multiset of objects M is a pair M(V, f), where V is an arbitrary (not nec-
essarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of ob-
jects V is denoted by V ◦. The set V ′ is called the support of M and denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0. The cardinality of M , denoted by card(M),
is defined by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V = {ai, . . . an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

The mechanism of evolution in the environment is based on 0L schemes. It is
a pair (Σ,P), where Σ is the alphabet of 0L scheme and P is the set of context
free rules, it fulfilled following condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a→ α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n.

A register machine[8] is the construct M = (m,H, l0, lh, P) where:
- m is a number of registers, H is a set of instruction labels,
- l0 is an initial/start label, lh is the final label,
- P is a finite set of instructions injectively labelled with the elements

from the given set H.
The instructions of the register machine are of the following forms:

Eco-P Colonies 203

l1 : (ADD(r), l2, l3) Add 1 to the contents of the register r and proceed to
the instruction (labelled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r is not empty, then subtract 1 from its
contents and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this in-
struction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct. The register machine M computes a set N(M)
of numbers in the following way: we start with all registers empty (hence storing
the number zero) with the instruction with label l0 and we proceed to apply
the instructions as indicated by the labels (and made possible by the contents of
registers). If we reach the halt instruction, then the number stored at that time in
the register 1 is said to be computed by M and hence it is introduced in N(M).
(Because of the nondeterminism in choosing the continuation of the computation
in the case of ADD-instructions, N(M) can be an infinite set.) The family of sets
of numbers computed by register machines is denoted by NRM . It is known (see
e.g.[7]) that in this way we can compute all sets of numbers which are Turing
computable NRE.
Theorem 1. [8] NRM = NRE.

Moreover, we call a register machine partially blind, if we interpret a subtract
instruction in the following way: l1 : (S(r); l2; l3) - if register r is not empty,
then subtract one from its contents and go to instruction l2 or to instruction l3;
if register r is empty when attempting to decrement register r, then the program
ends without yielding a result. When the register machine reaches the final state,
the result obtained in the first register is only taken into account if the remaining
registers are empty. The family of sets of non-negative integers generated by par-
tially blind register machines is denoted by NRMpb. The partially blind register
machine accepts a proper subset of NRE.
Theorem 2. NRMpb ⊂ NRM .

3 Eco-P colony

In this part we define the eco-P colony, the step and the result of the computation
of eco-P colony.

Definition 1. The eco-P colony is structure
Π = (A, e, f, VE , DE , B1, . . . , Bn), where

• A is the alphabet of the colony, its elements are called objects,
• e is the basic (environmental) object of the colony, e ∈ A,
• f is final object of the colony, f ∈ A,
• VE is the initial content of the environment, VE ∈ (A− {e})◦,
• DE is 0L scheme (A,PE), where PE is the set of context free rules,

204 L. Cienciala, L. Ciencialová

• Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (Oi, Pi), where
Oi is the multiset over A, it defines the initial state (content) of the agent Bi

and |Oi| = 2 and Pi = {pi,1, . . . , pi,ki} is the finite set of programs of two types:
(1) generating 〈a→ bc, d out〉 - the program is applicable if agent contents ob-
jects a and d. Object a is used for generation of new content of the agent and
object d agent sends to the environment.
(2) consuming 〈ab→ c, d in〉 - the program is applicable if the agent contents
objects a and b. These objects are evolved to one new object c and object d the
agent imports from the environment.

Every agent has only one type of programs. The agent with generating programs
is called sender and the agent with consuming programs is called consumer.

An initial configuration of eco-P colony is (n+ 1)-tuple (O1, . . . , On, VE) of
the multisets of objects placed in eco-P colony at the beginning of the computation,
where Oi (1 ≤ i ≤ n) is content of the agent Bi and VE is the multiset of object in
the environment different from e. In general, the configuration of the eco-P colony
Π is defined as (n + 1)-tuple (w1, . . . , wn, wE), where wi represents all objects
inside of i-th agent, |wi| = 2, 1 ≤ i ≤ n, wE ∈ (A−{e})◦ is composed by objects
different from e placed in the environment.

The computation of eco-P colonies is maximally parallel. It means that in
every step the maximum number of agents works. Each agent who can use one or
more of its program must be active. If the agent has more applicable programs, it
nondeterministically chooses one program and executes it.

Let the programs of each Pi be labelled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To define the step of computation we have to introduce following four func-
tions: whatsin, demand , putout ,newin. The first two functions assign the multisets
of objects needed to execution of the program. The last two functions assign the
multisets of objects placed inside and outside of agent after execution of given
program. Formally, let 〈ab→ c, d in〉 be consuming program and 〈a→ bc, d out〉
be generating program, than we define functions:

whatsin(pk) =
〈
{ab} for consuming program pk

{ad} for generating program pk

demand(pk) =
〈
{d} for consuming program pk

∅ for generating program pk

newin(pk) =
〈
{cd} for consuming program pk

{bc} for generating program pk

putout(pk) =
〈
∅ for consuming program pk

{d} for generating program pk

Passing from the configuration to another one is defined as
(w1, . . . , wn, wE)⇒ (w′1, . . . , w

′
n, w

′
E) ,

where the following conditions are fulfilled:
1. The set of the labels of programs P with |P | ≤ n is constructed in the way that

Eco-P Colonies 205

• p, p′ ∈ P , p 6= p′, p ∈ lab (Pj),
p′ ∈ lab (Pi) , i 6= j,

• for every p ∈ P , p ∈ lab (Pj),
whatsin (p) = wj and

⋃
p∈P

demand (p) ⊆ wE .

2. The set P of selected labels of programs is maximal, it means that there is no
other program with label r ∈

⋃
1≤i≤n lab (Pi), r /∈ P , which can be add to the set

P such that previous conditions will be fulfilled.
Generally for every j, 1 ≤ j ≤ n, for which there exists p ∈ P , such that p ∈
lab (Pj), let w′j = newin (p). If there is no p ∈ P , p ∈ lab (Pj) for some j, 1 ≤ j ≤ n,
let w′j = wj . Let wE −

⋃
p∈P

demand (p) ⇒DE
w′′E be the step of derivation in 0L

scheme (A,PE) and then w′E = w′′E ∪
⋃

p∈P

putout (p) .

The union and ”-” are operations over multisets.
The configuration is final if the set P cannot be chosen to be other than the

empty set. The set of the final configurations we denote by H. If the computation
halts, we can obtain a result. The result of computation is given by the number
of objects f placed in the environment at the end of the computation. The set of
the numbers computed by eco-P colony Π is defined as

N (Π) = {|wE |f | (O1, . . . , On, VE)⇒∗ (w1, . . . , wn, wE) ∈ H},
where (O1, . . . , On, VE) is the initial configuration, (w1, . . . , wn, wE) is the final
configuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

Let Π = (A, e, f, VE , DE , B1, . . . , Bn) be eco-P colony. The maximal
number of programs associated with one agent we call the height and the degree
of eco-P colony Π is the number of agents in Π.

We denote NEPCOLx,y,z(n, h) the family of the sets computing by eco-
P colonies such that:

- x can be formed by two symbols: s, c. s - if there is agent sender
in eco-P colony, c - if there is agent consumer in eco-P colony,

- y = passive if the rules of 0L scheme are of type a→ a only,

- y = active if the set of rules of 0L scheme disposes of at least one rule of
another type than a→ a,

- z = ini if the environment or agents contains objects different from e,
otherwise we eliminate this notation,

- the degree of eco-P colony is at most n and

- the height is at most h.
We compare eco-P colonies with above-mentioned computation models. In [2]

the author shows that:
Theorem 3. [2] NEPCOLsc,passive(3, ∗) = NRE.

We prove that eco-P colony with active environment and with two agents con-
sumers can generate every recursive enumerable set of natural numbers.
Theorem 4. NEPCOLc,active,ini(2, ∗) = NRE.

206 L. Cienciala, L. Ciencialová

Proof. Consider register machine M = (m,H, l0, lh, P). All labels from the set H
are objects in eco-P colony. The content of register i is represented by the number
of copies of objects ai placed in the environment.

At the beginning of computation there are object l0 and auxiliary object D in
the environment. Object l0 corresponds with initial label of instruction of M .

The instruction li = (ADD(r), lj , lk) will be realized by rules:
ENV :

1 : li → arl
′
iD;

2 : l′i → lj lkD;
3 : lj → ljD;
4 : lk → lkD;

B1 :

5 :
〈
Pe→ P ; lj in

〉
;

6 :
〈
Pe→ P ; lk in

〉
;

7 :
〈
Plj → P ; e in

〉
;

8 :
〈
Plk → P ; e in

〉
;

The computation is done in such a way that 0L scheme works in the environ-
ment, it executes adding one to the content of register r (generate one copy of
object ar - the rule number 1) and generating of the objects lj and lk, labels of
all instructions which will be possibly executed in the next steps of computation
of the register machine M (the rule 2). In the next step agent consumer B1 takes
one of these objects inside the agent - the rule 5 or 6. In the next step instruction
lj or lk will be simulated.

In the eco-P colony the instruction li : (SUB(r), lj , lk) is realized by following
rules and programs:

ENV :

9 : li → li©lRi D;
10 : lRi → lPi D;
11 : lPi → lj lk D;
12 : lj → l′′jD;
13 : lk → l′′kD;
14 : l′′j → ljD;
15 : l′′k → lkD;

B1 :

16 : 〈Pe→ nr; li© in〉 ;
17 : 〈 li©nr → Lk; ar in〉 ;
18 :

〈
li©nr → R; lj in

〉
;

19 :
〈
arLk → R; lk in

〉
;

20 :
〈

lj R→ P ; e in
〉

;

21 :
〈

lk R→ P ; e in
〉

;
If there is the object li (the label of SUB-instruction) in the environment, 0L

scheme generates (using the rule no. 9) the object li©. This is the message for the
agent B1, that the agent has to try to consume one copy of object ar from the
environment (try to subtract one from the content of register r.)

If the agent is successful (agent used program 17) in the next step agent con-
sume object lk and computation will follow with instruction labelled lj because
object lj is present in the environment.

If the agent do not consume object ar (register r contents 0, there was no one
object ar in the environment), in the next step the agent take object lj from the
environment and computation will proceed with instruction labelled lk.

For the halting instruction there is rule lh → lh in 0L scheme, this rule is of
the same type as rules for other objects, which are not changed by environment
during all the computation (for example e, ar, . . .).

Eco-P Colonies 207

During the computation there are moments when the agent B1 has no ap-
plicable program. It means that computation will be terminated in such mo-
ment. To solve this problem we add one more agent to the eco-P colony (agent
B2), it has to work during all computation. The agent B2 has only one program
〈PD → P ;D in〉.

We construct eco-P colony Π = (A, e, f, VE , DE , B1, B2) with:
- alphabet A = {li, l′i, l′′i , li©, li , Li | for each li ∈ H} ∪ {ai | 1 ≤ i ≤

m} ∪ {e,R, P,D}
- final object f = a1,
- initial content of the environment VE = l0D, 0L scheme DE = (A,PE)
- set of rules of the environment PE = {ai → ai 1 ≤ i ≤ m} ∪ {e → e}∪

∪{the rules already mentioned above}
- and the agents B1 = (Pe, P1), B2 = (PD,P2), the sets of programs are de-

scribed above.
Eco-P colony starts its computation with object l0 in the environment and sim-

ulation of instruction labelled l0. By the rules and programs it places and deletes
from the environment the objects ar and halts its computation when object lh
appears in the environment. The result of computation is the number of copies of
object a1 placed in the environment at the end of computation. No other compu-
tation can be executed in eco-P colony. So the computation in the eco-P colony Π
correctly simulates computation in register machine.

Eco-P colonies with ”active” environment and with two agents - consumers can
generate every recursively enumerable set of natural numbers. The question is if
an eco-P colony with ”static” environment (0L scheme contains the rule of type
a→ a only) can generate it too.
Theorem 5. NEPCOLsc,passive(2, ∗) ⊇ NRMpb.

Proof. (Draft) Let us consider partially blind register machine M = (m,H, l0,
lh, P). For all labels from the set H we construct corresponding objects in eco-
P colony Π. The content of register i will be represented by the number of copies
of objects ai placed in the environment.

At the beginning of computation there are only copies environmental object e
in the environment. In eco-P colony Π there are two agents: agent B1, which is
sender, and agent B2, it is consumer.
B1

0 : 〈e→ l0e; e out〉 ;
The object l0 corresponds to the label of the first instruction realized by register

machine and it is own by agent B1.
The instruction li = (ADD(r), lj , lk) is realized by following programs:

B1

1 : 〈li → arl
′
i; e out〉 ; 2 : 〈l′i → lje; ar out〉 ; 3 : 〈l′i → lke; ar out〉 ;

The agent B1 places to the environment step by step objects: ar - adding one
to the content of register r (program 1) and object lj (program 2) or object lk
(program 3).

208 L. Cienciala, L. Ciencialová

The instruction li : (SUB(r), lj , lk) is in eco-P colony realized by following
programs:
B1

4 :
〈
li → lRi li©; e out

〉
; 5 :

〈
lRi → lR1

i e; li© out
〉

; 6 :
〈
lR1
i → lR2

i l′′i ; e out
〉

;
7 :
〈
lR2
i → lje; l′′i out

〉
; 8 :

〈
lR2
i → lke; l′′i out

〉
; 9 :

〈
lj → l′je; e out

〉
;

10 :
〈
lk → l′ie; e out

〉
; 11 :

〈
l′j → lje; e out

〉
; 12 :

〈
l′k → lke; e out

〉
;

B2

13 : 〈ee→ nr; li© in〉 ; 14 : 〈 li©nr → Li; ar in〉 ; 15 : 〈 li©nr → R; l′′i in〉 ;
16 : 〈Rl′′i → R; e in〉 ; 17 : 〈Re→ R; e in〉 ; 18 : 〈Liar → e; l′′i in〉 ;
19 : 〈l′′i e→ e; e in〉 ;

The subtracting is done in four phases: (1) It starts with object li inside agent
B1 corresponding with a label of some SUB-instruction. The agent places object
li© to the environment (programs 4 and 5). It is a message for agent B2 to try to

consume object ar from the environment. (2) The agent B2 consume object li©
(program 13) and then object ar (program 14). (3) In last step we describe at
the same time there are two applicable programs 14 and 15. The execution of the
program 15 make the computation endless. Program 17 is the only one applicable
program and it is circling. Program 15 must be used if there is no object ar in the
environment (this is the case of unsuccessful subtracting- register r stores value
zero). Because of nondeterminism there exists computation correctly decreasing
the number of copies of ar in the environment if this is possible. (4) Agent B1

work independently from agent B2. It continues the computation, it means that
it generates labels of instructions and objects ar regardless of success or failure of
removing demanded object by agent B2.

For instruction lh there is no program applicable in agent B1. If every subtract-
ing instruction was successfully executed agent B2 has no applicable program too.
Then computation halts. The result is the number of object a1 placed in the envi-
ronment and it corresponds to the result of successful computation in the partially
blind register machine.

We construct eco-P colony Π = (A, e, f, VE , DE , B1, B2) with alphabet A =
{li, l′i, l′′i , li©, Li, l

R
i , , l

R1
i , lR2

i | for each li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e,R}, final
object f = a1, initial state of the environment VE = ε, 0L scheme DE = (A,PE),
the set of rules of environment PE = {x → x | ∀x ∈ A} and with agents B1 =
(ee, P1), B2 = (ee, P2). The sets of programs we describe in previous paragraphs.

We prove that NRMpb is the subset of the family the sets of natural numbers
generated by eco-P colonies with one agent sender and one agent consumer.

4 Conclusions

In this paper we presented the results obtained during research of eco-P colonies -
the extended model of P colonies. We show that eco-P colonies with active environ-
ment and with two agents consumers can compute every recursively enumerable

Eco-P Colonies 209

set of natural numbers. We show that the family of the sets of natural numbers
computed by partially blind register machine is subset of the family of sets of nat-
ural numbers computed by eco-P colonies with static environment and one agent
consumer and one agent sender.

References

1. L. Cienciala, L. Ciencialová, A. Kelemenová. On the number of agents in P colonies.
In: Membrane Computing. 8th International Workshop, WMC 2007. Thessaloniki,
Greece, June 25-28, 2007. Revised Selected and Invited Papers. Edited by G. Eleft-
herakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa. Volume 4860 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg, 2007, 193-208.

2. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, G. Vaszil. On Very Simple P
Colonies, Proceeding of The seventh Brainstorming Week on Membrane Comput-
ing,Sevilla 2009.

3. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London,
1994.

4. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun: Eco-grammar Systems.
Grammatical Framework for Studying Lifelike Interactions. Artificial Life 3, 1997,
l-28.

5. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun, Gy. Vaszil. Computing with
cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Computing
12:201-215, 2006.

6. J. Kelemen, A. Kelemenová. On P colonies, a biochemically inspired model of com-
putation. Proc. of the 6th International Symposium of Hungarian Researchers on
Computational Intelligence, Budapest TECH, Hungary, 2005, 40-56.

7. J. Kelemen, A. Kelemenová, Gh. Păun. Preview of P colonies: A biochemically in-
spired computing model. In: Workshop and Tutorial Proceedings. Ninth International
Conference on the Simulation and Synthesis of Living Systems (Alife IX). Edited by
M. Bedau et al. Boston Mass., 2004, 82-86.

8. M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences
61, 2000, 108-143.

10. Gh. Păun. Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
11. P systems web page. January 15 2001. April 23 2009 <http://ppage.psystems.eu>

Decision Trees for Obtaining Active Rules in
Transition P Systems

Juan Alberto de Frutos, Luis Fernández, Fernando Arroyo

Dpto. de Lenguajes, Proyectos y Sistemas Informáticos
Escuela Unversitaria de Informática - Universidad Politécnica de Madrid
Crta. de Valencia Km. 7 - 28031 Madrid - Spain
{jafrutos, setillo, farroyo}@eui.upm.es

Summary. The aim of this work is to reduce the time that a membrane spends in
working out the active rules subset in every evolution step. With this purpose, it is
proposed carrying out a previous static analysis over the Transition P system, obtaning
a decision tree with the collected information. In such a way that active rules subset will
be determined as a classification problem. It will be shown advantages of incorporating
decision trees for this task, and also an analysis of suitability in some architectures
proposed to implement Transition P systems. Specifically, architectures based on a cluster
of computers and microcontrollers.

1 Introduction

Membrane Computing was introduced by Gh. Păun in [8], as a new branch of
natural computing, inspired on living cells. Membrane systems establish a formal
framework in which a simplified model of cells constitutes a computational device.
Starting from a basic model, Transition P Systems, many different variants have
been considered; and many of them have been proved to be, in computational
power, equivalent to the Turing Machine. A Transition P System evolves through
transitions between two consecutive configurations that are determined by the
membrane structure and multisets present inside membranes. It can be considered
two sequential phases in every transition step: application of evolution rules inside
membranes, and communication among membranes in the system. The present
work is focused on optimizing the first one.

The first task in application of evolution rules inside a membrane phase is to
determine whether each rule is active or not. The subset of active rules will be
applied subsequently in a maximal parallel and non deterministic way. There are
many papers in which the main goal is to improve the internal parallelism of the
membrane, in such a way that several active rules can be applied simultaneously.
However, as regards optimization of the process of obtaining active rules, only the
work carried out by Fernández et al. [4] can be mentioned. The main goal of the

Decision Trees for Obtaining Active Rules in Transition P Systems 211

present work is to propose decision trees as an optimized solution for determining
active rules in some architectures.

Architectures based on a cluster of computers connected by a local net
[9], [3], [10], [1] and [2]. Each computer houses several membranes, reaching a cer-
tain degree of parallelism. We want to point out the analysis carried out in [10] in
which Tejedor et al. try particularly to tackle the bottleneck communication prob-
lem, proposing an architecture that avoids communication collisions and reduces
the number and lenght of external communications. They conclude that ”if it is
possible to make that application time be N faster times [...] the number of mem-
branes that would be run in a processor would be multiplied by

√
N , the number

of required processors would be divided by the same factor and the time required
to perform an evolution step would improve approximately with the same factor√
N”. The goal of the present work fits just in this context, we will try to reduce

the application time inside a membrane.
Architectures based on microcontrollers. This line of implementing P

systems has been proposed by Gutierrez et al. in [6] and [7]. It consists in a low
cost hardware based on microcontrollers PIC16F88 that making use of external
memory modules is able to solve the problem of small capacity of storage in these
devices. It means a flexible solution due to microcontrollers allow to be software
programmed. Figure 1 contains a picture with a real implementation. The repre-
sented microcontroller has been adapted to perform membrane execution. Besides,
it has been designed to be connected up to with 254 additional microcontrollers.

Fig. 1. Circuit with a microcontroller PIC16F88 for implementing P systems.

2 Conditions for an evolution rule to be active

An evolution rule in membrane i can be applied in an evolution step if it fulfils
three requisites: useful, applicable and active. A rule rj is useful if all targets are
adjacent to membrane i and not inhibited. A useful rule rj is applicable if its
antecedent is included in the multiset of membrane i. Finally, an applicable rule
rj is active if there is no other applicable rule with higher priority.

212 J.A. de Frutos, L. Fernández, F. Arroyo

The usefulness state concept for determining useful rules is going to be an
important issue for the present paper. It was introduced in [5]. This state allows
any membrane to know the set of child membranes with which communication is
feasible, that is to say, adjacent and not inhibited membranes. This set of child
membranes constitute the membrane context, which changes dynamically as mem-
branes are dissolved or inhibited in the P system. The set of usefulness states for a
membrane i in a Transition P system can be obtained statically at analysis time,
as it is detailed in [5].

Fig. 2. An example of transition P system

Figure 2 represents an example of a Transition P system. Only rules associated
to membrane 1 are detailed. Symbol δ in membranes 2, 4 and 6 represents the
possibility of these membranes to be dissolved by application of some rules inside
them. The symbol τ represents the possibility of inhibition for membranes 2 and
6 by the same cause. Usefulness states for membrane 1, together with their corre-
sponding contexts, are depicted in first and second columns of table 1. Futhermore,
it can be obtained statically the set of useful rules from a given usefulness state
qi. Third and fourth columns in table 1 represent useful rules for every usefulness
state.

Usefulness state Context Useful rules Useful rules when permeable

q0 (1001) {2, 3} r1, r2, r5 r3

q1 (0111) {4, 5, 3} r2, r4, r5

q2 (0011) {5, 3} r2, r5

q3 (0001) {3} r2, r5

Table 1. Usefulness states for membrane 1

Decision Trees for Obtaining Active Rules in Transition P Systems 213

Usefulness states are proposed to be encoded in [5] by means of the total
context of a membrane, defined as the set of all membranes that eventually
can become children of that membrane. For instance, in our example of figure
1, TC(1) = {2, 4, 5, 3}. Each one of the usefulness states for a membrane i is en-
coded by TC(i), depending on its context, with binary logic. Thus, the usefulness
state q0, that represents the context {2,3}, is encoded as 1001.

3 Decision trees for active rules

A decision tree is a tool that allows to determine the class which one element
belongs to, depending on the values of some attributes or properties of the element.
Each non-leaf node of a decision tree corresponds to an input attribute, and each
arc to a possible value of that attribute. A leaf node corresponds to the expected
value of the output attribute, that is to say, the element classification. An element
is classified by starting at the root node of the decision tree, testing the attribute
specified by this node and moving down the tree branch corresponding to the value
of the attribute. This process is repeated until a leaf node is reached. There are
a lot of algorithms to generate decision trees. Specifically ID3 is an outstanding
algorithm belonging to TDIDT family (Top-Down Induction of Decision Trees).

Fernández et al. in [4] proposed incorporating decision trees in the calculus of
evolution rules applicability. They reach an important reduction of the number of
checks necessary for determining the applicable rules subset. The present work,
supporting in usefulness states analysis, tries to extend those decision trees, in
such a way that conditions for usefulness and priorities among rules will be also
taken into account. The decision tree for a membrane will classify the state of that
membrane in every evolution step, determining the current active rules subset.

3.1 Attributes

The set of attributes Ai is established as properties necessary to define a state or
situation of the membrane i in the P System. Specifically, the set Ai consists of
the following attributes:

1. Necessary attributes to set up the usefulness state of membrane i. Thus, there
will be one attribute for each membrane belonging to membrane i total context.
The associated value will be true if the represented child membrane belongs
to the current usefulness state.

Ai ⊃ {a ≡ mj | j ∈ TC(i)}

2. One attribute more to determine inhibition in the permeability state of mem-
brane i. The value true corresponds with membrane inhibition.

Ai ⊃ {a ≡ I}

214 J.A. de Frutos, L. Fernández, F. Arroyo

3. Furthermore, as proposed in [4], we consider attributes for applicability of
rules. These attributes represent the set of weight checks between objects from
the membrane multiset and objects from antecedents of evolution rules. Nei-
ther repetitions nor checks with zero are considered.

Ai ⊃ {a ≡ |ω|u ≥ k | |input(r)|u = k ∧ k 6= 0 ∀u ∈ U}

Where |ω|u represents the weight of the symbol u in ω (multiset of membrane
i); and |input(r)|u is the weight of the symbol u in the antecedent of r.

As every possible membrane situation will be considered with an instance, the
amount of instances in the training data for a membrane i is the following:

|Ei| = |Qi| ∗
∏
u∈U

(|Cu
i |+ 1)

where |Qi| is the number of usefulness states for membrane i, and |Cu
i | is the

number of different checks with symbol u in any rule antecedent of membrane
i, that is to say, attributes with the form |w|u ≥ k. Besides, if membrane i has
inhibiting capability, this value has to be multiplied by 2 in order to consider
attribute I.

Fig. 3. Instances of membrane 1 for ID3 algorithm

Coming back to the example of P system introduced in figure 1, attributes for
membrane 1 are the following:

• As TC(1) = {2, 4, 5, 3}, four attributes are needed: m2, m4, m5, m3.
• As membrane 1 has inhibiting capability, an attribute I has to be included.
• Finally, the different checks for applicability in evolution rules are the following:
|w|a ≥ 4, |w|a ≥ 2, |w|b ≥ 5, |w|b ≥ 2 and |w|b ≥ 1.

Decision Trees for Obtaining Active Rules in Transition P Systems 215

The resulting training data for membrane 1 are shown in figure 3. As example,
1001Ia2b5 represents the instance in which usefulness state is 1001, permeability
state is inhibited, the amount of objects a is at least 2, but not more than 4, and
finally, the amount of objects b is at least 5.

3.2 Classification

Each instance is classified into the corresponding set of active rules, as it is shown
in figure 3. This task is carried out at analysis time as follows:

• Firstly, useful rules are obtained from the usefulness state and the permeability
state (table 1). For instance, 1001Ia2b5 corresponds with the set of useful rules
{r1, r2, r5}.

• Secondly, attributes related to checks of objects weights in multiset determine
the applicability property of every useful rule, as it is detailed in [4]. For in-
stance, 1001Ia2b5 corresponds with the set of applicable rules {r1, r2, r5}, due
to every useful rule is also applicable.

• Lastly, priorities among rules have to be considered in order to get the active
rules subset, which implies to determine the maximal over the priority relation
of the applicable rules subset. With this aim, we have to work out a transitivity
matrix (M) expressing the priority relation. Then the maximal is obtained as
follows:

C = Max(Applicable) = Applicable ∧ ¬(Applicable ∗M)

Following with our example 1001Ia2b5, two priorities are defined for mem-
brane 1: r1 > r3 and r3 > r5, which determine a transitivity matrix M .
If we represent the applicable rules subset with binary logic as 11001, then
C = Max(11001) = (11001) ∧ ¬((11001) ∗M) = 11000, representing
{r1, r2}.

Therefore, all instances are available at analysis time. Thus ID3 algorithm can
be applied obtaining a decision tree. Specifically, decision tree corresponding to
membrane 1 of our example is depicted in figure 4.

Such decision tree can be easily software implemented. Besides, as computation
of active rules is a process performed inside every membrane in every evolution
step, we propose optimizing it with an assembly language. Anyway, this sofware
is a suitable solution for architectures based on a cluster of processors, such as [9],
[10], [1] and [2], in which each membrane evolves in a single process. Such process
would contain the software obtained for the decision tree. As regards architectures
based on microcontrollers PIC16F88, decision trees solution fits properly, due to
microcontrollers can be software programmed. More precisely, in [7] Gutierrez et
al. made use of the microchip MPLAB IDE integrated environment, in which the
tool MPASM allows to work with assembly code. An additional advantage is the
avoidance of the transitivity matrix, which is important due to the problem of
scarce memory for data in microcontrollers.

216 J.A. de Frutos, L. Fernández, F. Arroyo

Fig. 4. Decision tree obtained by ID3 algorithm for membrane 1

4 Analysis of results and conclusions

Now, we are going to compare decision trees as proposed here with classical so-
lutions for obtaining active rules, which consist of three sequential algorithms,
determining useful, applicable and active evolution rules respectively. Table 2 sum-
marizes the results obtained in this comparison, where |R| represents the number
of evolution rules in the membrane, |TC| is the length of the membrane total
context, |U | is the amount of symbols in the alphabet and |Cu

i | is the number of
different checks for applicability.

Useful rules Applicable rules Active rules

Classical Algorithms O(n) O(n) O(n2) + O(n)
n = |R| ∗ (|TC|+ 1) n = |R| ∗ |U | n = |R|

Decision tree O(n)
n = |TC|+ 1 +

∑
u∈U

|Cu
i |

Table 2. Complexity order of algorithms for obtaining active rules

From this comparison, we conclude that decision tree solution performs a fewer
number of operations than classical solutions. Additionally, we have applied both
kind of solutions to a set of published P systems and results confirm our conclusion.
Specifically, the total amount of operations in decision trees vary from 11,32% to
21,21% of the total amount of operations in classical algorithms.

As regards memory requirements, we have to point out some remarks. A deci-
sion tree handicap is the need to keep a different code for every membrane. On the
other hand, a decision tree advantage is the avoidance of the transitivity matrix.
Finally, we have to mention that decision trees could grow up significantly when
the number of attributes is high. Then, depending on the implementation archi-
tecture, memory space could be insufficient for decision trees and consecuently

Decision Trees for Obtaining Active Rules in Transition P Systems 217

classical algorithms had to be chosen. Anyway, as decision tree is obtained at
analysis time, the best solution can be determined at that time.

As conclusion, decision tree solution is significantly more efficient than classical
solutions for determining active rules. Moreover, some architectures for implement-
ing P systems can get profit from this proposal, such as architectures based on
a cluster of computers and architectures based on microcontrollers. Finally, ac-
cording with the work carried out by Tejedor et al. in [10], this solution means
improvements on some architectures proposed to tackle the communication bot-
tleneck problem, such as reduction of the total time of an evolution step, increase
of the number of membranes that could run on a processor and reduction of the
number of processors.

References

1. G. Bravo, L. Fernández, F. Arroyo. J. Tejedor, Master Slave Distributed Architec-
ture for Membrane Systems Implementation, 8th WSEAS Int. Conf. on Evolutionary
Computing (EC’07), June 2007, Vancouver, Canada.

2. G. Bravo, L. Fernández, F. Arroyo, M. A. Pea, Hierarchical Master-Slave Architecture
for Membrane Systems Implementation, 13th Int. Symposium on Artificial Life and
Robotics (AROB ’08), Feb 2008, Beppu, Oitia (Japan).

3. G.Ciobanu, W. Guo, P Systems Running on a Cluster of Computers. Workshop on
Membrane Computing (Gh. Păun, G. Rozemberg, A. Salomaa Eds.),2004, LNCS
2933, Springer, 123-139

4. L. Fernández, F. Arroyo, I. Garćıa, G. Bravo, Decision Trees for Applicability of
Evolution Rules in Transition P Systems, Fourth Intern. Conf. Information Research
and Applications (i. TECH 2006) June 2006, Varna, Bulgary.

5. J. A. Frutos, L. Fernández, F. Arroyo, G. Bravo, Static Analysis of Usefulness States
in Transition P Systems, Fifth International Conference, Information Research and
Applications (I.TECH 2007), June 2007, Varna, Bulgary. 174-182.

6. A. Gutierrez, L. Fernández, F. Arroyo, V. Mart́ınez, A Design of a Hardware Ar-
chitecture based on Microcontrollers for the Implementation of Membrane Systems,
SYNASC 2006, Timisoara.

7. A. Gutierrez, L. Fernández, F. Arroyo, S. Alonso, Hardware and Software Architecture
for Implementing Membrane Systems: A Case of Study to Transition P Systems, The
DNA Inter. Meeting on DNA Computing (DNA13), June 2007, Memphis, USA.

8. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61(1), 2000, 108-143.

9. A. Syropoulos, E.G. Mamatas, P.C. Alliomes, K.T. Sotiriades, A Distributed Simula-
tion of P Systems. Workshop on Membrane Computing, Tarragona, Spain, 455-460.

10. J. Tejedor, L. Fernández, F. Arroyo, G.Bravo, An Architecture for Attacking the
Bottleneck Communication in P Systems, 12th Int. Symposium on Artificial Life and
Robotics, Jan 2007, Beppu, Oita, Japan, 500-505.

Regulation and Covering Problems
in MP Systems

Giuditta Franco, Vincenzo Manca, and Roberto Pagliarini

Verona University
Computer Science Department
Strada Le Grazie 15, 37134 Verona, Italy
{giuditta.franco, vincenzo.manca, roberto.pagliarini}@univr.it

Summary. The study of efficient methods to deduce fluxes of biological reactions, by
starting from experimental data, is necessary to understand the dynamics of a metabolic
model, but it is also a central issue in systems biology. In this paper we report some
partial results and related open problems regarding the efficient computation of regulation
fluxes in metabolic P systems. By means of Log-gain theory the system dynamics can be
linearized, in such a way to be described by a recurrence equations system, of which we
point out a few algebraic properties, involving covering problems.

1 Introduction

Since their first introduction [14], P systems have been widely investigated
in the framework of formal language theory as innovative compartmentalized
multiset rewriting systems [15], and different variants of them were analyzed
along with their computational power (for a complete list of references, see
http://ppage.psystems.eu/). Although they were originally introduced as com-
putational models, their biologically inspired structure and functioning, together
with their feasibility as models of cellular and biomolecular processes, turned out to
be a widely applicable modeling technique in several domains, including medicine
(for immunological processes [6], and cellular tissue healing [5]), economics [16],
linguistics and computer science (computer graphics, cryptography, approximate
solutions to optimization problems) [4], and, of course, biology (for mechanosen-
sitive channels [1], respiration in bacteria, photosynthesis, the protein kinase C
activation [3]).

The intent to employ multiset processing in the compartmentalized framework
provided by cell-like or tissue-like membrane structures in order to study real
biological systems is nowadays vividly pursued, along with variants of P systems
enriched with several other features, usually inspired by biology [2]. An important
aspect in modeling biological reactions by rewriting rules was a thorough study of
the rule application strategy [7], since the traditional nondeterministic maximally

Regulation and Covering Problems in MP Systems 219

parallel way seemed to be not enough realistic. Along this recent more applicative
trend, a body of research is focused on the modeling of metabolisms, where the
main interest is devoted to the molecular reactions transforming matter rather
than to the biochemicals distribution and coordination in compartments. Metabolic
P systems have been introduced [8, 10] as mono-membrane multiset rewriting
grammars, where rules are regulated by specific functions. The goal is to control
the matter transformation of a reactor by means of rules whose strength and
application depend on the objects population concentration.

Reactions are specified along with dynamical fluxes, and each flux denotes the
ability of the corresponding rule to compete against other rules in capturing part
of the population on which it is applied [10]. This new strategy of rule application
was inspired by real ‘metabolic reactions’, and it seems to lead multiset based
computing towards interesting simulations of biological processes, such as com-
plex oscillations [11], the mitotic cycle [3] and the non-photochemical quenching
phenomenon [12]. Overall, a new way to observe the evolution rules of a system
reproducing a metabolic reaction was proposed. Indeed, since the application of
every rule changes the relative amounts of reacting substances, it was enforced
that such quantities influence the reactivity of the rules in a way that their appli-
cation depends on the current substances concentration, as it normally happens in
biochemical phenomena. A simulator (named MetaPlab) applying evolution rules
with this strategy has been developed, and employed to simulate several biological
processes (it may be downloaded from the website mplab.sci.univr.it/, where
also several references are reported).

Before entering in more technical details, let us discuss a few other substantial
(for modeling purposes) differences which have been introduced by metabolic P
systems with respect to traditional membrane systems.

P systems are traditionally organized in a way that their evolution is syn-
chronous, i.e., a global clock triggers the production of new symbols inside all
membranes. In principle, one may try to increase the granularity of a P system in
order to obtain fine-grained sequences of transitions, then consider the trajectories
described by these sequences, and this description would be as accurate as fine the
granularity of the P system is. In practice, it is likely that the desired granularity
is obtained by adding auxiliary symbols or priority constraints in the system, to
form (sometimes complex) priority relationships for the rewriting rules [6]. As a
matter of fact, P systems do not provide tools for controling the resolution of the
observation of intermediate states, and they are better suited to model a process as
a sequence of “snapshots”, each one being taken when no more rewriting rules can
be applied. With Metabolic P systems instead, one assumes the a priori choice
of a time interval τ , between consecutive observation instants, that depends on
the macroscopic level at which considering the dynamics of the biological system.
The flux values (also called reaction units) are computed according to the chosen
observation granularity.

In metabolic P systems rules are obviously global and not compartmentalized,
and the environment changes are taken into account by the fluxes associated to

220 G. Franco, V. Manca, R. Pagliarini

reactions. The state, on which reaction units depend, is given by both the value
of some magnitudes, called parameters, which can influence the reactions (e.g.,
temperature and pressure) and by the amount of the substances inside the sys-
tem. Some distinction between matter and not matter is fundamental to study
metabolic processes, and the idea of considering parameters as elements of the
system different from metabolic substrates, and having their own evolution, is
new of metabolic P systems. Nevertheless, some similar ideas were formalized in
the context of membrane systems, by means of promoters and inhibitors, that are
respectively permitting and forbidding objects associated to regions, modeling the
chemicals in the cell that, while supporting or forbidding certain reactions, can
separately evolve, in parallel with the chemicals involved in the reactions [4]. Fi-
nally, we would like to emphasize that the approach of modeling by metabolic
P systems assumes a novel perspective, by considering the rules only as matter
transformation reactions rather than precise molecular interactions. The search of
fluxes is therefore aimed at designing a model of the observed macroscopic reality
with respect to the abstract transformations one has assumed, and it is different
from the parameter (or rate) estimation typically studied in systems biology, even
in the framework of membrane systems [17].

In the next section the problem we tackle is framed, after a brief introduction
to MP systems and the Log-gain theory [9], specifically devised for them. A few
results are reported in the third section, while a last section about open problems
and ongoing work concludes the paper.

2 Framing of the problem

An MP system is completely specified by: i) m reactions, ii) m corresponding
flux regulation functions, iii) n substances, which are the elements transformed by
reactions, and their initial values, iv) k parameters, which are arguments (beside
substances) of flux regulation functions, and v) k parameter evolution functions.

We assume m > n (more rules than substances), as it realistically happens in
biochemical systems. A few examples are given by the following protein-protein in-
teraction networks: Ito (yeast) has 8868 known interactions among 3280 proteins,
Giot (Drosophila) has 4780 known interactions among 4679 proteins, and Li (C.
elegans) has 5534 known interactions among 3024 proteins, and by the following
bacterial metabolic networks: Wolbachia pipientis has 8128 interactions over 2100
genes, S. enterica has 13309 interactions over 3717 genes, R. felis has 6966 inter-
actions over 2062 genes, and A. phagocytophilum has 7924 over 2056 genes. By a
more abstract perspective, we observe that since usually each metabolic reaction
transforms few substances, in the case m ≤ n we would have a scarce competition
for substances among the rules, and the interaction system would be not interest-
ing to analyze. Finally, the problem we are going to describe would be just not so
significant from an algebraic viewpoint. The number k of parameters instead, has
no relationship with m and n, as it just represents the sensitivity of the system to

Regulation and Covering Problems in MP Systems 221

the environment (parameters are internal or external controling variables which
somehow affect the system functioning).

A state S is an Rn+k vector (reporting the current amounts of substances
and parameters), while each rule rj (with j = 1, . . . ,m) having some of the n
substances as substrates and some as products, is associated to a couple of Rn

vectors (r−j , r
+
j) (one of which possibly null), reporting the substance quantities

respectively occurring in the premise and in the consequence of rj . As an instance,
we might have a system Q with three substances {a, b, c}, two parameters {v, w}
which values evolve according with their own function vector (fv(i), fw(i)), for
i ∈ N, and four rules

r1 : ab→ aa, r2 : bcc→ a, r3 : ac→ λ, r4 : abc→ bb.

The reactions respectively correspond to the vector couples:

(r−1 , r
+
1) = ((1, 1, 0), (2, 0, 0)), (r−2 , r

+
2) = ((0, 1, 2), (1, 0, 0)),

(r−3 , r
+
3) = ((1, 0, 1), (0, 0, 0)), (r−4 , r

+
4) = ((1, 1, 1), (0, 2, 0)).

Furthermore, four (one for each rule) flux regulation functions may be given,
defined on R5 and having values in R, in order to have the fluxes u1, u2, u3, u4,
associated respectively to the rules.

There are a couple of features to point out when dealing with metabolic rules r.
One is the activation substrate (that is, how many units of substrate are necessary
in order that the rule be applied), given by the vector r−, and the other one is
the effect of the rule application, given by r+ − r−. This last vector gives the
biochemical balance due to the application of the rule, that is how much of each
substance was either consumed or produced. For example, in the above rule r4, we
need to have all u4 units of a, u4 units of b and u4 units of c to activate the rule
(i.e., to be able to apply the rule), while the rule effectively producing u4 of b and
consuming u4 of a and of c. Of course, in cases of no substance production (as it
is for r3 in the example), the activation and the consumption of the rule coincide.

We call stoichiometric matrix R, the (n × m)-dimensional matrix formed by
the vectors r+ − r−, for every rule r, disposed according to some prefixed order
(which is not relevant). In the example above, the order is given by the index of
the rules, and we have

R =

 1 1 −1 −1
−1 −1 0 1

0 −2 −1 −1

 . (1)

The stoichiometric matrix is assumed to have maximal rank, as it is the case in
our example. If we would have any row linearly dependent on the others, we could
delete it (together with the corresponding substance in the system, as studying its
dynamics would be not meaningful), and reset the whole system with the remaining
substances (we newly say n) and the corresponding n ×m stoichiometric matrix
(having full rank, after the eventual iteration of this procedure).

Analogously, the activation matrix A is formed by the vectors r−, and for the
example above we have:

222 G. Franco, V. Manca, R. Pagliarini

A =

1 0 1 1
1 1 0 1
0 2 1 1

 .

The dynamics of a metabolic P system is given by both the evolution of param-
eters, according to their laws, and by the evolution of the vector X of substances,
ruled by the following recurrence n-equations system [10] (where × denotes the
ordinary matrix product and i the discrete instant of time):

X[i+ 1] = R× U [i] +X[i]. (2)

By considering U [i] as the unknown vector, the linear system (2) (called ADA
for “Avogadro and Dalton Action” [10]) has infinite solutions, as the number n
of equations is usually smaller than the number m of variables (should we have
the case m ≤ n, from an algebraic point of view there would be no problem to
eventually solve the system or figure out if there is not any solution).

In [9] the Log-gain theory was developed to design an MP model from observa-
tion experimental data, that is, to deduce the MP regulation fluxes from temporal
series of the substances. From an algebraic viewpoint, such a theory provides us
with other m equations and other n variables, that can be added to the ADA
system (2) in order to obtain an n+m equations system univocally solvable.

According to the simplest formulation of this theory, given a number of obser-
vation steps (at a specified time interval τ), and the corresponding time series of
the observed states of a real metabolic system (with an assumed stoichiometry),
the relative variations of any reaction flux uj of the rule rj : αj → βj (j = 1, . . . ,m)
is the sum of the relative variations of the reactants (i.e., the substances occurring
in αj), apart of some error pj , which is introduced as a variable of the system.
We denote with P the m-dimensional vector of such variables, called reaction off-
sets [9], that is, the errors introduced in the log-gain approximations of fluxes.
Furthermore, we denote with Lg(U [i]) the m-dimentional vector of relative fluc-
tuations, that is (uj [i+1]−uj [i]

uj [i]
| j = 1, . . . ,m), for any i ∈ N. Analogously Lg(X[i])

and Lg(S[i]) are the vectors of relative fluctuations respectively of substances and
of both substances and parameters.

In formal terms, the m+n equations system we want to solve (in order to find
the vector U[i+1]) is {

Lg(U [i]) = B × Lg(X[i]) + C · P
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (3)

where B is a (m×n)-dimentional boolean matrix selecting, by matrix product, the
reactants for each reaction, and C is an m-dimensional boolean vector selecting,
by entrywise product1, only n of the m offsets (that are n unknowns of the system,
besides the m fluxes).

1 For two matrices A and B having the same dimensions, the Schur product C = A ·B
is entrywise defined as Cij = Aij ·Bij .

Regulation and Covering Problems in MP Systems 223

According to a more general formulation of the Log-gain theory [9], the relative
variations of any reaction flux uj of the rule rj : αj → βj (j = 1, . . . ,m) is the sum
of the relative variations of its tuners, which are both the substances (including
the reactants) and the parameters which influence the reaction rj . In this general
case, the system (3) to solve becomes{

Lg(U [i]) = B? × Lg(S[i]) + C · P
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (4)

where B? is an m× (n+k)-dimentional boolean matrix selecting, by matrix prod-
uct, the tuners for each reaction.

3 A few results

Given an MP system of substances {x1, . . . , xn} and rules {r1, . . . , rm}, R(x) is
defined as the set of all rules involving x either as a reactant or as a product.
A set R0 of n rules is called covering set if R(x) ∩ R0 6= ∅ for any substance x.
Consequently, the boolean vector C from the system (3), if selecting offsets of
rules of a covering set, is called covering vector.

As a first result, we observe that any set of n linearly independent rules
is a covering. In fact, if we look at the n columns of the stoichiometric matrix,
corresponding to n prefixed linearly independent rules, they cannot show a null
row (otherwise they would be not linearly independent), then any substance
(which corresponds to a row) is involved by at least one of the prefixed rules, and
this implies they form a covering set. Let us recall here that a set of n linearly
independent rules always exists, because the stoichiometric matrix R (which
columns are represented by the rules) is assumed to have maximal rank.

As a second result, the system (3) may be seen as{
U [i+ 1]− C · U [i] · P [i+ 1] = (B × Lg(X[i])) · U [i] + U [i]
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (5)

More interestingly, system (5) may be transformed in another one (see equation
(6)) computing the same flux values U by applying a time constant block matrix in
each step. The idea underlying this algebraic manipulation is to change the “fake”
variables of the system (i.e., those introduced by Log-gain theory in order to be
able to solve the linear system (2)), from the m-dimensional vector P [i + 1] into
the n-dimensional vector Z[i+1] obtained by taking the n non-null components of

C ·U [i] ·P [i+ 1]. Hence, if we consider as a variable the vector
(
U [i+ 1]
Z[i+ 1]

)
rather

than
(
U [i+ 1]
P [i+ 1]

)
we get the following normalized system

224 G. Franco, V. Manca, R. Pagliarini(
Im G
R On

)
×
(
U [i+ 1]
Z[i+ 1]

)
=
(

(B × Lg(X[i])) · U [i] + U [i]
X[i+ 2]−X[i+ 1]

)
(6)

where Im is the identity matrix of dimension m, On is the null matrix of
dimension n, R is the stoichiometric matrix, and G is an (m × n)-dimensional
boolean matrix, called covering matrix, such that each column has exactly one non-
null element and the sum of the first h columns (for any h = 1, . . . , n) coincide with
the covering vector C in its first components containing h ones. In other words, if
the non-null components of C are j1, j2, . . . , jn, then the non-null components of
the corresponding covering matrix G are (j1, 1), (j2, 2), . . . , (jn, n).

The systems (5) and (6) are equivalent on the first m components of the un-
known vector to compute (i.e., the fluxes we are looking for), because it holds that
G× Z[i+ 1] = C · U [i] · P [i+ 1].

Let us see all of this on the example Q introduced in the previous section. In
the stoichiometric matrix R reported in (1), one can verify that R0 = {r1, r2, r3}
is a covering set. Then the 7× 7 system (6) to solve is(

I4 G
R O3

)
×
(
U [i+ 1]
Z[i+ 1]

)
=
(

(B × (LgX[i])) · U [i] + U [i]
X[i+ 2]−X[i+ 1]

)

where G =

1 0 0
0 1 0
0 0 1
0 0 0

, B =

1 1 0
0 1 1
1 0 1
1 1 1

, and LgX[i] =

Lg(a[i])
Lg(b[i])
Lg(c[i])

.

System (6) is a normalized form of the general problem (of finding
a linear system to compute the system fluxes), that has been helpful to perform
fast and efficient computations for our simulations. Indeed, we do not need to
compute the matrix at every computational step as for the system (3), but just
once, and the blockwise matrix product can be easily performed by involving
operations only on the submatrices.

As a third important result, we can see that, if the matrix G is defined
by a linearly independent covering, then the system (6) has a unique

solution. To prove this fact, it is enough to show that the matrix N =
(
Im G
R On

)
has a non-null determinant. Indeed, since it can be written in the following form(

Im G
R On

)
=
(
Im Om×n

R In

)
×
(

Im G
On×m −R×G

)
then, det(N) = −det(R × G). This implies an even stronger result, that is,

the system (6) is univocally solvable if and only if G corresponds to a linearly
independent covering.

Since in our recurrence system we are assuming to know the fluxes computed
at the previous step, the reader could wonder about the value of the fluxes at

Regulation and Covering Problems in MP Systems 225

the initial observation step. There exists a heuristic algorithm to estimate it, by
evaluating, along with few steps of observation, how much of each substance is
necessary to activate the first evolution step [13].

As a last result, we would like to point out that, the systems (3) and (4) are
equivalent (that is, they give the same fluxes), for any C corresponding
to a linearly independent covering, if the rows of B? corresponding to
the zero components of C · P have the last k components equal to zero
and coincide with the related rows of B in their first n components. In
other words, the solution U of the systems (3) and (4) is the same if the fluxes
of the non-covered rules are assumed to depend only on the reactants of the rule.
Analogously, the solution does not chance if the covered rules have log-gains of the
fluxes given by the sum of log-gains not only of the reactants, but also of other
elements (substances or parameters).

To prove this, once we have chosen a linearly independent covering R0, we
arrange the rules of the system according to an order which disposes first the rules
of the covering and then the others, so that the stoichiometric matrix R has the
first n columns corresponding to the vectors r+− r−, for the rules r ∈ R0, and the
others to the vectors r+−r−, for r /∈ R0. We denote this feature with the blockwise
stoichiometrix matrix R = (R0 R1), where R0 is an n × n matrix, while R1 is an
n × (m − n) matrix. The vectors U = (U0, U1), C = (C0, C1), and P = (P0, P1)
turn out to be arranged consistently, while C0 having all the components equal to
one and C1 being an (m− n)-dimensional null vector. Namely, in the system (4),

B? =
(
B?

0

B?
1

)
where B?

0 is a n × (n + k) boolean matrix selecting the tuners of

each reaction from the matrix R0, and B?
1 is an (m− n)× (n+ k) boolean matrix

selecting the tuners of the reactions from R1. Under our hypothesis, if B =
(
B0

B1

)
,

with B0 and B1 respectively n × n and (m − n) × n-dimensional matrices, then
B?

1 = (B1 O(m−n)×k).
If we consider the system (4) in its reformulation (5), we can seeU0[i+ 1] = ((B?

0 × Lg(S[i])) + 1 + C0 · P0[i+ 1]) · U0[i]
U1[i+ 1] = ((B?

1 × Lg(S[i])) + 1 + C1 · P1[i+ 1]) · U1[i]
R0 × U0[i+ 1] = X[i+ 2]−X[i+ 1]−R1 × U1[i+ 1]

(7)

At this point, we can just notice that, from the second equation (since C1 is a
null vector and we know the vectors Lg(S[i]) and U [i]) we deduce (equivalently in
the two systems (3) and (4))

U1[i+ 1] = (B?
1 × Lg(S[i])) · U1[i] + U1[i] = (B1 × Lg(X[i])) · U1[i] + U1[i].

On the other hand, since R0 has a non-null determinant, the third equation
of system (7) has a unique solution for U0 (fluxes of covered rules), and it does
not depend on the matrix B0 but only on U1[i+ 1]. The matrix B0 indeed selects
only reactants for each rule of the covering R0, while here we get the same values

226 G. Franco, V. Manca, R. Pagliarini

for both U0 and U1 even if there is only B?
0 involved (by the first equation of the

system (7)).
At this point, we can easily see that an even stronger results holds (and it

can be similarly proved): the system (4) gives the same values for the fluxes, by
keeping constant the choice of the tuners for the non-covered rules, and arbitrarirly
modifying the choice of the set of tuners for the covered rules. This observation
points out the importance of the covering choice: one essentially selects the rules
which are not so important for the dynamics, because it does not really matter
which are the substances or parameters which affect them.

An interesting consequence is that the m fluxes can be computed simply solving
the m equations system given by{

Lg(Y [i]) = B? × Lg(S[i])
R× U [i+ 1] = X[i+ 2]−X[i+ 1]

where B? is an (m−n)× (n+ k)-dimentional boolean matrix selecting, by matrix
product, the tuners for each non-covered reaction, and Lg(Y [i]) is the vector of
relative fluctuations of the m− n fluxes corresponding to the non-covered rules.

4 Future work

Along the results presented in this paper, MP systems clearly give an exciting
connection between linear algebra and rewriting rules, especially those covering
substances transformed within a metabolic system, with several facets that require
further research. What linear independence of rules means in terms of the biological
dynamics, and what in terms of formal rewriting systems? As one of the referees
observed, “it would be interesting to determine the meaning of linear independence
of rules in the frameworks of both biology and rewriting P systems”.

In order to compute fluxes of MP systems, that need to be positive in order
rules be applied, it is still not clear which would be the choice of a good covering
(among the linearly independent ones). Namely, it seems that conditions on our
data may be found that guarantee the positivity of the system fluxes.

Other similarly interesting problems could be outlined if we consider the cov-
ering set composed by rules involving all the substances only along their premises.
A new formulation of our problem would replace the stoichiometric matrix R with
the activation matrix A, and it would be interesting to investigate the “more re-
strictive” conditions we should have from the data to guarantee a “correct” (i.e.,
with positive fluxes) biological dynamics.

References

1. I. Ardelean, D. Besozzi, M. H. Garzon, G. Mauri, S. Roy. P System Models for
Mechanosensitive Channels, chapter 2 of [4]:43–80.

Regulation and Covering Problems in MP Systems 227

2. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini. Modelling Metapopulations with
Stochastic Membrane Systems, Biosystems 91, 499 - 514, 2008.

3. L. Bianco, F. Fontana, G. Franco, V. Manca. P Systems for Biological Dynamics,
chapter 3 of [4], 81–126.

4. G. Ciobanu, M. J. Pérez-Jiménez, Gh. Păun eds. Applications of Membrane Comput-
ing, Natural Computing Series, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

5. G. Franco, N. Jonoska, B. Osborn, A. Plaas. Knee Joint Injury and Repair Modeled
by Membrane Systems, BioSystems 91:473–488, 2008.

6. G. Franco, V. Manca. A Membrane System for the Leukocyte Selective Recruitment,
C. Martn-Vide et al. eds.: WMC 2003, LNCS 2933, 181 - 190, 2004.

7. M. A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, Agustin Riscos-Núñez. On the
Degree of Parallelism in Membrane Systems, Theoretical Computer Science 372(2-
3):183-195, 2007.

8. V. Manca. Fundamentals of Metabolic P Systems, In G. Păun et al. eds., chapter 16
of Handbook of Membrane Computing, Oxford University Press, 2009.

9. V. Manca. Log-Gain Principles for Metabolic P Systems, In A. Condon et al. eds.,
chapter 28 of Algorithmic Bioprocesses, Natural Computing Series, Springer-Verlag,
Berlin Heidelberg, 2009.

10. V. Manca. The Metabolic Algorithm for P systems: Principles and Applications,
Theoretical Computer Science 404:142–157, 2008.

11. V. Manca, L. Bianco, F. Fontana. Evolution and Oscillation in P systems: Applica-
tions to Biological Phenomena, LNCS 3365, 63–84, 2005.

12. V. Manca, R. Pagliarini, S. Zorzan. A Photosynthetic Process Modelled by a
Metabolic P System, Natural Computing, 2009. To appear, DOI 10.1007/s11047-
008-9104-x.

13. R. Pagliarini, G. Franco, V. Manca. An Algorithm for Initial Fluxes of Metabolic P
Systems, Int. J. of Computers, Communications & Control, IV (3): 263-272, 2009.

14. Gh. Păun. Computing with Membranes, Journal of Computer and System Sciences
61(1):108–143, 2000, and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi.

15. Gh. Păun. Membrane Computing: An Introduction. Springer, 2002.
16. Gh. Păun, R. A. Păun. Membrane Computing as a Framework for Modeling Economic

Processes, Proceedings of the Seventh International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 11-18, 2005.

17. F. J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor. Structure and Parameter
Estimation for Cell Systems Biology Models, Proc. of the Genetic and Evolutionary
Computation Conference, July 12-16, Atlanta, USA, 331- 338, 2008.

Hybrid Transition Modes
in (Tissue) P Systems

Rudolf Freund and Marian Kogler

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
{rudi,marian}@emcc.at

Summary. In addition to the maximally parallel transition mode used from the begin-
ning in the area of membrane computing, many other transition modes for (tissue) P
systems have been investigated since then. In this paper we consider (tissue) P systems
with hybrid transition modes where each set of a partitioning of the whole set of rules
may work in a different transition mode in a first level and all partitions of rules work to-
gether at a (second) level of the whole system on the current configuration in a maximally
parallel way. With all partitions of noncooperative rules working in the maximally par-
allel mode, we obtain a characterization of Parikh sets of ET0L-languages, whereas with
hybrid systems with either the partitions working in the maximally parallel as well as in
the = 1-mode or with all partitions working in the = 1-mode we can simulate catalytic
or purely catalytic P systems, respectively, thus obtaining computational completeness.

1 Introduction

In the original model of P systems introduced as membrane systems by Gh. Păun
(see [6], [12]), the objects evolve in a hierarchical membrane structure; in tissue
P systems, for example considered by Gh. Păun, T. Yokomori, and Y. Sakakibara
in [15] and by R. Freund, Gh. Păun, and M.J. Pérez-Jiménez in [8], the cells com-
municate within an arbitrary graph topology. The maximally parallel transition
mode was not only used in the original model of membrane systems, but then
also in many variants of P systems and tissue P systems investigated during the
last decade. Rather recently several new transition modes for P systems and tis-
sue P systems have been introduced and investigated, for example, the sequential
and the asynchronous transition mode as well as the minimally parallel transition
mode (see [3]) and the k-bounded minimally parallel transition mode (see [10]).
In [9], a formal framework for (tissue) P systems capturing the formal features
of these transition modes was developed, based on a general model of membrane
systems as a collection of interacting cells containing multisets of objects (compare
with the models of networks of cells as discussed in [1] and networks of language
processors as considered in [4]). In this paper we consider partitionings of the rule

Hybrid Transition Modes in (Tissue) P Systems 229

set with each partition being equipped with its own transition mode – which may
not only be the transition modes usually considered in the area of P systems as the
maximally parallel mode, but also modes well known from the area of grammar
systems (e.g., see [5]) as the = k, ≤ k, and the ≥ k modes for k ≥ 1. A multiset of
rules to be applied to a given configuration is composed from a multiset of rules
from each partition working in the corresponding transition mode on a suitable
partitioning of the objects in the underlying configuration.

The rest of this paper is organized as follows: In the second section, well-known
definitions and notions are recalled. In the next section, we explain our general
model of tissue P systems with hybrid transition modes and give some illustrative
examples in the succeeding section. A characterization of the Parikh sets of ET0L-
languages by tissue P systems with all partitions working in the maximally parallel
transition mode is shown in the fourth section. In the fifth section, we establish
some results on computational completeness by showing how catalytic P systems
and purely catalytic P systems can be simulated by tissue P systems where one
partition works in the maximally parallel mode and all the others in the = 1-mode
and by tissue P systems where all partitions work in the = 1-mode, respectively.
A short summary concludes the paper.

2 Preliminaries

We recall some of the notions and the notations we use (see [14] for elements of
formal language theory) as in [10].

Let V be a (finite) alphabet; then V ∗ is the set of all strings over V , and V + =
V ∗−{λ} where λ denotes the empty string. RE, REG (RE (T), REG (T)) denote
the families of recursively enumerable and regular languages (over the alphabet
T), respectively. For any family of string languages F , PsF denotes the family
of Parikh sets of languages from F . By N we denote the set of all non-negative
integers, by Nk the set of all vectors of non-negative integers. In the following,
we will not distinguish between NRE, which coincides with PsRE ({a}), and
RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a mapping
M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of occurrences of
a in M . The size of the multiset M is |M | =

∑
a∈V M (a). A multiset M over V

can also be represented by any string x that contains exactly M (ai) symbols ai
for all 1 ≤ i ≤ k, e.g., by a

M(a1)
1 ...a

M(ak)
k . The set of all finite multisets over the

set V is denoted by 〈V,N〉.
Throughout the rest of the paper, we will not distinguish between a multiset

from 〈V,N〉 and its representation by a string over V containing the corresponding
number of each symbol.

An ET0L system is a construct G = (V, T,w, P1, . . . , Pm), m ≥ 1, where V
is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗ is the axiom, and Pi,
1 ≤ i ≤ m, are finite sets of rules (tables) of noncooperative rules over V of the

230 R. Freund, M. Kogler

form a→ x. In a derivation step, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L (G), consists of all the strings over T which can be generated in this way when
starting from w. An ET0L system with only one table is called an E0L system. By
E0L and ET0L we denote the families of languages generated by E0L systems and
ET0L systems, respectively. It is known from [14] that CF ⊂ E0L ⊂ ET0L ⊂ CS,
with CF being the family of context-free languages and CS being the family of
context-sensitive languages. The corresponding families of sets of (vectors of) non-
negative integers are denoted by XCF , XE0L, XET0L, and XCS, respectively,
with X ∈ {N,Ps}.

A register machine is a construct M = (n,B, l0, lh, I), where n is the number
of registers, B is a set of instruction labels, l0 is the start label, lh is the halt label
(assigned to HALT only), and I is a set of instructions of the following forms:

• li : (ADD(r), lj , lk) add 1 to register r, and then go to one of the instructions
labeled by lj and lk, non-deterministically chosen;

• li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract 1
from it and go to the instruction labeled by lj , otherwise go to the instruction
labeled by lk;

• lh : HALT the halt instruction.

A register machine M generates a set N(M) of natural numbers in the following
way: start with the instruction labeled by l0, with all registers being empty, and
proceed to apply instructions as indicated by the labels and by the contents of the
registers. If we reach the HALT instruction, then the number stored at that time in
register 1 is taken into N(M). It is known (e.g., see [11]) that in this way we can
compute all recursively enumerable sets of natural numbers even with only three
registers, where the first one is never decremented.

3 Networks of Cells

In this section we consider membrane systems as a collection of interacting cells
containing multisets of objects like in [1] and [9]. For an introduction to the area
of membrane computing we refer the interested reader to the monograph [13], the
actual state of the art can be seen in the web [17].

Definition 1. A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, i0, R) where

1. n is the number of cells;
2. V is a (finite) alphabet;
3. w = (w1, . . . , wn) where wi ∈ 〈V,N〉, for all 1 ≤ i ≤ n, is the multiset initially

associated to cell i;
4. i0, 1 ≤ i0 ≤ n, is the output cell;

Hybrid Transition Modes in (Tissue) P Systems 231

5. R is a finite set of rules of the form X → Y where X = (x1, . . . , xn), Y =
(y1, . . . , yn), with xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are vectors of multisets over V .
We will also use the notation

(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n)

for a rule X → Y .

A network of cells consists of n cells, numbered from 1 to n, that contain
multisets of objects over V ; initially cell i contains wi. A configuration C of Π is
an n-tuple of multisets over V (u1, . . . , un); the initial configuration of Π, C0, is
described by w, i.e., C0 = w = (w1, . . . , wn). Cells can interact with each other by
means of the rules in R. The application of a rule

(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n)

means rewriting objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n.
A rule is called noncooperative if it is of the form (a, i) → (y1, 1) . . . (yn, n) with
a ∈ V .

The set of all multisets of rules applicable to C is denoted by Appl (Π,C) (a
procedural algorithm how to obtain Appl (Π,C) is described in [9]).

We now consider a partition of R into disjoint subsets R1 to Rh, h ≥ 1. Usually,
this partition of R may coincide with a specific assignment of the rules to the cells,
yet in this paper we do not restrict ourselves to such a constraint, but allow the
rule sets R1 to Rh to be working on arbitrary cells. For any multiset of rules R′

containing rules from a set of rules R, we define ‖R′‖ to be the number of rules in
R′.

For the specific transition modes used for the subsets of rules Rj to be defined
in the following, we consider the subsystems

Πj = (n, V, w, i0, Rj) .

The selection of multisets of rules from Rj , 1 ≤ j ≤ h, applicable to a configu-
ration C has to be a specific subset of Appl (Πj , C); for the transition mode ϑ,
the selection of multisets of rules applicable to a configuration C is denoted by
Appl (Πj , C, ϑ). In contrast to the transition modes usually considered in the area
of P systems as the asynchronous and the sequential mode, we also define some
more general variants well known from the area of grammar systems (e.g., see [5])
as the derivation modes = k, ≥ k, ≤ k for k ≥ 1.

Definition 2. For the transition mode (∆k) with ∆ ∈ {=,≤,≥},

Appl (Πj , C,∆k) = {R′ | R′ ∈ Appl (Πj , C) and ‖R′‖∆k} .

The asynchronous transition mode (asyn) with

Appl (Πj , C, asyn) = Appl (Πj , C)

232 R. Freund, M. Kogler

is the special case of the transition mode ∆k with ∆k being equal to ≥ 1, i.e., in
fact there are no particular restrictions on the multisets of rules applicable to C.

The sequential transition mode (sequ) with

Appl (Πj , C, sequ) = {R′ | R′ ∈ Appl (Πj , C) and ‖R′‖ = 1}

is the special case of the transition mode ∆k with ∆k being equal to = 1, i.e.,
every multiset of rules R′ ∈ Appl (Πj , C, sequ) has size 1.

The transition mode considered in the area of P systems from the beginning is
the maximally parallel transition mode where we only select multisets of rules R′

that are not extensible, i.e., there is no other multiset of rules R′′ % R′ applicable
to C.

Definition 3. For the maximally parallel transition mode (max),

Appl (Πj , C,max) = {R′ | R′ ∈ Appl (Πj , C) and there is
no R′′ ∈ Appl (Πj , C) with R′′ % R′} .

Based on these transition modes for the partitions of rules Rj , we now are able
to define a network of cells with hybrid transition modes as follows:

Definition 4. A network of cells with hybrid transition modes of degree n ≥ 1, in
the following also called tissue P system (with hybrid transition modes) of degree
n ≥ 1, is a construct

Π = (n, V, w, i0, R, (R1, α1) , . . . , (Rh, αh)) where

1. (n, V, w, i0, R) is a network of cells of degree n;
2. R1, . . . , Rh is a partition of R into disjoint subsets R1 to Rh and the αj ,

1 ≤ j ≤ h, are the transition modes assigned to the corresponding partitions
of rules Rj.

Based on the transition modes of the partitions Rj , we now can define how to
obtain a next configuration from a given one in the whole system Π by applying
in a maximally parallel way an applicable multiset of rules consisting of multisets
of rules from the Rj each of those applied in the respective transition mode:

Definition 5. Given a configuration C of Π, we non-deterministically choose a
partition Rj1 and try to apply it; if this is not possible, we just continue with non-
deterministically choosing another partition Rj2 ; if we are able to apply Rj1 in
the corresponding transition mode αj1 with using a multiset of rules R′j1 , we mark
the objects affected by doing that and continue with non-deterministically choosing
another partition Rj2 then being to be applied to a configuration not containing
the objects marked for being used with the rules from R′j1 . We continue with the
same algorithm as for Rj1 eventually marking objects to be used with a multiset
of rules R′j2 , etc. In sum, we obtain a multiset of rules R′ to be applied to C
as the union of the multisets of rules R′jm constructed by the algorithm described

Hybrid Transition Modes in (Tissue) P Systems 233

above. The result of the transition step from the configuration C with applying R′

is the configuration Apply (Π,C,R′), and we also write C =⇒Π C ′. The reflexive
and transitive closure of the transition relation =⇒Π is denoted by =⇒∗Π ; if n
transition steps take place, we write =⇒n

Π for n ≥ 0.

Definition 6. A computation in a network of cells with hybrid transition modes
Π starts with the initial configuration C0 = w and continues with transition steps
as defined above. It is called successful if we reach a configuration C to which no
partition Rj can be applied with respect to the transition mode αj anymore (we
also say that the computation halts).

Definition 7. As the results of halting computations we take the Parikh vectors
or numbers of objects in the specified output cell i0. The set of results of all com-
putations then is denoted by X (Π) with X ∈ {Ps,N}.

We shall use the notation XOmhhtPn (ϑ) [parameters for rules] with X ∈
{Ps,N} to denote the family of sets of Parikh vectors (Ps) and natural numbers
(N), respectively, generated by tissue P systems Π of the form

(n′, V, w, i0, R, (R1, α1) , . . . , (Rh′ , αh′))

with n′ ≤ n, |V | ≤ m, h′ ≤ h, and ∪hj=1 {αj} ⊆ ϑ (ϑ contains the allowed transition
modes); the parameters for rules describe the specific features of the rules in R. If
any of the parameters n, m, and h is unbounded, we replace it by ∗.

4 Examples

As a first example, we construct a tissue P system with one cell initially containing
two symbols a and two sets of rules each of them containing one rule affecting the
symbol a using eventually different transition modes:

Example 1. Let

Π = (1, {a} , aa, 1, P1 ∪ P2, (P1, α1) , (P2, α2))

where P1 = {a→ b} and P2 = {a→ c}. We now consider the results of computa-
tions in this tissue P system with different transition modes α1 and α2:

• α1 and α2 both are = 1: both the rule in P1 and the rule in P2 are applied
exactly once, no matter which partition we choose first to be applied, i.e.,
aa =⇒Π bc; hence, the result is bc.

• α1 and α2 both are max: recall that the transition modes of the rule sets do not
take into account the rules in other rule sets, so both Pi try to apply their own
rule twice. This conflict is solved in a non-deterministic way, i.e., aa =⇒Π1

bb
or aa =⇒Π2

cc; hence, the results are bb, cc.

234 R. Freund, M. Kogler

• α1 and α2 both are ≥ 1: the rules in Pi are applied either once or twice. If the
rule from each set is only applied once, we have a similar situation as before
when using the transition mode = 1. If one or both sets attempt to apply their
own rule twice, a conflict arises which is solved in a non-deterministic way.
Thus, the result set is the union of the result sets considered in the cases = 1
and max, i.e., {bc, bb, cc}.

• α1 is = 1, α2 is ≥ 1: as before, yet we do not have to consider the case that
the rule in P1 is applied twice. Therefore, the result set is {bc, cc}.

• α1 is = 1, α2 is max: the conflict is solved by non-deterministically choosing to
execute the rule in P2 in a maximally parallel way thus consuming all symbols
a before trying to execute the rule in P1 (which then fails, as no symbol a is
left) or else to execute P1 before P2 (resulting in one a transformed to b and
one a transformed to c). This yields the same result set as in the case before
({bc, cc}).

• α1 is ≥ 1, α2 is max: P1 and P2 conflict either with respect to one symbol (if
the rule in the partition chosen first is applied only once) or over both symbols
(if it is applied twice). If the conflict arises with respect to one symbol, the
conflict resolution yields {bc, cc}; otherwise, as in the case when α1 and α2

both are max, the results are bb, cc. The set of all possible computation results
thus is the union of both cases, i.e., {bc, bb, cc}.

Usually, with only taking results from halting computations and using the
maximally parallel transition mode without partitioning the rule set R, with non-
cooperative rules it is not possible to generate sets like

{
a2n | n ≥ 0

}
(compare

with the results established in [2], where the variant of unconditional halting was
used instead, i.e., the results were taken in every computation step). As the fol-
lowing example shows, such sets can easily obtained with specific partitions of
non-cooperative rules all of them working in the maximally parallel transition
mode:

Example 2. Consider the tissue P system (of degree 1)

Π = (1, {a, b} , b, 1, P1 ∪ P2, (P1,max) , (P2,max))

with P1 = {b→ bb} and P2 = {b→ a}. As elaborated in the previous example,
we can either apply b → bb OR b → a in a maximally parallel way, but not mix
both rules. Hence, as long as we apply P1 in the maximally parallel mode, in each
transition step we double the number of objects b. As soon as we choose to apply
P2 in the maximally parallel mode, the computation comes to an end yielding a2n

for some n ≥ 0, i.e., b =⇒n
Π b2

n

=⇒Π a2n

, hence, X (Π) =
{
a2n | n ≥ 0

}
with

X ∈ {Ps,N}.

Hybrid Transition Modes in (Tissue) P Systems 235

5 Characterization of ET0L

In this section we show that tissue P systems with all partitions (of noncooperative
rules) working in the maximally parallel transition mode exactly yield the (Parikh
sets of) ET0L-languages.

Theorem 1. PsET0L = PsO∗h∗tPn ({max}) [noncoop] for all n ≥ 1.

Proof. We first show PsET0L ⊇ PsO∗h∗tP∗ ({max}) [noncoop]. Let

Π = (n, V, w, i0, R, (R1,max) , . . . , (Rh,max))

be a tissue P system with hybrid transition modes with all partitions working in
the max-mode. We first observe that an object a from V in the cell m, 1 ≤ m ≤ n,
can be represented as a new symbol (a,m). Hence, in the ET0L-system

G = (V ′, T, w′, P1, . . . , Pd, Pf)

simulating Π, we take T = V and V ′ = V ′′ ∪ V ∪ {#} with

V ′′ = {(a,m) | a ∈ V, 1 ≤ m ≤ n} .

In the axiom w′, every symbol a in cell m is represented as the new symbol (a,m).
Observe that a noncooperative rule

(a, i)→ (y1, 1) . . . (yn, n)

can also be written as

(a, i)→ (y1,1, 1) . . . (y1,d1 , 1) . . . (yn,1, 1) . . . (yn,dn , n)

where all yi,j are objects from V and in that way can just be considered as a pure
context-free rule over V ′′.

For every sequence of partitions l = 〈R′1, . . . , R′h〉 such that {R′1, . . . , R′h} =
{R1, . . . , Rh}, we now construct a table Pl for G as follows:

Pl :=
{
x→ x | x ∈ V ′, x 6= y for all rules y → v in ∪hi=1 Ri

}
;

for i = 1 to h do
begin
R

′′

i := {x→ w | x→ w ∈ R′i and x 6= y for all rules y → v in Pl};
Pl := Pl ∪R

′′

i

end

As all partitions work in the max-mode, a partition applied first consumes all
objects for which it has suitable rules. Finally, to fulfill the completeness condition
for symbols usually required in the area of Lindenmayer systems, we have added
unit rules a → a for all objects not affected by the rule sets R1, . . . , Rh. In that

236 R. Freund, M. Kogler

way, one transition step in Π with using a multiset of rules marking the objects in
the underlying configuration according to the sequence of partitions 〈R′1, . . . , R′h〉
exactly corresponds with an application of the table Pl in G. To extract the termi-
nal configurations, we have to guarantee that no rule from ∪hi=1Ri can be applied
anymore (they are projected on the trap symbol #) and project the symbols (a, i0)
from the output membrane to the terminal symbols a, which is accomplished by
the final table

Pf :=
{
x→ # | x ∈ V ′′ for some rule x→ v in ∪hi=1 Ri

}
∪ {#→ #}

∪ {(a, i)→ λ | a ∈ V, i 6= i0 and there is no rule (a, i)→ v in Ri}
∪ {(a, i0)→ a | a ∈ V and there is no rule (a, i0)→ v in Ri0} .

We now show the inclusionPsET0L ⊆ PsO∗h∗tP1 ({max}) [noncoop] .
LetG = (V, T, w, P1, . . . , Pn) be an ET0L-system. Then we construct the equiv-

alent tissue P system with only one cell and n+ 2 partitions all of them working
in the maximally parallel mode

Π = (1, V ∪ T ′ ∪ {#} , h (w) , 1, R, (R1,max) , . . . , (Rn+2,max))

as follows:
The renaming homomorphism h : V → (V − T) ∪ T ′ is defined by h (a) = a

for a ∈ V − T and h (a) = a′ for a ∈ T . Then we simply define Ri = h (Pi) for
1 ≤ i ≤ n, i.e., in all rules we replace every terminal symbol a from T by its
primed version a′. If G has produced a terminal multiset, then Π should stop with
yielding the same result, which is accomplished by applying the partition

Rn+1 = {a′ → a | a ∈ T} ∪ {x→ # | x ∈ V − T} ;

if the terminating rule set Rn+1 is applied while objects from V −T are still present,
trap symbols # are generated, which causes a non-terminating computation in
Π because of the partition Rn+2 = {#→ #}. These observations conclude the
proof. �

6 Simulation of (Purely) Catalytic P Systems and
Computational Completeness

Membrane systems with catalytic rules were already defined in the original paper of
Gh. Păun (see [12]), but used together with noncooperative rules. In the notations
of this paper, a noncooperative rule is of the form (a, i)→ (y1, 1) . . . (yn, n), and a
catalytic rule is of the form (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) where c is from a
distinguished subset C ⊂ V such that in all rules – noncooperative rules (noncoop)
and catalytic rules (cat) of the whole system – the yi are from (V − C)∗ and the
symbols a are from (V − C).

A catalytic tissue P system can be written as a tissue P system with hybrid
transition modes for rule partitions

Hybrid Transition Modes in (Tissue) P Systems 237

Π = (n, V, C,w, i0, R, (R,max))

where the single rule set R works in the maximally parallel transition mode and
the rules are noncooperative rules and catalytic rules. If all rules in R are catalytic
ones, such a system is called purely catalytic. We have to point out that in the
following we shall assume that each catalyst can appear only once in the whole
system; as catalysts cannot move from one cell to another one, this assumption is
no restriction of generality. Moreover, we recall the fact that in the catalytic tissue
P systems as defined above we allow arbitrary connections between cells, whereas
in the original variant of catalytic P systems, the connection graph is restricted
to a tree. As a technical detail we mention that catalysts appearing in the output
cell are not taken into account when extracting the results of a computation.

By XOmCktPn [cat] (XOmCktPn [pcat]) with X ∈ {Ps,N} we denote the fam-
ily of sets of Parikh vectors (Ps) and natural numbers (N), respectively, generated
by (purely) catalytic tissue P systems of the form (n′, V, C,w, i0, R, (R,max)) with
n′ ≤ n, |V | ≤ m, and |C| ≤ k. If any of the parameters n, m, and k is unbounded,
we replace it by ∗.

We now show that catalytic tissue P systems can be simulated by tissue P
systems with hybrid transition modes for rule partitions using the maximally par-
allel transition mode for one partition and the = 1-mode for all other partitions
of rules:

Theorem 2. XOmCktPn [cat] ⊆ XOmhk+1tPn ({max,= 1}) [noncoop] for X ∈
{Ps,N} and all natural numbers m, k, and n.

Proof. Let Π = (n, V, C,w, i0, R, (R,max)) be a catalytic tissue P system with
n cells. Then we construct an equivalent tissue P system with hybrid transition
modes for rule partitions Π ′ as follows:

Π ′ = (n, V, w, i0, R, (R1,= 1) , . . . , (Rk,= 1) , (Rk+1,max))

where, for C = {cj | 1 ≤ j ≤ k},

Rj = {(a, i)→ (y1, 1) . . . (yn, n) | (cj , i) (a, i)→ (cj , i) (y1, 1) . . . (yn, n) ∈ R}

for 1 ≤ j ≤ k and Rk+1 = R − ∪kj=1Rj . For each catalyst cj , the catalytic rules
involving cj form the partition Rj , from which at most one rule can be taken in
any transition step, i.e., the Rj , 1 ≤ j ≤ k, are combined with the = 1-mode, and
the remaining noncooperative rules from R are collected in Rk+1 and used in the
max-mode. The equivalence of the systems Π ′ and Π immediately follows from
the definition of the respective transition modes and the resulting transitions in
these systems. �

From the proof of the preceding theorem, we immediately infer the following
result for purely catalytic tissue P systems:

238 R. Freund, M. Kogler

Corollary 1. For X ∈ {Ps,N} and all natural numbers m, k, and n,

XOmCktPn [pcat] ⊆ XOmhktPn ({= 1}) [noncoop] .

In [7] it was shown that only three catalysts are sufficient in one cell, using
only catalytic rules with the maximally parallel transition mode, to generate any
recursively enumerable set of natural numbers. Hence, by showing that (tissue) P
systems with purely catalytic rules working in the maximally parallel transition
mode can be considered as tissue P systems with partitions of corresponding non-
cooperative rules working in the = 1-mode when partitioning the rule set for the
single cell with respect to the catalysts, we obtain the interesting result that in
this case we get a characterization of the recursively enumerable sets of natural
numbers by using only noncooperative rules (in fact, this partitioning replaces the
use of the catalysts). In sum, from Theorem 2 and Corollary 1 and the results from
[7] we obtain the following result showing computational completeness for tissue
P systems with hybrid transition modes for rule partitions:

Theorem 3. NRE = NO∗h3tP1 ({= 1}) [noncoop]
NO∗h3tP1 ({max,= 1}) [noncoop] .

We mention that the = 1 mode in any case can be replaced by the ≤ 1-mode
which immediately follows from the definition of the respective transition modes.
Moreover, having the partitions working in the = 1-mode on the first level and
using maximal parallelism on the second level of the whole system corresponds
with the min1 transition mode as introduced in [10] - this min1 transition mode
forces to take exactly one rule or zero rules from each partition into an applicable
multiset of rules in such a way that no rule from a partition not yet considered
could be added. Hence, the result of Theorem 3 directly follows from the results
proved in [7] in the same way as shown in [10] for the min1 transition mode. From
the proof of Theorem 2 and the results proved in [7], also the following general
computational completeness results for tissue P systems with hybrid transition
modes for rule partitions follow:

Theorem 4. For X ∈ {Ps,N},

XRE = XO∗h∗tP1 ({= 1}) [noncoop]
XO∗h∗tP1 ({max,= 1}) [noncoop] .

7 Summary

In this paper we have introduced tissue P systems with hybrid transition modes for
rule partitions. With noncooperative rules as well as with the maximally parallel
transition mode for all partitions, we obtain a characterization of the extended
tabled Lindenmayer systems, whereas with the = 1-mode for 3 partitions or with
the = 1-mode for 2 partitions and the maximally parallel transition mode for

Hybrid Transition Modes in (Tissue) P Systems 239

one partition we already are able to generate any recursively enumerable set of
natural numbers. As for (purely) catalytic P systems, the descriptional complexity,
especially with respect to the number of partitions, of tissue P systems with hybrid
transition modes for rule partitions able to generate any recursively enumerable
set of (vectors of) natural numbers remains as a challenge for future research.

References

1. F. Bernardini, M. Gheorghe, N. Margenstern, S. Verlan, Networks of cells and Petri
nets, in: M. A. Gutiérrez-Naranjo et al. eds., Proc. Fifth Brainstorming Week on
Membrane Computing, Sevilla, 2007, 33–62.

2. M. Beyreder, R. Freund, Membrane systems using noncooperative rules with un-
conditional halting, in: D. W. Corne et al. eds., Membrane Computing - 9th Intern.
Workshop, Revised Selected and Invited Papers, LNCS 5391, Springer, 2009, 129–136

3. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez, P systems with minimal paral-
lelism, Theoretical Computer Science 378 (1) (2007), 117–130.

4. E. Csuhaj-Varjú, Networks of language processors, Current Trends in Theoretical
Computer Science (2001), 771–790.

5. E. Csuhaj-Varjú, J. Dessow, J. Kelemen, Gh. Păun, Grammar Systems: A Grammat-
ical Approach to Distribution and Cooperation , Gordon and Breach Science Publish-
ers, Amsterdam 1994.

6. J. Dassow, Gh. Păun, On the power of membrane computing, Journal of Universal
Computer Science 5 (2) (1999), 33–49.

7. R. Freund, L. Kari, M. Oswald, P. Sośık, Computationally universal P systems with-
out priorities: two catalysts are sufficient, Theoretical Computer Science 330 (2005),
251–266.

8. R. Freund, Gh. Păun, M.J. Pérez-Jiménez, Tissue-like P systems with channel states,
Theoretical Computer Science 330 (2005), 101–116.

9. R. Freund, S. Verlan, A formal framework for P systems, in: G. Eleftherakis, P. Ke-
falas, Gh. Paun (Eds.), Pre-proceedings of Membrane Computing, Intern. Workshop
– WMC8, Thessaloniki, Greece, 2007, 317–330.

10. R. Freund, S. Verlan, (Tissue) P systems working in the k-restricted minimally par-
allel derivation mode, in: E. Csuhaj-Varjú et al., eds, Proc. Intern. Workshop on
Computing with Biomolecules, Österreichische Computer Gesellschaft, 2008, 43–52.

11. M.L. Minsky, Computation – Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, 1967.

12. Gh. Păun, Computing with membranes, J. of Computer and System Sciences 61, 1
(2000), 108–143.

13. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin 2002.
14. G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages (3 volumes),

Springer-Verlag, Berlin, 1997.
15. Gh. Păun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted forms,

Publicationes Matimaticae 60, 2002.
16. Gh. Păun, T. Yokomori, Membrane computing based on splicing, in: E. Winfree and

D. K. Gifford (Eds.), DNA Based Computers V, volume 54 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, 1999, 217–232.

17. The P Systems web page: http://ppage.psystems.eu.

An Overview of P-Lingua 2.0

Manuel Garćıa-Quismondo, Rosa Gutiérrez-Escudero, Ignacio Pérez-Hurtado,
Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
mangarfer2@alum.us.es, {rgutierrez,perezh,marper,ariscosn}@us.es

Summary. P–Lingua is a programming language for membrane computing which aims
to be a standard to define P systems. In order to implement this idea, a Java library
called pLinguaCore has been developed as a software framework for cell–like P systems.
It is able to handle input files (either in XML or in P–Lingua format) defining P systems
from a number of different cell–like P system models. Moreover, the library includes
several built–in simulators for each supported model. For the sake of software portability,
pLinguaCore can export a P system definition to any convenient output format (currently
XML and binary formats are available). This software is not a closed product, but it can
be extended to accept new input or output formats and also new models or simulators.

The term P–Lingua 2.0 refers to the software package consisting of the above men-
tioned library together with a user interface called pLinguaPlugin (more details can be
found at http://www.p-lingua.org).

Finally, in order to illustrate the software, this paper includes an application using
pLinguaCore for describing and simulating ecosystems by means of P systems.

1 Introduction

The initial definition of a membrane system as a computing device, introduced by
Gh. Păun [14], can be interpreted as a flexible and general framework. Indeed, a
large number of different models have been defined and investigated in the area: P
systems with symport/antiport rules, with active membranes, with probabilistic
rules, etc. There were some attempts to establish a common formalization covering
most of the existing models (see e.g. [5]), but the membrane computing community
is still using specific syntax and semantics depending on the model they work with.

Each model displays characteristic semantic constraints that determine the
way in which rules are applied. Hence, the need for software simulators capable
of taking into account different scenarios when simulating P system computations
comes to the fore. Moreover, simulators have to precisely define the specific P
system that is to be simulated. Along this paper, the term simulator input will

An Overview of P-Lingua 2.0 241

be used to refer to the definition (on a text file) of the P system to be simulated.
One approach to implement the simulators input could be defining a specific input
file format for each simulator. Nevertheless, this approach would require a great
redundant effort. A second approach could be to standardize the simulator input,
so all simulators need to process inputs specified in the same format. These two
approaches raise up a trade-off: On the one hand, specific simulator inputs could
be defined in a more straightforward way, as the used format is closer to the P
system features to simulate. On the other hand, although the latter approach
involves analyzing different P systems and models to develop a standard format,
there is no need to develop completely a new simulator every time a new P system
should be simulated, as it is possible to use a common software library in order
to parse the standard input format. Moreover, users would not have to learn a
new input format every time they use a different simulator and would not need
to change the way to specify P systems which need to be simulated every time
they move on to another model, as they would keep on using the standard input
format.

This second approach is the one considered in P–Lingua project, a program-
ming language whose first version, presented in [3], is able to define P systems
within the active membrane P system model with division rules. The authors also
provide software tools for compilation, simulation and debug tasks.

As P–Lingua is intended to become a standard for P systems definition, it
should also consider other models. At the current stage, P–Lingua can define P
systems within a number of different cell–like models: active membrane P systems
with membrane division rules or membrane creation rules, transition P systems,
symport/antiport P systems, stochastic P systems and probabilistic P systems.
Each model follows semantics restrictions, which define several constraints for
the rules (number of objects on each side, whether membrane creation and/or
membrane division are allowed, and so on), and which indicate the way rules are
applied on configurations.

A Java [22] library called pLinguaCore has been developed as a software frame-
work for cell–like P systems. It includes parsers to handle input files (either in XML
or in P–Lingua format), and furthermore the parsers check possible programming
errors (both lexical/syntactical and semantical).

The library includes several built–in simulators to generate P system compu-
tations for the supported models, and it can export several output file formats to
represent P systems (at the current stage, XML and binary file formats) in order
to get interoperability between different software environments.

The term P–Lingua 2.0 refers to the software framework under GNU GPL li-
cense [21] consisting of the above mentioned library together with a user interface
called pLinguaPlugin. It is not a closed software because developers with knowl-
edge of Java can include new components to the library: new supported models,
built–in simulators for the supported models, parsers to process new input file
formats and generators for new output file formats. In order to facilitate those
tasks, a website for users and developers of P–Lingua 2.0 [24] has been created. It

242 M. Garćıa-Quismondo et al.

contains technical information about standard programming methods to expand
the pLinguaCore library. These methods have been used on all the existent com-
ponents. The website also contains a download section, tutorials, user manuals,
information about projects using P–Lingua, and other useful stuff.

Furthermore, pLinguaCore is not a stand–alone product, it is created to be
used inside other software applications. In order to illustrate this idea, the paper
includes an application using pLinguaCore for describing and simulating ecosys-
tems by means of P systems.

2 Models

2.1 Contemplating New models

The library pLinguaCore is able to accept input files (either in P–Lingua or XML
file formats) that define P systems within the supported models. As mentioned in
the Introduction, Java developers can include new models to the library by using
standard programming methods, easing the task. The current supported models
are enumerated below.

2.2 Transition P system model

The basic P systems were introduced in [14] by Gh. Păun.
A transition P system of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, (R1, ρ1), . . . , (Rq, ρq), io), where:

• Γ is an alphabet whose elements are called objects.
• L is a finite set of labels.
• µ is a membrane structure consisting of q membranes with the membranes

(and hence the regions, the space between a membrane and the immediately
inner membranes, if any) injectively labelled with elements of L; as usual, we
represent the membrane structures by strings of matching labelled parentheses.

• Mi, 1 ≤ i ≤ q, are strings which represent multisets over Γ associated with
the q membranes of µ.

• Ri, 1 ≤ i ≤ q, are finite sets of evolution rules over Γ , associated with the
membranes of µ. An evolution rule is of the form u → v, where u is a string
over Γ and v = v′ or v = v′δ, being v′ a string over Γ × ({here, out} ∪ {inj :
1 ≤ j ≤ q}).

• ρi, 1 ≤ i ≤ q, are strict partial orders over Ri.
• io, 1 ≤ io ≤ q, is the label of an elementary membrane (the output membrane).

The objects to evolve in a step and the rules by which they evolve are chosen
in a non–deterministic manner, but in such a way that in each region we have
a maximally parallel application of rules. This means that we assign objects to

An Overview of P-Lingua 2.0 243

rules, non–deterministically choosing the rules and the objects assigned to each
rule, but in such a way that after this assignation no further rule can be applied
to the remaining objects.

2.3 Symport/antiport P system model

Symport/antiport rules were incorporated in the framework of P systems in [13].
A P system with symport/antiport rules of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, E,R1, . . . , Rq, io),where:

• Γ is the alphabet of objects,
• L is the finite set of labels for membranes (in general, one uses natural numbers

as labels), µ is the membrane structure (of degree q ≥ 1), with the membranes
labelled in a one-to-one manner with elements of L,

• M1, . . . ,Mq are strings over Γ representing the multisets of objects present in
the q compartments of µ in the initial configuration of the system.

• E ⊆ Γ is the set of objects supposed to appear in the environment in arbitrarily
many copies.

• Ri, 1 ≤ i ≤ q, are finite sets of rules associated with the q membranes of µ. The
rules can be of two types (by Γ+ we denote the set of all non-empty strings
over Γ , with λ denoting the empty string):
– Symport rules, of the form (x, in) or (x, out), where x ∈ Γ+. When using

such a rule, the objects specified by x enter or exit, respectively, the mem-
brane with which the rule is associated. In this way, objects are sent to or
imported from the surrounding region – which is the environment in the
case of the skin membrane.

– Antiport rules, of the form (x, out; y, in), where x, y ∈ Γ+. When using such
a rule for a membrane i, the objects specified by x exit the membrane and
those specified by y enter from the region surrounding membrane i; this is
the environment in the case of the skin membrane.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

The rules are used in the non-deterministic maximally parallel manner, stan-
dard in membrane computing.

2.4 Active membranes P system model

With membrane division rules

P systems with membrane division were introduced in [15], and in this model the
number of membranes can increase exponentially in polynomial time. Next, we de-
fine P systems with active membranes using 2-division for elementary membranes,

244 M. Garćıa-Quismondo et al.

with polarizations, but without cooperation and without priorities (and without
permitting the change of membrane labels by means of any rule).
A P system with active membranes using 2-division for elementary membranes of
degree q ≥ 1 is a tuple Π = (Γ,L, µ,M1, . . . ,Mq, R, io), where:

• Γ is an alphabet of symbol-objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure, of m membranes, labelled (not necessarily in a

one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the q regions of µ.
• R is a finite set of rules, of the following forms:

(a) [a→ ω]αh for h ∈ L,α ∈ {+,−, 0}, a ∈ Γ , ω ∈ Γ ∗: This is an object evolu-
tion rule, associated with a membrane labelled with h and depending on the
polarization of that membrane, but not directly involving the membrane.

(b) a []α1
h → [b]α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object from the
region immediately outside a membrane labelled with h is introduced in this
membrane, possibly transformed into another object, and, simultaneously,
the polarization of the membrane can be changed.

(c) [a]α1
h → b []α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object is sent out
from membrane labelled with h to the region immediately outside, possibly
transformed into another object, and, simultaneously, the polarity of the
membrane can be changed.

(d) [a]αh → b for h ∈ L, α ∈ {+,−, 0}, a, b ∈ Γ : A membrane labelled with h is
dissolved in reaction with an object. The skin is never dissolved.

(e) [a]α1
h → [b]α2

h [c]α3
h for h ∈ L, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ : An

elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and the polarities.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must do it (with the restrictions below indicated).

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules of
type (a), then we suppose that the evolution rules of type (a) are used before
division is produced. Of course, this process takes only one step.

• The rules associated with membranes labelled by h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

An Overview of P-Lingua 2.0 245

With membrane creation rules

Membrane creation rules were first considered in [9], [10].
A P system with membrane creation of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, R, io), where:

• Γ is the alphabet of objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure consisting of q membranes labelled (not necessarily

in a one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the q regions of µ.
• R is a finite set of rules of the following forms:

(a) [a→ v]h where h ∈ L, a ∈ Γ , and v is a string over Γ describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ L, a, b ∈ Γ . These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(c) [a]h → []h b where h ∈ L, a, b ∈ Γ . These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ L, a, b ∈ Γ . These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in the
rule can be modified.

(e) [a → [v]h2]h1 where h1, h2 ∈ L, a ∈ Γ , and v is a string over Γ describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside the mem-
brane of the object which triggers the rule and has associated an initial
multiset and a label.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

Rules are applied according to the following principles:

• Rules from (a) to (d) are used as usual in the framework of membrane compu-
ting, that is, in a maximally parallel way. In one step, each object in a mem-
brane can only be used for applying one rule (non-deterministically chosen
when there are several possibilities), but any object which can evolve by a rule
of any form must do it (with the restrictions below indicated).

• Rules of type (e) are used also in a maximally parallel way. Each object a in
a membrane labelled with h1 produces a new membrane with label h2 placing
in it the multiset of objects described by the string v.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

246 M. Garćıa-Quismondo et al.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, independently of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously. The exception are the rules of type (d) since a membrane can be
dissolved only once.

2.5 Probabilistic P system model

A probabilistic approach in the framework of P systems was first considered by A.
Obtulowicz in [12].
A probabilistic P system of degree q ≥ 1 is a tuple

Π = (Γ, µ,M1, . . . ,Mq, R, {cr}r∈R, io), where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet).
• µ is a membrane structure, consisting of q membranes, labeled 1, 2, . . . , q. The

skin membrane is labeled by 0. We also associate electrical charges with mem-
branes from the set {0,+,−}, neutral and positive.

• M1, . . . ,Mq are strings over Γ , describing the multisets of objects initially
placed in the q regions of µ.

• R is a finite set of evolution rules. An evolution rule associated with the mem-
brane labelled by i is of the form r : u[v]αi

cr−→u′[v′]βi , where u, v, u′, v′ are
a multiset over Γ , α, β ∈ {0,+,−} and cr is a real number between 0 and 1
associated with the rule such that:
– for each u, v ∈ M(Γ), h ∈ H and α ∈ {0,+}, if r1, . . . , rt are the rules

whose left–hand side is u[v]αh , then
∑t
j=1 crj

= 1
• io ∈ L is the label of a membrane of µ, which indicates the output region of

the system.

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system); that is, all membranes and the application
of all rules are synchronized.

The q-tuple of multisets of objects present at any moment in the q regions of
the system constitutes the configuration of the system at that moment. The tuple
(M1, . . . ,Mq) is the initial configuration of the system.

We can pass from one configuration to another one by using the rules from R
as follows: at each transition step, the rules to be applied are selected according to
the probabilities assigned to them, all applicable rules are simultaneously applied,
and all occurrences of the left–hand side of the rules are consumed, as usual. Rules
with the same left–hand side and whose right–hand side has the same polarization
can be applied simultaneously.

An Overview of P-Lingua 2.0 247

2.6 Stochastic P System model

The original motivation of P systems was not to provide a comprehensive and accu-
rate model of the living cell, but to imitate the computational nature of operations
that take place in cell membranes. Most P system models have been proved to be
Turing complete and computationally efficient, in the sense that they can solve
computationally hard problems in polynomial time, by trading time for space.
Most research in P systems focus on complexity classes and computational power.

However, P systems have been used recently to model biological phenomena
very successfully. Models of oscillatory systems [4], signal transduction [18], gene
regulation control [16], quorum sensing [17] and metapopulations [19] have been
presented.

We introduce in this section the specification of stochastic P systems, that
constitute the framework for modelling biological phenomena.
A stochastic P system of degree q ≥ 1 is a tuple

Π = (Γ,L, µ,M1, . . . ,Mq, Rl1 , . . . , Rlm), where:

• Γ is a finite alphabet of symbols representing objects.
• L = {l1, . . . , lm} is a finite alphabet of symbols representing labels for the

membranes.
• µ is a membrane structure containing q ≥ 1 membranes identified in a one to

one manner with values in {1, . . . , q} and labelled with elements from L.
• Mi = (li, wi, si), for each 1 ≤ i ≤ q, initial configuration of the membrane i,

li ∈ L is the label, wi ∈ Γ ∗ is a finite multiset of objects and si is a finite set
of strings over Γ .

• Rlt = {rlt1 , . . . , r
lt
klt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting rules

associated with membranes of label lt ∈ L. Rules are of one of the following
two forms:
– Multiset rewriting rules:

rltj : u[w]l
c

lt
j−→ u′[w′]l

with u,w, u′, w′ ∈ Γ ∗ some finite multisets of objects and l a label from L. A
multiset of objects, u is represented as u = a1 + · · ·+am, with a1, . . . , am ∈
Γ . The empty multiset will be denoted by λ and we will write on instead

of
n︷ ︸︸ ︷

o+ · · ·+ o. The multiset u placed outside of the membrane labelled with
l and the multiset w placed inside of that membrane are simultaneously
replaced with a multiset u′ and w′ respectively.

– String rewriting rules:

rltj : [u1+s1; . . . ;up+sp]l
c

lt
j−→ [u′1+s′1,1+· · ·+s′1,i1 ; . . . ;u′p+s′p,1+· · ·+s′p,ip]

248 M. Garćıa-Quismondo et al.

A string s is represented as s = 〈o1.o2. · · · .oj〉, where o1, o2, . . . , oj ∈ Γ .
Each multiset of objects uj and string sj , 1 ≤ j ≤ p, are replaced by a
multiset of objects u′j and strings s′j,1, . . . , sj,ij .

A constant cltj is associated with each rule and will be referred to as stochastic
constant and is needed to calculate the propensity of the rule according to the
current context of the membrane to which this rule corresponds.

Rules in stochastic P systems model biochemical reactions. The propensity aj
of a reaction Rj is defined so that ajdt represents the probability that Rj will
occur in the infinitesimal time interval [t, t+ dt] [7].

Applications of the rules and the semantics of stochastic P systems can vary,
depending on which algorithm is used to simulate the model. At the present stage,
two algorithms have been implemented and integrated as simulators within the
pLinguaCore library. They will be discussed in Section 3.2.

3 Simulators

3.1 Contemplating new simulators

In [3], only one simulator was implemented, since there was only one model to
simulate. However, as new models have been included, new simulators have been
developed inside the pLinguaCore library, providing at least one simulator for each
supported model.

All the current simulators can step backwards, but this option should be set
before the simulation starts.

The library also takes into account the existence of different simulation algo-
rithms for the same model and provides means for selecting a simulator among
the ones which are suitable to simulate the P system, by checking its model.

Next, simulation algorithms for Stochastic and Probabilistic P systems are
explained, but pLinguaCore integrates simulators for all supported models.

3.2 Simulators for Stochastic P Systems

In the original approach to membrane computing P systems evolve in a non-
deterministic and maximally parallel manner (that is, all the objects in every
membrane that can evolve by a rule must do it [14]). When trying to simulate
biological phenomena, like living cells, the classical non-deterministic and maxi-
mally parallel approach is not valid anymore. First, biochemical reactions, which
are modeled by rules, occur at a specific rate (determined by the propensity of
the rule), therefore they can not be selected in an arbitrary and non-deterministic
way. Second, in the classical approach all time step are equal and this does not
represent the time evolution of a real cell system.

The strategies to replace the original approach are based on Gillespie’s Theory
of Stochastic Kinetics [7]. As mentioned in Section 2.6, a constant cltj is associated

An Overview of P-Lingua 2.0 249

to each rule. This provides P systems with a stochastic extension. The constant
cltj depends on the physical properties of the molecules involved in the reaction
modeled by the rule and other physical parameters of the system and it represents
the probability per time unit that the reaction takes place. Also, it is used to
calculate the propensity of each rule which determines the probability and time
needed to apply the rule.

Two different algorithms based on the principles stated above have been cur-
rently implemented and integrated in pLinguaCore.

Multicompartimental Gillespie Algorithm

The Gillespie [7] algorithm or SSA (Stochastic Simulation Algorithm) was devel-
oped for a single, well-mixed and fixed volume/compartment. P systems generally
contain several compartments or membranes. For that reason, an adaptation of
this algorithm was presented in [20] and it can be applied in the different regions
defined by the compartmentalised structure of a P system model. The next rule
to be applied in each compartment and the waiting time for this application is
computed using a local Gillespie algorithm. The Multicompartimental Gillespie
Algorithm can be broadly summarized as follows:

Repeat until a prefixed simulation time is reached:

1. Calculate for each membrane i, 1 ≤ i ≤ m and for each rule rj ∈ Rli the
propensity, aj , by multiplying the stochastic constant clij associated to rj by
the number of distinct possible combinations of the objects and substrings
present of the left-side of the rule with respect to the current contents of
membranes involved in the rule.

2. Compute the sum of all propensities

a0 =
m∑
i=1

∑
rj∈Rli

aj

3. Generate two random numbers r1 and r2 from the uniform distribution in the
unit interval and select τi and ji according to

τi =
1
a0

ln(
1
r1

)

ji = the smallest integer satisfying
ji∑
j=1

aj > r2a0

In this way, we choose τi according to an exponential distribution with param-
eter a0.

4. The next rule to be applied is rji and the waiting time for this rule is τi. As
a result of the application of this rule, the state of one or two compartments
may be changed and has to be updated.

250 M. Garćıa-Quismondo et al.

Multicompartimental Next Reaction Method

The Gillespie Algorithm is an exact numerical simulation method appropiate for
systems with a small number of reactions, since it takes time proportional to the
number of reactions (i.e., the number of rules). An exact algorithm which is also
efficient is presented in [6], the Next Reaction Method. It uses only a single random
number per simulation event (instead of two) and takes time proportional to the
logarithm of the number of reactions. We have adapted this algorithm to make it
compartimental.

The idea of this method is to be extremely sensitive in recalculating aj and ti,
recalculate them only if they change. In order to do that, a data structure called
dependency graph [6] is introduced.

Let r : u[v]l
c−→ u′[v′]l be a given rule with propensity ar and let the parent

membrane of l be labelled with l′. We define the following sets:

• DependsOn(ar) = {(b, t) : b is an object or string whose quantity affect the
value
ar and t = l if b ∈ v and t = l′ if b ∈ u}
Generally, DependsOn(ar) = {(b, l) : b ∈ v} ∪ {(b, l′) : b ∈ u}

• Affects(r) = {(b, t) : b is an object or string whose quantity is changed when
the rule
r is excuted and t = l if b ∈ v ∨ b ∈ v′ and t = l′ if b ∈ u ∨ b ∈ u′}
Generally, Affects(r) = {(b, l) : b ∈ v ∨ b ∈ v′} ∪ {(b, l′) : b ∈ u ∨ b ∈ u′}

Definition 1. Given a set of rules R = Rl1 ∪ · · · ∪ Rlm , the dependency graph is
a directed graph G = (V,E), with vertex set V = R and edge set E = {(vi, vj) :
Affects(vi) ∩DependsOn(avj

) 6= ∅}

In this way, if there exists an edge (vi, vj) ∈ E and vi is executed, as some ob-
jects affected by this execution are involved in the calculation of avj , this propensity
would have to be recalculated. The dependency graph depends only on the rules
of the system and is static, so it is built only once.

The times τi, that represent the waiting time for each rule to be applied, are
stored in an indexed priority queue. This data structure, discussed in detail in [6],
has nice properties: finding the minimum element takes constant time, the number
of nodes is the number of rules |R|, because of the indexing scheme it is possible to
find any arbitrary reaction in constant time and finally, the operation of updating
a node (only when τi is changed, which we can detect using to the dependency
graph) takes log |R| operations.

The Multicompartimental Next Reaction Method can be broadly summarized
as follows:

1. Build the dependency graph, calculate the propensity ar for every rule r ∈ R
and generate τi for every rule according to an exponential distribution with
parameter ar. All the values τr are stored in a priority queue. Set t← 0 (this
is the global time of the system).

An Overview of P-Lingua 2.0 251

2. Get the minimum τµ from the priority queue, t ← t + τµ. Execute the rule
rµ (this is the next rule scheduled to be executed, because its waiting time is
least).

3. For each edge (µ, α) in the dependency graph recalculate and update the
propensity aα and
• if α 6= µ, set

τα ←
aα,old(τα − τµ)

aα,new
+ τµ

• if α = µ, generate a random number r1, according to an exponential dis-
tribution with parameter aµ and set τµ ← τµ + r1

Update the node in the indexed priority queue that holds τα.
4. Go to 2 and repeat until a prefixed simulation time is reached.

Both Multicompartimental Gillespie Algorithm and Multicompartimental Next
Reaction Method are the core of the Direct Stochastic Simulator and Efficient
Stochastic Simulator, respectively. One of them, which can be chosen in runtime,
will be executed when compiling and simulating a P-Lingua file that starts with
@model<stochastic>. See Section 4.1 for more details about the syntax.

3.3 Simulators for Probabilistic P Systems

Two different simulation algorithms have been created in this paper and integrates
within the pLinguaCore library for the Probabilistic P system model. The first one
is called Uniform Random Distribution Algorithm. The second one gives a better
efficiency by using the binomial distribution, and it is called Binomial Random
Distribution Algorithm.

Uniform Random Distribution Algorithm

Next, we describe how this algorithm determines the applicability of the rules to
a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt

. In order to determine how these rules are applied to a give config-
uration, we proceed as follows:
– It is computed the greatest number N so that uN appears in the father

membrane of i and vN appears in membrane i.
– N random numbers x such that 0 ≤ x < 1 are generated.
– For each k (1 ≤ k ≤ t) let nk be the amount of numbers generated belonging

to interval [
∑k−1
j=0 crj

,
∑k
j=0 crj

) (assuming that cr0 = 0).
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

252 M. Garćıa-Quismondo et al.

Binomial Random Distribution Algorithm

Next, we describe how this algorithm determines the applicability of the rules to
a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt

. In order to determine how these rules are applied to a give config-
uration, we proceed as follows:

(c))Let F (N, p) a function that returns a discrete random number within the bi-
nomial distribution B(N, p)
– It is computed the greatest number N so that uN appears in the father

membrane of i and vN appears in membrane i.
– let d = 1
– For each k (1 ≤ k ≤ t− 1) do
· let crk

be crk

d
· let nk be F (N, crk

)
· let N be N − nk
· let q be 1− crk

· let d be d ∗ q
– let nt be N
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

4 Formats

As well as models and simulators, new file formats to define P systems have been
included in P-Lingua 2.0. Although XML format and P–Lingua format were in-
cluded on the first version of the software [3], those formats have been upgraded
to allow representation of P systems which have cell-like structure. As P–Lingua
2.0 provides backwards compatibility, all valid actions in the first version are still
valid. Furthermore, a new format has been included: the binary format (suitable
for the forthcoming Nvidia CUDA simulator [11]).

Formats are classified in two sorts: Input formats (whose files can be read by
pLinguaCore) and Output formats (whose files can be generated by pLingua-
Core). Some formats may belong to both categories.

One format which is worth showing up is the P–Lingua format. This input
format allows to specify P systems in a very intuitive, friendly and straightforward
way. Another asset to bear in mind is that the parser for P–Lingua inside the
pLinguaCore library is capable of locating errors on files specified on this format.

An Overview of P-Lingua 2.0 253

4.1 P-Lingua format

In the version of P-Lingua presented in [3] only P systems with active membranes
and division rules were considered and therefore, possible to be defined in the P-
Lingua language. New models have been added and consequently the syntax has
been modified and extended, in order to support them. The current syntax of the
P-Lingua language is defined as follows.

Valid identifiers
We say that a sequence of characters forms a valid identifier if it does

not begin with a numeric character and it is composed by characters from the
following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels, alphabet objects and strings.

The following text strings are reserved words in the language: def, call,
@mu, @ms, @model, @lambda, @d, let, @inf, @debug, main, -->, # and
they cannot be used as valid identifiers.

Variables
Four kind of variables are permitted in P-Lingua: Global variables, Local

variables, indexes, Parameters.
Variables are used to store numeric values and their names are valid identifiers.

We use 64 bits (signed) in double precision.

Global variables definition
Global variables must be declared out of any program module and they can be
accessed from all of the program modules (see 4.1). The name of a global variable
global variable name must be a valid identifier. The syntax to define a global
variable is the following:

global_variable_name = numeric_expression;

Local variables definition
Local variables can only be accessed from the module in which they were declared
and they must only be defined inside module definitions. The name of a local
variable local variable name must be a valid identifier. The syntax to define a
local variable is the following:

let local_variable_name = numeric_expression;

Indexes and parameters can be consider local variables used in 4.1 and 4.1 respec-
tively. Identifiers for electrical charges

254 M. Garćıa-Quismondo et al.

In P-Lingua, we can consider electrical charges by using the + and - symbols
for positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

Membrane labels
There are three ways of writing membrane labels in P-Lingua: the first one is

just a natural number; the second one is to denote the label as a valid identifier and
the third one is by numeric expressions that represent natural numbers between
brackets.

Numeric expressions
Numeric expressions can be written by using * (multiplication), / (division),

% (module), + (addition), - (subtraction) and ^ (potence) operators with integer
or real numbers and/or variables, along with the use of parentheses. It is possible
to write numbers by using exponential notation. For example, 3 ∗ 10−5 is written
3e-5.

Objects The objects of the alphabet of a P system are written using valid identi-
fiers, and the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es
are written as x{i,2*n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-
ample, x2n+1

i is written as x{i}*(2*n+1).

Strings Strings are enclosed between < and > and made by concatenating valid
identifiers with the character ., that is <identifier1.identifierN>. For
example, <cap.RNAP.op>.

Substrings Substrings are used in string rewriting rules and the syntax is similar
to strings, but it is possible to use the character ? to represent any arbitrary
sequence of valid identifiers concatenated by .. The empty sequence is included. For
example, <cap.?.NAP.op> is a substring of the string <cap.op.op.op.NAP.op>
and of the string <cap.NAP.op>.

Model specification As this programming language supports more than one
model, it is necessary to specify in the beginning of the file which is the model of
the P system defined. Not each type of rule is allowed in every model, for example,
membrane creation rules are not permitted in P systems with symport/antiport
rules. The built-in compiler of P-Lingua detects such error. Models are specified
by using @model<model name> and at this stage, the allowed models are:

@model<membrane_division>
@model<membrane_creation>
@model<transition_psystem>
@model<probabilistic_psystem>
@model<stochastic_psystem>
@model<symport_antiport_psystem>

An Overview of P-Lingua 2.0 255

Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [8]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{
sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.
The parameters must be valid identifiers and cannot appear repeated. It is possible
to define a module without parameters. Parameters have a numerical value that
is assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the output file.

In P-Lingua there are sentences to define the membrane structure of a P system,
to specify multisets, to define rules, to define variables and to call to other modules.
Next, let us see how such sentences are written.

Module calls
In P-Lingua, modules are executed by using calls. The format of an sentence

that calls a module for some specific values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is a numeric expression or a variable.

Definition of the initial membrane structure of a P system
In order to define the initial membrane structure of a P system, the following

sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:

1. [[]02]01 ≡ @mu = [[]’2]’1

2. [[]0b []−c]+a ≡ @mu = +[[]’b, -[]’c]’a

256 M. Garćıa-Quismondo et al.

Definition of multisets
The next sentence defines the initial multiset associated to the membrane la-

belled by label.

@ms(label) = list of objects;

where label is a membrane label and list of objects is a comma-separated list
of objects. The character # is used to represent an empty multiset.

If a stochastic P system is being defined (that is, the file starts with
@model<stochastic>), strings are also permitted in the initial content of a mem-
brane:

@ms(label) = list of objects and strings;

list of objects and strings is a comma-separated list of objects and/or
strings.

Union of multisets
P-Lingua allows to define the union of two multisets (recall that the input

multiset is “added” to the initial multiset of the input membrane) by using a
sentence with the following format.

@ms(label) += list of objects;

For stochastic P systems, it would be

@ms(label) += list of objects and strings;

Definition of rules
The definition of rules has been significantly extended in this version of P-

Lingua. A general rule is defined as follow (most elements are optional):

u[v[w1]α1
h1
. . . [wn]αn

hn
]αh

k−→ x[y[z1]β1
h1
. . . [zn]βn

hn
]βh[s]γh

where u, v, w1, . . . , wn, x, y, z1, . . . , zn are multisets of objects or strings,
h, h1, . . . , hn are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are electrical charges and k
is a numerical value.

The P-Lingua sintax for such a rule is:

uα[vα1[w1]’h1. . .αn[wN]’hN]’h --> xβ[yβ1[z1]’h1. . .βn[zN]’hN]’h γ[s]’h :: k

where u, v, w1. . . wN, x, y, z1. . . zN, s are comma-separated list of objects or
strings (it is possible to use the character # in order to represent the empty mul-
tiset), h,h1,..., hN are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are identifiers for
electrical charges and k is a numeric expression.

As mentioned before, not each type of rule is permitted in every model. Below
we enumerate the possible types of rules, classified by the model in which they are
allowed.

@model<mebrane division>

An Overview of P-Lingua 2.0 257

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a []αh → [b]βh is given
next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[]βh is
given next:

α[a]’h --> β[]b

4. The format to define division rules of type [a]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

@model<membrane creation>

1. Rules 1, 2, 3 and 5 of @model<membrane division> can be defined in this
model, with the same format.

2. The format to define membrane creation rules of type [a]αh → [[b]βh1
]αh is given

next:

α[a]’h --> α[β[b]’h1]’h

@model<transition psystem>

1. The format to define evolution rules of type [u[u1]h1 , . . . , [uN]hN
→

v[v1]h1 , . . . , [vN]hN
, λ]h is given next:

[u [u1]’h1 . . . [uN]’hN --> v [v1]’h1, . . . [vN]’hN, @d]’h

@d is a new keyword representing the containing membrane is marked to dis-
solved.

@model<symport antiport psystem>

1. The format to define symmetric communication rules of type a[b]αh → b[a]αh is
given next:

αa[b]’h --> βb[a]’h

@model<probabilistic psystem>

1. The format to define rules of type u[v]αh
p−→ u1[v1]βh is given next:

uα[v]’h --> u1β[v1]’h::p

@model<stochastic psystem>

258 M. Garćıa-Quismondo et al.

1. The format to define multiset rewriting rules of type u[v]h
c−→ u1[v1]h is given

next:

u[v]’h --> u1[v1]’h::c

2. The format to define string rewriting rules of type [u+s]h
c−→ [v+r]h is given

next:

[u,s]’h --> [v,r]’h::c

• α, β and γ are identifiers for electrical charges.
• a, b and c are objects of the alphabet.
• u, u1, v, v1, . . . , vN are comma-separated lists of objects that represents

a multiset.
• s and r are comma-separated lists of substrings.
• h, h1, . . . , hN are labels.
• p and c are real numeric expressions. The result of evaluating p must be between

0 and 1, and the result of evaluating c must be greater or equal than 0.

Some examples:

• [xi,1 → r4i,1]+2 ≡ +[x{i,1} --> r{i,1}*4]’2

• dk[]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]

• [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}

• [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]

• [a]−2 → b ≡ -[a]’2 --> b

• Yi,j []2
ki,8−→ [Bki,12]2 ≡ Y{i,j}[]’2 --> [B*k{i,12}]’2::k{i,8}

• [RNAP+ < cap.ω.op >]m
c−→ [< cap.ω.RNAP.op >]m ≡

[RNAP,<cap.?.op>]’m --> [<cap.?.RNAP.op>]’m::c

Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the following
format:

sentence : range1, ..., rangeN, restriction1, ...,
restrictionN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and range1, ..., rangeN is a comma-separated list of ranges with the for-
mat:

min value <= index <= max value

An Overview of P-Lingua 2.0 259

where min value and max value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

And restriction1, ..., restrictionN are optional restrictions for the in-
dexes values which the next syntax:

value1 <> value2

where value1 and value2 are numeric expressions, integer numbers or variables.
The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n, i 6= j ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n,i<>j;

Inclusion of comments The programs in P-Lingua can be commented by writing
phrases into the text strings /* and */. Inclusion of debug information Each

rule sentence can optionally include a debug message which will be presented every
time the rule is executed by the simulator. The syntax to write a debug message
associated to a rule definition is defined as follows:

rule definition @debug ‘‘debug message"

5 Command-line tools

P-Lingua 1.0 provided command-line tools for simulating P systems and compiling
files which specify P systems [3]. In P-Lingua 2.0, the command-line tool general
syntax has changed but, as it provides backwards compatibility, all valid actions
in P-Lingua 1.0 are still valid in P-Lingua 2.0, as well.

5.1 Compilation command-line tool

The command-line tool general syntax for compiling input files is defined as follows:

plingua [-input format] input file [-output format]
output file [-v verbosity level] [-h]

The command header plingua reports the system to compile the P system
specified on a file to a file specified on another, whereas the file input file contains
the program that we want to be compiled, and output file is the name of the
file that is generated [3]. Optional arguments are in square brackets:

• The option -input format defines the format followed by input file, which
should be an input format.

260 M. Garćıa-Quismondo et al.

• At this stage, valid input formats are:
– P-Lingua
– XML

• If no input format is set, the P-Lingua format is assumed.
• The option -output format defines the format followed by output file, which

should be an output format.
• At this stage, valid output formats are:

– XML
– bin

• If no input format is set, the XML format is assumed by default.
• The option -v verbosity level is a number between 0 and 5 indicating the level

of detail of the messages shown during the compilation process [3].
• The option -h displays some help information [3].

5.2 Simulation command-line tool

The simulations are launched from the command line as follows:

plingua sim [-input format] input file -o output file [-v
verbosity level] [-h] [-to timeout] [-st steps] [-mode
simulatorID] [-a] [-b]

The command header plingua sim reports the system to simulate the P system
specified on a file, whereas input xml is an XML document where a P system is
formatted on, and output file is the name of the file where the report about the
simulated computation will be saved [3]. Optional arguments are in brackets:

• The option -input format defines the format followed by input file, which
should be an input format.

• The option -v verbosity level is a number between 0 and 5 indicating the level
of detail of the messages shown during the compilation process [3]. If no value
is specified, by default it is 3.

• The option -h displays some help information [3].
• The option -to sets a timeout for the simulation defined in timeout (in mil-

liseconds), so when the time out has elapsed the simulation is halted. If the
simulation has reached a halting configuration before the time out has elapsed
this option has no effect.

• The option -st sets a maximum number of steps the simulation can take
(defined in steps), so when the time out has elapsed the simulation comes to
a halt. If the simulation has reached a halting configuration or the time out
has elapsed (in case the option -to is set) before the specified number of steps
have been taken this option has no effect.

• The option -mode sets the specific simulator to simulate the P system (defined
in simulatorID). This option reports an error in case the simulator defined by
simulatorID is not a valid simulator for the P system model.

An Overview of P-Lingua 2.0 261

• The option -a defines if the simulation can take alternative steps. This option
reports an error if the simulator does not support alternative steps.

• The option -b defines if the simulation can step backwards. As every simulator
supports stepping backwards, this option does not report errors.

6 pLinguaCore

pLinguaCore c© is a JAVA library which performs all functions supported by P-
Lingua 2.0, that is, models definition, simulators and formats. This library reports
the rules and membrane structure read from a file where a P system is defined,
detects errors in the file, reports them. And, if the P system is defined in P-Lingua
language, locates the error on the file. This library performs simulations by using
the simulators implemented as well as taking into account all options defined. It
reports the simulation process, by displaying the current configuration as text and
reporting the elapsed time. Eventually, this library translates files, which define
a P system, between formats, for instance, from P-Lingua language format to
binary format. For more information and library documentation, please browse
the P-Lingua website [24]. This library is free software published under GNU GPL
license [21], so everyone who is interested can change and distribute this library
respecting the license conditions.

7 A tool for simulating ecosystems based on P-Lingua

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe
that feeds almost exclusively on bone remains of wild and domestic ungulates. In
[1], it is presented a first model of an ecosystem related to the Bearded Vulture
in the Pyrenees (NE Spain), by using probabilistic P systems where the inherent
stochasticity and uncertainty in ecosystems are captured by using probabilistic
strategies. In order to validate experimentally the designed P system (see figure 1)
the authors have developed a simulator that allows them to analyze the evolution
of the ecosystem under different initial conditions. That software application is
focused on a particular P system, specifically, the initial model of the ecosystem
presented in [1]. With the aim of improving the model, the authors are adding in-
gredients to it, such as new species and a more complex behaviour for the animals.
In this sense, a second version of the model is presented in [2].

A new GPL [21] licensed JAVA application with a friendly user-interface sit-
ting on the pLinguaCore library has been developed. This application provides a
flexible way to check, validate and improve computational models of ecosystem
based on P systems instead of designing new software tools each time new ingre-
dients are added to the models. Furthermore, it is possible to change the initial
parameters of the modelled ecosystem in order to make the virtual experiments
suggested by experts (see figure 2). These experiments will provide results that

262 M. Garćıa-Quismondo et al.

can be interpreted in terms of hypotheses. Finally, some of these hypotheses will
be selected by the experts in order to be checked in real experiments.

REALLIFE PROCESS
(e.g. an ecosystem)

DATA

Carrying out
 studies/experimets

MODEL VALIDATION VALIDATED
MODEL

Inspiration

Inspiration

Run virtual
experiments

Simulator

Fail

Success

Compare results

Fig. 1. Validation proccess

VALIDATED
MODEL

Run virtual
experiments

Simulator

HYPOTHESES FILTER REAL
 EXPERIMENTS

NEW
KNOWLEDGE

Expert

SELECTED
HYPOTHESES

Suggest
virtual
experiments

Check results

Fig. 2. Virtual experimentation

An Overview of P-Lingua 2.0 263

8 Conclusions and future work

Creating a programming language to specify P systems is an important task in
order to facilitate the development of software applications for membrane comput-
ing.

In [3], P-Lingua was presented as a programming language to define active
membrane P systems with division rules. The present paper extends that lan-
guage to other models: transition P systems, symport/antiport P systems, active
membrane P systems with division or creation rules, probabilistic P systems and
stochastic P systems.

We have developed a JAVA library (pLinguaCore) that implements several
simulators for each mentioned model and defines different formats to encode P
systems, like the P-Lingua one or a new binary format. This library can be ex-
panded to define new models, simulators and formats.

It is possible to select different algorithms to simulate a P system, for example,
there are two different algorithms for stochastic P systems. The library can be
used inside other software applications, in this sense, we present a tool for virtual
experimentation of ecosystems.

An internet website [24] is available to download the applications, libraries
and source-code, as well as provide information about the P-Lingua project. In
addition, this site aims to be a meeting point for users and developers through the
use of web-tools such as forums.

The syntax of P-Lingua language is standard enough for specifying several
different models of cell–like P systems. However, a new version is necessary in
order to specify tissue P systems and this will be aim of a future work.

Although P-Lingua 2.0 provides a way to simulate and compile P systems,
command-line tools are usually not user-friendly. It means it is not easy and intu-
itive to use them. For this purpose, a new user interface called pLinguaPlugin has
been developed. This one is integrated into the Eclipse platform [23], so it makes
the most of Eclipse’s capabilities to provide a framework for translating, devel-
oping and testing P systems. It aims to be user-friendly and useful for P system
researchers.

Acknowledgement

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of
the Junta de Andalućıa under grant TIC04200.

References

1. M. Cardona, M.A. Colomer, M.J. Pérez–Jiménez, D. Sanuy and A. Margalida. Mod-
eling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. LNCS 5391,
137–156, 2009

264 M. Garćıa-Quismondo et al.

2. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez–Hurtado, M.J. Pérez–Jiménez,
D. Sanuy. P System based model of an ecosystem of the Scavenger Birds. In this
volume.

3. D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. A P-lingua
programming environment for Membrane Computing, Proceedings of the 9th Work-
shop on Membrane Computing, 155–172, 2008.

4. F. Fontana, L. Bianco and V. Manca. P Systems and the Modelling fo Biochemical
Oscillations, Membrane Computing, Sixth international Workshop, WMC6, Vienna,
Austria, LNCS 3850, 199–208, 2005.

5. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems, LNCS
4860, 271–284, 2007.

6. M.A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical Sys-
tems with Many Species and Many Channels, J. Phys. Chem., 104, 1876–1889, 2000.

7. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions, J. Phys.
Chem., 81, 2340–2361, 1977.

8. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a program-
ming language in cellular computing. LNCS 123, 93–110 2005.

9. M. Ito, C. Mart́ın–Vide, Gh. Păun. A characterization of Parikh sets of ET0L lan-
guages in terms of P systems. In Words, semigroups and transducers (M- Ito, Gh.
Păun, S. Yu, eds.), 239–254, Word Scientific, Singapore 2001.

10. M. Madhu, K. Krithivasan. P systems with membrane creation: Universality and
efficiency. LNCS 2055, 276–287, 2001.

11. M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–Jiménez, J.M. Cecilia, G.D.
Guerrero, J.M. Garćıa. Simulation of Recognizer P Systems by using Manycore
GPUs. In this volume.

12. A. Obtulowicz. Probabilistic P systems. Lecture Notes in Computer Science, 2597,
377–387, 2002.

13. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3, 295–305, 2002.

14. Gh. Păun. Computing with Membranes, Journal of Computer and System Sciences
61(1) 108–143, 2000.

15. Gh. Păun. P systems with active membranes. Journal of Automata, Languages and
Combinatorics, 6, 1, 75–90, 2001.

16. M.J. Pérez–Jiménez, F.J. Romero–Campero. Modelling Gene Expression Control
using P systems: The Lac Operon, a case study. BioSystems, 91, 438–457, 2008.

17. M.J. Pérez–Jiménez, F.J. Romero–Campero. A model of the Quorum Sensing System
in Vibrio Fischeri using P systems. Artificial Life, 14, 95–109, 2008.

18. M.J. Pérez–Jiménez, F.J. Romero–Campero. P Systems, a new computational mod-
elling tool for systems biology. Transactions on Computational Systems Biology VI,
LNBI, 4220, 176–197, 2006.

19. D. Pescini, D. Besozzi, G. Mauri and C. Zandron. Dynamical probabilistic P systems.
International Journal of Foundations of Computer Science, 17(1), 183–195, 2006.

20. F.J. Romero–Campero. P Systems, a Computational Modelling Framework for Sys-
tems Biology, Doctoral Thesis, University of Seville, Department of Computer Science
and Artificial Intelligence, 2008.

21. The GNU General Public License: http://www.gnu.org/copyleft/gpl.html
22. Java web page: http://www.java.com/
23. The Eclipse Project: http://www.eclipse.org
24. The P-Lingua website: http://www.p-lingua.org

A First Attempt to Model Notch Signalling by
Means of P Systems

Manuel Garćıa-Quismondo, Beverley M. Henley,
Ignacio Pérez-Hurtado, Agust́ın Riscos-Núñez

Research Group on Natural Computing
University of Seville (Spain)
mangarfer2@alum.us.es, {bhenley,perezh,ariscosn}@us.es

Summary. During mammalian central nervous system development, an enormous va-
riety of cell types are generated. This cell diversity is due in part to asymmetrical cell
division. Indeed, in some sense Notch signals link the fate decisions of one cell to those
of its neighbours. This fundamental signalling pathway has not yet been modeled within
membrane computing framework.

1 Introduction

In the last years, an increasing number of results are being obtained in the field of
using membrane systems to model different biological phenomena. This has been
done both at the microscopical level as well as at the macroscopic level.

The purpose of the present work is to adequately model the activation of the
Notch pathway (using membrane computing). Notch activation is described in
detail in [9], which is clearly summarised in [8], including all relevant references
and diagrams (the important Notch activation diagram is in [9]).

Of course, the first task that is required to be done is the specification of the
membrane system model that is going to be used. This will be done within the
software framework P-Lingua 2.0 1, in order to allow an easy route towards a
software simulation of the designed model.

Biologists usually use static model of pathways in an aid to understanding, so
it will be really beneficial for them to get access to an effective representation of
the activation of Notch in a dynamic computer model. Ideally (and in the long
term) the model should be able to shed light on some important questions (listed
at the end of the present document), specially if computer simulations can be run.

1 P-Lingua 2.0 is a software package including several built-in simulators for a number
of different P system models. It includes a specification language also called P-Lingua
which is used to define the P systems to be simulated. More information at [6]

266 M. Garćıa-Quismondo et al.

2 Cell Diversity

The mammalian central nervous system (CNS) contains an enormous variety of cell
types each with a unique morphology, physiology and function [10]. Understand-
ing how neuroepithelial cells (stem cells) of the developing CNS choose between
alternative cell fates to generate cell diversity is a challenge [3]. During develop-
ment, cell-fate diversity is brought about, in part, by asymmetric cell divisions
[7]. Asymmetric segregation of cell determinants, such as Numb, can result in the
differential activation of the Notch pathway, which can generate cell diversity [5].

In invertebrates, asymmetric segregation of cell-fate determining proteins or
mRNAs to the two daughter cells during precursor cell division plays a crucial
part in cell diversification. There is increasing evidence that this mechanism also
operates in vertebrate neural development and that the Numb protein, which func-
tions as cell-fate determinant during Drosophila development, may also function
in this way during vertebrate development [3]. A very clear illustration of symmet-
ric and asymmetric segregation of a cell fate-determining protein can be found in
Figure 2 of [3].

3 Modelling

The Notch pathway is a fundamental pathway in metazoan development and the
design and implementation of a good dynamic model of this pathway, and of
crosstalk between Notch and other signalling pathways, may be beneficial to de-
velopmental biologists.

Besides, from a computer science point of view, if a software counterpart of the
membrane system model is developed, capturing the interaction between neigh-
bours and the relevance of asymmetric distribution of proteins, then certainly such
a tool will be very valuable to facilitate future designs of similar models.

A reasonable choice to initiate the modelling task is to follow the work already
done for other signalling cascades (e.g. FAS-induced apoptosis [4], gene regulation
in Lac Operon [13]). In this sense, it is advisable to use stochastic P systems that
use a Multi-compartmental Gillespie Algorithm to govern their evolution. Let us
summarize next the types of rules used in this framework

• Protein-Protein rules (Multiset rewriting):

r : u[w]l
cr−→ u′[w′]l

where u, w, u′, w′ are finite multisets of objects and l a label. The multiset
u placed outside of the membrane labelled with l and the multiset w placed
inside of that membrane are simultaneously replaced by a multiset u′ and w′

respectively. These rules are referred to as boundary rules in [1].
• Genetic rules (String rewriting):

r : [u, s]l
cr−→ [u′, s′]

An Attempt to Model Notch Signalling by Means of P Systems 267

These rules allow the interaction between a multiset of objects u (e.g. a multiset
of proteins) and a string s (representing e.g. a sequence of DNA binding sites).

Note that both types of rules have associated with them a constant cr that
represents the kinetic constants associated with reactions in molecular biochem-
istry.

Using such P system setting has several advantages. On one hand, P-Lingua is
able to handle this rules, and thus the possibility to run simulations of any designed
model is at hand. On the other hand, in order to investigate in the future crosstalk
between Notch and other signalling pathways, all the rules involved should follow
the same syntax and semantics (e.g. stochastic P systems as implemented in P-
Lingua).

However, there are still important difficulties to solve, since the asymmetric
distribution of Notch and Delta ligands over the skin membrane seems to play a
crucial role, although it is not possible to express this information in the above
framework. Besides, in order to understand globally the effects of the Notch sig-
nalling on the cell diversification process mentioned in the preceding section, we
need to consider in our model rules allowing the interaction between two neighbour
cells. Furthermore, division rules should also be considered, as well as rules cap-
turing the movement of cells. These new requirements remind us of other models
in the literature where instead of focusing inside the cytoplasm of a single cell, a
population of individuals is considered (see e.g. [12] where multienvironments are
used to model the quorum sensing system in Vibrio fischeri).

Our proposal is to bridge stochastic P systems and multienvironments. Keep in
mind that P-Lingua is a flexible language, and even if we tailor a new model fitting
our expectations there are programming methods to easily extend the software
in order to cover the new model. Moreover, the package includes a Java library
implementing several built-in simulators and parsers. It is possible to develop an
appropriate interface over the library in order to implement a specific simulator
for the topic of this paper.

4 Notch pathway: questions

Notch signals affect specific cell fates in a context-specific manner, a schematic
summarising the effects of Notch signalling and its effect on cell fate decisions can
be found in [11], Figure 3. Understanding how and why different target genes are
activated according to cell type and time is a very important question, in other
words: how and why is Notch activation context dependant [2]? This and other
important questions are posed by Bray in [2]. The response to Notch differs greatly
between cell types, for example Notch promotes cell proliferation in some contexts
and apoptosis in others. What is the reason for this? Bray also states that recent
data reveals that the precise location of the Notch ligand and the receptor in the
cell can have profound effects on signalling. How does the different ligand locations
exactly impact on Notch activity? All of these questions are extremely important

268 M. Garćıa-Quismondo et al.

in untangling the role of Notch during diverse developmental and physiological
processes.

Acknowledgement

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of
the Junta de Andalućıa under grant TIC04200.

References

1. F. Bernardini, V. Manca. P systems with boundary rules. Lecture Notes in Computer
Science, 2597 (2002), 107-118.

2. S. J. Bray. Notch signalling: a simple pathway becomes complex. Nature Reviews
Molecular Cell Biology, 7, 9 (2006), 678-689.

3. M. Cayouette and M. Raff. Asymmetric segregation of Numb: a mechanism for neural
specification from Drosophila to mammals. Nat. Neurosci., 5, 12 (2002), 1265-1269.

4. S. Cheruku, A. Păun, F.J. Romero, M.J. Pérez-Jiménez, O.H. Ibarra. Simulating
FAS-induced apoptosis by using P systems. Progress in Natural Science, 17, 4 (2007),
424–431.

5. P. Fichelson and M. Gho. Mother-daughter precursor cell fate transformation after
Cdc2 down-regulation in the Drosophila bristle lineage. Dev. Biol., 276, 2 (2004),
367-377.

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. In this volume.

7. M. Gho and F. Schweisguth. Frizzled signalling controls orientation of asymmetric
sense organ precursor cell divisions in Drosophila. Nature, 393 (1998), 178-181.

8. B.M. Henley. Notch Signalling and Cellular Fate Choices: A Short Review Proc.
Seventh Brainstorming Week on Membrane Computing (vol. I), 227–230. (available
online through http://www.gcn.us.es)

9. R. Kageyama, T. Ohtsuka, J. Hatakeyama, and R. Ohsawa. Roles of bhlh genes in
neural stem cell differentiation. Experimental Cell Research, 306, 2 (2005), 343-348.

10. E. S. Lein et al. Genome-wide atlas of gene expression in the adult mouse brain.
Nature, 445 (2006), 168-176.

11. A. Louvi and S. Artavanis-Tsakonas. Notch signalling in vertebrate neural develop-
ment. Nature Reviews Neuroscience, 7 (2006), 93-102.

12. F.J. Romero, M.J. Pérez-Jiménez. A model of the Quorum Sensing System in Vibrio
Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109.

13. F.J. Romero, M.J. Pérez-Jiménez. Modelling gene expression control using P systems:
The Lac Operon, a case study. BioSystems, 91, 3 (2008), 438–457.

Characterizing Tractability by
Tissue-Like P Systems

Rosa Gutiérrez–Escudero1, Mario J. Pérez–Jiménez1, Miquel Rius–Font2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

rgutierrez,marper@us.es
2 Department of Applied Mathematics IV

Universitat Politécnica de Catalunya
Edifici C3, Despatx 016, Av. del Canal Oĺımpic, s/n, 08860 Castelldefels, Spain

mrius@ma4.upc.edu

Summary. In the framework of cell–like membrane systems it is well known that the
construction of exponential number of objects in polynomial time is not enough to ef-
ficiently solve NP–complete problems. Nonetheless, it may be sufficient to create an
exponential number of membranes in polynomial time. In the framework of recognizer
polarizationless P systems with active membranes, the construction of an exponential
workspace expressed in terms of number of membranes and objects may not suffice to
efficiently solve computationally hard problems.

In this paper we study the computational efficiency of recognizer tissue P systems
with communication (symport/antiport) rules and division rules. Some results have been
already obtained in this direction: (a) using communication rules and forbidding division
rules, only tractable problems can be efficiently solved; (b) using communication rules
with length three and division rules, NP–complete problems can be efficiently solved. In
this paper we show that the length of communication rules plays a relevant role from the
efficiency point of view for this kind of P systems.

1 Introduction

Membrane Computing is a branch of Natural Computing and starts from the
assumption that the processes taking place within the compartmental structure of
a living cell can be interpreted as computations [9]. The computational devices in
Membrane Computing are called P systems. Roughly speaking, a P system consists
of a membrane structure; in the compartments of this structure are multisets of

270 R. Gutiérrez-Escudero et al.

objects which evolve according to given rules in a synchronous, non–deterministic,
maximally parallel manner3.

In recent years, many different models of P systems have been proposed and
proved to be computationally universal. The most studied variants are character-
ized by a cell-like membrane structure, where communication happens between
a membrane and the surrounding one. In this model the membrane structure is
hierarchical and the graph of the neighbourhood relation between compartments
is a tree.

We shall focus here on another type of P systems, the so-called (because of
their membrane structure) tissue P Systems. Instead of considering a hierarchical
arrangement, membranes are modelled as nodes of an undirected graph. The bio-
logical inspiration for this variant is twofold: intercellular communication and co-
operation between neurons. The common mathematical model of these two mech-
anisms is a net of processors dealing with symbols and communicating these sym-
bols along channels specified in advance. Communication between cells is based on
symport/antiport rules4. Symport rules move a number of objects across a mem-
brane together in the same direction, whereas antiport rules move objects across
a membrane in opposite directions.

Since the initial definition of tissue P systems several research lines have been
developed and other variants have arisen. One of the most interesting variants of
tissue P systems was presented in [12] where the definition of tissue P systems is
combined with that of P systems with active membranes, yielding the model of
tissue P systems with cell division.

This model has been studied in depth in [1], where the importance of the cell
division rules with respect to the computational power of the model is shown.
Working with tissue P systems without division rules it is not possible to solve
computationally hard problems [2] (unless P=NP). We focus now on the influence
of the length of communication rules on the computational power of tissue P sys-
tems with cell division. In particular, when limiting this length to 1, only tractable
problems can be efficiently solved. A proof of this result is presented here.

The paper is organised as follows. In Section 2 we recall some definitions related
to tissue P systems (further information can be found in the literature, see [15]).
Section 3 is devoted to formalizing the concept of polynomial–time solvability of
decision problems by recognizer tissue P systems. In Section 4 we introduce a
dependency graph for tissue P systems and use this technique to prove the main
result of the paper. Finally, the last section contains some remarks and raises open
questions and future work directions.
3 An informal overview can be found in [11] and further bibliography at [15].
4 This method of communication for P systems was introduced in [8].

Characterizing Tractability by Tissue-like P Systems 271

2 Recognizer Tissue P Systems

Firstly, the concept of tissue P system of degree q ≥ 1 with cell division is intro-
duced.

Definition 1. A tissue P system of degree q ≥ 1 with cell division is a tuple

Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin, iout)

where:

1. Γ is a finite alphabet (called working alphabet) whose elements are called ob-
jects;

2. Σ is a finite alphabet (called input alphabet) strictly contained in Γ ;
3. Ω ⊆ Γ \ Σ is a finite alphabet, describing the set of objects located in the

environment in arbitrarily many copies each;
4.M1, . . . ,Mq are strings over Γ , describing the multisets of objects placed in

the q cells of the system;
5. R is a finite set of rules, of the following forms:

a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, and u, v ∈ Γ ∗;
communication rules; 1, 2, . . . , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i (we say that the
sum of the lengths of u and v is the length of the rule);

b) [a] i → [b] i[c] i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ ;
division rules; under the influence of object a, the cell with label i is divided
in two cells with the same label; in the first copy the object a is replaced
by b, in the second copy the object a is replaced by c; all other objects are
replicated and copies of them are placed in the two new cells.

6. iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.

The rules of such a system are applied in a non-deterministic maximally parallel
manner as is customary in membrane computing. In each step, all cells which can
evolve must evolve in a maximally parallel way (in each step we apply a multiset of
rules which is maximal, no further rule can be added), with the following important
remark: if a cell divides, then the division rule is the only one which is applied for
that cell in that step; its objects do not evolve by means of communication rules. In
other words, before division a cell interrupts all its communication channels with
the other cells and with the environment; the new cells resulting from division will
interact with other cells or with the environment only in the next step – providing
that they do not divide once again. The label of a cell precisely identifies the rules
which can be applied to it.

A configuration of Π is described by the multisets of objects over Γ associated
with all the cells present in the system and the multiset over Γ \ Ω associated
with the environment (the objects in the environment which are in finitely many

272 R. Gutiérrez-Escudero et al.

copies). For two configurations C1, C2 of Π we write C1 ⇒Π C2, and we say that
we have a transition from C1 to C2, if we can pass from C1 to C2 by applying the
rules from R.

The initial configuration of the system is (∅,M1, . . . ,Mq). For each multiset m
over the input alphabet, the initial configuration of the system associated with it is
(∅,M1, . . . ,Miin∪ m, . . . ,Mq). Then, m is an input multiset of every computation
C = {Ci}i<r such that C0 is the initial configuration of Π associated with m.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the number
of objects in the output cell iout in the last configuration. From now on, we will
consider that the output is collected in the environment (that is, iout = 0, and
thus we will omit iout in the definition of tissue P systems). This way, if Π is a
tissue P system and C = {Ci}i<r is a halting computation of Π, then the answer
of the computation C is

Output(C) = ΨΓ\Ω(Mr−1,0)

where Ψ is the Parikh function, and Mr−1,0 is the multiset over Γ \Ω associated
with the environment at the halting configuration Cr−1.

Let us recall that NP–completeness has been usually studied in the framework
of decision problems, that is problems whose solution is either yes or no. More
formally, a decision problem is a pair (IX , θX) where IX is a language over a finite
alphabet whose elements are called instances, and θX is a total Boolean function
over IX .

Each decision problemX = (IX , θX) has a language LX over the alphabet of IX
associated with it, defined as follows: LX = {a ∈ IX : θX(a) = 1}. Reciprocally,
each language L over an alphabet Σ has a decision problem, XL associated with
it as follows: IXL

= Σ∗, and θXL
= {(x, 1) : x ∈ L} ∪ {(x, 0) : x /∈ L}.

Recognizer cell-like P systems were introduced in [14] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizer cell-like P systems are associated with P systems
with input in a natural way. The data encoding an instance of the decision problem
has to be provided to the P system in order to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input mem-
brane. The output of the computation (yes or no) is sent to the environment in
the last step of the computation. In this way, cell-like P systems with input and
external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

Characterizing Tractability by Tissue-like P Systems 273

In order to use these computational devices for solving decision problems, rec-
ognizer tissue P systems are introduced.

Definition 2. A tissue P system with cell division of degree q ≥ 1

Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin)

is a recognizer system if the following holds:

1. The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets M1, . . . , Mq, but not present in Ω.

2. All computations halt.
3. If C = {Ci}i<r is a computation of Π, then either the object yes or the object

no (but not both) must have been released into the environment, and only in
the last step of the computation.

Given a recognizer tissue P system with cell division, and a computation C =
{Ci}i<r of Π (r ∈ N), we define the result of C as follows:

Output(C) =

yes, if Ψ{yes,no}(Mr−1,0) = (1, 0)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2
no, if Ψ{yes,no}(Mr−1,0) = (0, 1)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

That is, C is an accepting computation (respectively, rejecting computation) if
the object yes (respectively, no) appears in the environment (only) in the halting
configuration of C.

3 Polynomial–Time Solvability by Recognizer Tissue P
Systems

In this section, the definition of polynomial–time (uniform) solvability of decision
problems by a family of cell–like P systems is extended to solvability by a family
of tissue P systems.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue P systems with
cell division if the following hold:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine which constructs the system Π(n) from n ∈ N
in polynomial time with respect n.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
(called a polynomial encoding of IX in Π) such that:
– For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u)).

274 R. Gutiérrez-Escudero et al.

– The family Π is polynomially bounded with regard to (X, cod, s); that is,
there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps.

– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

We denote by PMCTDC the set of all decision problems which can be solved
by means of recognizer tissue P systems with cell division in polynomial time. This
class is closed under polynomial–time reduction and under complement (see [13]
for a similar result for cell-like P systems). We also denote by PMCTDC(k) the
set of all decision problems which can be solved by means of recognizer tissue P
systems with cell division in polynomial time, by using communication rules whose
length is, at most, k.

4 Dependency Graph Associated with Tissue P Systems

Let Π be a tissue P system with cell division and let all communication rules
be of length 1. In this case, each rule of the system can be activated by a single
object. Hence, there exists in a certain sense, a dependency between the object
triggering the rule and the object or objects produced by its application. This
dependency allows us to adapt the ideas developed in [5] for cell-like P systems
with active membranes to tissue P systems with cell division and communication
rules of length 1.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, i 6= j, and a, b ∈ Γ . Communication rules correspond to the case
s = 1 and b1 = a, and division rules correspond to the case s = 2 and j = i 6= 0.
The above pattern can be interpreted as follows: from the object a in the cell (or
in the environment) labelled with i we can reach the objects b1, . . . , bs in the cell
(or in the environment) labelled with j.

Without loss of generality we can assume that all communication rules in the
system obey the syntax (i, a/λ, j), since every rule of the form (j, λ/a, i) can be
rewritten to follow the above syntax, with equivalent semantics.

Next, we formalize these ideas in the following definition.

Characterizing Tractability by Tissue-like P Systems 275

Definition 4. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin) be a tissue P system of de-
gree q ≥ 1 with cell division. Let H = {0, 1, . . . , q}. The dependency graph associ-
ated with Π is the directed graph GΠ = (VΠ , EΠ) defined as follows:

VΠ = {(a, i) ∈ Γ ×H : ∃j ∈ H ((i, a/λ, j) ∈ R ∨ (j, a/λ, i) ∈ R) ∨

∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ R ∨ [b]i → [a]i[c]i ∈ R)},

EΠ = {((a, i), (b, j)) : (a = b ∧ (i, a/λ, j) ∈ R) ∨

∃c ∈ Γ ([a]i → [b]i[c]i ∈ R ∧ j = i)}.

In what follows, every algorithm is analysed under the uniform cost criteriom,
that is, each basic instruction/operation take constant time.

Proposition 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin) be a tissue P system with
cell division, in which the length of all communication rules is 1. Let H =
{0, 1, . . . , q}. There exists a deterministic Turing machine that constructs the de-
pendency graph GΠ associated with Π, in polynomial time (that is, the run–time
is bounded by a polynomial function depending on the total number of rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of rules,
constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = (i, a/λ, j) then

VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}
if r = [a]i → [b]i[c]i then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i), (b, i)), ((a, i), (c, i))}

The running time of this algorithm is bounded by O(|R|). �

Proposition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin) be a tissue P system with
cell division, in which the length of all communication rules is 1. Let H =
{0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π = {(a, i) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, i) to (yes, 0)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial time
(that is, the run–time is bounded by a polynomial function depending on the total
number of rules).

276 R. Gutiérrez-Escudero et al.

Proof. We can construct the set ∆Π from Π as follows:

• We construct the dependency graph GΠ associated with Π.
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, i) ∈ VΠ do

if reachability (GΠ , (a, i), (yes, 0)) = yes then

∆Π ← ∆Π ∪ {(a, i)}

The running time of this algorithm is of order O(|VΠ | · |VΠ |2), hence5 it is of order
O(|Γ |3 · |H|3). �

Notation: Let Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin, iout) be a tissue P system with
cell division. Let m be a multiset over Σ. Then we denoteM∗j = {(a, j) : a ∈Mj},
for 1 ≤ j ≤ q, and m∗ = {(a, iin) : a ∈ m}.

Below we characterize accepting computations of a recognizer tissue P system
with cell division and communication rules of length 1 by distinguished paths in
the associated dependency graph.

Lemma 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq, R, iin) be a recognizer confluent tissue
P system with cell division in which the length of all communication rules is 1.
The following assertions are equivalent:

(1) There exists an accepting computation of Π.
(2) There exists (a0, i0) ∈

⋃q
j=1 M∗j and a path in the dependency graph associated

with Π, from (a0, i0) to (yes, 0).

Proof. (1)⇒ (2) First, we show that for each accepting computation C of Π there
exists (a0, i0) ∈

⋃q
j=1 M∗j and a path γC in the dependency graph associated with

Π from (a0, i0) to (yes, 0). By induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form

(j, yes/λ, 0), with a ∈ Γ, j 6= 0, has been applied in that step. Then, (yes, j) ∈M∗j ,
5 The Reachability Problem is the following: given a (directed or undirected) graph, G,

and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given a
(directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–search
with source a, and we check if b is in the tree of the computation forest whose root
is a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store a
linear number of items (it can be proved that there exists another polynomial–time
algorithm which uses O(log2(|V |)) space).

Characterizing Tractability by Tissue-like P Systems 277

for some j = 1, . . . , q. Hence, ((yes, j), (yes, 0)) is a path in the dependency graph
associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be
an accepting computation of Π. Then C′ = (C1, . . . , Cn, Cn+1) is an accepting
computation of the system Π ′ = (Γ,Σ,Ω,M′1, . . . ,M′q, R, iin), being M′j the
contents of cell j in configuration C1, for 1 ≤ j ≤ q. By induction hypothesis
there exists an object b0 in a cell i0 from C1, and a path in the dependency graph
associated with Π ′ from (b0, i0) to (yes, 0). If (b0, i0) is an element of configuration
C0 (that means that in the first step a division rule has been applied to cell i0), then
the result holds. Otherwise, there is an element (a0, j0) in C0 producing (b0, i0).
So, there exists a path γC in the dependency graph associated with Π from (a0, j0)
to (yes, 0).

(2) ⇒ (1). Let us see that for each (a0, i0) ∈
⋃q
j=1 M∗j and for each path in

the dependency graph associated with Π from (a0, i0) to (yes, 0), there exists an
accepting computation of Π. By induction on the length n of the path.

If n = 1, we have a path ((a0, i0), (yes, 0)). Then, a0 = yes and the computa-
tion C = (C0, C1) where the rule (i0, yes/λ, 0) belongs to a multiset of rules m0

that produces configuration C1 from C0 is an accepting computation of Π.
Let us suppose that the result holds for n. Let

((a0, i0), (a1, i1), . . . (an, in), (yes, 0))
be a path in the dependency graph of length n + 1. If (a0, i0) = (a1, i1), then
the result holds by induction hypothesis. Otherwise, let C1 be the configuration
of Π reached from C0 by the application of a multiset of rules containing the rule
that produces (a1, i1) from (a0, i0). Then ((a1, i1), . . . (an, in), (yes, 0)) is a path
of length n in the dependency graph associated with the system

Π ′ = (Γ,Σ,Ω,M′1, . . . ,M′q, R, iin)
being M′j the content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction
hypothesis, there exists an accepting computation C′ = (C1, . . . , Ct) of Π ′. Hence,
C = (C0, C1, . . . , Ct) is an accepting computation of Π. �

Next, given a family Π = (Π(n))n∈N of recognizer tissue P system with cell
division in which the length of all communication rules is 1, solving a decision
problem, we will characterize the acceptance of an instance of the problem, w,
using the set ∆Π(s(w)) associated with the system Π(s(w)) that processes the
given instance w. More precisely, the instance is accepted by the system if and
only if there is an object in the initial configuration of the system Π(s(w)) with
input cod(w) such that there exists a path in the associated dependency graph
starting from that object and reaching the object yes in the environment.

Proposition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer tissue P system with cell division solving X in which the
length of all communication rules is 1, according to Definition 3. Let (cod, s) be

278 R. Gutiérrez-Escudero et al.

the polynomial encoding associated with that solution. Then, for each instance w
of the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b)∆Π(s(w)) ∩ ((cod(w))∗ ∪
p⋃
j=1

M∗j) 6= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). From Lemma 1
this condition is equivalent to the following: in the initial configuration of Π(s(w))
with input multiset cod(w) there exists at least one object a ∈ Γ in a cell labelled
with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗j 6= ∅ for some j ∈ {1, . . . , p}, or
∆Π(s(w)) ∩ (cod(w))∗ 6= ∅. �

Theorem 1. P = PMCTDC(1)

Proof. We have P ⊆ PMCTDC(1) because PMCTDC(1) is a nonempty class closed
under polynomial–time reduction. Next, we show that PMCTDC(1) ⊆ P. Let
X ∈ PMCTDC(1) and let Π = (Π(n))n∈N be a family of recognizer tissue P
systems with cell division solving X, according to Definition 3. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 2

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗j 6= ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a
pair (a, i) belonging to ∆Π(s(w)) such that the symbol a appears in the cell labelled
with i in the initial configuration (with input the multiset cod(w)).

Characterizing Tractability by Tissue-like P Systems 279

On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, i) to (yes, 0), that is, if and only if we can obtain an accepting
computation of Π(s(w)) with input cod(w). Hence, the algorithm above described
solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩ M∗j 6= ∅ (or ∆Π(s(w)) ∩
(cod(w))∗ 6= ∅) is of order O(|Γ |2 · |H|2).

Hence, the running time of this algorithm can be bounded by f(|w|)+O(|R|)+
O(q · |Γ |2 · n2), where f is the (total) cost of a polynomial encoding from X to Π,
R is the set of rules of Π(s(w)), and q is the number of (initial) cells of Π(s(w)).
But from Definition 3 we have that all involved parameters are polynomials in |w|.
That is, the algorithm is polynomial in the size |w| of the input. �

In [3] a polynomial time solution of the Vertex Cover problem was given by
using a family of recognizer tissue P systems with cell division and communication
rules of length at most 3. Then NP ∪ co-NP ⊆ PMCTDC(3).

Hence, in the framework of recognizer tissue P systems with cell division the
length of the communication rules provides a borderline between efficiency and
non-efficiency. Specifically, a frontier is obtained when we pass from length 1 to
length 3.

5 Final Remarks and Future Work

It is known [2] that tissue P systems with communication rules and without division
rules can efficiently solve only tractable problems. It is also well known that by
adding division rules we can efficiently solve NP–complete problems in linear time
by using communication rules with length at most 3 [3].

In order to obtain new borderlines between tractability and intractability of
problems, we study the possibility to restrict the length of communication rules
to 1, allowing division rules. By using the dependency graph technique of cell–like
P systems, we have shown that only tractable problems can be efficiently solved
in that scenario.

Several questions regarding the role of the length remain open, for example:

• What happens if we consider tissue P systems using communication rules of
length at most 2?

• In the solution provided in [3], antiport rules of length at most 3 were used.
Would it be possible to provide another solution in which all rules of length 3
were symport?

Other open issues related to tissue P systems that may be interesting are:

• Analyzing a new role for the environment. More specifically, consider in the
initial configuration only objects with finite multiplicity in the environment. It

280 R. Gutiérrez-Escudero et al.

seems that this new scenario would be equivalent to tissue P systems without
environment, with a new distinct cell with no division rules associated. Is it
still possible to solve NP–complete problems in polynomial time in this new
framework, permitting division rules?

• Considering variations in the semantics of division rules, for example, dispens-
ing with replication or with evolution. Division rules without replication would
obey the syntax [a]

i
→ []

i
[u]

i
, where i ∈ {1, 2, . . . , q}, a ∈ Γ and u ∈ Γ ∗,

meaning that under the influence of object a, the cell with label i is divided in
two cells with the same label. The first copy contains all objects of the origi-
nal cell except for a and in the second copy the content of the original cell is
replaced by the multiset u. Division rules without evolution would be either of
the form [a]

i
→ []

i
[]

i
or [a]

i
→ [a]

i
[a]

i
, where i ∈ {1, 2, . . . , q} and

a ∈ Γ . In both cases, under the influcence of object a, the cell with label i is
divided in two cells. All objects are replicated and copies of them are placed
in the two new cells, except for a in the first case.

Acknowledgement

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. D. Dı́az–Pernil. Sistemas celulares de tejidos: Formalización y eficiencia computa-
cional. Ph D. Thesis, University of Sevilla, 2008.

2. D. Dı́az–Pernil, M.J. Pérez–Jiménez and A. Romero–Jiménez. Efficient simulation
of tissue-like P systems by transition cell-like P systems. Natural Computing, online
version (http://dx.doi.org/10.1007/s11047-008-9102-z).

3. D. Dı́az–Pernil, M.J. Pérez–Jiménez, A. Riscos–Núñez and A. Romero–Jiménez.
Computational Efficiency of Cellular Division in Tissue-like Membrane Systems. Ro-
manian Journal of Information Science and Technology, 11, 3 (2008), 229–241.

4. P. Frisco and H.J. Hoogeboom. Simulating counter automata by P systems with
symport/antiport. Lecture Notes in Computer Science 2597 (2003), 288–301.

5. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez and F.J. Romero–
Campero. On the power of dissolution in P systems with active membranes. Lecture
Notes in Computer Science 3850 (2006), 224–240.

6. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez, F.J. Romero–
Campero and A. Romero–Jiménez. Characterizing tractability by cell-like membrane
systems. In K.G. Subramanian, K. Rangarajan, M. Mukund (eds.). Formal models,
languages and applications, World Scientific, Series in Machine Perception and Arti-
ficial Intelligence - Vol. 66, 2006, chapter 9, pp. 137-154.

7. C. Mart́ın–Vide, J. Pazos, Gh. Păun and A. Rodŕıguez–Patón. Tissue P systems.
Theoretical Computer Science, 296, (2003), 295–326.

Characterizing Tractability by Tissue-like P Systems 281

8. A. Păun and Gh. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20, 3, (2002), 295–305.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1, (2000), 108–143.

10. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).
11. Gh. Păun and M.J. Pérez–Jiménez. Recent computing models inspired from biology:

DNA and membrane computing. Theoria, 18, 46, (2003), 72–84.
12. Gh. Păun, M.J. Pérez–Jiménez and A. Riscos–Núñez. Tissue P Systems with cell

division. International Journal of Computers, Communications & Control, Vol. III,
3 (2008), 295-303. A preliminary version in Gh. Păun, A. Riscos–Núñez, A. Romero–
Jiménez and F. Sancho–Caparrini (eds), Second Brainstorming Week on Membrane
Computing, Sevilla, Report RGNC 01/2004, (2004), 380–386.

13. M.J. Pérez–Jiménez, A. Romero–Jiménez and F. Sancho–Caparrini. Complexity
classes in cellular computing with membranes, Natural Computing, 2, 3, 2003, pp.
265–285.

14. M.J. Pérez–Jiménez, A. Romero–Jiménez and F. Sancho–Caparrini. A polynomial
complexity class in P systems using membrane division, Journal of Automata, Lan-
guages and Combinatorics, 11, 4, 2006, pp. 423–434. A preliminary version in E.
Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszil (eds.) Proceedings of the Fifth In-
ternational Workshop on Descriptional Complexity of Formal Systems, DCFS 2003,
Budapest, Hungary, July 12-14, 2003, pp. 284-294.

15. P systems web page http://ppage.psystems.eu/

Searching Previous Configurations
in Membrane Computing

Miguel A. Gutiérrez-Naranjo and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
{magutier,marper}@us.es

Summary. Searching all the configurations C′ which produce a given configuration C
is an extremely hard task. The current approximations are based on heavy hand-made
calculus by considering the specific features of the given configuration. In this paper we
present a general method for characterizing all the configurations C′ which produce a
given configuration C in the framework of transition P systems without cooperation and
without dissolution.

1 Introduction

Given a computational model with a universal clock, where the time is considered
in a discrete way and the transition from a state to the next one is produced by
a set of rules, it is usual to wonder about the previous state of a given one. Note
that the determinism of the model does not make the solution easier, since the
determinism of the computation does not lead to the determinism of the reverse
computation. One can pass deterministically from S to S0 and from S′ to S0,
but given S0, the reversed computation is not deterministic. A special situation
is considered when the rules are reversible, i.e., rules for which one can change
the left hand side and right hand side of the rule and the new rule suits to the
syntactic constraints of the considered P system model. In this case, it suffices to
apply the reversed rules to S1 according to the computational model to obtain the
desired states (it was studied for P systems in [1]).

In this paper we study the problem of characterizing the set of configurations
of a P system that produce a given configuration in one transition step. We study
the case in which the P system is not necessarily deterministic and the rules are
not reversible in general. In our study, we modify the representation for rules and
configurations used in [2, 4] by introducing the notion of order between pairs as in
[3]. We use Linear Algebra as a tool for computing and consider a restricted version

Searching Previous Configurations in Membrane Computing 283

of transition P systems without cooperation where the membrane structure does
not change along the computation.

The paper is organized as follows: first we expose an example that shows the
necessity of finding a method for computing backwards, avoiding the heavy calculus
based on specific features of the given configuration. Next, our P system model
is briefly introduced and a representation for configurations and rules in such a P
system is presented. In Section 6 we prove our main result: Computing the set of all
the configurations C ′ which produce a given configuration C can be reduced to find
solutions of a system of linear equations with values in N. In Section 7 we provide
a general method of calculus based on our theorem. Finally, some conclusions and
new open research lines are presented.

2 Motivation

Let us start with a P system Π with working alphabet Γ = {a, b, c}, set of labels
H = {e, s}, membrane structure µ = [[]e]s and the following set of rules R:

Rule 1: [a→ b2c]e Rule 4: [b→ a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b→ c2]s Rule 6: [c→ a]e

In Section 3, we will give a detailed description of the P system model studied
in this paper, but by now it is enough to know that all the rules are applied in
a non-deterministic maximal parallel way as usual in the general framework of
Membrane Computing (see [5] for details).

Let us consider now the configuration C ′ = [[a2b]e a2c]s, i.e., the configura-
tion in which the multiset placed in the membrane labelled by e is a2b and the
multiset in the membrane s is a2c. Our problem is to find the configuration (or
configurations) C such that we can pass from C to C ′ in one transition step. In
other words, we want to characterize all the configurations C such that produce
C ′ in one transition step.

We can reason in the following way:

• We find two objects a in the membrane labelled by e in the configuration C ′.
Since rules 1 and 2 consume all the objects in the membrane e from the previous
configuration C, we conclude that such pair of objects a must be produced by
the application of rule(s) of Π. It is easy to check that only rule 6 produces
objects a in membrane e, then the number of objects c in configuration C
must be at least 2. If we look at the set of rules again, we observe that object
c in membrane e only triggers rule 6. Hence, if the number of objects c in e is
higher than 2 we conclude that the number of objects a in the membrane e in
the configuration C must be greater than 2. Therefore, we conclude that the
number of objects c in the membrane e in configuration C is exactly equal to
2.

284 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

• We find one object b in the membrane labelled by e in configuration C ′. The
unique rule that can produce it is rule 1, but the application of the rule produces
at least two objects b in membrane e. Then we conclude that rule 1 is not
applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by
object b in the membrane e, then the number of objects b in membrane e in
the configuration C equals to 1.

• No object c are placed in the membrane e in C ′. All such objects from the
previous configuration C are consumed by rule 6, so no object c in the mem-
brane e imply that rules 1 and 5 have not been triggered. From the previous
paragraph, it is known that rule 5 has not been applied. Since all the objects
a in membrane s send objects e into membrane c by means of rule 5 and the
numbers of objects c in such membrane in configuration C ′ is zero, we conclude
that in configuration C no objects a are placed in the membrane s.

• We find one object c in the membrane labelled by s in configuration C ′. The
unique rule that can produce it is rule 3, but the application of the rule produces
at least two objects c in membrane s. Then we conclude that rule 3 is not
applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by the
object c in the membrane s, then the number of objects c in membrane s in
the configuration C equals 1.

• Finally, we find two objects a in the membrane labelled by s in the configuration
C ′. Since rule 5 consumes all the objects in the membrane e from the previous
configuration C, we conclude that such objects a must be produced by the
application of rule(s) of Π. Rules 2 and 4 produce objects a in membrane s.
Rule 2 is triggered by an object a in the membrane e and rule 4 is triggered
by an object b in membrane s. We can also check that all the objects b in
s produce objects a. Nonetheless, an object a in the membrane e can trigger
rules 1 and 2. Fortunately, we have seen that rule 1 is not triggered, so can
conclude that all the objects a in membrane e trigger rule 2. We conclude that
the number of objects a in membrane e in the configuration C and the number
of objects b in the membrane s must be less than or equal to 2 and the sum of
both numbers must be exactly equal to 2.

Bearing in mind these considerations, there are exactly three configurations C
such that produce C ′ in one transition step:

• C1 = [[bc2]e b2c]s, i.e., we = bc2 and ws = b2c. It is easy to check that by
applying the rules 4 and 6 we obtain the configuration C ′ = [[a2b]e a2c]s.

• C2 = [[abc2]e bc]s, i.e., we = abc2 and ws = bc. In this case, C ′ is obtained by
applying the rules 2, 4 and 6.

• C3 = [[a2bc2]e c]s, i.e., we = a2bc2 and ws = c. In this case, C ′ is obtained by
applying the rules 2 and 6.

Searching Previous Configurations in Membrane Computing 285

A question arises in a natural way: Could this reasoning be automated? In
other words, given a P system and a configuration C ′, is there an algorithm such
that outputs the set C of configurations C and produce C ′ in one transition step?

We can even go beyond. We wonder if there exists an algorithm such that
it takes a P system Π as input and it outputs a mapping RΠ which, for every
configuration C ′ of Π, RΠ(C ′) is the set of all computations C such that C ′ is
reachable from C in one computational step. In this paper, we will give a positive
answer to both questions. Before, we need to stress the relationship between P
systems and Linear Algebra.

3 The P System Model

Throughout this paper, we will consider a restricted form of transition P systems
without dissolution and without output membrane. Considering an output mem-
brane is irrelevant for our study, since we are not interested in the objects placed
in a particular membrane, but in the computation process itself. We also restrict
the type of rules. Cooperation is not allowed and then rules are triggered by only
one object.

Namely, along this paper a P system of degree m is a tuple

Π = (Γ,H, µ,w1, . . . , wm, R)

where:

• Γ is the working alphabet whose elements are called objects;
• H = {1, . . . ,m} is the set of labels;
• µ is the membrane structure of the P system and membranes are bijectively

labelled with the elements of H;
• w1, . . . , wm are strings that represent multisets over Γ associated with each

membrane of µ;
• R = {R1, . . . , Rm} is the set of sets of rules, where Ri with i ∈ {1, . . . ,m}

are finite sets of evolution rules over Γ . The type of evolution rules of Ri
depends on the membrane structure µ. Let j1, . . . , jr be the labels of membranes
immediately inside the membrane i. An evolution rule of Ri is of the form
a→ v, where a ∈ Γ and v is an string over Γ itar, where Γ itar = Γ × TARi, for
TARi = {here, out} ∪ {injk | k ∈ {1, . . . , r} }.

The symbols here, out and injk are called target commands. The rules are
applied in a non-deterministic maximally parallel way. Given a rule a → v, the
effect of applying this rule in a compartment i is to remove the object a and to
insert the objects specified by v in the regions designated by the target commands
associated with the objects from v. In particular,

• if v contains (a, here), the object a will be placed in the same region where the
rule is applied;

286 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

• if v contains (a, out), the object a will be placed in the compartment that
surrounds the region where the rule is applied;

• if v contains (a, inj), the object a will be placed in compartment j, provided
that j is immediately inside i.

In one step, each object in a membrane can only be used for one rule (non
deterministically chosen when there are several possibilities), but any object which
can evolve by a rule of any form must do it. All the elements which are not involved
in any of the rules to be applied remain unchanged. Several rules can be applied
to different objects in the same cell simultaneously.

Along the computation, the multisets associated with the membranes can
change, but the alphabet Γ , the set of labels H, the membrane structure µ and
the set of rules R are constant. We will call the 4-uple (Γ,H, µ,R) the skeleton of
the P system.

Notice that the P system presented in Section 2 is a particular case of this P
system model with a slight change of notation in the rules:

1. Notation [a → v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, here) . . . (vn, here) belongs to the
set of rules Rh, with v = v1 . . . vn.

2. Notation a[]h → [v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a→ (v1, inh) . . . (vn, inh) belongs to the set
of rules Rh∗ , with h∗ the label of the membrane surrounding the membrane h
and v = v1 . . . vn.

3. Notation [a]h → v[]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a→ (v1, out) . . . (vn, out) belongs to the set
of rules Rh, with v = v1 . . . vn.

4 Changing the Point of View

The key idea of the present paper is to consider an algebraic representation for the
configurations and the rules of a P system. The starting point is the representation
used in [2], but we introduce several changes.

First, our elementary objects are pairs of type (a, h) ∈ Γ × H meaning that
object a ∈ Γ is placed in the membrane (labelled by) h ∈ H. Roughly speaking,
transitions in P systems are performed by rules in which the occurrence of an
element a0 in a membrane h0 produces the occurrence of β1 copies of element a1

in membrane h1, β2 copies of element a2 in membrane h2, etc.
More formally, the rules in the P system model presented above can be refor-

mulated as follows:

(a0, h0)→ (a1, h1)β1(a2, h2)β2 . . . (an, hn)βn

Note that, for all i ∈ {1, . . . , n}, if h0 = hi then, (ai, hi) is equivalent to the pair
(ai, here). Otherwise, if h0 6= hi both membranes must be adjacent (one membrane

Searching Previous Configurations in Membrane Computing 287

is the father of the other one). If h0 is the father of hi, then the pair (ai, hi) is
equivalent, in some sense, to (ai, inhi

). Finally, if hi is the father of h0, then the
pair (ai, hi) is equivalent to (ai, out). For each i ∈ {1, . . . , n}, βi represents the
multiplicity of (ai, hi) in the right-hand side (RHS) of the rule.

The second basic idea in the representation appears in [3] as well. It consists
on settling a total order in the set Γ ×H. Along the paper, in order to simplify
the notation, given an alphabet Γ and a set of labels H, d will denote the cardinal
Γ ×H. Let us consider a total order O on the set Γ ×H, O : {1, . . . , d} → Γ ×H.
By using this order, we will represent Γ × H as the finite sequence 〈γ1, . . . , γd〉,
where γi is the i-th pair of Γ ×H in the order O.

By using this order, each rule

(a0, h0)→ (a1, h1)β1(a2, h2)β2 . . . (an, hn)βn

can be represented as
γ → γα1

1 γα2
2 . . . γαd

d

where (a0, h0) = γ and for all i ∈ {1, . . . , d}:

• If there exists j ∈ {1, . . . , n} such that γi = (aj , hj) then αi = βj .
• Otherwise αi = 0.

We will say that γ → γα1
1 γα2

2 . . . γαd

d is the pairwise representation of the rule.
The use of an order on Γ ×H leads us to a more homogeneous representation

of rule γ → γα1
1 γα2

2 . . . γαd

d . It can be represented by a pair 〈γ,v〉 where γ (the LHS
of the rule) belongs to Γ ×H, and v is a vector of dimension d whose components
are in N. Formally, we have the following definition:

Definition 1. Let us consider a P system Π with Γ the alphabet and H the set of
labels. Let Γ × H be the ordered set 〈γ1, . . . , γd〉. The algebraic representation of
the rule

γ → γα1
1 γα2

2 . . . γαd

d

is the pair (γ,v) where v = (α1, . . . , αd). We will say that v represents the right-
hand side of the rule ri.

Remark 1: Given an order 〈γ1, . . . , γd〉 on Γ×H, a pair 〈γ,v〉 where γ ∈ Γ×H
and v is a vector of dimension d (with values in N) defines a unique rule and vice-
versa, each rule having a unique algebraic representation.

Remark 2: If the P system is not deterministic, then there exists at least one
γ ∈ Γ ×H such that there exists two different vectors v1 and v2 such that pairs
〈γ,v1〉 and 〈γ,v2〉 represent two different rules.

Let us see an example of this algebraic representation.

Example 1. Let us consider the skeleton of the P system considered in Section 2
with Γ = {a, b, c}, H = {e, s}, µ = [[]e]s and R the set of rules

288 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

Rule 1: [a→ b2c]e Rule 4: [b→ a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b→ c2]s Rule 6: [c→ a]e

The set of objects is Γ = {a, b, c} and the set of labels is H = {e, s}. Let us
consider the following total order in Γ ×H

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

The six rules of the P system can be settled as

r1: (a, e)→ (b, e)2(c, e) r4: (b, s)→ (a, s)
r2: (a, e)→ (a, s) r5: (a, s)→ (c, e)
r3: (b, s)→ (c, s)2 r6: (c, e)→ (a, e)

By using the previous total order in Γ×H, these rules have the following algebraic
representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉

4.1 Configurations

A configuration of such a P system is the description of the multiset placed in
the membranes of the P system in a given instant. Formally, given a P system
with working alphabet Γ and set of labels H, a configuration C is a multiset over
Γ ×H, C : Γ ×H → N, and we denote by C(a,m) the multiplicity of object a in
the membrane labelled by m of that configuration. The support of C, supp(C), is
defined as supp(C) = {(a,m) ∈ Γ × H |C(a,m) 6= 0} and, as usual in multisets
theory, C will be represented as {(a,m)C(a,m) | (a,m) ∈ supp(C)}. For example,
the configuration of our example [[b]e c3]s can be represented as {(b, e), (c, s)3}.

From the idea of setting an order on Γ×H, the representation of a configuration
via a vector is quite natural.

Definition 2. Let us consider a P system Π with Γ the alphabet, H the set of labels
and order 〈γ1, . . . , γd〉 on Γ × H. An algebraic representation of a configuration
C : Γ ×H → N is a vector

C = (C(γ1), . . . , C(γd))

that is, the j-th component in C is a number representing the multiplicity of the
j-th element of Γ ×H.

Let us remark that, if the order on Γ ×H is set, then there exists a bijective
correspondence between a configuration C and its algebraic representation C.

Searching Previous Configurations in Membrane Computing 289

Example 2. As we saw before, the initial configuration [[b]e c3]s can be expressed
as the multiset C = {(b, e), (c, s)3}. If we consider order

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

then the algebraic representation of the configuration is C = (0, 1, 0, 0, 0, 3).

In order to formalize the concept of computation with this new representation,
we will fix some notations. We denote by RHSr the right-hand side of rule r and
for all σ ∈ Γ ×H, |RHSr(σ)| denotes the multiplicity of σ in the multiset RHSr.

Example 3. Let us consider the pairwise representation of the rule r1 : (a, e) →
(b, e)2(c, e), then RHSr1 = (b, e)2(c, e) and |RHSr1(b, e)| = 2.

Definition 3. Let us consider an alphabet Γ , a set of labels H and the set of rules
R of a P system. We will denote by LHS(R) the set of all the pairs from Γ ×H
that are the left-hand side of a rule from R. Formally

LHS(R) = {γ ∈ Γ ×H | ∃r ∈ R (γ = LHS(r))}

Example 4. Let us consider Γ = {a, b, c}, H = {e, s} and R the set of rules

r1: (a, e)→ (c, e)2 r2: (a, e)→ (a, s) r3: (b, e)→ (c, e)
r4: (a, s)→ (b, s) r5: (a, s)→ (b, s)(c, s)2

In this case LHS(R) = {(a, e), (b, e), (a, s)}.

Definition 4. Let us consider an alphabet Γ and a set of labels H of a P sys-
tem Π and let R = 〈r1, . . . , rp〉 be an enumeration of its set of rules with
rj = (LHS(rj),vj). Let C : Γ ×H → N be a configuration of Π.

A partition of C with respect to R is a p-tuple

P = 〈(r1, k1), . . . , (rp, kp)〉

such that for all j ∈ {1, . . . , p}, kj ≥ 0 and for all γ ∈ LHS(R)∑
LHS(rj)=γ

kj = C(γ)

Example 5. Let us consider an alphabet Γ = {a, b, c} a set of labels H = {e, s},
µ = [[]e]s and R the set of rules from example 4

r1: (a, e)→ (c, e)2 r2: (a, e)→ (a, s) r3: (b, e)→ (c, e)
r4: (a, s)→ (b, s) r5: (a, s)→ (b, s)(c, s)2

Let us consider a configuration with algebraic representation C = 〈3, 0, 1, 7, 4, 1〉
associated with order 〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 of Γ ×H. In this case,
one possible partition of C with respect to R is

290 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

P = 〈(r1, 2), (r2, 1), (r3, 0), (r4, 2), (r5, 5)〉

the number associated to each rule is a natural number and LHS(R) = {(a, e),
(b, e), (a, s)}, so in order to check that P is a partition it suffices to check∑

LHS(rj)=(a,e) kj = k1 + k2 = 2 + 1 = 3 = C(a, e)∑
LHS(rj)=(b,e) kj = k3 = 0 = C(b, e)∑
LHS(rj)=(a,s) kj = k4 + k5 = 2 + 5 = 7 = C(a, s)

The different possible partitions capture the idea of different choice of rules in
the case of non-deterministic P system. Notice that in the case of a deterministic
P system, there exists only one partition

P = 〈(r1, C(LHS(r1))), (r2, C(LHS(r2))), . . . , (rp, C(LHS(rp)))〉
In order to obtain a new configuration C ′ from a given configuration C and from

the set of rules {r1, . . . , rp}, we need to describe the multiplicity of any σ ∈ Γ ×H
in C ′. For the calculus of such multiplicity we need

• A partition P = 〈(r1, k1), . . . , (rp, kp)〉 of C with respect to R.
• The set LHS(R)

In such multiplicity, each rule ri : γi → RHSri adds the multiplicity of σ in
the right hand side of the rule multiplied by the value ki in the partition P. If the
object is not consumed by any rule, we also add the multiplicity in the original
configuration.

Formally, for every σ ∈ Γ ×H we have:

C ′(σ) =
{∑i=p

i=1 ki · |RHSri
(σ)| if σ ∈ LHS(R)∑i=p

i=1 ki · |RHSri(σ)|+ C(σ) if σ 6∈ LHS(R)

Example 6. Let us come back again to our P system Π with alphabet Γ = {a, b, c},
set of labels H = {e, s}, membrane structure µ = [[]e]s and the set of rules R

Rule 1: [a→ b2c]e Rule 4: [b→ a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b→ c2]s Rule 6: [c→ a]e

Let us consider configuration C1 = [[bc2]e b2c]s, i.e., we = bc2 and ws = b2c.
It is easy to check that by applying rules 4 and 6 we obtain configuration
C ′ = [[a2b]e a2c]s. Such configuration can also be obtained by considering
the multiplicity of each pair in Γ × H and using the previous formula. First
we consider the partition P = 〈(r1, 0), (r2, 0), (r3, 0), (r4, 2), (r5, 0), (r6, 2)〉 and
LHS(R) = {(a, e), (b, s), (a, s), (c, e)}. Then, for example,

C ′(a, s) = k1 · 0 + k2 · 1 + k3 · 0 + k4 · 1 + k5 · 0 + k6 · 0 = 2 · 1 = 2
C ′(b, e) = k1 · 2 + k2 · 0 + k3 · 0 + k4 · 0 + k5 · 0 + k6 · 0 + C(b, e) = 0 · 2 + 1 =1

the remaining multiplicities in configuration C ′ can be obtained in a similar way.

Searching Previous Configurations in Membrane Computing 291

5 Matrix Associated with the Skeleton

After defining the algebraic representation of rules and configurations, we will
define a numerical matrix associated with the skeleton of a P system. The next
definition of extended set of rules will be used in the definition of the matrix.

Definition 5. Let Γ be the alphabet, H the set of labels and R the set of rules of a
P system where R is a set of rules in its pairwise form. The extended set of rules
of R in this skeleton, R∗ is the set of rules R together with the identity rule γ → γ
for all the γ ∈ Γ ×H such that there is no rule in R with γ in its left-hand side.

Considering identity rules, we obtain P systems whose computations never
stop. In this paper, we are interested only in the evolution of computation in time
and not in halting conditions. Let us remark two important considerations related
with the extended set of rules:

• If R∗ is the extended set of rules of R, then LHS(R∗) = Γ ×H.
• Consequently, if C is a configuration of a P system Π with 〈γ1, . . . , γd〉 an order

on Γ ×H and P∗ = 〈(r1, k1), . . . , (rp, kp)〉 is a partition of a configuration C
of a P system with respect to its extended set of rules, then configuration C ′

that can be obtained from C in one computation step following such partition
is C ′(γj) =

∑i=p
i=1 ki · |RHSri

(γj)| for all j ∈ {1, . . . , d}.

Example 7. Let us consider again the skeleton of example 1, and its set of rules,

r1: (a, e)→ (b, e)2(c, e) r4: (b, s)→ (a, s)
r2: (a, e)→ (a, s) r5: (a, s)→ (c, e)
r3: (b, s)→ (c, s)2 r6: (c, e)→ (a, e)

Note that the pairs γ from Γ ×H such that there is no rule in R with γ as its
left-hand side are (b, e) and (c, s), therefore to obtain R∗ we have to add to R the
rules

r7: (b, e)→ (b, e) r8: (c, s)→ (c, s)

Obviously, the set of rules R∗ has also an algebraic representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

With the help of the concept of extended set of rules, we define the matrix
associated with a skeleton.

292 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

Definition 6. Let us consider skeleton Sk = (Γ,H, µ,R) of a P system and let
〈r1, . . . , rp〉 be an enumeration of the extended set of rules R∗ of R in its algebraic
form. The matrix associated with skeleton Sk, MSk is the matrix whose rows are
vectors v1, . . . ,vp, where for each i with 1 ≤ i ≤ p, vi is the vector which represents
the right-hand side of rule ri.

Before showing an example, some remarks are necessary.

• The matrix associated with a skeleton depends on the skeleton, as well as on
the enumeration of the rules of the extended set and the order on Γ × H. A
different enumeration produces a different order in the rows of the matrix.

• In case of deterministic P systems, the number of rules in the extended set,
p, and the number of pairs in Γ × H, d are the same and we have a square
matrix1. In general, MSk is a d× p matrix with d ≤ p.

Example 8. If we consider the skeleton of example 7 and the enumeration of the
eight rules of the extended set R∗ and the usual order on Γ × H, 〈(a, e), (b, e),
(c, e), (a, s), (b, s), (c, s)〉

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

we have the following matrix

MSk =

0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

6 Computing Backwards

The definition of these algebraic objects allows us to define an algebraic method
to characterize the set of configurations C which can produce a given configuration
C0 in one computation step. First, we need to find the solutions of a system of
linear equations.
1 This kind of matrices were studied in [3].

Searching Previous Configurations in Membrane Computing 293

Definition 7. Let Π be a P system, 〈r1, . . . , rp〉 an enumeration of its set of ex-
tended rules, MSk the matrix associated with the skeleton of Π based on that enu-
meration of R∗ and let C0 be the vectorial representation of a configuration C0. We
will define the solution set of MSk and C0 and we will denote it by SOL(MSk,C0)
the set of real-valued vectors x with dimension p such that C0 = x ·MSk.

Notice that according to the definition, SOL(MSk,C0) can be the empty set.
It is well known in Linear Algebra that if the range of the matrix MSk and the
range of the matrix MSk augmented with the vector of coefficients C0 is not the
same, then the system of equations has no solution.

SOL(MSk,C0) is a manifold of dimension p minus the range of the matrix
MSk embedded in a vectorial space of dimension p, but the study of the algebraic
properties of such manifold is out of the scope of this paper.

Example 9. Let us come back to our main example. If we take the matrix MSk

from example 8, configuration C ′ = [[a2b]e a2c]s from Section 2 and algebraic
representation C′ = (2, 1, 0, 2, 0, 1), then in order to get SOL(MSk,C′) we need
to solve the system

(2, 1, 0, 2, 0, 1) = (x1, x2, x3, x4, x5, x6, x7, x8)

0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

or equivalently,

x6 = 2 x2 + x4 = 2
2x1 + x7 = 1 2x3 + x8 = 1
x1 + x5 = 0

Then, SOL(MSk,C′) is the following 3-dimensional manifold embedded in an 8-
dimensional vectorial space

SOL(MSk,C′) = {(α, β, γ, 2− β,−α, 2, 1− 2α, 1− 2γ) |α, β, γ ∈ R }

Definition 8. Let Π be a P system and an order 〈γ1, . . . , γd〉 on Γ × H,
〈r1, . . . , rp〉 an enumeration of its set of extended rules, MSk the matrix asso-
ciated with the skeleton of Π based on that enumeration of R∗ and let C be the
vectorial representation of a configuration C. We define the constructor mapping
as

ψΠ : SOL(MSk,C)→ Rd

such that for all (x1, . . . , xp) ∈ SOL(MSk,C′), ψΠ((x1, . . . , xp)) = (y1, . . . , yd)
verifying for all i ∈ {1, . . . , d},

294 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

yi =
∑

γi=LHS(rk)

xk

Notice that the set SOL(MSk,C) depends on the way in which the set of ex-
tended rules is enumerated, but ψΠ(SOL(MSk,C)) is independent of such enumer-
ation. Obviously, if all the coordinates of x ∈ SOL(MSk,C′) are natural numbers,
then all the coordinates of ψ(x) are also natural numbers.

Example 10. Following with the set SOL(MSk,C′) from Example 9 and order
〈((a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 on Γ ×H, we have

y1 =
∑

(a,e)=LHS(rk) xk = x1 + x2 = α+ β

y2 =
∑

(b,e)=LHS(rk) xk = x7 = 1− 2α
y3 =

∑
(c,e)=LHS(rk) xk = x6 = 2

y4 =
∑

(a,s)=LHS(rk) xk = x5 = −α
y5 =

∑
(b,s)=LHS(rk) xk = x3 + x4 = 2 + γ − β

y6 =
∑

(c,s)=LHS(rk) xk = x8 = 1− 2γ

Therefore ψΠ(SOL(MSk,C)) is a 3-dimensional manifold embedded in an 6-
dimensional vectorial space

ψΠ(SOL(MSk,C)) = {(α+ β, 1− 2α, 2,−α, 2 + γ − β, 1− 2γ) |α, β, γ ∈ R}

Finally, we only consider the elements of SOL(MSk,C) such that all its coor-
dinates are natural numbers. We will prove below that the image of such vectors
by means of the constructor mapping represent the searched configurations.

Definition 9. Let Π be a P system, 〈r1, . . . , rp〉 an enumeration of its set of ex-
tended rules, MSk the matrix associated with the skeleton of Π based on that
enumeration of R∗ and let C be the vectorial representation of a configuration C.
We define

• NSOL(MSk,C)) = {(x1, . . . , xp) ∈ SOL(MSk,C)) | ∀i ∈ {1, . . . , p} (xi ∈ N)}
• A constructed configurations C1 of Π is a configuration such that C1 ∈

ψΠ(NSOL(MSk,C)).

Example 11. If we take ψΠ(SOL(MSk,C)) from example 10

ψΠ(NSOL(MSk,C)) =

 (α+ β, 1− 2α, 2,−α, 2 + γ − β, 1− 2γ) |
α, β, γ ∈ R, α+ β ∈ N, 1− 2α ∈ N,
−α ∈ N, 2 + γ − β ∈ N, 1− 2γ ∈ N

The set ψΠ(NSOL(MSk,C)) has only three elements

C1 = (0, 1, 2, 0, 2, 1) C2 = (1, 1, 2, 0, 1, 1) C3 = (2, 1, 2, 0, 0, 1)

which correspond to the three configurations obtained in Section 2. Next we prove
that the result holds in the general case.

Searching Previous Configurations in Membrane Computing 295

Theorem 1. Let Π be a P system with skeleton Sk = (Γ,H, µ,R) and let C be
a configuration of Π. Let 〈γ1, . . . , γd〉 be an order on Γ × H and 〈r1, . . . , rp〉 an
enumeration of the extended set of rules R∗ of R. Let MSk be the matrix associated
with the skeleton Sk following such order and enumeration. Then, the configuration
C1 produces C in one computation step if and only if C1 ∈ ψΠ(NSOL(MSk,C)).

Proof. Let us consider a configuration C1 such that C1 ∈ ψΠ(NSOL(MSk,C)).
Such configuration is a multiset C1 on the set Γ×H such that for all i ∈ {1, . . . , n},
C1(γi) ∈ N.

C1 ∈ ψΠ(NSOL(MSk,C)) if and only if there exist (x1, . . . , xp) ∈
SOL(MSk, C) with xi ∈ N for all i ∈ {1, . . . , p} such that ψΠ(x1, . . . , xn) =
(C1(γ1), . . . , C1(γd)). By definition of the constructor mapping
ψΠ : SOL(MSk,C)→ Rd we have for all i ∈ {1, . . . , d},

C1(γi) =
∑

γi=LHS(rk)

xk

On the other hand, we also know that (x1, . . . , xp) ∈ SOL(MSk,C), i.e.,

(C(γ1), . . . , C(γd)) = (x1, . . . , xd) ·MSk

By construction of the matrix MSk, the previous equality means that for all i ∈
{1, . . . , n},

C(γi) =
p∑
j=1

xj · |RHSrj
(γi)|

To sum up, C1 ∈ ψΠ(NSOL(MSk,C)) if and only if there exist (x1, . . . , xp) such
that for all i ∈ {1, . . . , p}

(a) xi ∈ N
(b) C1(γi) =

∑
γi=LHS(rk) xk

(c) C(γi) =
∑p
j=1 xj · |RHSrj

(γi)|

Since R∗ is a set of extended rules, LHS(R∗) is the set Γ × H. Bearing this
equality in mind, properties (a) and (b) claim that P∗ = 〈(r1, x1), . . . , (rp, xp)〉 is
a partition of C1 with respect to R∗ and property (c) claims that the configuration
C can be obtained from C1 by using the partition P∗.

On the other hand, if C1 produces C in one computation step, then there
exist a vector (x1, . . . , xn) such that 〈(r1, x1), . . . , (rp, xp)〉 is a partition of C1

with respect to R∗ verifying properties (a), (b) and (c) and therefore C1 ∈
ψΠ(NSOL(MSk,C)).

7 A General Method

After the proof of Theorem 1, we come back to the questions asked at the end of
Section 2. We wondered if there exists an algorithm such that it takes a P system

296 M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez

Π as input and it outputs a mapping RΠ which, for every configuration C ′ of Π,
RΠ(C ′) is the set of all computations C such that C ′ is obtained from C in one
computational step. A method for computing such algorithm is the following:

Given a P system Π with skeleton Sk = (Γ,H, µ,R),

1. Fix an order 〈γ1, . . . , γd〉 for Γ ×H.
2. Consider the pairwise representation of the rules in R according to such order.
3. Consider the extended set of rules R∗ from R and fix an enumeration 〈r1, . . . ,
rp〉 of the rules from R∗ in its algebraic representation.

4. Define matrix MSk following the orders 〈γ1, . . . , γd〉 and 〈r1, . . . , rp〉.

Matrix MSk is the same for all configurations. Next we provide a method for
finding all the configurations C ′ such that C ′ produce a given configuration C in
one computation step.

Given a configuration C of Π

1. Obtain the algebraic representation C of C according to the order
〈γ1, . . . , γd〉.

2. Find all the vectors x with natural coordinates such that C = x ·MSk. The
set of all these vectors is called NSOL(MSk,C).

3. For each x ∈ NSOL(MSk,C), we consider Cx = (y1 . . . , yd) where, for all
i ∈ {1, . . . , n}

yi =
∑

γi=LHS(rk)

xk

4. The set {Cx |x ∈ NSOL(MSk,C)} is the set of the algebraic representations
of all the configurations such that produce C in one computation step.

8 Conclusions and Future Work

In this paper, we provide a general method for finding all the configurations that
produce a given one in one computational step. For that purpose, we have used an
algebraic representation of rules and configurations and a matrix associated with
the skeleton of the P systems.

The key step of the algorithm is to find all the vectors of natural numbers
that are solutions of a system of linear equations. In such a system, the number
of equations is the number of objects in the alphabet multiplied by the number of
labels. The number of variables in the system is the cardinal of the set of extended
rules which is at least the same as the number of equations and has no upper
bound.

The problem of finding the solutions with natural values of a system of linear
equations is a problem involving heavy tasks, specially if we consider a high num-
ber of variables and equations (which is the usual case for P systems). Nonetheless,

Searching Previous Configurations in Membrane Computing 297

currently there exist some powerful software tools able to deal with large numeri-
cal matrices and solve the corresponding systems under the restriction of finding
natural-valued vectors.

In this way, we hope that this method can be useful for researchers interested in
computing backwards in Membrane Computing, since it can consider the problem
of finding the previous configurations as a computationally hard problem of Integer
Programming.

Finally, this work can be extended in several ways. Not only by going deeper
in the concept of computing backwards along a computation (and not only in one
step) but exploring if these ideas can be extended to other P system models.

Acknowledgment

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. Agrigoroaiei, O. and Ciobanu G. Dual P Systems. Lecture Notes in Computer Science
5391, 2009, 95–107.

2. Cordón-Franco, A., Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J. and Riscos-
Núñez, A. Exploring Computation Trees Associated with P Systems. Lecture Notes
in Computer Science 3365, 2005, 278–286.

3. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J. Efficient Computation in Rational-
Valued P Systems. Mathematical Structures in Computer Science. In press.

4. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez, A. and Romero-
Campero F.J. On the power of dissolution in P systems with active membranes.
Lecture Notes in Computer Science 3850, 2006, 224-240.

5. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).

Modelling Signalling Networks with Incomplete
Information about Protein Activation States:
A P System Framework of the KaiABC Oscillator

Thomas Hinze1, Thorsten Lenser2, Gabi Escuela2,
Ines Heiland1, Stefan Schuster1

1 Friedrich Schiller University Jena
School of Biology and Pharmacy, Department of Bioinformatics

2 Department of Computer Science, Bio Systems Analysis Group
Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany
{thomas.hinze,thorsten.lenser,gabi.escuela}@uni-jena.de
{heiland.ines,stefan.schu}@uni-jena.de

Summary. Reconstruction of signal transduction network models based on incomplete
information about network structure and dynamical behaviour is a major challenge in
current systems biology. In particular, interactions within signalling networks are fre-
quently characterised by partially unknown protein phosphorylation and dephosphory-
lation cascades at a submolecular description level. For prediction of promising network
candidates, reverse engineering techniques typically enumerate the reaction search space.
Considering an underlying amount of phosphorylation sites, this implies a potentially
exponential number of individual reactions in conjunction with corresponding protein
activation states. To manage the computational complexity, we extend P systems with
string-objects by a subclass for protein representation able to process wild-carded to-
gether with specific information about protein binding domains and their ligands. This
variety of reactants works together with assigned term-rewriting mechanisms derived
from discretised reaction kinetics. We exemplify the descriptional capability and flexibil-
ity of the framework by discussing model candidates for the circadian clock formed by the
KaiABC oscillator found in the cyanobacterium Synechococcus elongatus. A simulation
study of its dynamical behaviour demonstrates effects of superpositioned protein abun-
dance courses based on regular expressions corresponding to dedicated protein activation
states.

1 Introduction

Biological signalling networks have been identified to exhibit a universal capability
to process information [14, 17]. They can be viewed as complex computational de-
vices of the cell, triggering and directing responses to external stimuli. It turns out
that successive formation or decomposition of protein complexes in conjunction

Modelling Signalling Networks with Incomplete Information 299

with domain-specific protein binding (as during phosphorylation by kinases) plays
a central role in biological signal transduction based on submolecular assembly
[1]. In this context, resulting biomolecules act as information carriers of astonish-
ing storage capacity and structural plasticity. For example, the tumor suppressor
protein p53 is equipped with 27 phosphorylation sites [3]. It could theoretically
assume up to 227 = 34, 217, 728 different activation states. Having in mind that
each of these states is able to form an individual constituent of a reaction net-
work incorporating all distinguishable states of up to several hundred interacting
proteins, the potential dimension of those protein signalling networks is obvious.

In a typical scenario of exploring coupled intracellular modules – functional net-
work units – the present knowledge on involved constituents and topology lacks
some detailed information with regard to comprising the entirety of individual
molecular interactions. Hence, an integrative setup, prediction, and reconstruction
of network model candidates based on incomplete data is a challenging task in
systems biology since it requires unconventional techniques to cope with the com-
binatorial complexity of exhaustive search within the underlying reaction space
[15]. A variety of reverse engineering approaches emerged to tackle enumerative
reaction network reconstruction at different levels of abstraction (cf. [10, 16]).

While the steady-state behaviour might be sufficient to characterise a
metabolic network (cf. [12]), the function of a protein signalling network de-
pends heavily on its temporal evolution [26]. Oscillators based on phosphoryla-
tion/dephosphorylation cycles represent significant examples [20, 22, 27]. Thus,
the aspect of dynamical behaviour should be reflected in the choice of the preferred
modelling approach. For that purpose, ordinary differential equations (ODEs) de-
rived from appropriate kinetics are commonly employed. Since this method usually
assumes each individual protein activation state to act as a separate species, it
easily leads to an exponential growth of the number of distinct ODEs (addressed
amongst others in [7]). An opportunity to temporarily unify several activation
states by one dedicated species could be a keystone to overcome this insufficiency.

Inspired by this initial idea, we propose a P systems framework able to spec-
ify proteins together with relevant properties by string-objects. In contrast to
species names in ODEs, phenotypic information about a protein is represented by
a character string. Each individual protein property is allowed to be marked as
present, absent, or arbitrary. In the latter case, placeholders known from regu-
lar expressions denote unassigned protein properties. Consequently, reaction rules
may also contain placeholders processed by a matching relation for association
of available particles to reactants given within rules. Furthermore, our P systems
framework combines the ability to manage specific string-objects with discretised
reaction kinetics. Incomplete information about protein activation states can be
handled by setting placeholders if required. While they enable a unification of
several activation states when specifying a protein on the one hand, placeholders
contribute to trace the variety of potential effects by embedding wild-cards into
reaction rules on the other hand. Thus, a bottom-up strategy for the modelling
of signalling networks by successive knowledge integration can benefit from the

300 T. Hinze et al.

proposed framework. Along with intermediate results coming from simulation of
a partially wild-carded system, synergies between wetlab experimental setup and
model refinement considering structural dynamics might emerge. Inclusion of re-
action kinetics into the formalism of P systems was explained in [18] exemplified
by metabolic networks, supplemented by signalling and gene regulatory networks
[13]. A previous formulation of periodic and quasi-periodic processes based on
symbol objects without inner structure is given in [5]. The BioNetGen framework
[6] allows handling of string pattern to constitute species. However, its expressive
capability of reaction kinetics excludes stoichiometry.

The paper is organised in two main sections: Firstly, we define the P sys-
tems framework ΠCSM (Cell Signalling Module) with emphasis on the combination
of reaction kinetics and wild-carded representation of proteins as string-objects.
Matching strategies accomplish the handling of incomplete information. In order
to provide formalisms to select reactants for rule-based rewriting, we adopt the
strategy of loose matching [13]. It is expressed by a relation between strings form-
ing objects and strings acting as patterns in rewriting rules. The loose matching
checks whether there is at least one common wild-card free representation for both
strings. So, it is intended to generate a maximal variety of potential effects. A more
general matching approach able to find patterns common to a set of strings has
been specified by the Angluin pattern language [2]. In order to enable detailed
studies on the temporal evolution of the system, we replace the maximally paral-
lel rewriting from the original framework [23] with a mechanism that is based on
reaction kinetics. For each rewriting rule, the number of applications per turn is
given by a kinetic function, depending on the current configuration of the system.
This way, a deterministic system evolution is obtained. The formal system defini-
tion is followed by a comprehensive application scenario: Section 3 demonstrates
the suitability of the framework for discussing model candidates of the circadian
clock formed by the KaiABC oscillator found in cyanobacterium Synechococcus
elongatus. Since the detailed mechanism of this biochemical oscillation is partially
unknown, various models have been developed recently e.g. [8, 19, 29]. We show
their integration into the P systems framework ΠCSM in terms of an intersecting
superposition of consistent elements flanked by wild-carded completion. A simula-
tion study of the dynamical system’s behaviour discloses effects of superpositioned
protein abundance courses based on regular expressions corresponding to dedicated
protein activation states.

2 System Description

Multiset Prerequisites

Let A be an arbitrary set and N the set of natural numbers including zero. P(A)
denotes the power set of A. A multiset over A is a mapping F : A −→ N ∪ {∞}.
F (a), also denoted as [a]F , specifies the multiplicity of a ∈ A in F . Multisets can be
written as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .}

Modelling Signalling Networks with Incomplete Information 301

since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F) ⊆ A of F is defined
by supp(F) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | =

∑
a∈A F (a). Let

F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1.
The intersection F1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sum F1] F2 = {(a, F (a)) | a ∈ A ∧ F (a) = F1(a) + F2(a)}, and the
multiset difference F1 ª F2 = {(a, F (a)) | a ∈ A ∧ F (a) = max(F1(a)− F2(a), 0)}
form multiset operations. Multiplication of a multiset F = {(a, F (a)) | a ∈ A}
with a scalar c, denoted c · F , is defined by {(a, c · F (a)) | a ∈ A}. The term
〈A〉 = {F : A −→ N ∪ {∞}} describes the set of all multisets over A.

Definition of System Components

A P system for a cell signalling module (CSM) is a construct

ΠCSM = (V, V ′, R1, . . . , Rr, f1, . . . , fr, A, C,∆τ)

where V and V ′ are two alphabets (not necessarily disjoint); without loss of gen-
erality #,¬, * /∈ V ∪ V ′. The regular set

S = V + · ({#} · ((V ′)+ ∪ {¬} · (V ′)+ ∪ {*}))∗

describes the syntax for string-objects. The leftmost substring from V + holds
the protein identifier, followed by a finite number of protein property substrings
from (V ′)+ which are separated by #. For example, consider the string-object
C:D#p#*#¬q identifying protein (complex) C:D with specified property p, a
second arbitrary property (*), and without property q. Each protein property
substring expresses a specific additional information about the protein, for instance
whether it is activated by carrying a ligand at a certain binding site. Two kinds
of meta symbols are allowed. The symbol ¬ excludes the subsequent property but
permits all other properties at this substring position. The placeholder * stands for
an arbitrary (also unknown or unspecified) protein property substring. This way,
uncertainty about the properties of proteins can be explicitly expressed. String-
objects can be dynamically processed by reaction rules:

Ri ∈ 〈S〉 × 〈S〉 is a reaction rule composed of two finite multisets
fi : 〈S〉 −→ N is a function corresponding to kinetics of reaction Ri

A ∈ 〈S〉 is a multiset of axioms representing the initial molec. configuration
C ∈ R+ spatial capacity of the module (vessel or compartment)

∆τ ∈ R+ time discretisation interval

We explain the system evolution of ΠCSM within three consecutive subsec-
tions. Based on the specification of the system configuration, we define an iteration

302 T. Hinze et al.

scheme that updates this configuration from time t to time t + 1. The update in-
cludes processing of reactions given by the rules Ri (i = 1, . . . , r). For this purpose,
an appropriate matching between wild-carded strings representing reactants and
those stated in the current configuration is required. Then, a reaction is executed
by removing the multiset of matching reactants from the current configuration
followed by adding the corresponding products. In order to consider kinetic is-
sues, each reaction can be multiply processed. Therefore, the number of turns is
provided by the function fi.

Dynamical System Behaviour

A P system of the form ΠCSM evolves by successive progression of its configuration
Lt ∈ 〈S〉 at discrete points in time t ∈ N for what we assume a global clock. Two
consecutive dates t and t + 1 specify a time span ∆τ (discretisation interval). A
system step at time t consists of two modification stages per reaction 1, . . . , r.
Firstly, the multiset of reactants is determined and removed from Lt. Afterwards,
the corresponding multiset of products is added. To cope with conflicts that can
occur if the available amount of reactants cannot satisfy all matching reactions,
we prioritise the reaction rules by their index: R1 > R2 > . . . > Rr. Thus, we keep
determinism of the system evolution and enable mass conservation.

L0 = L0,0 = A

Lt,1 =
{

Lt,0 ª Reactantst,1] Productst,1 if Reactantst,1 ⊆ Lt,0

Lt,0 otherwise

Lt,2 =
{

Lt,1 ª Reactantst,2] Productst,2 if Reactantst,2 ⊆ Lt,1

Lt,1 otherwise
...

Lt+1 = Lt,r =
{

Lt,r−1 ª Reactantst,r] Productst,r if Reactantst,r ⊆ Lt,r−1

Lt,r−1 otherwise

Let Rj = (Aj , Bj) ∈ 〈S〉 × 〈S〉 be a reaction rule with supp(Aj) = {a1, . . . , ap}
and supp(Bj) = {b1, . . . , bq}. In terms of a chemical denotation, it can be written
as

Aj(a1) a1 + . . . + Aj(ap) ap −→ Bj(b1) b1 + . . . + Bj(bq) bq

where Aj(a1), . . . , Aj(ap) represent stoichiometric factors of reactants a1, . . . , ap,
and Bj(b1), . . . , Bj(bq) stoichiometric factors of products b1, . . . , bq, respectively.
All reactant strings that match to the pattern ak are provided by a dedicated
relation Match(ak) (see next subsection for definition). A combination of reactant
strings from Lt matching the left hand side of Rj forms a multiset of string-
objects used to apply the reaction once. Since the kinetic law, described by the
corresponding scalar function fj , returns the number of applications of reaction
rule Rj within one step, the multiset of string-objects extracted from Lt to act as
reactants for Rj can be written as Reactantst,j :

Modelling Signalling Networks with Incomplete Information 303

Reactantst,j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fj
({(e1,∞), . . . , (ep,∞)} ∩ Lt,j−1

) ·
{
(e1, Aj(a1)), . . . , (ep, Aj(ap))

}

Accordingly, the multiset of products resulting from reaction rule Rj is determined
by the multiset Productsj(t):

Productst,j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fj
({(e1,∞), . . . , (ep,∞)} ∩ Lt,j−1

) ·
{
(b1, Bj(b1)), . . . , (bq, Bj(bq))

}

Matching

Let the regular set S be a syntax description for string-objects. In the symmetric
relation Match, two string-objects match iff there is at least one common rep-
resentation without wild-cards. This loose strategy requires a minimum degree of
similarity between objects with incomplete information. Uncertainty is interpreted
as arbitrary replacements within the search space given by S.

Match ⊆ S × S

Match =
⋃

m∈N
{(p#p1#p2 . . . #pm, s#s1#s2 . . . #sm) | (p = s) ∧

∀j ∈ {1, . . . ,m} : [(pj = sj) ∨ (pj = *) ∨ (sj = *) ∨
((pj = ¬q) ∧ (sj 6= q)) ∨ ((sj = ¬q) ∧ (pj 6= q))]}

Matching of a single string-object w ∈ S to the entire set S is defined by

Match(w) = {s ∈ S | (w, s) ∈ Match}
Consequently, we define the matching of a language L ⊆ S by the function

Match : P(S) −→ P(S) with

Match(L) =
⋃

w∈L

Match(w).

Discrete Reaction Kinetics

Within the P systems framework ΠCSM, we formulate reaction kinetics by specifi-
cation of scalar functions fj attached to corresponding reactions Rj (j = 1, . . . , r).
Each scalar function converts the current configuration Lt, a multiset of string-
objects, into the number of turns for application of rewriting rule Rj :

fj(Lt) =

kj

∏

∀α∈Match(Aj)∩Match(Lt) : (Rj=(Aj ,Bj))

f̂(Lt(α))|Match(Aj)∩{(α,∞)}|

 (1)

304 T. Hinze et al.

whereas the auxiliary term α passes through all string-objects present in Lt which
also form reactants in Rj . The multiplicity Lt(α) of occurrences of α acts as argu-
ment for a kinetic law f̂(Lt(α)). Examples adopted from mass-action, Michaelis-
Menten, and Hill kinetics are shown in Figure 1.

Kinetics Activation Repression

Mass-Action
(no saturation)

reactant conc.

re
a
c
.
ra

te

v

[Z]
f̂([Z]) = [Z] −

Michaelis-Menten
(saturation)

reactant conc.

re
a
c
.
ra

te

v

[Z]
f̂([Z]) = [Z]

Θ+[Z]
reactant conc. [Z]

re
a
c
.
ra

te

v

f̂([Z]) =
(
1− [Z]

Θ+[Z]

)

Higher-Order Hill
(saturation)

reactant conc. [Z]

re
a
c
.
ra

te

v

f̂([Z]) = [Z]n

Θ+[Z]n
reactant conc. [Z]

re
a
c
.
ra

te

v

f̂([Z]) =
(
1− [Z]n

Θ+[Z]n

)

Fig. 1. Overview of several widely used kinetic laws f̂([Z]) dependent on reactant con-
centration [Z]. Parameters: threshold Θ ∈ R+, Hill coefficient n ∈ N+

Relations to ODE-Based Reaction Kinetics

For a reaction system with a total number of n species (i = 1, . . . , n) and r reactions
(j = 1, . . . , r)

a1,jZ1 + a2,jZ2 + . . . + an,jZn
k̂j−→ b1,jZ1 + b2,jZ2 + . . . + bn,jZn

the corresponding ODEs

d [Zi]
d t

=
r∑

j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])al,j

)
with i = 1, . . . , n. (2)

describe the temporal systems behaviour by consideration of stoichiometric co-
efficients ai,j ∈ N (reactants) and bi,j ∈ N (products) as well as a kinetic law
f̂j([Zi]) : R+ → R+ that maps a species concentration [Zi] into an effective reac-
tion rate [9]. All initial concentrations [Zi](0) ∈ R+, i = 1, . . . , n are allowed to be
set according to the needs of the reaction system.

A species concentration [Zi] := zi

C is defined as fraction of its molecular amount
zi = supp({(Zi, zi)}) with respect to the spatial system capacity C ∈ R+.

Modelling Signalling Networks with Incomplete Information 305

A correspondence between the reaction rate kj (employed in ΠCSM by function
fj attached to reaction Rj) and the kinetic constant k̂j utilised in ODE (2) can be
obtained by the Euler method of integrating differential equations. Discretisation
of (2) with respect to time and concentration value results in:

zi,t+1−zi,t

C

∆τ
=

r∑
j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])
al,j

)

zi,t+1 − zi,t = C ·∆τ ·
r∑

j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])
al,j

)

By setting kj = k̂j · C ·∆τ , we obtain:

zi,t+1 − zi,t = k1(bi,1 − ai,1)

n∏

l=1

f̂1([Zl])
al,1 + . . . + kr(bi,r − ai,r)

n∏

l=1

f̂r([Zl])
al,r

Replacing kj · f̂j([Zl])al,j by the discretised (and hence approximated) scalar func-
tion fj(Lt) from Equation (1) leads to:

zi,t+1 − zi,t ≈ (bi,1 − ai,1) · f1(Lt) + . . . + (bi,r − ai,r) · fr(Lt)

Since the stoichiometric coefficients ai,j and bi,j of each reaction Rj = (Aj , Bj)
in ΠCSM are expressed by multisets Aj (reactants) and Bj (products), we write:

zi,t+1 − zi,t = (B1(bi)−A1(ai)) · f1(Lt) + . . . + (Br(bi)−Ar(ai)) · fr(Lt)

From that, we achieve the update scheme for species Zi present in Lt with zi,t

copies at time t by processing reaction Rj :

zi,t+1 = zi,t −Aj(Zi) · fj(Lt) + Bj(Zi) · fj(Lt)

By extension from a single species to the entire configuration along with inclusion
of matching, we finally yield

Lt+1,j = Lt,j ª Reactantst,j] Productst,j

in accordance to the iteration scheme for ΠCSM evolution. The conversion of
thresholds Θ occurring in Michaelis-Menten or Hill terms from the ODE approach
into the ΠCSM framework can be done by parameter fitting or regression that
maps the concentration-based gradient into an amount-based counterpart.

3 The KaiABC Oscillator – A Circadian Clock

Biological Background

Circadian rhythms embody an interesting biological phenomenon that can be seen
as a widespread property of life. The coordination of biological activities into daily

306 T. Hinze et al.

cycles provides an important advantage for the fitness of diverse organisms [4, 25].
Based on self-sustained biochemical oscillations, circadian clocks are characterised
by a period of approximately 24h that persists under constant conditions (like con-
stant darkness or constant light). Their ability for compensation of temperature in
the physiological range enables then to maintain the period in case of environmen-
tal changes. Furthermore, circadian clocks can be entrained. This property allows
a gradual reset of the underlying oscillatory system for adjustment by exposure to
external stimuli like light/dark or temperature cycles. A variety of metabolic, cell
signalling, and gene regulatory processes is synchronised or controlled by circadian
clocks. Chemically, they utilise an individual cycling reaction scheme including one
or more feedback loops. Most of the circadian clocks comprise gene transcription
and translation feedback loops [24].

KaiA

KaiAKaiA

KaiA

KaiA

KaiB

KaiB

KaiB

KaiB

P

P

P

P

P
P

P
P

P
P

P

P

P

P

P

P

P

P

P

P

?

successive dephosphorylation

successive phosphorylation

Fig. 2. Reaction cycle of the KaiABC oscillator characterised by four phases and in-
complete information about interphase feedback loops, arranged from descriptions of the
oscillatory mechanism given in [11, 20]. A corresponding minimal model of the four-phase
cycle has been proposed in [4].

Surprisingly, the prokaryotic cyanobacterium Synechococcus elongatus was dis-
covered to carry a post-translational circadian clock even functioning in vitro [27].
Three key clock proteins KaiA, KaiB, and KaiC with known atomic structure
could be identified [21]. KaiC as the focal protein rhythmically oscillates between
hypophosphorylated and hyperphosphorylated forms [22]. The spatial structure of
KaiC represents a homohexamer shaped as a “double doughnut” with 6 phosphory-

Modelling Signalling Networks with Incomplete Information 307

lation twin sites at the interfaces between monomeric subunits. Presence of the sup-
plementary protein KaiA specifically enhances KaiC phosphorylation while KaiBC
complex formation activates KaiC dephosphorylation [20]. The KaiABC circadian
oscillator appears as a reaction cycle consisting of four consecutive phases [11], see
Figure 2: KaiAC complex formation releasing KaiB, successive KaiAC phospho-
rylation, KaiABC complex formation, and successive KaiABC dephosphorylation
in conjunction with KaiA dissociation. Each of these phases takes approximately
6h. There is some evidence for further interactions between the aforementioned
protein complexes and intermediate products in terms of negative feedback loops
stabilising the oscillation. However, the detailed mechanism is still unclear and
gives room for hypotheses reflected in a couple of model candidates [4]. A current
study raises the question whether clock-protein expression could still be involved
in its general function [28].

Review of Modelling Approaches

In this section, we briefly compare three current model candidates [8, 19, 29] be-
yond a minimal model [4] able to capture the dynamical behaviour of the KaiABC
oscillator in accordance with wetlab experimental data. Assumptions on unknown
parts of the oscillator mechanism result from empirical studies. Here, an underlying
reaction network topology is hypothesised and afterwards filled with appropriate
parameter values obtained by fitting using an exhaustive search.

KaiA sequestration has been suggested in [8]. The resulting model identifies a
total number of 15 interacting species where C0, . . . , C6 correspond to the amount
of phosphorylated monomeric subunits within KaiC. Accordingly, BC0, . . . , BC6

are species names for complex KaiBC. B indicates KaiB. KaiA is assumed to
be sequestered by the KaiC/KaiBC complexes and hence not modelled explicitly.
Instead, it is interpreted as an inhibiting factor causing negative feedback loops.
See Figure 3 A for the reaction network topology.

Following the idea of a quick KaiC monomer shuffle, in [29] a network topology
containing 54 dedicated species is proposed. There are two categories of species
marked as “tense” (T) for those employed in the phosphorylation phase and “re-
laxed” (R) for the dephosphorylation phase. Indexes attached to T and R ranging
from 0 to 6 comprise the number of currently phosphorylated monomeric subunits
while association of KaiA and/or KaiB complexes is denoted by concatenation of
A or B to the species names. Figure 3 B illustrates the network topology by usage
of dashed arrows for monomer shuffle.

A different description has been introduced in [19] managing on 7 species (by
neglecting intermediate products of protein degradation). Inspired by the insight
that distinction of two states is sufficient to obtain robust oscillations of KaiC
phosphorylation, a cascade of elementary cell signalling motifs is proposed. In
this two-stage scenario, three phosphates from species KaiC can be added and
removed per stage by catalysts KaiA and KaiAB, respectively. Additionally, the
model formulates the complex formation of KaiAB which is catalysed by the three-
fold phosphorylated protein PKaiC. Vice versa, its decomposition is supported by

308 T. Hinze et al.

C 1

C 2

C 3

C 4

C 5

C 6

C 0BC 0

BC 1

BC 2

BC 3

BC 4

BC 5

BC 6

ABT 0

ABT 1

ABT 2

ABT 3

ABT 4

ABT 5

ABT 6

AT 0

AT 1

AT 2

AT 3

AT 4

AT 5

AT 6

T 0

T 1

T 2

T 3

T 4

T 5

T 6

ABR 1

ABR 2

ABR 3

ABR 4

ABR 5

ABR 6

AR 1

AR 2

AR 3

AR 4

AR 5

AR 6

R 1

R 0

R 2

R 3

R 4

R 5

R 6

BR 1

BR 2

BR 3

BR 4

BR 5

BR 6

BR 0 BAR 0

BAR 1

BAR 2

BAR 3

BAR 4

BAR 5

BAR 6

A B

C

B

B

KaiC PKaiC PPKaiC

KaiA KaiA

KaiAB KaiAB KaiB,
KaiA

PKaiC

PPKaiC

KaiBi

Fig. 3. Comparison of KaiABC oscillator network topologies adapted from [8] (A), [29]
(B), and [19] (C). Dashed lines indicate relevant feedback loops for sustained oscillation.

the six-fold phosphorylated protein PPKaiC. Decay reactions for each protein
complete the model candidate’s network topology, see Figure 3 C.

Conversion to the ΠCSM Framework

We demonstrate a conversion of the core oscillator extracted from different model
candidates into the P systems framework ΠCSM. The capability of this algebraic
approach is to cope with a potential combinatorial complexity of protein states,
shown by formulating reaction and transduction rules using placeholders (∗) for
arbitrary or unknown molecular constituents.

Each of the six KaiC monomeric subunits is said to be phosphorylated iff both
phosphorylation sites are saturated. Theoretically, the KaiABC protein complex
could induce a maximum of 28 = 256 potential states. This amount results from the
general assumption that each monomeric subunit is able to be individually phos-
phorylated or dephosphorylated in combination with present or absent association
of KaiA and KaiB, respectively. In terms of a distinction of 8 binary digits from

Modelling Signalling Networks with Incomplete Information 309

these molecular configurations, a full network of 2 · (256
2

)
= 65, 280 bi-molecular

reactions could be spanned. Since KaiC turns out to be a highly symmetric homo-
hexamer, the individual monomeric subunits cannot be distinguished in practice.
Instead, the number of attached phosphates is utilised that varies in a seven-stage
range from 0 up to 6. In addition to the combinatorial variety caused by present
or absent association of KaiA and KaiB, KaiABC possess 7 · 4 = 28 states from a
biochemical point of view.

For the P systems description, we identify a module for the cycling reaction
scheme sketched in Figure 2. Key proteins KaiA, KaiB, and KaiC resulting from
expression of corresponding genes are assumed to be present in the module ab
initio. Considering the core oscillator, 17 reaction rules along with loose matching
correspond to the four-phase reaction cycle. Successive KaiC phosphorylation in
the presence of KaiA is expressed by rules R1 to R6 followed by successive de-
phosphorylation in the presence of KaiB within rules R7 to R12. Finally, R13 and
R14 formulate inhibiting KaiA/KaiB exchange acting as negative feedback loops,
and R15 up to R17 reflect protein degradation. A kinetic function f is attached to
each reaction rule that follows from discretised Michaelis-Menten kinetic laws in
concert with linear mass-action kinetics for protein degradation.

ΠKaiABC = (V, V ′, R1, . . . , R17, f1, . . . , f17, A, C, ∆τ)

V = {C} ∪identifier of the focal protein KaiC

{A, B}....................identifiers of proteins KaiA and KaiB

V ′ = {A, B} ∪KaiA, KaiB within a complex associated to KaiC

{0, 1, 2, 3, 4, 5, 6}.....number of attached phosphates

R1 = C#¬A#B#0 + A −→ C#A#¬B#1 + B

R2 = C#A# ∗#1 + A −→ C#A# ∗#2 + A

R3 = C#A# ∗#2 + A −→ C#A# ∗#3 + A

R4 = C#A# ∗#3 + A −→ C#A# ∗#4 + A

R5 = C#A# ∗#4 + A −→ C#A# ∗#5 + A

R6 = C#A#¬B#5 + B −→ C#¬A#B#6 + A

R7 = C# ∗#B#6 + B −→ C# ∗#B#5 + B

R8 = C# ∗#B#5 + B −→ C# ∗#B#4 + B

R9 = C# ∗#B#4 + B −→ C# ∗#B#3 + B

R10 = C# ∗#B#3 + B −→ C# ∗#B#2 + B

R11 = C# ∗#B#2 + B −→ C# ∗#B#1 + B

R12 = C# ∗#B#1 + B −→ C# ∗#B#0 + B

R13 = C#¬A#B#∗+ A −→ C#A#¬B#∗+ B

R14 = C#A#¬B#∗+ B −→ C#¬A#B#∗+ A

R15 = A −→ ∅

310 T. Hinze et al.

R16 = B −→ ∅
R17 = C# ∗# ∗#∗ −→ ∅

f1(Lt) =

⌊
k1 · Lt(C#¬A#B#0)

Θ1,1 + Lt(C#¬A#B#0)
· Lt(A)

Θ1,2 + Lt(A)

⌋

f2(Lt) =

⌊
k2 · Lt(C#A# ∗#1)

Θ2,1 + Lt(C#A# ∗#1)
· Lt(A)

Θ2,2 + Lt(A)

⌋

f3(Lt) =

⌊
k3 · Lt(C#A# ∗#2)

Θ3,1 + Lt(C#A# ∗#2)
· Lt(A)

Θ3,2 + Lt(A)

⌋

f4(Lt) =

⌊
k4 · Lt(C#A# ∗#3)

Θ4,1 + Lt(C#A# ∗#3)
· Lt(A)

Θ4,2 + Lt(A)

⌋

f5(Lt) =

⌊
k5 · Lt(C#A# ∗#4)

Θ5,1 + Lt(C#A# ∗#4)
· Lt(A)

Θ5,2 + Lt(A)

⌋

f6(Lt) =

⌊
k6 · Lt(C#A#¬B#5)

Θ6,1 + Lt(C#A#¬B#5)
· Lt(B)

Θ6,2 + Lt(B)

⌋

f7(Lt) =

⌊
k7 · Lt(C# ∗#B#6)

Θ7,1 + Lt(C# ∗#B#6)
· Lt(B)

Θ7,2 + Lt(B)

⌋

f8(Lt) =

⌊
k8 · Lt(C# ∗#B#5)

Θ8,1 + Lt(C# ∗#B#5)
· Lt(B)

Θ8,2 + Lt(B)

⌋

f9(Lt) =

⌊
k9 · Lt(C# ∗#B#4)

Θ9,1 + Lt(C# ∗#B#4)
· Lt(B)

Θ9,2 + Lt(B)

⌋

f10(Lt) =

⌊
k10 · Lt(C# ∗#B#3)

Θ10,1 + Lt(C# ∗#B#3)
· Lt(B)

Θ10,2 + Lt(B)

⌋

f11(Lt) =

⌊
k11 · Lt(C# ∗#B#2)

Θ11,1 + Lt(C# ∗#B#2)
· Lt(B)

Θ11,2 + Lt(B)

⌋

f12(Lt) =

⌊
k12 · Lt(C# ∗#B#1)

Θ12,1 + Lt(C# ∗#B#1)
· Lt(B)

Θ12,2 + Lt(B)

⌋

f13(Lt) =

⌊
k13 ·

(
1− Lt(C#¬A#B#∗)

Θ13,1 + Lt(C#¬A#B#∗)
)
·
(

1− Lt(A)

Θ13,2 + Lt(A)

)⌋

f14(Lt) =

⌊
k14 ·

(
1− Lt(C#A#¬B#∗)

Θ14,1 + Lt(C#A#¬B#∗)
)
·
(

1− Lt(B)

Θ14,2 + Lt(B)

)⌋

f15(Lt) = k15 · Lt(A)

f16(Lt) = k16 · Lt(B)

f17(Lt) = k17 · Lt(C# ∗# ∗#∗)

A ∈ 〈{C# ∗# ∗#∗}〉

Simulation Case Study

Using the KaiABC circadian oscillator we conducted a simulation case study to
demonstrate the practicability of the modelling approach addressed before. The

Modelling Signalling Networks with Incomplete Information 311

reaction scheme formulated by the P system ΠKaiABC exhibits a high degree of
symmetry among its constituents. The main reaction cycle is composed of 12
consecutive feedforward reactions flanked by widespread negative feedback loops.
They affect each intermediate product within the reaction cycle following the in-
tention of an inhibiting KaiA/KaiB exchange independent of the phosphorylation
state.

For simulation of the dynamical behaviour of ΠKaiABC , we empirically param-
eterise and initialise the system in a symmetric way to obtain phase-shifted protein
abundance courses which stably oscillate with a period of approximately 24 hours.
To avoid a transient oscillation phase, the initial amounts of protein constituents
were set directly at the discrete limit cycle. This constraint is reflected in the
following multiset of axioms:

A = {(C#¬A#B#0, 470), (C#A#¬B#1, 351), (C#A#¬B#2, 198),
(C#A#¬B#3, 135), (C#A#¬B#4, 148), (C#A#¬B#5, 210),
(C#¬A#B#6, 282), (C#¬A#B#5, 364), (C#¬A#B#4, 463),
(C#¬A#B#3, 541), (C#¬A#B#2, 586), (C#¬A#B#1, 571),
(A, 2520), (B, 2520)}

Each KaiC protein within the pattern C# ∗# ∗#∗ keeps an average amount of
360 copies (arbitrarily chosen).

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20 22 24

pr
ot

ei
n

ab
un

da
nc

e

time scale (hours)

C-AB0
CA-B1
CA-B2

CA-B3
CA-B4
CA-B5

C-AB6
C-AB5
C-AB4

C-AB3
C-AB2
C-AB1

Fig. 4. Temporal courses of 12 specific KaiABC subproducts representing the process
status of the reaction cycle. Kinetic parameters and initial amounts adjusted in a way to
obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Figure 4 shows the corresponding individual protein abundance courses re-
sulting from following parameter setting for the discrete iteration scheme: Θi,1 =
79.2, Θi,2 = 554.4, k̂i = 360.0 for i ∈ {1, . . . , 12}; Θi,1 = 64.8, Θi,2 = 453.6, k̂i =

312 T. Hinze et al.

412.8 for i ∈ {13, 14}, and k̂15 = k̂16 = 508.1, k̂17 = 254.6; C = 1.2, ∆τ = 0.05.
The iteration scheme for system evolution was implemented in the programming
language C to obtain the course data.

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20 22 24

pr
ot

ei
n

ab
un

da
nc

e

time scale (hours)

C**1
C**2

C**3
C**4

C**5
C**6

C**0

Fig. 5. Temporal courses of KaiABC subproducts subsumed by their level of phospho-
rylation ranging from 0 to 6. Kinetic parameters and initial amounts adjusted in a way
to obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Based on the individual protein abundance courses depicted in Figure 4, Fig-
ure 5 illustrates the effect of subsuming KaiABC subproducts according to their
number of attached phosphates ranging from 0 to 6. Association of KaiA and KaiB
is neglected here resulting in consideration of regular expressions C# ∗# ∗#i for
i = 0, . . . , 6. The simulation shows that medium phosphorylation levels possess
smaller amplitudes than minor or major phosphorylation levels. Due to symmetry
reasons, KaiABC subproducts carrying three phosphates double the frequency of
oscillation. Hence, the reaction system is able to act as a scaler. This feature could
be useful to control downstream processes at a subcircadian granularity.

Classification of KaiABC subproducts with regard to association of KaiA and
KaiB leads to simulation results depicted in Figure 6. As expected, both courses
proceed in opposite direction emphasising the mutually exclusive association of
KaiA and KaiB to KaiC.

Further simulation studies could explore the effects of different temperatures
to the network behaviour. To this end, modified forms of Arrhenius terms based on
the Boltzmann constant instead of the universal gas constant might be utilised to
replace each reaction parameter kj . In this way, a possible capability of tempera-
ture compensation or entrainment is investigable and can be applied to fine-tuning
of the model.

Modelling Signalling Networks with Incomplete Information 313

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16 18 20 22 24

pr
ot

ei
n

ab
un

da
nc

e

time scale (hours)

CA** C*B*

Fig. 6. Temporal courses of KaiABC subproducts separated into two groups by associ-
ation of KaiA resp. KaiB to KaiC. Kinetic parameters and initial amounts adjusted in a
way to obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Extensions of the System

In this section, we address specialties of the different modelling approaches
[8, 19, 29] in the context of their conversion into the P systems framework by
additional wild-carded reactions. Each of these reactions subsumes a variety of in-
dividually interacting components that form feedback loops capable of stabilising
or destabilising the oscillating behaviour of the whole system. Kinetic laws within
system extensions also employ discretised Michaelis-Menten kinetics for enzymatic
processes and linear mass-action kinetics for protein degradation.

Premature dissociation or association of KaiA or KaiB can destabilise the oscil-
latory behaviour by damping effects. In contrast, spontaneous dephosphorylation
and monomer shuffle amplify the influence of feedbacks within the reaction system.
This makes the network behaviour more sensitive to slight parameter changes.
Toggling KaiB between an active and an inactive form as well as inhibition of
KaiC phosphorylation catalysed by KaiB is able to break the symmetry among
the reaction cycle.

Premature KaiA association [29]:

A + C#¬A# ∗#∗ −→ C#A# ∗#∗
Premature KaiA dissociation [29]:

C#A# ∗#∗ −→ A + C#¬A# ∗#∗
Premature KaiB association [29]:

B + C# ∗#¬B#∗ −→ C# ∗#B#∗

314 T. Hinze et al.

Premature KaiB dissociation [29]:

C# ∗#B#∗ −→ B + C# ∗#¬B#∗

Spontaneous dephosphorylation [8, 29]:

C# ∗# ∗#6 −→ C# ∗# ∗#5
C# ∗# ∗#5 −→ C# ∗# ∗#4
C# ∗# ∗#4 −→ C# ∗# ∗#3
C# ∗# ∗#3 −→ C# ∗# ∗#2
C# ∗# ∗#2 −→ C# ∗# ∗#1
C# ∗# ∗#1 −→ C# ∗# ∗#0

Monomer shuffle in absence of KaiA and KaiB [29]:

C#¬A#¬B#∗ −→ C#¬A#¬B#∗

Toggling KaiB between active and inactive form [19]: A new species Bi is intro-
duced that denotes KaiB in its inactive form. KaiC in its partial or complete
phosphorylated state then catalyses the toggling reactions.

B + C# ∗# ∗#3 −→ Bi + C# ∗# ∗#3
Bi + C# ∗# ∗#6 −→ B + C# ∗# ∗#6

Inhibition of KaiC phosphorylation [8]: Here, the additional string-object
C# ∗#B#i, i ∈ {0, . . . , 3} acts as an inhibiting factor for phosphorylating
reactions R1, . . . , R6.

4 Conclusions

Coping with incomplete information about protein activation states can be seen
as a challenging task in systems biology. Particularly, the number of individual
protein interactions that can potentially occur grows exponentially with regard to
the number of binding sites for activation. In order to conduct exhaustive studies
about the variety of potential behavioural scenarios of an entire network that
includes unknown parts, all corresponding subnetworks covering these unknown
parts have to be considered. Incorporation of regular expressions for representation
of proteins and their activation states enables usage of placeholder symbols to
express arbitraryness or uncertainty about components within those states. In
this way, a wild-carded representation may subsume a combinatorial variety of
individual activation states.

Accordingly, the proposed P systems framework ΠCSM intends to combine
advantages of processing regular expressions that represent molecular entities with
the corresponding dynamical behaviour of an entire reaction network resulting

Modelling Signalling Networks with Incomplete Information 315

from superpositioning of individual molecular abundance courses. To this end,
we have integrated string-objects into a deterministic framework able to emulate
discretised forms of reaction kinetics in concert with dedicated matching strategies
in order to identify reactants from the current system configuration. A simulation
study of the KaiABC oscillator demonstrates the practicability of this approach.

From an algebraic point of view, oscillations that occur in structural or config-
ural dynamics of P systems can be detected using a backtracking mechanism along
with the temporal system evolution: By monitoring the overall configurations over
time, a derivation tree is obtained. Stable oscillations appear as recurring, but non-
adjacent overall configurations along a path through the derivation tree. Equipping
P systems analysis tools with such a backtracking mechanism is a promising idea
for futural work.

Acknowledgements

We gratefully acknowledge funding from the German Federal Ministry of Educa-
tion and Research (BMBF, project no. 0315260A) within the Research Initiative
in Systems Biology (FORSYS).

References

1. U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits.
Chapman & Hall, 2006

2. D. Angluin. Finding Patterns Common to a Set of Strings. Journal of Computer and
System Sciences 21:46-62, 1980

3. A.P. Arkin. Synthetic Cell Biology. Current Opinion in Biotechnology 12(6):638-644,
2001

4. I.M. Axmann, S. Legewie, H. Herzel. A Minimal Circadian Clock Model. Genome
Inform 18:54-64, 2007

5. F. Bernardini, V. Manca. Dynamical aspects of P systems. BioSystems 70:85-93, 2003
6. M.L. Blinov, J.R. Faeder, B. Goldstein, W.S. Hlavacek. BioNetGen: Software for

Rule-Based Modeling of Signal Transduction Based on the Interactions of Molecular
Domains. Bioinformatics 20:3289-3292, 2004

7. M.L. Blinov, J.R. Faeder, B. Goldstein, W.S. Hlavacek. A network model of early
events in epidermal growth factor receptor signaling that accounts for combinatorial
complexity. BioSystems 83:136-151, 2006

8. S. Clodong, U. Dühring, L. Kronk, A. Wilde, I.M. Axmann, H. Herzel, M. Kollmann.
Functioning and robustness of a bacterial circadian clock. Molecular Systems Biology
90(3):1-9, 2007

9. K.A. Connors. Chemical Kinetics. VCH Publishers, 1990
10. R. Eils, A. Kriebe (Eds.), Computational Systems Biology. Academic Press, 2005
11. S.S. Golden, V.M. Cassone, A. LiWang. Shifting Nanoscopic Clock Gears. Nature

Structural and Molecular Biology 14:362-363, 2007
12. R. Heinrich, S. Schuster. The Regulation of Cellular Systems. Springer-Verlag, 2006

316 T. Hinze et al.

13. T. Hinze, T. Lenser, P. Dittrich. A Protein Substructure Based P System for De-
scription and Analysis of Cell Signalling Networks. In H.J. Hoogeboom, G. Păun,
G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, Series Lecture Notes in
Computer Science 4361:409-423, 2006

14. T. Hinze, R. Fassler, T. Lenser, P. Dittrich. Register Machine Computations on
Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using
Mass-Action Kinetics. International Journal of Foundations of Computer Science
20(3):411-426, 2009

15. E. Klipp, R. Herwig, A. Kowald, C. Wierling, H. Lehrach. Systems Biology in Prac-
tice: Concepts, Implementation, and Application. Wiley-VCH, 2006

16. T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Towards Evolutionary Network Recon-
struction Tools for Systems Biology. In E. Marchiori, J.H. Moore, J.C. Rajapakse
(Eds.), Proceedings Fifth European Conference on Evolutionary Computation, Ma-
chine Learning and Data Mining in Bioinformatics (EvoBIO2007), Series Lecture
Notes in Computer Science 4447:132-142, 2007

17. M.O. Magnasco. Chemical Kinetics is Turing Universal. Physical Review Letters
78(6):1190-1193, 1997

18. V. Manca, L. Bianco, F. Fontana. Evolution and oscillation in P systems: Applica-
tions to biological phenomena. Lecture Notes in Computer Science 3365:63-84, 2005

19. F. Miyoshi, Y. Nakayama, K. Kaizu, H. Iwasaki, M. Tomita. A Mathematical Model
for the Kai-Protein-Based Chemical Oscillator and Clock Gene Expression Rhythms
in Cyanobacteria. Journal of Biological Rhythms 22(1):69-80, 2007

20. T. Mori, D.R. Williams, M.O. Byrne, X. Qin, M. Egli, H.S. Mchaourab, P.L. Stewart,
C.H. Johnson. Elucidating the Ticking of an In Vitro Circadian Clockwork. PLoS
Biology 5(4):841-853, 2007

21. M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama. Reconstitution of Circa-
dian Oscillation of Cyanobacterial KaiC Phosphorylation in vitro. Science 308:414-
415, 2005

22. D.A. Paranjpe, V.K. Sharma. Evolution of Temporal Order in Living Organisms.
Journal of Circadian Rhythms. 3:7, 2005

23. G. Păun. Computing with Membranes. Journal of Computer and System Sciences
61(1):108-143, 2000

24. E. Rosato. Circadian Rhythms: Methods and Protocols. Springer-Verlag, 2007
25. M.R. Roussel, D. Gonze, A. Goldbeter. Modeling the differential fitness of cyanobac-

terial strains whose circadian oscillators have different free-running periods. J Theor
Biol 205(2):321-340, 2000

26. S. Schuster, I. Zevedei-Oancea. A Theoretical Framework for Detecting Signal Trans-
fer Routes in Signalling Networks. Comput. Chem. Eng. 29:597-617, 2005

27. J. Tomita, M. Nakajima, T. Kondo, H. Iwasaki. No transcription-translation feedback
in circadian rhythm of KaiC phosphorylation. Science 307:251-254, 2005

28. Y. Xu, T. Mori, C.H. Johnson. Circadian clock-protein expression in cyanobacteria:
rhythms and phase-setting. EMBO Journal 19:3349-3357, 2007

29. M. Yoda, K. Eguchi, T.P. Terada, M. Sasai. Monomer-Shuffling and Allosteric Tran-
sition in KaiC Circadian Oscillation. PLoS ONE 5:1-7, 2007

Solving NP-complete Problems by Spiking Neural
P Systems with Budding Rules

Tseren-Onolt Ishdorj1, Alberto Leporati2, Linqiang Pan3,4, Jun Wang3

1 Computational Biomodelling Laboratory
Åbo Akademi University
Department of Information Technologies
20520 Turku, Finland
tishdorj@abo.fi

2 Università degli Studi di Milano – Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336/14, 20126 Milano, Italy
alberto.leporati@unimib.it

3 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
junwangjf@gmail.com, lqpan@mail.hust.edu.cn

4 Research Group on Natural Computing
Department of CS and AI, University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain

Summary. Inspired by the growth of dendritic trees in biological neurons, we introduce
spiking neural P systems with budding rules. By applying these rules in a maximally
parallel way, a spiking neural P system can exponentially increase the size of its synapse
graph in a polynomial number of computation steps. Such a possibility can be exploited
to efficiently solve computationally difficult problems in deterministic polynomial time,
as it is shown in this paper for the NP-complete decision problem sat.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [5] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems can also be viewed as an evolution of P systems
[19, 16] corresponding to a shift from cell-like to neural-like architectures. We re-
call that this biological background has already led to several models in the area
of neural computation, e.g., see [13, 14, 4].

318 T.-O. Ishdorj et al.

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cells. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use some of its rules then one
of such rules must be used. The rule to be applied is nondeterministically chosen.
Thus, the rules are used in a sequential manner in each neuron, but neurons
function in parallel with each other. Observe that, as usually happens in membrane
computing, a global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized. When a cell sends out spikes
it becomes “closed” (inactive) for a specified period of time, that reflects the
refractory period of biological neurons. During this period, the neuron does not
accept new inputs and cannot “fire” (that is, emit spikes). Another important
feature of biological neurons is that the length of the axon may cause a time
delay before a spike reaches its target. In SN P systems this delay is modeled by
associating a delay parameter to each rule which occurs in the system. If no firing
rule can be applied in a neuron, there may be the possibility to apply a forgetting
rule, that removes from the neuron a predefined number of spikes.

The computational efficiency of SN P systems has been recently investigated in
a series of works [2, 6, 9, 11, 10]. In [12] it has been proved that a deterministic SN
P system of polynomial size cannot solve an NP-complete problem in a polynomial
time, unless P=NP. Hence, under the assumption that P 6= NP, efficient solutions
to NP-complete problems cannot be obtained without introducing features which
enhance the efficiency, such as pre-computed resources, ways to exponentially grow
the workspace during the computation, nondeterminism, and so on. Indeed, in
the framework of SN P systems, most of the solutions to computationally hard
problems exploit the power of nondeterminism [11, 10, 12] or use pre-computed
resources of exponential size [2, 6, 9, 7].

The possibility of using SN P systems to solve computationally hard problems
by using some (possibly exponentially large) pre-computed resources has been first
presented in [6], that contains a description of a uniform family of SN P systems
with pre-computed resources of exponential size that solves all the instances of the
NP-complete decision problem sat in a polynomial time. In the present paper we
complement the study exposed in [6], by describing an SN P system that first builds
the necessary resources (by exponentially increasing its workspace in a polynomial
time), and then uses such resources to solve the sat problem. To this purpose,
we extend the SN P systems given in [6] by introducing neuron budding rules. We
show that SN P systems with budding rules can grow an exponential size synapse
graph in a time which is polynomial with respect to the size of the instances of
the problem we want to solve. Then, the systems themselves can be used to solve
such instances. All the systems we will propose work in a deterministic way.

Solving NP-complete Problems by SN P Systems with Budding Rules 319

The biological motivation for the mechanism that we use to expand the synapse
graph of SN P systems comes from the growth of dendritic trees in biological
neurons [20]. It is known that the human brain is made up of about 100 billion
cells. Almost all brain cells are formed before birth. Dendrites (from the Greek,
“tree”) are the branched projections of a neuron. The point at which the dendrites
of a cell come into contact with the dendrites of another cell is where the miracle
of information transfer (communication) occurs. Brain cells can grow as many as
one billion of dendrite connections – a universe of touch points. The greater the
number of dendrites, the more information can be processed. Dendrites grow as
a result of stimulation from and interaction with their environment. With limited
stimulation there is limited growth; with no stimulation, dendrites actually retreat
and disappear. The microscope photographs illustrated in Figure 1 show actual
dendrite development. Dendrites begin to emerge from a single neuron (brain cell)
and develop into a cluster of touch points seeking to connect with dendrites from
other cells.

In the framework of SN P systems, the dendrite connection points are modelled
as abstract neurons, while the branches of dendrite trees are modelled as abstract
synapses. A new connection between dendrites coming from two different neuron
cells is understood as a newly created synapse. In this way, new neurons and
new synapses can be produced during the growth of a dendrite tree. The formal
definition of neuron budding rule and its semantics will be given in Section 2.

Fig. 1. A growing neuron: a. dendrites begin to emerge from a single neuron, b. dendrites
developed into a cluster of touch points; c. Ramon y Cajal, Santiago. Classical drawing:
Purkinje cell; d. newborn neuron dendrites, e. three months later. Photos from Tag Toys
[20]

320 T.-O. Ishdorj et al.

2 SN P systems with budding rules

A spiking neural P system with budding rules, of initial degree m ≥ 1, is a construct
of the form

Π = (O, Σ, H, syn, R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {σ1, σ2, . . . , σm} is a finite set of initial neurons;
3. H is a finite set of labels for neurons;
4. syn ⊆ H ×H is a finite set of synapses, with (i, i) 6∈ syn for i ∈ H;
5. R is a finite set of developmental rules, of the following forms:

(1) neuron budding rule x[] i → y[] j , where x ∈ {(k, i), (i, k), λ}, y ∈
{(i, j), (j, i), λ}, i, j, k ∈ H, i 6= k, i 6= j;

(2) extended firing (also called spiking) rule [E/ac → ap; d] i, where i ∈ H, E
is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0 are integer numbers,
with the restriction c ≥ p.

6. in, out ∈ H indicate the input and the output neurons of Π.

Note that the definition of SN P systems with budding rules is slightly different
from the usual definition of SN P systems given in the literature, where the neurons
that occur in the system are explicitly listed as σi = (ni, Ri), 1 ≤ i ≤ m, where
Ri is the set of rules associated with neuron σi, and ni is the number of spikes it
contains in the initial configuration of the system. First of all, only the structure
of the system is given in our definition; the presence of spikes (if any) in the
initial configuration is specified at the beginning of each computation. Further, i
is considered as the label of neuron σi. In SN P systems with budding rules it is
possible to create new neurons in the course of a computation; hence the system
may contain, in a given configuration, several neurons that are labelled with the
same element of H. Nonetheless, with a slight abuse of notation in what follows
we will refer to any neuron having the label i ∈ H by calling it σi.

Considering the budding rule x[]
i
→ y[]

j
, its left hand side describes the

neuron σi with a synapse x connected with one of its neighbouring neurons, to
which the rule is supposed to be applied. The right hand side describes the result
of the rule application, that is, the newly created neuron σj and synapse y. Note
that for the sake of simplicity, in the rule notation we omit to repeat the contents
of the left hand side of the rule in the right hand side. We say that the rule is
restricted because only one neighbouring neuron is considered in each side of the
rule.

A budding rule can be applied only if the neighbourhood of the associated
neuron is exactly as described in the left hand side of the rule, in other words,
x = X where X is the current set of synapses of neuron σi. As a result of the rule
application, a new neuron σj and a synapse y are established, provided that they
do not already exist; if a neuron with label j already exists in the system but no
synapse of type y exists, then only the synaptic connection y between the neurons

Solving NP-complete Problems by SN P Systems with Budding Rules 321

σi and σj is established; no new neuron with label j is budded. We stress here
that the application of budding rules does not depend on the spikes contained
into the neuron. Budding rules are applied in a maximally parallel way: if the
neighbourhood of neuron σi enables several budding rules, then all these rules are
applied in parallel; as a result, several new neurons and synapses are produced
(which corresponds to have several branches at a touch point in the dendrite
tree). Note that the way of using neuron budding rules is different with respect
to the usual way in which P systems with active membranes use cell division or
cell creation rules, where at most one of these rules can be applied inside each
membrane during a computation step.

Extended firing rules are defined as usually done in SN P systems. If an ex-
tended firing rule [E/ac → ap; d]

i
has E = ac, then we will write it in the simplified

form [ac → ap; d] i; similarly, if a rule [E/ac → ap; d] i has d = 0, then we can sim-
ply write it as [E/ac → ap] i; hence, if a rule [E/ac → ap; d] i has E = ac and
d = 0, then we can write [ac → ap]

i
. A rule [E/ac → ap]

i
with p = 0 is written

in the form [E/ac → λ]
i

and is called an extended forgetting rule. Rules of the
types [E/ac → a; d]

i
and [ac → λ]

i
are said to be standard. However, even in this

case we do not require that if a forgetting rule is enabled then no firing rules are
also enabled at the same time in the same neuron, as it happens in standard SN
P systems.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

In each time unit, if a neuron σi can use one of its rules, then a rule from R
must be used. If the neighbourhood of neuron σi enables several budding rules,
then all these rules are applied in parallel. If several spiking rules are enabled in
neuron σi, then only one of them is nondeterministically chosen. If both spiking

322 T.-O. Ishdorj et al.

rules and budding rules are enabled in the same computation step, then one type
of rules is nondeterministically chosen. When a neuron budding rule is applied, at
this step the associated neuron is closed, and thus it cannot receive spikes. In the
next step, the neurons obtained by budding will be open.

The configuration of the system is described by its topology structure, the num-
ber of spikes associated with each neuron, and the state of each neuron (open or
closed). We emphasize that the system introduced here contains no spikes in the
initial configuration. Using the rules as described above, one can define transitions
among configurations. Any sequence of transitions starting in the initial configu-
ration is called a computation. A computation halts if it reaches a configuration
where all the neurons are open and no rule can be used.

In what follows, we give an example to make the application of budding rules
transparent. Neither spiking nor forgetting rules are used.

An example. Let Π1 be an SN P system with budding rules, whose initial topo-
logical structure (composed by a single neuron σ1) is shown in the left hand side
of Figure 2. Let Π1 contain the following six budding rules:

a. λ[]1 → (1, 2)[]2,
b. (1, 2)[]2 → (3, 2)[]3,
c. (1, 2)[]

2
→ (2, 4)[]

4
,

d. (2, 3)[]
3
→ (3, 5)[]

5
,

e. (2, 4)[]
4
→ (4, 6)[]

6
,

f. (4, 6)[]6 → (6, 3)[]3.

In the initial configuration, neuron σ1 has no neighbourhood and only rule a.
is enabled. The application of rule a. produces a new neuron σ2 with a synapse
(1,2) connecting it with σ1. Now both neurons σ1 and σ2 have a neighbourhood
(each one being the neighbourhood of the other), since a synaptic connection exists
between them. In this circumstance, rule a. is disabled while rules b. and c. are
enabled and may be applied in parallel to neuron σ2. When these two rules are
applied two new neurons σ3 and σ4 are created, with the associated synapses (3,2)
and (2,4). In the resulting configuration, rules b. and c. are disabled since now
neuron σ2 has three neighbours. At this step only rule e. can be applied to neuron
σ4, producing a new neuron σ6 with a synaptic connection (4,6). Note that at this
step rule d. was not enabled as the synapse of neuron σ3 is (3,2), instead of (2,3) as
required by the rule. Now only rule f. is enabled, which creates only the synapse
(6,3) because neuron σ3 already exists. From now on no rule is enabled, and thus
the computation halts.

3 SN P systems solving sat

Let us now consider the NP-complete decision problem sat [8, p. 39]. The in-
stances of sat depend upon two parameters: the number n of variables, and the

Solving NP-complete Problems by SN P Systems with Budding Rules 323

Fig. 2. Evolution of the structure of the SN P system Π1, as the effect of the application
of budding rules

number m of clauses. We recall that a clause is a disjunction of literals, occur-
rences of xi or ¬xi, built on a given set X = {x1, x2, . . . , xn} of Boolean variables.
Without loss of generality, we can avoid the clauses in which the same literal is
repeated or both the literals xi and ¬xi, for any 1 ≤ i ≤ n, occur. In this way, a
clause can be seen as a set of at most n literals. An assignment of the variables
x1, x2, . . . , xn is a mapping a : X → {0, 1} that associates to each variable a truth
value. The number of all possible assignments to the variables of X is 2n. We say
that an assignment satisfies the clause C if, assigned the truth values to all the
variables which occur in C, the evaluation of C (considered as a Boolean formula)
gives 1 (true) as a result.

We can now formally state the sat problem as follows.

Problem 1. Name: sat.

• Instance: a set C = {C1, C2, . . . , Cm} of clauses, built on a finite set {x1, x2,
. . . , xn} of Boolean variables.

• Question: is there an assignment to the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Equivalently, we can say that an instance of sat is a propositional formula
γn = C1∧C2∧· · ·∧Cm, expressed in the conjunctive normal form as a conjunction
of m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. With a little abuse of notation, from now on we will denote
by sat(n,m) the set of instances of sat which have n variables and m clauses.

In [6], a uniform family {ΠSAT (〈n,m〉)}n,m∈N of SN P systems was built such
that for all n,m ∈ N the system ΠSAT (〈n, m〉) solves all the instances of sat(n,m)
in a number of steps which is quadratic in n and linear in m. Here 〈n,m〉 denotes
the natural number obtained by applying the Cantor bijection to the pair (n,m) of
natural numbers; so doing, the family of P systems depends upon one parameter
instead of two. We assume that the reader is familiar with the construction given
in [6]; for his convenience, here we summarize the structure and functioning of the
system ΠSAT (〈n,m〉). In the next section, we are going to build such a system by
means of budding rules.

Because the construction is uniform, we need a way to encode any given in-
stance γn of sat(n,m). As stated above, each clause Ci of γn can be seen as a
disjunction of at most n literals, and thus for each j ∈ {1, 2, . . . , m} either xj

324 T.-O. Ishdorj et al.

Fig. 3. A SN P system structure devoted to solve all the instances of sat(n, m)

occurs in Ci, or ¬xj occurs, or none of them occurs. In order to distinguish these
three situations we define the spike variables αij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, as
variables whose values are amounts of spikes, and we assign to them the following
values:

αij =

a if xj occurs in Ci

a2 if ¬xj occurs in Ci

λ otherwise
(1)

So doing, clause Ci will be represented by the sequence αi1αi2 · · ·αin of
spike variables; in order to represent the entire formula γn we just concate-
nate the representations of the single clauses, thus obtaining the sequence
α11α12 · · ·α1nα21α22 · · ·α2n · · ·αm1αm2 · · ·αmn. As an example, the representa-
tion of γ3 = (x1 ∨ ¬x2) ∧ (x1 ∨ x3) is the sequence aa2λaλa.

The system structure is composed of n + 5 layers, as illustrated in Figure 3.
The first layer (numbered by 0) is used to insert into the system the representation
of the instance of sat(n,m) to be solved, encoded as stated above. Note that
each layer from 1 to n contains two times the neurons contained in the previous
layer. In this way we obtain in the n-th layer 2n copies of a subsystem which is
a sequence of n neurons; each subsystem is bijectively associated to one of the

Solving NP-complete Problems by SN P Systems with Budding Rules 325

possible assignments to the variables x1, x2, . . . , xn. The neurons that occur in
each subsystem are of two types: f and t. The type of a neuron indicates that
the corresponding Boolean variable is assigned with the Boolean value t(rue) or
f(alse), respectively. These subsystems, together with the so called generator, have
a very specific function in the overall SN P system: to test (in parallel) all possible
assignments against a given clause.

The assignment is performed by sending 3 spikes to all the neurons labelled
with t, and 4 spikes to all the neurons labelled with f . This means that neurons
e in the generator will have three synapses going to neurons t and four synapses
towards neurons f . All these spikes arrive every n computation steps, when the
spikes indicated by the spike variables αij that correspond to a clause of γn are
contained into the subsystems of layer n. This process is started by putting one
spike in neuron s at the beginning of the computation. The delay associated with
the rule contained in neuron s allows to send the first spikes from neurons e to
neurons t and f exactly when the first clause is contained in layer n.

Recall our encoding of literals in the clauses (1): we have 0 spikes if the variable
does not occur in the clause, 1 spike if it occurs non negated, and 2 spikes if it
occurs negated. These spikes are added with those representing the assignments,

Table 1. Number of spikes resulting from the assignment in the neurons of layer n, and
its effect on the truth value of the clause

and the possible results are illustrated in Table 1. From this table we can see that if
a neuron labelled with t receives a total number of 4 spikes then the corresponding
variable occurs non negated in the clause and is assigned the truth value true; we
can immediately conclude that the clause is satisfied, and thus the neuron sends
one spike towards the next layer. Similarly, if a neuron labelled with f receives 6
spikes then the corresponding variable occurs negated in the clause and is assigned
the truth value false; also in this case we can immediately conclude that the clause
is satisfied, and the neuron signals this event by sending one spike towards the next
layer. In all the other cases we cannot conclude anything on the truth value of the
clause, and thus no spike is emitted.

326 T.-O. Ishdorj et al.

All the spikes which are emitted by neurons t and f are propagated through
the neurons that compose layer n, until they reach the corresponding neuron σ1

in layer n + 1. Such a neuron is designed to make neuron σ2 (in layer n + 2)
retain only one spike from those received by layer n. Hence, those assignments
that satisfy the clause produce a single spike in the corresponding neuron σ2; such
a spike is accumulated in the associated neuron σ3 (in layer n + 3), that operates
like a counter. When the first clause of γn has been processed, the second enters
into the system (in n steps) and takes place in the subsystems; then all possible
assignments are tested against this clause, and so on for all the clauses. When all
the m clauses of γn have been processed, neurons σ3 in layer n + 3 contain each
the number of clauses which are satisfied by the corresponding assignment. The
neurons that contain m spikes fire, sending one spike to neuron σout, thus signalling
that their corresponding assignment satisfies all the clauses of the instance. Neuron
σout operates like an or gate: it fires if and only if it contains at least one spike,
that is, if and only if at least one of the assignments satisfies all the clauses of γn.
Further technical details will be presented in the last part of the next section.

4 A uniform solution to sat by SN P systems with budding
rules

In this section we show that the pre-computed structures which are used in [6] to
solve the instances of sat(n,m) can be built in a polynomial time by SN P systems
with budding rules. The SN P system with budding rules that we are going to
define is composed of two subsystems: a first subsystem builds the structure of
a second subsystem, that solves the instances of sat(n,m) as described in the
previous section. For the sake of simplicity, we avoid to use the neuron budding
and the spiking rules at the same time in each subsystem.

Formally, the SN P system with budding rules is defined as

Π = (O,Σ, H, syn,R, soma, out)

where:

1. O = {a} is the singleton alphabet;
2. Σ = {σi | i ∈ H0} is the set of initial neurons;
3. H is a finite set of labels for neurons, and

H ⊇ H0 = {soma, out, e0, e1, e2, e3, b1, b2, b3, c, s, +,−} is the set of labels for
the neurons initially given;

4. syn ⊆ H ×H is a finite set of synapses, with (i, i) /∈ syn for i ∈ H), and
syn ⊇ syn0 = {(e, ei) | 0 ≤ i ≤ 3, e ∈ {+,−}} ∪ {(e0, bi) | 1 ≤ i ≤ 3} ∪
{(b3, c), (s, +), (+,−), (−, +), λ} is the set of synapses initially in use;

5. soma and out are the labels for the input and output neuron, respectively;
6. R is a set of neuron budding and extended spiking rules defined as follows.

Solving NP-complete Problems by SN P Systems with Budding Rules 327

Fig. 4. The initial topological structure (newly born dendrite) of the SN P system Π:
the input (soma) and the output (out) neurons, and the generator

Building the system structure.

The system initially contains an input neuron σsoma, an output neuron σout, and
a sub-structure G (named the generator) which is composed of the set of neurons
specified in Σ and the set of synapses from syn0, arranged as illustrated in Figure
4.

The generator is governed only by neuron budding rules, and is controlled by
the labels of budding neurons and by the synapses created during the computation.
The system construction algorithm consists of two phases:

A. Generation of the dendritic-tree sub-structure (the layers from 0 to n in Figure
3) and assignment of the truth values to the n Boolean variables. The process
starts from the initial neuron σsoma (the root node) and produces 2n neurons
in n steps. The label of each neuron in layer n encodes an associated truth
assignment.

B. Completion of the network structure. The neurons in the n-th layer of the
system establish connections with the generator, according to the truth assign-
ments represented in those neurons. The structure is then further expanded by
three layers, and finally all the neurons in the last layer are connected with the
output neuron σout.

Let us now describe in depth each of these phases.

Phase A. In this phase of computation, the dendritic tree (which is a complete
binary tree) is generated in n steps by applying budding rules of type a1), described
below, starting from an initial neuron σsoma. The dendritic tree generation process
is controlled by the labels of the neurons as well as by the synapses generated so far.

328 T.-O. Ishdorj et al.

It is worth to note that, since the truth assignments associated with the neurons in
n-th layer are encoded in the labels of those neurons, also the truth assignments to
the variables x1, x2, . . . , xn are generated during the construction of the dendritic
tree.

The label of a neuron σc in layer i is a sequence of the form

c = (i, x(p)
i) = (i, xi(1) = p) = (i, p, xk2, . . . , xii),

with p ∈ {t, f}, where the first entry (i) indicates the number of layer, while x
(p)
i is

a subsequence of length i formed by the Boolean values t and f that have been gen-
erated up to now, that represents a truth assignment to the variables x1, x2, . . . , xi.
The component p in x

(p)
i indicates that the first entry of the subsequence is exactly

p.
An almost complete structure of the SN P system that solves the instances of

sat(2,m) is illustrated in Figure 5. It is worth to follow its construction.

Fig. 5. An almost complete structure (maturated dendrite tree) of the P system for
solving the instances of sat(2, m). The neuron budding rules used in each computation
step are indicated by their labels in the corresponding neurons. Some of the spiking rules
are also indicated

Solving NP-complete Problems by SN P Systems with Budding Rules 329

a1) (c(i,xi−1), c(i,xi))[]
c(i,xi)

→ (c(i,xi), c(i+1,p,xi))[]
c(i+1,p,xi)

,

0 ≤ i ≤ n− 1, p ∈ {t, f}, xi ∈ {t, f}i, (c(−1,x−1), c(0,x0)) = λ, c(0,λ) = soma.
The computation starts by applying two rules of type a1), for i = 0, to the
input neuron σcsoma

. These two rules are:

[]
csoma

→ (csoma, c(1,t))[]
c(1,t)

, and []
csoma

→ (csoma, c(1,f))[]
c(1,f)

,

where (csoma, c(1,t)), (csoma, c(1,f)) ∈ syn.
The left hand side of each rule (where λ ∈ syn0 is omitted) requires that its
interaction environment be empty, i.e., no synapse exists connected to neuron
σcsoma

. As the left hand sides of both these rules are the same, and satisfy the
constraints posed on the interaction environment of neuron σcsoma

, they are
applied simultaneously. As a result, two new neurons are budded: σc(1,t) , with
a synapse (csoma, c(1,t)) coming from the father neuron, and σc(1,f) , connected
with the father neuron by a synapse (csoma, c(1,f)). The symbols t and f in the
neuron labels indicate the truth values true and false, respectively, and can
be regarded as the two truth assignments (t) and (f) of length 1 for a single
Boolean variable x1. The first layer of the dendritic tree is thus established, and
rules of type a1) cannot be applied anymore, since the interaction environment
of neuron σcsoma

has changed.
At the second computation step (i = 1), the following two rules are enabled
and can be applied to each of the newly created neurons:

(csoma, c(1,t))[]
c(1,t)

→ (c(1,t), c(2,f,t))[]
c(2,f,t)

,

(csoma, c(1,t))[]
c(1,t)

→ (c(1,t), c(2,t,t))[]
c(2,t,t)

for σc(1,t) , and

(csoma, c(1,f))[]
c(1,f)

→ (c(1,f), c(2,t,f))[]
c(2,t,f)

,

(csoma, c(1,f))[]c(1,f)
→ (c(1,f), c(2,f,f))[]c(2,f,f)

for σc(1,f) . The former pair of rules yields to two new neurons having label
c(2,f,t) and c(2,t,t), respectively; the synapses specified in these rules are budded
from the neuron labelled with c(1,t). The latter pair of rules generates two
neurons with labels c(2,f,f) and c(2,t,f), respectively; the synapses mentioned
in these rules go from the neuron labelled with c(1,f) to the newly created
neurons. In the meanwhile the truth assignments (f, t), (t, t), (f, f), (t, f), for
the Boolean variables x1 and x2, are generated at each leaf node, as illustrated
in Figure 5. Since the interaction environment of neurons σc(1,t) and σc(1,f) has
changed, the rules applied in this step cannot be applied anymore to these
neurons.
By continuing in this way, by applying the budding rules of type a1) in a
maximally parallel way for n computation steps, a complete binary tree of
depth n having 2n leaves (hence an exponentially large workspace) is built. The
label of each leaf node encodes a truth assignment of length n, hence all possible
truth assignments for the Boolean variables x1, x2, . . . , xn are generated.

330 T.-O. Ishdorj et al.

Phase B. The pre-computation to construct the SN P system structure continues
until it converges to the output neuron in a further few steps. The main goal of this
part of the construction algorithm is to design the substructure which is devoted
to test the satisfiability of the clauses of the instance γn of sat(n,m) given as
input against all possible truth assignments, and to determine whether there exist
some assignments that satisfy all the clauses of γn.

The substructure is composed of 2n subsystems, each being a sequence of n
neurons σc(j,xn) , 1 ≤ j ≤ n, including the leaf nodes of the dendritic tree. A sub-
sequence xn = (xn1, xn2, . . . , xnn) ∈ {t, f}n in a neuron label c(j,xn) represents a
truth assignment, and we can abstractly assign a pair (j, xn(j)) to a neuron σc(j,xn)

as its identity. Thus each subsystem represents a truth assignment formed by its
neurons’ identities. As stated above, a neuron with identification (j1, x(j1) = t)
has 3 synapses coming from the generator module, whereas a neuron with identity
(j2, x(j2) = f) is connected with the generator by means of 4 synapses. As we will
see, these connections are used to perform assignments to the Boolean variables
x1, x2, . . . , xn that compose γn, and to check which assignments satisfy the clause
of γn currently under consideration.

For instance, the case in which n = 2 is described in Figure 5, where 22 = 4
different truth assignments of length 2 have been generated for the two Boolean
variables x1 and x2. The first subsystem is composed of two neurons having labels
c(2,f,t) and c(1,f,t), respectively. The former is associated with the Boolean value
false, as x2 = (f, t) and x2(2) = f , while the latter is associated with true, as
x2(1) = t; altogether they form the truth assignment (f, t). The other subsystems
are similar, and are associated with the truth assignments (t, t), (f, f) and (t, f).
One can see that the four truth assignments are well distinguished from each other
by the layer structure of the four subsystems.

To build the substructure of n layers mentioned above, from now on two rules
of types a2) and a3) are applied simultaneously to a same neuron for n− 1 steps.
The first rule creates a new neuron with an associated synapse, while the second
rule creates 3 or 4 synapses to the generator block. The same process occurs during
the n-th step, by means of the rules of types a3) and a4); note that in this step
the rules of type a2) cannot be applied anymore.

a2) (c(n+1−j,xn), c(n−j,xn))[]c(n−j,xn)
→ (c(n−j,xn), c(n−1−j,xn))[]c(n−1−j,xn)

,
p ∈ {t, f}, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ n,
c
(k,0,x

(p)
k)

= c(k−1,n,xk−1), x
(p)
k = (p, xk−1) ∈ {t, f}k.

a3) (c(n+1−j,xn), c(n−j,xn))[]c(n−j,xn(j+1)=p)
→ (c(n−j,xn(j+1)=p), ei)[]ei

,
0 ≤ j ≤ n, p ∈ {t, f} and s ≤ i ≤ 3, where s = 1 if p = t, and s = 0 if p = f ,
c(n,0,xn) = c(n−1,n,xn).
We are now in the (n + 1)-th step of the computation. When j = 0, both
rules of types a2) and a3) are applicable to each neuron σc(n,xn) of layer n.
The former rules generate neurons σc(n−1,xn) with a synapse (c(n,xn), c(n−1,xn)).
The latter type of rules creates three synapses to all neurons of type σc(n,xn(1)=t)

coming from the neurons σcei
, 1 ≤ i ≤ 3, and four synapses to the neurons

Solving NP-complete Problems by SN P Systems with Budding Rules 331

σc(n,xn(1)=f) coming from the four neurons σcei
, 0 ≤ i ≤ 3, of the generator

block. The neuron budding rules of type a2) and the synapse creation rules of
type a3) are applied simultaneously to the same neurons (leaf nodes) in layer
n in the following n − 1 steps, since their interaction environments coincide.
The effect of the application of these rules is the production of neurons having
connections with the generator block.
So doing, 2n subsystems, each one composed of a sequence of n neurons, are
generated starting from layer n. In each subsystem, every neuron correspond-
ing to the Boolean value true (xn(j) = t) is connected with the generator
block by means of three synapses, while the neurons that correspond to the
Boolean value false (xn(j) = f) are connected with the generator block by
four synapses.
From the (2n + 1)-th step of the computation on, no interaction environment
of any neuron in the system allow to activate the rules of type a2). Hence these
rules cannot be applied, but the computation continues with the next types of
rules.

a4) (c(2,xn), c(1,xn))[]
c(1,xn)

→ (c(1,xn), c1)[]
c1

.
The rules of type a4) can be applied in parallel to the leaf nodes (neurons)
of layer n; they produce the neurons σc1 forming the (n + 1)-th layer and,
meanwhile, the rules of type a3) create synapses from these neurons to the
generator block.

a5) (c(1,xn), c1)[]
c1
→ (c1, c2)[]

c2
,

a6) (c(1,xn), c1)[]
c1
→ (bi, c1)[]

bi
, 1 ≤ i ≤ 3.

While the rules of type a5) are applied to the neurons σc1 and bud neurons
σc2 , the rules of type a6) are also applied and create three synapses coming
from the neurons σbi , 1 ≤ i ≤ 3, to each neuron σc1 . In this way, layer n + 2
is formed.

a7) (c1, c2)[]
c2
→ (c2, c3)[]

c3
,

a8) (c1, c2)[]
c2
→ (c, c2)[]

c
.

The rules of types a7) and a8) apply simultaneously to every neuron σ2 having
a synapse (c1, c2). As a result, a new neuron σc3 is budded with a connection
(c, c2) coming from neuron σc. All the neurons σc2 in the same layer are sub-
jected to the same effect, since the rules are applied in the maximally parallel
way.

a9) (c2, c3)[]c3
→ (c3, out)[]out.

The pre-computation of the SN P system structure is completed by forming
the connections from the neurons σc3 to the output neuron σout, by means of
the rules of type a9). These rule are applied in the maximally parallel way to
all the neurons in layer n + 3.

Summarizing, phases A and B build an empty (that is, containing no spikes)
structure of an SN P system, that can be used to solve all the instances of sat(n,m)
in a linear (with respect to n) number of computation steps. The size of the
structure is exponential with respect to n.

332 T.-O. Ishdorj et al.

Solving sat (Phase C).

Given an instance γn of sat(n,m), we first encode it as a sequence of spike vari-
ables, as explained in Section 3, equation (1). Then, the computation of the system
may start. The sequence of spikes encoding γn is introduced in the system, using
neuron σsoma. Let us see at what spiking rules are used to compute the solution,
with a brief description for each.

c1) [a → a]
c(i,xi)

; [a2 → a2]
c(i,xi)

0 ≤ i ≤ n, xi ∈ {t, f}i, c(0,x0) = soma,
c2) [a → a; n− 1]

s
.

We insert 0, 1 or 2 spikes into the system by rule c1) using the input neuron
σsoma, according to the value of the spike variable αij we are considering in the
representation of γn. In the meanwhile we insert a single spike a into neuron
σs, to fire once the rule c2), thus activating the generator block.

Each spike, encoding a spike variable inserted into the input neuron, is dupli-
cated and transmitted to the next layer of neurons. This duplication is performed
n times, until 2n replicated copies of the spike are placed in the leaf nodes (in layer
n) of the dendritic tree.

c3) [a → a]
ei

; 0 ≤ i ≤ 3,
[a → a; n− 1]

+
; [a → a; n− 1]−.

These are the spiking rules of the generator block. Each n steps, the generator
provides 3 and 4 spikes, respectively, to the neurons of layer n associated with
the truth values t and f . This is made in order to test the satisfiability of a
clause which has propagated through the layers of the dendritic tree, by check-
ing it against all possible truth assignments to the variables x1, x2, . . . , xn.

In another n steps, the 2n copies of the clause of γn take place in the corresponding
subsystems located in layers from n+1 to 2n, where the satisfiability of the clause
against all possible truth assignments is tested. For this purpose, the spike-truth
values a4 and a3 are assigned from the generator to the spike-variables of the clause,
according to the truth assignments represented by the neurons that compose the
subsystems. In fact, recall that in each subsystem every neuron corresponding to
the Boolean value true (xn(j) = t) is connected with the generator block by means
of three synapses, while the neurons that correspond to the Boolean value false
(xn(j) = f) are connected with the generator by means of four synapses. The
satisfiability is then checked by means of the rules of types c4) and c5) residing in
the neurons.

c4) [a → a] tt
; [a3 → λ] tt

; [a2 → a2] t1
;

[a4 → a]
tt

; [a5 → λ]
tt

; [a2 → a]
t0

;
tt = c(j,xn(j)=t), 1 ≤ j ≤ n,
t1 = c(j,xn(j)=t), 2 ≤ j ≤ n,
t0 = c(1,xn(n)=t), xn ∈ {t, f}n.

Solving NP-complete Problems by SN P Systems with Budding Rules 333

These are the spiking rules that reside in the neurons of layer n, associated
with the Boolean value true (in Figure 5 n = 2, σc(2,t,f) stands for false while
σc(1,t,f) stands for true). The rules a2 → a2, a2 → a, and a → a are used to
transmit the spike variables a, a2 along the subsystems. Once a clause Ci is
ready to be tested for satisfiability, each neuron associated with true contains
either one spike (a), two spikes (a2) or is empty (λ). As a spike variable a
represents the occurrence of a Boolean variable xj in Ci, to which a true value
(a3) sent by the generator is assigned, resulting in a yes answer (a4), then
it passes to the neuron σc1 along the subsystem as an indication that Ci is
satisfied by a truth assignment in which the Boolean variable xj is true. On
the other hand, if the Boolean value true (a3) is assigned to a spike variable
that represents the occurrence of ¬xj in Ci (a2) or the fact that xj does not
occur in Ci (λ), then in these cases the answer is no, which is computed by
the rules a3 → λ and a5 → λ.

c5) [a → a]ff
; [a4 → λ]ff

; [a2 → a2]f1
;

[a5 → λ]
ff

; [a6 → a]
ff

; [a2 → a]
f0

;
ff = c(j,xn(j)=f), 1 ≤ j ≤ n,
f1 = c(j,xn(j)=f), 2 ≤ j ≤ n,
f0 = c(1,xn(n)=f), xn ∈ {t, f}n.
These are the spiking rules that reside in the neurons of layer n, associated
with the Boolean value false. The functioning of these rules is similar to that
of rules c4).

c6) [a → a; n− 1]bi
; 1 ≤ i ≤ 3,

[a2/a → a]
c1

; [a3 → λ]
c1

;
[a4 → a]c1

; [a5 → a]c1
.

Whether an assignment satisfies or not the clause under consideration, is
checked by a combined functioning of the neurons with label 1 in layer n + 1
and the neurons with label bi, 1 ≤ i ≤ 3, in the generator.

c7) [a → λ]
c2

; [a2 → a]
c2

;
[a → a]c.
With a combined action of neuron σc, neuron σc2 sends a spike to neuron σc3

if and only if the corresponding assignment satisfies the clause under consid-
eration.

c8) [am → a]
c3

;
[a+/a → a]

out
.

Neurons with label c3 count how many clauses of the instance γn are satisfied
by the corresponding truth assignments. If one of these neurons get m spikes,
then it fires. Hence the number of spikes that reach neuron out is the number
of assignments that satisfy all the clauses of γn. The output neuron fires if
it contains at least one spike, thus signalling that the problem has a positive
solution; otherwise, there is no assignment that satisfies the instance γn.

334 T.-O. Ishdorj et al.

This stage of computation ends at the (nm+n+4)-th step. The entire computation
of the system thus halts in at most nm + n + 5 computation steps, hence in a
polynomial time with respect to n and m.

In conclusion, we obtained a deterministic, polynomial time and uniform solu-
tion to sat(n,m) in the framework of SN P systems.

5 Conclusions and directions for future research

In the present paper we proposed a way to solve the NP-complete decision problem
sat in a polynomial time with respect to the number n of Boolean variables
and the number m of clauses that compose the instances of sat being solved.
Specifically, we introduced SN P systems with neuron budding rules, a new feature
that enhances the efficiency of SN P systems by allowing them to generate an
exponential size synapse graph (regarded as the workspace of the system) in a
polynomial time with respect to n.

Neuron budding rules drive the mechanism of neuron production and synapse
creation, according to the interaction of neurons with their neighbourhoods (de-
scribed by the synapses that connect them to other neurons). We have shown that
a very restricted type of neuron budding rules, involving one or two synapses (ac-
tually, when two synapses are involved, they appear one in each side of the rule)
is sufficient to solve the sat problem. The solution is computed in two stages: the
first phase builds an exponential size SN P system that contains no spikes; then,
this SN P system is fed with the instance of sat to be solved (encoded in an ap-
propriate way) and the answer is computed. The system works in the deterministic
and maximally parallel manner.

The idea of producing new neurons in SN P systems is not new: already in
[15] neurons are generated by division. However, both biological motivation and
mathematical formal definition are different: neuron budding in this paper depends
on the connections (structure) with other neurons, while neuron division depends
on the number of spikes occurring inside the neurons (that is, the contents); hence
they are two different ways to increase the workspace of SN P systems.

An open question is whether SN P systems with budding rules can be used to
efficiently solve other computationally difficult problems, such as numerical NP-
complete problems and PSPACE-complete problems.

SN P systems with neuron budding rules can be extended by introducing more
general rules, which in some sense capture the dynamic interaction of neurons
with their neighbourhood. One possible form of such general rules is as follows:
Ai[] iBi → Cj [] jDj , where Ai, Bi and Cj , Dj are the sets of synapses coming to
and going out from, respectively, the specified neurons σi and σj . Clearly, in such
general rules, more than one synapses can be involved in the neighbourhood of the
considered neuron.

Solving NP-complete Problems by SN P Systems with Budding Rules 335

Acknowledgments

The work of Tseren-Onolt Ishdorj was supported by BIOTARGET, a joint
project between the University of Turku and Åbo Akademi University, funded
by the Academy of Finland. The work of L. Pan was supported by the Na-
tional Natural Science Foundation of China (Grant Nos. 60674106, 30870826,
60703047, and 60533010), Program for New Century Excellent Talents in Uni-
versity (NCET-05-0612), Ph.D. Programs Foundation of Ministry of Education
of China (20060487014), Chenguang Program of Wuhan (200750731262), HUST-
SRF (2007Z015A), and by the Natural Science Foundation of Hubei Province
(2008CDB113 and 2008CDB180). The work of Alberto Leporati was partially
supported by MIUR project “Mathematical aspects and emerging applications
of automata and formal languages” (2007).

References

1. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae 75:141–162, 2007.

2. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
Proceedings of the 8th International Conference on Electronics, Information, and
Communication, Ulanbator, Mongolia, June 2006, pp. 49–52.

3. H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spik-
ing neural P systems with extended rules. Fourth Brainstorming Week on Membrane
Computing (M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-
Campero, eds.), vol. I, RGNC Report 02/2006, Research Group on Natural Comput-
ing, Sevilla University, Fénix Editora, 2006, pp. 241–266.

4. W. Gerstner, W. Kistler: Spiking neuron models. Single neurons, populations, plas-
ticity. Cambridge University Press, 2002.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae 71(2–3):279–308, 2006.

6. T.-O. Ishdorj, A. Leporati: Uniform solutions to sat and 3-sat by spiking neural P
systems with pre-computed resources. Natural Computing 7(4):519–534, 2008.

7. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang: Deterministic solutions to
qsat and q3sat by spiking neural P systems with pre-computed resources. Submitted
for publication.

8. M.R. Garey, D.S. Johnson: Computers and intractability. A guide to the theory on
NP–completeness. W.H. Freeman and Company, 1979.

9. A. Leporati, M.A. Gutiérrez-Naranjo: Solving Subset Sum by spiking neural P sys-
tems with pre-computed resources. Fundamenta Informaticae 87(1):61–77, 2008.

10. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M. J. Pérez-Jiménez: Uniform so-
lutions to sat and Subset Sum by spiking neural P systems. Natural Computing
(Online version), DOI: 10.1007/s11047-008-9091-y.

11. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete prob-
lem with spiking neural P systems. In: G. Elefterakis et al. (Eds.), Membrane Com-
puting, 8th International Workshop (WMC 8), Revised Selected and Invited Papers.
LNCS 4860, Springer, 2007, pp. 336–352.

336 T.-O. Ishdorj et al.

12. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of spik-
ing neural P systems. International Journal of Unconventional Computing 5(5):459–
473, 2009.

13. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK 8(1):32–36, 2002.

14. W. Maass, C. Bishop (eds.): Pulsed neural networks. MIT Press, 1999.
15. L. Pan, Gh. Păun, M. J. Pérez-Jiménez: Spiking neural P systems with neuron

division and budding. Seventh Brainstormin Week on Membrane Computing, (R.
Gutiérrez-Escudero, M.A. Gutiérrez-Naranjo, Gh. Păun, I. Pérez-Hurtado, A. Riscos-
Núñez, eds.), vol. II, RGNC Report 01/2009, Research Group on Natural Computing,
Sevilla University, Fénix Editora, 2009, pp. 151–167.

16. Gh. Păun: Membrane computing – An introduction. Springer–Verlag, Berlin, 2002.
17. Gh. Păun: Twenty six research topics about spiking neural P systems. Fifth Brain-

storming Week on Membrane Computing (M.A. Gutiérrez-Naranjo, Gh. Păun, A.
Romero-Jiménez, A. Riscos-Núñez, eds.), RGNC Report 01/2007, Research Group
on Natural Computing, Sevilla University, Fénix Editora, 2007, pp. 263–280.

18. M. Sipser: Introduction to the theory of computation. PWS Publishing Company,
Boston, 1997.

19. The P systems Web page: http://ppage.psystems.eu/
20. Think and Grow Toys: http://www.tagtoys.com/dendrites.php

Tuning P Systems for Solving the Broadcasting
Problem

Raluca Lefticaru1, Florentin Ipate1, Marian Gheorghe1,2, Gexiang Zhang3

1 Department of Computer Science and Mathematics
University of Pitesti, Romania
Str. Targu din Vale 1, 110040 Pitesti, Romania
raluca.lefticaru@gmail.com, florentin.ipate@ifsoft.ro

2 Department of Computer Science
The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
m.gheorghe@dcs.shef.ac.uk

3 School of Electrical Engineering
Southwest Jiaotong University
Chengdu, 610031, P.R. China
zhgxdylan@126.com

Summary. P systems are employed in various contexts to specify or model different
problems. In certain cases the system is not entirely known. In this paper we will consider
the broadcasting algorithm and present a method to determine the format of the rules
of the P system utilised to specify the algorithm.

1 Introduction

P systems (also called membrane systems) represent a class of parallel and dis-
tributed computing devices which are inspired by the structure and the functioning
of living cells [10]. The model has been used for theoretical investigations as well
as a vehicle to represent different problems from various domains.

With very few exceptions, [13, 5, 3, 4], in all previous studies the systems
considered have been fully specified. There are situations when some components
of a model are not known or maybe available in certain contexts and circumstances.

In the vast majority of cases, the P system rules act either within compartments
or between those that share the same neighbourhood. There are only few situations
(for instance, P systems with gemmation [1]) when rules of a compartment transfer
objects from their current position to a destination that might be far away from
their place.

In this paper we study the broadcasting algorithm defined in a P system frame-
work [6], by considering a number of variants of P systems. We will study the

338 R. Lefticaru et al.

dependencies between the format of the rules in each compartment and the num-
ber of its neighbours, as well as a method to automatically generate the rules in
each compartment depending on the number of neighbours. This problem is also
important in the context of P systems where compartments are added to or re-
moved from them. The structure of a system can be changed either by operations
belonging to the system, like in the case of P systems with active membranes, or
by external means, but this aspect is not considered in this paper.

2 Basic concepts

A P system is a computational model, inspired by the functioning and structure
of the living cell. The cell-like P systems [12] consist of: (i) a hierarchical arrange-
ment of membranes, embedded in the skin membrane, the one which separates the
system from its environment; (ii) objects occurring inside the regions delimited
by membranes, coding complex chemical molecules or compounds; and (iii) rules
assigned to the regions of the membrane structure, acting upon the objects inside
and the regions themselves. A membrane without any membrane inside is called
an elementary one. Each membrane defines a region. Each region contains, apart
from zero or many membranes, a multiset of objects and a set, in this paper, of
transformation and communication rules.

A configuration of a P system is represented by the current membrane structure
and the multisets of objects occurring in each region. The system will go from
one configuration to a new one by applying the rules in a non-deterministic and
maximally parallel manner, i.e., at each step, in each membrane it is applied a
maximal multiset of rules. The system will halt when no more rules are available
to be applied. Usually, the result of the computation is obtained in a specified
component of the system, called the output region.

In what follows a basic P system using transformation and communication
rules is formally defined. For more details look at [12], [11].

Definition 1. A P system is a construct

Π = (V, µ, M1, . . . ,Mm, R1, . . . , Rm, i0),

where

• V is an alphabet; its elements are called objects;
• µ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with elements of a given set
Λ, usually, the set {1, · · · ,m}; m is called the degree of Π;

• Mi, 1 ≤ i ≤ m, are strings which represent multisets over V associated with
the regions of µ;

• Ri, 1 ≤ i ≤ m, are transformation-communication rules associated with the re-
gions of µ; each rule of Ri has the the form x → y, where x is a non-empty mul-
tiset over V , and y defines a multiset over {aj |a ∈ V, j ∈ {here, out, 1, · · · ,m}}

Tuning P Systems for Solving the Broadcasting Problem 339

(ahere means a remains in the current region, i; subsequently here will be ig-
nored; aout indicates that a has to go out of i to the outer region; aj, 1 ≤ j ≤ m,
shows that a goes to the region j that must be directly contained by the current
membrane); applying a rule means replacing x by y and following the target
indications;

• i0 is a number between 1 and m which specifies the output membrane of Π.

When a target indication, t, occurs more than once in a sequence, i.e., a1
t · · · ah

t

then the following shortcut notation (a1 · · · ah)t is used. A P system provides a
suitable framework for distributed parallel computation that develops in steps.
Indeed, any computation starts by processing the initial multisets, wi, and then
in each step the rules associated to each region are applied in a non-deterministic
and maximally parallel manner. The result of a computation, a multiset of simple
objects, is obtained in region i0. We notice that the rules presented above com-
bine both transformation and communication, being responsible for evolving the
objects and transferring them to regions according to specified targets. We will
consider specific contexts for applying some of these rules, namely promoters and
inhibitors [2]. Promoters are used to formalize the reaction enhancing; inhibitors
have reaction prohibiting roles for various substances (molecules) present in cells
[2].

3 Broadcasting through a P system

Broadcasting messages to the nodes of a network occurs in various communications
and is well-studied for different network topologies, message lengths, transmission
constraints. The problem is also formulated in the context of a basic P system
and its complexity has been studied [6]. A basic broadcasting problem consists in
sending a message from a node of a network to all the other nodes without revisiting
them. In a P system environment it involves sending the message through the tree
structure of the P system. The broadcasting algorithm for P systems [6] does
not discuss the format of the rules that may lead to various types of P systems
and, more important, specific complexity aspects of the communication processes
involved.

We will first present various variants of P systems and analyse complexity
aspects related to the communication processes that occur and the dependencies
between the format of the rules in a compartment and the number of its neighbours.

The broadcasting problem is presented through the P system having the mem-
brane structure given by the tree structure in Figure 1(a) where the message will
start from membrane 9. According to the broadcasting principle, illustrated in [6],
from each membrane, or node of the tree, the message is sent one level up, to
its parent membrane, and to all its directly contained membranes. Initially the
message from membrane 9 is sent to 6, 11, 12. In the following step from these
compartments the messages are sent to 3, 10, 15, 16, respectively. Please note that
from the membranes 15, 16, 12 the message does no longer travel away from them.

340 R. Lefticaru et al.

We can better illustrate how the message travels up and down the structure by
representing the tree with root 9 (see Figure 1(b)) as the associated tree structure
where the message travels only downwards.

We will consider a generic node j surrounded by neighbours p, i, k; one of these
may be a parent and the others children, or all of them children. The message,
denoted by O, might come from any of them and travel then to the others. The
message will come with other symbols that help the system implementing the
algorithm. We will conceive various rules allowing the message received from one
of its neighbours to travel through j towards its other neighbours. We will consider
four distinct cases illustrated by different types of P systems.

Case 1. Initially j consists of an empty multiset of objects and the rules are

• (i) p′ → ik, i′ → pk, k′ → pi;
• (ii) p → (j′O)p, i → (j′O)i, k → (j′O)k.

When a message comes from a neighbour, p for instance, then the corresponding
multiset, Op′ in this case, is received. In the first step p′ is transformed into ik by
using a rule of type (i). Next these two symbols trigger rules from (ii) which in
turn send the multiset Oj′ to the neighbours i and k, respectively.

Case 2. Like in the previous case, j consists of an initial empty multiset; the
rules are

p → (jO)i(jO)k, i → (jO)p(jO)k, k → (jO)p(jO)i.

In this case when p is received together with O it will send jO to i and to k
by using the first rule. We notice that the message is processed and passed on to
its neighbours in one single step.

Case 3. The compartment j contains the multiset pik and the rules

pc → (j′Ocnj,p)p|¬p′, ic → (j′Ocnj,i)i|¬i′, kc → (j′Ocnj,k)k|¬k′.

In this case j receives from p the multiset p′Occ. The symbol p′ acts as an
inhibitor of the first rule, preventing it to resend O back to p. The two c′s allow
the second and third rules to be executed. In the above rules nj,h defines the
number of neighbours of h, excluding j, h ∈ {p, i, k}. These rules are applied in
one step.

Case 4. The region j contains the multiset pik and the rules

• (i) c → x2,
• (ii) px → (j′Oc)p|¬p′, ix → (j′Oc)i|¬i′, kx → (j′Oc)k|¬k′.

Once j receives from its neighbour p the intended message through the multiset
p′Oc, the rule (i) is executed and two x′s are produced; then they will allow the
second and third rule from the set (ii) to send appropriate messages to neighbours
i and k.

These four cases have a constant time complexity, either one or two steps. We
now analyse the correlations between the format of rules in a compartment and the

Tuning P Systems for Solving the Broadcasting Problem 341

1

3

876

10

14

1817

13

9*

1211

1615

2

54

(a) Tree describing a membrane structure; the start node for broadcasting is 9

9*

1211

1615

6

10

14

1817

13

3

871

2

54

(b) Broadcasting information from node 9

Fig. 1. Trees illustrating the membrane structure of a P system and the broadcasting
principle

342 R. Lefticaru et al.

number of its neighbours. More precisely, if we refer to the region j then for each
neighbour the following happens: all the rules are affected in the first two cases;
only two rules are changes in the third case and only three in the last one. It follows
that the last two cases have a lower complexity than the first two with respect to
the execution steps and number of changes made. We will consider the third case
in our further investigations. This case, although very attractive due to its low
complexity, with respect to number of steps, and relative robustness to changes,
requires to assess in advance the number of neighbours for each compartment. We
will consider this case for the example described in Figure 1(a).

Example 1. Let us consider a more general situation whereby a membrane j is
included in p and contains k membranes i1, . . . , ik. The region j consists of a mul-
tiset composed of the identifiers of the outer membrane, p, and inner membranes
i1, . . . , ik, i.e., its close neighbours. Formally this is given by Mj = {p, i1, · · · , ik}.
We will adopt this notation for multisets, instead of string based, due to numbers
used as symbols in the notation below. Given the membrane structure defined by
the tree in Figure 1(a), the membrane 9 is part of membrane 6 and contains 11
and 12. The membrane structure is provided by

µ = [[[]4[]5]2[[[[[]15[]16]11[]12]9[[]13[[]17[]18]14]10]6[]7[]8]3]1

the initial multisets are:

M1 = {2, 3} M2 = {1, 4, 5} M3 = {1, 6, 7, 8} M4 = {2}
M5 = {2} M6 = {3, 9, 10} M7 = {3} M8 = {3}
M9 = {6, 11, 12} M10 = {6, 13, 14} M11 = {9, 15, 16} M12 = {9}
M13 = {10} M14 = {10, 17, 18} M15 = {11} M16 = {11}
M17 = {14} M18 = {14}

The rules of j are:

pc → (j′O)p(cp)nj,p |¬p′;

isc → (j′O)is(cis)
nj,is |¬i′s, s = 1, · · · , k;

where:

• like in Case 3 presented above, p′, i′s are inhibitors (a rule above is applied
when there is no p′ or i′s, respectively, in membrane j), O is the message that
will be sent, c is an object which is associated with a communication between
two membranes;

• nj,p, nj,is are integer values defining the number of non-visited neighbours of
p, is, respectively; it is easy to work out the relationship between the format of
a rule and the number of non-visited descendants of the neighbour associated
with the rule.

We briefly describe the first two steps of the broadcasting algorithm in this
case.

Tuning P Systems for Solving the Broadcasting Problem 343

Step 1. In the membrane that initiates the broadcasting are injected an object
O and a number of objects c, one for every neighbour.

For example, if the starting membrane is j = 9, like in Figure 1(a), then we
have the initial multiset M9 and the additional symbols mentioned above leading
to the multiset {6, 11, 12, O, c, c, c}; the rules are

R9 = {r9,6 : 6c → (9′O)6(c6)n9,6 |¬6′,
r9,11 : 11c → (9′O)11(c11)n9,11 |¬11′,
r9,12 : 12c → (9′O)12(c12)n9,12 |¬12′}

After these rules are applied in membrane 9, the objects 6, 11, 12, c, c, c are con-
sumed and only an O remains in this membrane showing that the message has
been received.

Step 2. Since this step onwards it is easy to follow the route of messages trav-
elling through the system by representing it as a tree with root 9 as in Figure
1(b). If in Step 1 we consider n9,6 = 2, n9,11 = 2 and n9,12 = 0, then in the mem-
branes 6, 11, 12 which are neighbours of 9, the multisets will be: {3, 9, 10, 9′, O, c, c},
{9, 15, 16, 9′, O, c, c}, {9, 9′, O}, respectively; the rules will be:

R6 = {r6,3 : 3c → (6′O)3(c3)n6,3 |¬3′,
r6,9 : 9c → (6′O)9(c9)n6,9 |¬9′,

r6,10 : 10c → (6′O)10(c10)n6,10 |¬10′}

R11 = {r11,9 : 9c → (11′O)9(c9)n11,9 |¬9′,
r11,15 : 15c → (11′O)15(c15)n11,15 |¬15′,
r11,16 : 16c → (11′O)16(c16)n11,16 |¬16′}

R12 = {r12,9 : 9c → (12′O)9(c9)n12,9 |¬9′}

The rules r6,3, r6,10, r11,15, r11,16 are applied and the following multisets are ob-
tained {O}, {9, 9′, O}, {9, 9′, O}, {9, 9′, O}, in regions 9, 6, 11, 12, respectively.

If in Step 1 we consider n9,6 = 0 or n9,6 = 1, then at least one of the rules r6,3

or r6,10 cannot be applied as a c is missing and then in the corresponding hierarchy
of compartments the message O is not received. 4 The multiset associated with
region 6 becomes {3, 9, 9′, O}, where 3 is the non-visited compartment together
with its neighbours.

If in Step 1 it is considered n9,6 > 2 then the multiset is {3, 9, 10, 9′, O, cn9,6},
and by applying the two existing rules, it becomes {9, 9′, O, cn9,6−2}.

The process restarts from the compartments that have been affected by the
communication rules in Step 2.

From this example we observe the following regarding the values nj,i involved.

4 r6,9 can not be applied due to the inhibitor 9′

344 R. Lefticaru et al.

• If the values nj,i are appropriately chosen then in each membrane we will
eventually get an O and no c.

• If nj,i is less than the expected value then for at least one hierarchy of com-
partments the message O does not travel to it.

• If nj,i has a bigger value then in some compartments we will have some more
c′s.

• Some nj,i do not count, i.e., those where the inhibitors i′ are present. For
instance: n6,9, n11,9, n15,11 etc.

• For the membrane structure given in Figure 1(a), the solution is: n9,6 = 2,
n9,11 = 2, n9,12 = 0, n6,3 = 3, n6,10 = 2, n11,15 = 0, n11,16 = 0, n3,1 = 1,
n3,7 = 0, n3,8 = 0, n10,13 = 0, n10,14 = 2, n1,2 = 2, n14,17 = 0, n14,18 = 0,
n2,4 = 0, n2,5 = 0; the other ni,j do not count.

• The number of ni,j values that are relevant is the same as the number of
pairs parent-child in the membrane structure and is equal to the number of
compartments - 1.

• By using the above values ni,j , the P system will end up with the multisets
below, where Mj is this multiset for the compartment j:

M1 = {3, 3′, O} M2 = {1, 1′, O} M3 = {6, 6′, O}
M4 = {2, 2′, O} M5 = {2, 2′, O} M6 = {9, 9′, O}
M7 = {3, 3′, O} M8 = {3, 3′, O} M9 = {O}
M10 = {6, 6′, O} M11 = {9, 9′, O} M12 = {9, 9′, O}
M13 = {10, 10′, O} M14 = {10, 10′, O} M15 = {11, 11′, O}
M16 = {11, 11′, O} M17 = {14, 14′, O} M18 = {14, 14′, O}

• Given the non-determinism of the P system, for the same values of some param-
eters we can have different number of messages sent. For instance if n9,6 = 1,
then M6 = {3, 9, 10, 9′, O, c}. If r6,3 is applied then the hierarchy of compart-
ments starting with 10 remains without messages (5 compartments without O).
Similarly, if r6,10 is applied then the 7 compartment occurring in the subtree
rooted in 3 remained non-visited – see Figure 1(b).

4 Tuning the P system

In order to tune the system the values ni,j have to be identified. In the following
a further transformation of the system is provided together with a more abstract
representation.

The X-machine associated to the P system. According to the broadcast-
ing problem defined above the values ni,j have to be found and we will apply an
evolutionary approach using genetic algorithms to find these values. In order to
apply it we will transform the cell-like structure of the system into a tree based
structure. For a membrane structure µ we will consider as tree root the node from
which the broadcast starts. For the P system presented in Example 1, node 9 will
be the tree root - see Figure 1(b). We can further abstract the problem and define

Tuning P Systems for Solving the Broadcasting Problem 345

each communication between two nodes i, j as a function fi,j with ni,j as its pa-
rameter describing the number of non-visited neighbours. It is easy to observe that
the functions emerging from the same node will be executed in parallel, maybe
together with other functions emerging from other nodes, they are independent
of each other and an interleaving strategy can be adopted. In this case sequences
of functions can be considered. A state machine or an X-machine can be defined
by considering all possible interleavings of the arcs coming out of the nodes of
a subtree. In the case presented in Example 1 the initial node is 9 and we dis-
tinguish three cases; when a c will be in 9 then we have three non-deterministic
choices from 9 to each of the neighbours, the arcs being f9,x where x ∈ {6, 11, 12};
when two c′s are in 9 then there are 6 non-deterministic choices: for each state
defined by a pair {x, y}, x, y ∈ {6, 11, 12}, x 6= y, two non-deterministic sequences
f9,x, f9,y and f9,y, f9,x can be conceived; for three or more c′s there are again six
non-deterministic choices from 9 to the state {6, 11, 12}, given by all the possible
combinations of sequences of three functions f9,x, x ∈ {6, 11, 12}. From each of
the above seven states, {6}, {11}, {12}, {6, 11} {6, 12}, {11, 12}, {6, 11, 12} the con-
struction of the machine follows the following steps: the arcs of the subtrees of
roots specified by these states are shuffled. All shuffled routes starting in a given
state are equivalent as the order of executing these functions does not matter.

5 Experiments and results

The experiments performed aimed to determine the unknown elements of a P sys-
tem, more precisely the values ni,j , using genetic algorithms. Considering that the
structure of the P system contains m compartments, the number of parameter
values that should be discovered is m− 1. In order to determine these values ni,j ,
only the tree structure of the P system was used. Each candidate solution was
encoded by an integer vector with m − 1 components, ranging from 0 to 10 and,
consequently, the search space size was 11m−1. The JGAP package (Java Genetic
Algorithms and Genetic Programming Package) [9] was used for an elitist genetic
algorithm implementation. The crossover operator has a great impact on the suc-
cess of the genetic algorithm and the one chosen for this problem was the uniform
crossover [7] (it is not part of the current JGAP version, but the package can
be quickly extended with others operators). For selection we used a BestChromo-
somesSelector with the rate 0.8, which takes the top 80% individuals into the next
generation, according to their fitness. The mutation operator employed had a 1/12
mutation rate.

The experiments performed considered trees having different number of nodes:
10, 15, 20, 25, 30, 35, 40, 45, 50. Obviously, it is more difficult to find a solution
for a tree with 50 nodes (49 unknown variables) than for a tree with 10 nodes
(and 9 unknown parameters). Due to the fact that the tree structure might have
(or not) an influence on the problem considered, the following types of trees were
considered:

346 R. Lefticaru et al.

0

2000

4000

6000

8000

10000

10 15 20 25 30 35 40 45 50

Number of tree nodes

A
vg

. n
o

. o
f

g
en

er
at

io
n

s

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

p = 9

p = 10

Fig. 2. Average number of generations for trees with fixed number of sons p

0%

20%

40%

60%

80%

100%

10 15 20 25 30 35 40 45 50
Number of tree nodes

S
u

cc
es

s
ra

te

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

p = 9

p = 10

Fig. 3. Success rate for trees with a fixed number of sons p

Tuning P Systems for Solving the Broadcasting Problem 347

1. Trees with fixed number of sons: each node has exactly p sons, excepting the
leafs and eventually the last non-leaf node. For example, if the tree has m =
10 nodes and we consider p = 3, the root and its direct descendants will
have exactly three sons. If m = 10 and p = 4, then the tree will have 4
direct descendants from the root, 4 for another node and only 1 descendant
for another node.

2. Trees with a random number of sons: each non-leaf node can have a different
number of sons, randomly chosen, with an equal probability, from the set
{1,. . . ,p}.
In both cases, for each number of nodes m ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}

(corresponding to compartments in the P system) we considered all the values p ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10}. A tree was generated according to the structural criterion
1 or 2 and the unknown parameters values ni,j were searched using a genetic
algorithm. The fitness function simulated a broadcasting (transmission) in the
tree, starting from the root and using the parameters ni,j . At the end of the
transmission, each candidate solution was evaluated by counting the unvisited
nodes and the extra messages sent to the nodes. For this we used the formula

fitness = λ · no of unvisited nodes + no of extra messages,

where:

• no of unvisited nodes represents the number of nodes where the message was
not received: at the end of the computation, the membrane (node) does not
contain any object O;

• no of extra messages represents the number of extra objects c, present in the
nodes at the end of the computation, that cannot be consumed;

0

200

400

600

800

1000

1200

10 15 20 25 30 35 40 45 50

Number of tree nodes

E
la

p
se

d
 t

im
e

p
er

 3
0

ru
n

s
(s

ec
o

n
d

s)

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

p = 9

p = 10

Fig. 4. Elapsed time for trees with a fixed number of sons p

348 R. Lefticaru et al.

• λ is a positive penalty (or weight) parameter which gives more importance to
the no of unvisited nodes or to the no of extra messages

Experimentally, we noticed that a function for which λ > 1 guided better the
search than in the case in which λ = 1. After checking the convergence of the
genetic algorithm on a few test trees, we decided to further use λ = 10, this way
giving a higher penalty to the values ni,j which leave more unvisited nodes. The
following termination criteria for the genetic algorithm were used: A) fitness = 0
(the solution was found: all the tree nodes were visited, with no extra messages
sent) and B) the maximum allowed number of generations (10000) was reached.
The population size used in these experiments was in all cases of 20 individuals.

For each combination, given by the structural criterion 1 or 2, the number of
nodes in the tree m ∈ {10, 15, 20, . . . , 50} and the number of sons for each node
p ∈ {2, 3, . . . , 10} the genetic algorithm was run 30 times. After each run, the best
solution obtained, its fitness and the current generation were retained. The Tables
1,2,3,4 present, for each set of 30 the runs the following information: m = number
of nodes in the tree, p = number of sons, the search space dimension for each case
and the success rate for the 30 runs. Also, the mean and the standard deviation
are shown for the best fitness function values (MF, SF) and for the number of
generations (MG, SG), after 30 runs. The last column from the table shows the
cumulated duration of the 30 runs, expressed in seconds.

We will refer only to results obtained for trees with fixed number of sons as for
trees with random number of descendants the results are very similar. The average
number of generations (Figure 2) and the time elapsed to get the solution (Figure
4) grow proportional to the number of nodes in the tree. The maximum allowed
number of generations for the GA was set to 10000. Consequently, the success
rates were very high for trees with less than 45 nodes (for which the solution was
found in less generations) and then almost halves for trees with 50 nodes (Figure
3).

6 Conclusions

In this paper a method to determine the rules of a P system that models the
broadcasting algorithm is introduced. Naturally, the number of unknown param-
eter values ni,j increases with the compartments number and consequently the
search space size grows also. The search space size is obviously cno par, where c
is the number of possible values for one parameter ni,j and no par is the num-
ber of unknown parameters. The average number of generations and the elapsed
time needed to find a solution increase when the search space is very large. If the
maximum allowed number of generations is not high enough, the GA might end
unsuccessful. One possible solution to overcome this is to increase the maximum
allowed number of generations for the GA. Others solutions can be: using hybrid
approaches, i.e. combining GAs with local search techniques (like hill climbing) and

Tuning P Systems for Solving the Broadcasting Problem 349

developing new GAs operators, suited for this problem (the crossover operator has
in particular a great impact on the GA).

The method is described in a more general context of an abstract X-machine
that captures some specific aspects of the P system, namely the size of the rules.
Given that similar approaches to map P systems into X-machines prove to be very
effective in testing these systems [8], we can conclude that such testing strategies
developed for associated X-machines can be applied in the case of the broadcasting
problem as well. Hence, we can provide a powerful method to estimate the P system
that models the broadcasting problem and then test the implementation based on
this model.

Further studies will aim to improve the precision and efficiency of the method
discussed in this paper and to extend it to other classes of P systems.

Acknowledgements.

The research of RL, FI and MG is supported by CNCSIS grant IDEI no.496/2009,
An integrated evolutionary approach to formal modelling and testing (EvoMT).
The research of GZ is supported by the National Natural Science Foundation of
China (60702026), the Scientific and Technological Funds for Young Scientists
of Sichuan and the Open Foundation of Engineering Research Centre of Safety
Transportation of the Ministry of Education of China. The authors would like to
thank all the referees for their helpful comments.

References

1. Besozzi, D., Zandron, C., Mauri, G., Sabadini, N.: P systems with gemmation of
mobile membranes. In: Lecture Notes in Computer Science. Volume 2202, London,
UK, Springer-Verlag (2001) 136–153

2. Bottoni, P., Mart́ın-Vide, C., Pǎun, G., Rozenberg, G.: Membrane systems with
promoters/inhibitors. Acta Informatica 38(10) (2002) 695–720

3. Castellini, A., Manca, V.: Learning regulation functions of metabolic systems by arti-
ficial neural networks. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2009), ACM Publisher (2009), to appear

4. Castellini, A., Manca, V., Suzuki, Y.: Metabolic P system flux regulations by artificial
neural networks. In: Proceedings of the Tenth Workshop on Membrane Computing
(WMC10). (2009), to appear

5. Cavaliere, M., Mardare, R.: Partial knowledge in membrane systems: A logical ap-
proach. In: Proceedings of the WMC7 (2006) 242–260 and Lecture Notes in Computer
Science. Volume 4361. Membrane Computing, WMC2006, Leiden, Revised, Selected
and Invited Papers, Hoogeboom, H.J., Pǎun, Gh., Rozenberg, G., Salomaa, A., eds.,
Springer (2006), 279–297

6. Ciobanu, G.: Distributed algorithms over communicating membrane systems. Biosys-
tems 70(2) (2003) 123–133

7. Drake, S.: Uniform crossover revisited: Maximum disruption in real-coded gas. In:
GECCO. (2003) 1576–1577

350 R. Lefticaru et al.

8. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and P
systems. Electr. Notes Theor. Comput. Sci. 227 (2009) 113–126

9. K. Meffert et al.: JGAP - Java Genetic Algorithms and Genetic Programming
Package

10. Pǎun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1) (2000) 108–143

11. Pǎun, Gh.: Membrane computing. An introduction. Springer, Berlin (2002)
12. Pǎun, Gh., Rozenberg, G.: A guide to membrane computing. Theoretical Computer

Science 287(1) (2002) 73–100
13. Romero-Campero, F.J., Cao, H., Camara, M., Krasnogor, N.: Structure and pa-

rameter estimation for cell systems biology models. In: GECCO ’08: Proceedings of
the 10th annual conference on Genetic and evolutionary computation, ACM (2008)
331–338

Tuning P Systems for Solving the Broadcasting Problem 351

m p Space size Succ. MF SF MG SG Dur.

10 2 2.36E+09 100.0 % 0.00 0.00 65.50 29.60 1
10 3 2.36E+09 100.0 % 0.00 0.00 62.77 25.38 1
10 4 2.36E+09 100.0 % 0.00 0.00 66.13 33.93 1
10 5 2.36E+09 100.0 % 0.00 0.00 63.13 21.65 1
10 6 2.36E+09 100.0 % 0.00 0.00 68.43 28.07 1
10 7 2.36E+09 100.0 % 0.00 0.00 59.07 22.45 1
10 8 2.36E+09 100.0 % 0.00 0.00 63.77 26.55 1
10 9 2.36E+09 100.0 % 0.00 0.00 63.50 20.34 1
10 10 2.36E+09 100.0 % 0.00 0.00 67.10 29.93 1
15 2 3.80E+14 100.0 % 0.00 0.00 161.07 76.80 5
15 3 3.80E+14 100.0 % 0.00 0.00 153.53 63.31 5
15 4 3.80E+14 100.0 % 0.00 0.00 161.53 61.55 5
15 5 3.80E+14 100.0 % 0.00 0.00 140.13 51.84 5
15 6 3.80E+14 100.0 % 0.00 0.00 154.70 76.02 5
15 7 3.80E+14 100.0 % 0.00 0.00 154.03 71.19 5
15 8 3.80E+14 100.0 % 0.00 0.00 156.83 43.10 5
15 9 3.80E+14 100.0 % 0.00 0.00 168.27 69.02 5
15 10 3.80E+14 100.0 % 0.00 0.00 153.80 63.36 5
20 2 6.12E+19 100.0 % 0.00 0.00 363.10 188.67 14
20 3 6.12E+19 100.0 % 0.00 0.00 327.23 124.68 13
20 4 6.12E+19 100.0 % 0.00 0.00 388.43 158.48 15
20 5 6.12E+19 100.0 % 0.00 0.00 370.63 213.60 15
20 6 6.12E+19 100.0 % 0.00 0.00 364.13 135.54 14
20 7 6.12E+19 100.0 % 0.00 0.00 348.33 152.45 14
20 8 6.12E+19 100.0 % 0.00 0.00 442.20 178.49 17
20 9 6.12E+19 100.0 % 0.00 0.00 354.73 154.01 14
20 10 6.12E+19 100.0 % 0.00 0.00 357.30 142.46 14
25 2 9.85E+24 100.0 % 0.00 0.00 782.77 250.66 39
25 3 9.85E+24 100.0 % 0.00 0.00 730.87 228.65 37
25 4 9.85E+24 100.0 % 0.00 0.00 834.83 316.04 42
25 5 9.85E+24 100.0 % 0.00 0.00 855.97 358.82 43
25 6 9.85E+24 100.0 % 0.00 0.00 808.17 369.63 41
25 7 9.85E+24 100.0 % 0.00 0.00 915.60 306.14 46
25 8 9.85E+24 100.0 % 0.00 0.00 721.67 327.35 36
25 9 9.85E+24 100.0 % 0.00 0.00 847.90 336.24 42
25 10 9.85E+24 100.0 % 0.00 0.00 859.47 313.92 43
30 2 1.59E+30 100.0 % 0.00 0.00 1329.13 488.55 83
30 3 1.59E+30 100.0 % 0.00 0.00 1616.13 850.51 100
30 4 1.59E+30 100.0 % 0.00 0.00 1377.40 516.99 86
30 5 1.59E+30 100.0 % 0.00 0.00 1522.27 642.85 94

Table 1. Statistics for trees with m nodes and fixed number of sons p

352 R. Lefticaru et al.

m p Space Succ. MF SF MG SG Dur.

30 6 1.59E+30 100.0 % 0.00 0.00 1653.27 549.80 102
30 7 1.59E+30 100.0 % 0.00 0.00 1523.37 585.38 94
30 8 1.59E+30 100.0 % 0.00 0.00 1493.30 512.72 92
30 9 1.59E+30 100.0 % 0.00 0.00 1643.13 659.68 101
30 10 1.59E+30 100.0 % 0.00 0.00 1452.80 490.25 89
35 2 2.55E+35 100.0 % 0.00 0.00 2678.50 972.70 200
35 3 2.55E+35 100.0 % 0.00 0.00 2611.27 932.03 199
35 4 2.55E+35 100.0 % 0.00 0.00 3237.53 1537.68 284
35 5 2.55E+35 100.0 % 0.00 0.00 2398.23 609.77 181
35 6 2.55E+35 100.0 % 0.00 0.00 2984.70 844.46 228
35 7 2.55E+35 100.0 % 0.00 0.00 2808.17 869.71 209
35 8 2.55E+35 100.0 % 0.00 0.00 2810.83 929.17 211
35 9 2.55E+35 100.0 % 0.00 0.00 2673.77 857.52 199
35 10 2.55E+35 100.0 % 0.00 0.00 3004.70 1077.03 220
40 2 4.11E+40 100.0 % 0.00 0.00 4476.57 1587.89 392
40 3 4.11E+40 96.7 % 0.03 0.18 4464.57 1544.74 397
40 4 4.11E+40 96.7 % 0.03 0.18 4643.00 1670.95 412
40 5 4.11E+40 100.0 % 0.00 0.00 4592.83 1640.95 407
40 6 4.11E+40 100.0 % 0.00 0.00 4046.40 1184.09 358
40 7 4.11E+40 96.7 % 0.03 0.18 4607.63 1851.40 415
40 8 4.11E+40 100.0 % 0.00 0.00 4175.73 1212.75 366
40 9 4.11E+40 100.0 % 0.00 0.00 4471.87 1566.23 394
40 10 4.11E+40 100.0 % 0.00 0.00 4513.00 1465.79 390
45 2 6.63E+45 93.3 % 0.07 0.25 6464.13 2055.62 667
45 3 6.63E+45 80.0 % 0.27 0.58 7239.77 1869.96 753
45 4 6.63E+45 86.7 % 0.17 0.46 6700.20 2103.96 695
45 5 6.63E+45 90.0 % 0.10 0.31 6964.23 2095.90 725
45 6 6.63E+45 80.0 % 0.27 0.58 6541.43 2342.57 682
45 7 6.63E+45 90.0 % 0.13 0.43 6620.33 1898.96 690
45 8 6.63E+45 86.7 % 0.17 0.46 6975.67 1719.86 723
45 9 6.63E+45 76.7 % 0.27 0.52 6864.73 2304.19 714
45 10 6.63E+45 90.0 % 0.10 0.31 6811.03 1914.10 689
50 2 1.07E+51 66.7 % 0.47 0.78 8275.27 1624.30 1011
50 3 1.07E+51 50.0 % 0.80 0.89 8766.20 1434.48 1063
50 4 1.07E+51 40.0 % 0.80 0.89 8981.07 1523.70 1073
50 5 1.07E+51 46.7 % 0.67 0.76 9189.17 1309.14 1100
50 6 1.07E+51 50.0 % 0.57 0.63 9443.93 991.21 1145
50 7 1.07E+51 50.0 % 0.70 0.84 9189.77 1131.65 1117
50 8 1.07E+51 80.0 % 0.33 0.76 8198.33 1419.55 985
50 9 1.07E+51 50.0 % 0.73 0.87 8985.03 1310.33 1061
50 10 1.07E+51 30.0 % 1.03 0.89 9262.57 1306.81 1092

Table 2. Statistics for trees with m nodes and fixed number of sons p

Tuning P Systems for Solving the Broadcasting Problem 353

m p Space Succ. MF SF MG SG Dur.

10 2 2.36E+09 100.0 % 0.00 0.00 63.27 32.43 1
10 3 2.36E+09 100.0 % 0.00 0.00 58.27 23.10 1
10 4 2.36E+09 100.0 % 0.00 0.00 58.80 17.81 1
10 5 2.36E+09 100.0 % 0.00 0.00 72.73 25.61 1
10 6 2.36E+09 100.0 % 0.00 0.00 66.50 24.56 1
10 7 2.36E+09 100.0 % 0.00 0.00 64.47 29.34 1
10 8 2.36E+09 100.0 % 0.00 0.00 57.10 20.66 1
10 9 2.36E+09 100.0 % 0.00 0.00 57.13 17.19 1
10 10 2.36E+09 100.0 % 0.00 0.00 66.30 25.95 1
15 2 3.80E+14 100.0 % 0.00 0.00 155.43 67.94 5
15 3 3.80E+14 100.0 % 0.00 0.00 148.43 49.25 5
15 4 3.80E+14 100.0 % 0.00 0.00 158.93 73.09 5
15 5 3.80E+14 100.0 % 0.00 0.00 163.67 62.21 5
15 6 3.80E+14 100.0 % 0.00 0.00 159.40 60.32 5
15 7 3.80E+14 100.0 % 0.00 0.00 152.60 55.89 5
15 8 3.80E+14 100.0 % 0.00 0.00 147.73 49.97 5
15 9 3.80E+14 100.0 % 0.00 0.00 152.03 63.03 5
15 10 3.80E+14 100.0 % 0.00 0.00 153.90 58.05 5
20 2 6.12E+19 100.0 % 0.00 0.00 381.27 155.23 14
20 3 6.12E+19 100.0 % 0.00 0.00 379.93 149.30 15
20 4 6.12E+19 100.0 % 0.00 0.00 356.53 94.02 15
20 5 6.12E+19 100.0 % 0.00 0.00 358.53 161.98 14
20 6 6.12E+19 100.0 % 0.00 0.00 353.97 151.56 14
20 7 6.12E+19 100.0 % 0.00 0.00 328.90 110.80 13
20 8 6.12E+19 100.0 % 0.00 0.00 382.50 149.76 15
20 9 6.12E+19 100.0 % 0.00 0.00 407.43 179.24 16
20 10 6.12E+19 100.0 % 0.00 0.00 376.80 196.99 15
25 2 9.85E+24 100.0 % 0.00 0.00 882.93 475.38 44
25 3 9.85E+24 100.0 % 0.00 0.00 772.13 249.86 39
25 4 9.85E+24 100.0 % 0.00 0.00 823.43 364.62 41
25 5 9.85E+24 100.0 % 0.00 0.00 863.57 363.86 43
25 6 9.85E+24 100.0 % 0.00 0.00 833.20 495.31 42
25 7 9.85E+24 100.0 % 0.00 0.00 842.67 318.03 42
25 8 9.85E+24 100.0 % 0.00 0.00 834.87 291.64 42
25 9 9.85E+24 100.0 % 0.00 0.00 822.13 423.69 40
25 10 9.85E+24 100.0 % 0.00 0.00 834.23 323.54 42
30 2 1.59E+30 100.0 % 0.00 0.00 1549.30 680.43 94
30 3 1.59E+30 100.0 % 0.00 0.00 1519.50 622.27 93
30 4 1.59E+30 100.0 % 0.00 0.00 1785.00 589.93 109
30 5 1.59E+30 100.0 % 0.00 0.00 1475.80 761.75 94

Table 3. Statistics for trees with m nodes and variable number of sons between {1, . . . , p}

354 R. Lefticaru et al.

m p Space Succ. MF SF MG SG Dur.

30 6 1.59E+30 100.0 % 0.00 0.00 1657.53 621.15 105
30 7 1.59E+30 100.0 % 0.00 0.00 1691.43 555.99 108
30 8 1.59E+30 100.0 % 0.00 0.00 1423.43 517.50 91
30 9 1.59E+30 100.0 % 0.00 0.00 1579.10 497.21 99
30 10 1.59E+30 100.0 % 0.00 0.00 1451.13 502.28 92
35 2 2.55E+35 100.0 % 0.00 0.00 2864.53 1163.11 218
35 3 2.55E+35 100.0 % 0.00 0.00 2700.27 832.91 205
35 4 2.55E+35 100.0 % 0.00 0.00 2822.23 1200.13 216
35 5 2.55E+35 100.0 % 0.00 0.00 3073.17 1217.87 236
35 6 2.55E+35 100.0 % 0.00 0.00 2491.67 781.10 192
35 7 2.55E+35 100.0 % 0.00 0.00 2426.27 785.50 186
35 8 2.55E+35 100.0 % 0.00 0.00 2681.93 859.48 203
35 9 2.55E+35 100.0 % 0.00 0.00 2952.83 1151.27 226
35 10 2.55E+35 100.0 % 0.00 0.00 2610.67 1133.39 193
40 2 4.11E+40 100.0 % 0.00 0.00 4112.87 1169.85 364
40 3 4.11E+40 100.0 % 0.00 0.00 4785.10 1656.32 420
40 4 4.11E+40 100.0 % 0.00 0.00 4557.37 1544.00 401
40 5 4.11E+40 100.0 % 0.00 0.00 4120.03 1417.94 363
40 6 4.11E+40 100.0 % 0.00 0.00 4534.57 1634.49 404
40 7 4.11E+40 100.0 % 0.00 0.00 4819.10 1268.60 422
40 8 4.11E+40 100.0 % 0.00 0.00 4281.47 1744.27 375
40 9 4.11E+40 96.7 % 0.03 0.18 4317.23 1719.93 378
40 10 4.11E+40 100.0 % 0.00 0.00 4343.13 1500.82 384
45 2 6.63E+45 83.3 % 0.17 0.38 6733.47 2096.95 690
45 3 6.63E+45 90.0 % 0.10 0.31 7226.00 1993.56 745
45 4 6.63E+45 83.3 % 0.17 0.38 6764.33 2299.93 693
45 5 6.63E+45 80.0 % 0.20 0.41 7079.87 1975.24 725
45 6 6.63E+45 93.3 % 0.07 0.25 6686.43 1886.45 686
45 7 6.63E+45 93.3 % 0.07 0.25 6328.57 1980.41 649
45 8 6.63E+45 86.7 % 0.13 0.35 6766.33 2225.37 690
45 9 6.63E+45 83.3 % 0.17 0.38 6997.10 1954.87 717
45 10 6.63E+45 93.3 % 0.07 0.25 6519.57 1973.89 671
50 2 1.07E+51 40.0% 0.80 0.89 9223.73 1262.43 1088
50 3 1.07E+51 40.0% 0.80 0.81 9554.10 699.02 1145
50 4 1.07E+51 33.3% 0.87 0.82 9311.43 1200.56 1097
50 5 1.07E+51 50.0% 0.67 0.76 8869.97 1615.60 1040
50 6 1.07E+51 63.3% 0.37 0.49 8775.83 1498.18 1034
50 7 1.07E+51 53.3% 0.60 0.77 8571.30 1755.25 1014
50 8 1.07E+51 56.7% 0.67 0.99 8782.73 1450.53 1051
50 9 1.07E+51 40.0% 0.73 0.69 8849.47 1684.96 1042
50 10 1.07E+51 50.0% 0.70 0.88 8994.07 1635.41 1063

Table 4. Statistics for trees with m nodes and variable number of sons between {1, . . . , p}

An Improved Membrane Algorithm for Solving
Time-Frequency Atom Decomposition

Chunxiu Liu1, Gexiang Zhang1, Hongwen Liu1,
Marian Gheorghe2,3, Florentin Ipate3

1 School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 610031, P.R. China
liucx2007@163.com, zhgxdylan@126.com, hongwenliu@163.com

2 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield, S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

3 Department of Computer Science and Mathematics,
University of Pitesti, Romania
florentin.ipate@ifsoft.ro

Summary. To decrease the computational complexity and improve the search capa-
bility of quantum-inspired evolutionary algorithm based on P systems (QEPS), a real-
observation QEPS (RQEPS) was proposed. RQEPS is a hybrid algorithm combining the
framework and evolution rules of P systems with active membranes and real-observation
quantum-inspired evolutionary algorithm (QEA). The RQEPS involves a dynamic struc-
ture including membrane fusion and division. The membrane fusion is helpful to en-
hance the information communication among individuals and the membrane division is
beneficial to reduce the computational complexity. An NP complete problem, the time-
frequency atom decomposition of noised radar emitter signals is employed to test the
effectiveness and practical capabilities of the RQEPS. The experimental results show
that RQEPS is superior to QEPS, the greedy algorithm and binary-observation QEA in
terms of search capability and computational complexity.

1 Introduction

In 1998, Gheorghe Păun proposed membrane computing (P systems) [15][16]. A
P system, employing various features to specify the structure and functionality
of the living cells, is a membrane structure with objects in its membranes, with
specified evolution rules like transformation/communication, merging and dividing
membranes [15]. Until now, using the advantages of the new distributed parallel
computing model and evolutionary algorithms (EAs), the combination technique
of them, membrane algorithm, is applied to solve various complex problems. In [13]
and [14], a membrane algorithm with a nested membrane structure was introduced
to solve the travelling salesman problem as well as the min storage problem [10]. In

356 C. Liu et al.

[7]-[9], a hybrid algorithm combining a P system with a conventional genetic algo-
rithm (CGA) was proposed to solve single-objective and multi-objective numerical
optimization problems. In [20], a hybrid distributed EA with membrane systems
was presented to solve some continuous optimization problems. In [22], a mem-
brane algorithm combining one level membrane structure with binary-observation
quantum-inspired evolutionary algorithms (bQEA), called a QEA based on P sys-
tems (QEPS), was proposed to solve knapsack problems, and the experimental
results show that QEPS performs better than its counterpart bQEA. But there
are some drawbacks such as discretization error and Hamming cliff [6][24], when
bQEA is used to solve numerical optimization problems. In [24], a real-observation
QEA (RQEA) was proposed for numerical optimization problems to overcome the
disadvantages of bQEA.

By combining RQEA with P systems with active membranes, this paper pro-
poses an improved membrane algorithm, called a real-observation QEPS (RQEPS),
to reduce the computational complexity and improve the search capability of QEPS
[22][11]. In RQEPS, the real-observation rules are employed to connect quantum-
inspired bit (Q-bit) representation and real-valued variables in each elementary
membrane. And then all the elementary membranes are merged into one and all
individuals in elementary membranes enter the merged membrane, where a copy
of the best individual is sent out to the skin membrane. The recombination is
operated on all individuals in the merged membrane to exchange the informa-
tion among individuals. To demonstrate the effectiveness and applicability of the
introduced method, experiments are carried out on the time-frequency atom de-
composition (TFAD) of noised radar emitter signals to extend the application of
the membrane algorithm. The experimental results show that RQEPS performs
better than the greedy algorithm (GrA) [12], bQEA [6] and QEPS [22][11].

The TFAD is an approach that decomposes any signal into a linear combination
of waveforms selected from a redundant dictionary of time-frequency atoms, which
localized well both in time and frequency [12]. Differing from Fourier and Wavelet
transforms, the information in TFAD is not diluted across the whole basis. Unlike
Wigner and Cohen class distributions, the energy distribution obtained by TFAD
does not include interference terms [12]. Hence, TFAD has become an important
analysis technique in signal processing and harmonic analysis [12][17] [5]. One of
the most successful methods for signal representations in over-complete dictionar-
ies to solve this problem is the greedy algorithm (GrA) [12], but the extremely
high computational load greatly blocks its practical applications. In [18][3][19][2],
conventional genetic algorithms (CGAs) were introduced into TFAD to reduce
the computational cost. However, due to slow convergence and premature con-
vergence, it is difficult for CGAs to guide individuals toward better solutions in
the search space. This paper uses a novel algorithm combining the framework of
P systems with RQEA to reduce the computational load and improve the signal
representation in the TFAD.

The remainder of this paper is organized as follows. Section 2 describes the
TFAD and the pseudocode algorithm of EAs-based TFAD. Section 3 presents

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 357

the detailed algorithm for RQEPS. Section 4 discusses the number of elementary
membranes, and conducts extensively comparative experiments on noised radar
emitter signals. Finally, conclusions are drawn in Section 5.

2 Time-Frequency Atom Decomposition

The TFAD is an approach to select satisfactory time-frequency atoms gγ(t)γ∈Γ

from a redundant time-frequency atom dictionary D = (gγ(t)) to decompose a
signal into a linear combination of waveforms [12]. Let f be the original signal,
f ∈ H , where H is a Hilbert space. When the signal f is decomposed up to the
order item, fitem can be represented as

fitem =
item∑
n=0

〈Rnf, gγn
〉gγn

+ Ritem+1f, (1)

where gγn
satisfies

|〈Rnf, gγn〉| = sup
γ∈Γ

|〈Rnf, gγ〉|, (2)

where Γ = R+ ×R2 is a set of indexes γ, and Rn+1f is the residual signal

Rn+1f = Rnf − 〈Rnf, gγn〉gγn . (3)

According to the conclusion [12]: limitem→∞ ||Ritem+1f || = 0, the signal fitem can
be represented as

fitem =
item∑
n=0

〈Rnf, gγn〉gγn . (4)

The problem of selecting a series of atoms to optimally approximate a signal
in a redundant time-frequency atom dictionary is NP-hard [1]. One of the most
successful methods to solve this problem is the greedy algorithm (GrA) [12]. GrA
used a greedy strategy, in which the time-frequency atoms were selected one by one
from an over-complete dictionary to best match the structure of signals [12][21].
However, as usual, the time-frequency dictionary is very large, so it is almost im-
possible for GrA to conduct the full search and represent the signals within a
finite time, which seriously limits the practical application of TFAD. By the way,
TFAD is a NP-hard problem. To decrease the computational efforts of TFAD, EAs
were introduced into TFAD to search the suboptimal time-frequency atom from
redundant time-frequency atom dictionaries [21]. The pseudocode algorithm for
EAs-based TFAD is shown in Fig. 1. In this paper, an improved membrane algo-
rithm, RQEPS is introduced into TFAD to decrease the computational complexity
and improve the search capability, which will be presented in the next section.

358 C. Liu et al.

Begin

 Initialization of TFAD; % Initial iteration item=1;

 While (not termination condition) do

Set parameters of time-frequency atom ;

Search the suboptimal time-frequency atom in D

using EAs (RQEPS);

Compute ,
item item

itemR f g g ;

(,)
item item

item item itemR f R f R f g g ;

item= item +1;

 End while

End begin

Fig. 1. Pseudocode algorithm for EAs-based TFAD

3 An Improved Membrane Algorithm

The structure of an improved membrane algorithm, RQEPS is shown in Fig. 2,
where the elementary membranes 1, 2, · · · , m, embedded in the skin membrane 0,
contain multisets of objects and evolution rules. In the computing process, all ele-
mentary membranes may be merged into one min for information communication
and the merged membrane min may be divided into the same number of elemen-
tary membranes 1, 2, · · · ,m. The pseudocode algorithm of RQEPS is presented in
Fig. 3 and the detailed description is as follows.

EAs

(RQEA)

EAs

(RQEA)

EAs

(RQEA)

0

1 2

m

……

communication

min

0

EAs

(RQEA)

EAs

(RQEA)

EAs

(RQEA)
……

0

1 2

m

merge divide

skin membrane elementary membrane region

Fig. 2. The structure of RQEPS

(i) The membrane structure [0[1]1, [2]2,· · · ,[m]m]0 is considered, in which the
skin membrane S0 contains m elementary membranes. The initial multisets:

S0 = λ,
S1 = p1p2 · · · pn1 , n1 ≤ pop,
S2 = pn1+1pn1+2 · · · pn2 , n1 + n2 ≤ pop,
· · ·

Sm = pn(m−1)+1pn(m−1)+2 · · · pnm , n1 + n2 + · · ·+ nm ≤ pop,

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 359

Begin

(i) Initializing the membrane structure; % gen=0;

While (not termination condition) do

(ii) Performing RQEA in all elementary membranes;

(iii) Merging all elementary membranes into one and

 performing communication rules;

(iv) Dividing the merged membrane;

 gen=gen+1;

End while

End begin

Fig. 3. Pseudocode algorithm for RQEPS

where pop is the dimension of the population, and pi, 1 ≤ i ≤ pop, is a Q-bit
individual of length n, which is represented as

pt
i =

[
αi1|αi2| · · · |αin

βi1|βi2| · · · |βin

]
, (5)

where αij , βij are random numbers ranged from 0 to 1, and |αij |2 + |βij |2 = 1,
(i = 1, 2, · · · , pop, j = 1, 2, · · · , n).

(ii) The RQEA is performed in all elementary membranes. The pseudocode
algorithm for RQEA is shown in Fig. 4, and the detailed description is as follows.

a) Set the iterations for each elementary membranes;

For i=1: m do

t=0;

b) Generate R(t) by observing P(t);

c) Evaluate R(t) and store the best solution among R(t);

 While (not termination condition) do

 t=t+1;

d) Update P(t) using Q-gates;

e) Make R(t) by observing the states of P(t);

f) Evaluate R(t) and store the best solution among R(t);

 End while

End for

Fig. 4. Pseudocode algorithm for RQEA

a) The evolutionary generation ti for RQEA in the ith elementary membrane
is set to a uniformly random integer.

b) The states R(t) in P (t) are observed, where R(t) = {at
1, a

t
2, · · · , at

n}, and at
i

(i = 1, 2, · · · , n) is an observed state of an individual pt
i (i = 1, 2, · · · , n). at

i is a

360 C. Liu et al.

real number of length n, that is at
i=b1b2 · · · bn, where bt

j (j = 1, 2, · · · , n) is a real
number between 0 and 1. The observed states R(t) are generated in probabilistic
way. For instance, as for the probability amplitude [α, β] of a Q-bit, a random
number r in the range [0, 1] is generated. If r < 0.5, the corresponding observed
value is set to |α|2, otherwise, the value is set to |β|2.

c) Each individual is evaluated to give a measure of its fitness, and the best
individual is stored. The fitness is evaluated to adapt the specific problem. In this
paper, the fitness function is chosen as |〈Ritem, gγitem〉gγitem |, shown in Fig. 1.

d) In this step, the Q-bit individuals in P (t) are updated by using quantum-
inspired gates (Q-gates). A Q-gate is given by

G =
[
cos θ − sin θ
sin θ cos θ

]
, (6)

where θ is the Q-gate rotation angle, and is defined as θ = k · f(α, β), where the
value of k is chosen as [23]

k = 0.1πe−t/ti , (7)

and f(α, β) are shown in Table 1.
The steps e) and f) are similar to steps b) and c), respectively.

Table 1. Look-up table of function f(α, β)[24], where sign is a symbolic function

f(α, β)

ξ1 > 0 ξ2 > 0 |ξ1| ≥ |ξ2| |ξ1| < |ξ2|
True Ture +1 -1

True False sign(α1, α2)

False True −sign(α1, α2)

False False sign(α1, α2) −sign(α1, α2)

ξ1, ξ2 = 0 or π/2 ±1

(iii) Except for the skin membrane, all elementary membranes are merged into
one min, and consequently the objects of all elementary membranes enter the mem-
brane min. Subsequently, the communication rules are performed in the membrane
min, that is, a copy of the best element Pbest, selected in merged membrane, is
sent out to the skin membrane. The recombination operation conducted in the
merged membrane is used to exchange the information among individuals, which
is shown in Fig. 5, where pi and pj are any arbitrary two individuals in min and
p′i and p′j are the recombined individuals.

(iv) The membrane min is divided into the same structure with the m ele-
mentary membranes. In the process of division, the copies of objects p1p2 · · · pn1

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 361

22

2 2

2 2

2 2

...

...

...

...

i i jh ini i ih in

i i

i i ih in i i jh in

j j jh jn
j j ih jn

j
j

j j jh jn
j j

p p

p p

...
ih jn

Fig. 5. The recombination operation

are sent into the membrane S1; the copies of objects pn1+1pn1+2 · · · pn2 are sent
into the membrane S2 and the rest may be deduced by analogy. Finally, the copy
of Pbest is sent from the skin membrane to each compartment to determine the
Q-gate rotation angle at the next generation.

RQEPS is an improved algorithm of the QEPS [22]. The differences between
these two approaches are as follows.

(a) They use different observation rules: binary-observation rules in QEPS
[22] vs. real-observation rules in RQEPS. In RQEPS, a quantum-inspired state,
corresponding to an optimization variable, observed by a real-observation rule
is a real-valued number. But an optimization variable in QEPS needs several
quantum-inspired states, which correspond with a string of binary bits in the
binary-observation process. Without encoding and decoding processes, the real-
observation rule is more suitable for solving numerical optimization problems.

(b) Preliminary use of membrane fusion and division is considered in RQEPS.
(c) Recombination operations are employed in merged membrane to exchange

the information among individuals.

4 Experimental Results

In this section, how to choose the number m of elementary membranes will be first
discussed by using a linear frequency-modulated radar emitter signal with 10 dB
signal-to-noise rate (SNR), shown in Fig. 6. And then the comparative experiments
are carried out on the signal to demonstrate the effectiveness and applicability of
the introduced method.

4.1 Parameter Setting

In this subsection, experiments on the noised signal are carried out to investigate
the effects of the number m of elementary membranes on the performance of
RQEPS for TFAD. Experimental environment is chosen as: the maximal number
of iterations item is set to 30 as the termination condition of TFAD. The time-
frequency atom uses Gabor function

gγ(t) =
1√
s
g(

t− u

s
) cos(vt + w), (8)

362 C. Liu et al.

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d

e

(a) The original signal

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d
e

(b) The noised signal

SPWV, Lg=12, Lh=32, Nf =256, lin. scale,

 contour, Threshold=5%

Time [s]

F
re

q
u
e
n
c
y
 [

H
z
]

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

(c) Time-frequency distribution of
the noised signal

Fig. 6. A radar emitter signal

where the index γ = (s, u, v, w) is a set of parameters and s, u, v, w are scale,
translation, frequency and phase, respectively. They are discretized as follows: γ =
(aj , paj∆u, ka−j∆ξ, i∆w) , a = 2,∆u = 1/2, ∆ξ = π, ∆w = π/6, 0 < j < log2 N ,
0 ≤ p ≤ N2−j+1, 0 ≤ k < 2j+1, 0 ≤ i ≤ 12, where N is the length of the signal f
[12].

In RQEPS, the population size pop is set to 10. The parameter m varies
from 2 to 10. According to the investigation of the effect of the parameter ti
(i = 1, 2, · · · ,m) on the QEPS performances in [22], the RQEA’s iteration ti is
set to a uniformly random integer ranged from 1 to 9. The number n of a Q-bit
individual and the maximal evolutionary generation gen are set to 4 and 40, re-
spectively. These experiments are carried out on the computer with 1.5 GHz CPU,
768 MB EMS memory and 80GB hard disk using the software MATLAB 7.1. The
experimental results over 30 runs as the number of elementary membranes are
shown in Fig. 7, which illustrates that the elapsed time, the mean best and the
variance best of the correlation ratio Cr between the original signal f and the
restored signal fres. The correlation ratio Cr of f and fres is defined as [25]

Cr =
〈f, fres〉

||f || · ||fres|| , (9)

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 363

The experimental results in Fig. 7(a) and 7(b) show that the mean and the
variance of the best correlation ratio Cr show a broad range of variability with
respect to the number of different elementary membranes, but the best results are
obtained in two cases including 2 elementary membranes. As shown in Fig.7(c), the
elapsed time has a steady increase with the number of the elementary membranes.
Thus, to obtain the balance between the elapsed time and the correlation ratio,
the number of elementary membranes could be assigned as 2.

2 4 6 8 10
0.968

0.9685

0.969

0.9695

0.97

0.9705

0.971

Number of membranes

M
e
a

n
 b

e
s
t

C
r

(a) Mean best Cr

2 4 6 8 10
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-5

Number of membranes

V
a
r

b
e
s
t

C
r

(b) Variance best Cr

2 4 6 8 10

20

22

24

26

28

Number of membranes

E
la

p
s
e

d
 t

im
e

 p
e

r
ru

n

[s
]

(c) The elapsed time per run

Fig. 7. Experimental results with different elementary membranes

4.2 Comparative Experiments

To verify the validity of RQEPS, the noised signal above is used to conduct the
experiments with the same computer, in which bQEA [6], GrA [12] and QEPS
[22][11] are brought into comparisons with RQEPS.

In bQEA, population size pop, the number n of binary bits and the maximal
evolutionary generation g are set to 10, 40 and 200, respectively. In QEPS, accord-
ing to [11], the number m of elementary membranes is set to 9; the number n of
binary bits is set to 40. In RQEPS, according to the experiments discussed in the

364 C. Liu et al.

above subsection, the number m of elementary membranes is set to 2; the number
n of a Q-bit individual is set to 4. In both RQEPS and QEPS, the parameter ti
(i = 1, 2, · · · , m) is set to a uniformly random integer ranged from 1 to 9; the
population size pop and the maximal evolutionary generation gen are set to 10
and 40, respectively. In all algorithms, the maximal number of iterations item is
set to 30 as the termination condition of TFAD. Experimental results are shown
in Fig. 8 to Fig. 11, Table 2, Table 3 and Table 4.

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d

e

(a) The restored signal using 30
atoms in time-domain

SPWV, Lg=12, Lh=32, Nf =256, lin. scale,

contour, Threshold=5%

Time [s]

F
re

q
u
e
n
c
y
 [

H
z
]

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

(b) Time-frequency distribution
of 30 atoms

Fig. 8. Experimental results obtained by bQEA

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d

e

(a) The restored signal using 30
atoms in time-domain

SPWV, Lg=12, Lh=32, Nf =256, lin. scale,

contour, Threshold=5%

Time [s]

F
re

q
u
e
n
c
y
 [

H
z
]

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

(b) Time-frequency distribution
of 30 atoms

Fig. 9. Experimental results obtained by GrA

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 365

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d

e

(a) The restored signal using 30
atoms in time-domain

SPWV, Lg=12, Lh=32, Nf =256, lin. scale,

contour, Threshold=5%

Time [s]

F
re

q
u
e

n
c

y
 [

H
z

]

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

(b) Time-frequency distribution
of 30 atoms

Fig. 10. Experimental results obtained by QEPS

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time [s]

A
m

p
lit

u
d
e

(a) The restored signal using 30
atoms in time-domain

SPWV, Lg=12, Lh=32, Nf =256, lin. scale,

contour, Threshold=5%

Time [s]

F
re

q
u
e
n
c
y
 [

H
z
]

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

 (a) Time-domain restored signal by 30 atoms (b) Time-frequency distribution by 30 atoms
(b) Time-frequency distribution
of 30 atoms

Fig. 11. Experimental results obtained by RQEPS

Table 2 lists the parameters of the 30 Gabor atoms. Fig. 8 to Fig. 11 show the
restored signals using the 30 decomposed time-frequency atoms and their time-
frequency distributions of the 30 time-frequency atoms which are obtained by
bQEA, GrA, QEPS and RQEPS, respectively. As shown in Fig.6 and Fig. 8 to
Fig.11, it can be seen that the time-frequency distribution obtained by RQEPS is
nearly identical with that of the original radar emitter signals, and the correlation
ratio is the highest which reaches 0.9801, while the correlation ratio obtained by
GrA is only 0.9668, which illustrates that RQEPS is more suitable for decomposing
a signal into time-frequency atoms than bQEA, GrA and QEPS, in terms of search
capability.

The experimental results over 30 runs are shown in Table 3 and Table 4. From
Table 3, it can be seen that RQEPS gains the mean of the best correlation ratio Cr

0.9706, which is better than 0.9670, 0.9668 and 0.9505 obtained by QEPS, GrA and
bQEA, respectively. Moreover, the computing time of RQEPS is 36.4061, 2.2441,
and 2.1766 times as small as that of GrA, QEPS and bQEA. If the experiments
are conducted in a parallel-distributed way on several machines, the computing
time could be greatly reduced.

366 C. Liu et al.

Table 2. Parameters of 30 atoms of a noised LFM radar emitter signal

1 2 3 4 5 6 7 8 9 10

s 19.63 22.71 26.83 43.94 29.27 28.97 28.41 33.70 33.25 12.32

u 99.43 136.29 209.41 55.67 177.86 22.28 237.06 76.69 157.50 6.46

v 1.31 1.63 3.89 0.85 2.05 0.57 2.68 1.00 1.85 5.67

w 3.71 3.51 4.64 5.08 4.15 3.06 4.37 2.17 2.45 1.56

11 12 13 14 15 16 17 18 19 20

s 33.87 34.51 90.38 1.73 31.82 10.29 10.29 31.73 22.65 12.32

u 120.19 193.4 45.05 0.19 49.52 80.16 224.93 251.23 100.67 196.40

v 4.85 2.20 5.36 4.40 0.68 1.14 3.77 3.42 1.50 3.95

w 3.91 2.87 4.09 3.99 0.75 3.46 3.21 0.05 3.63 4.24

21 22 23 24 25 26 27 28 29 30

s 13.42 25.77 8.12 15.26 25.39 12.92 9.10 17.11 6.33 28.53

u 181.09 37.99 5.28 100.34 122.04 45.84 81.22 152.62 132.19 243.11

v 2.07 0.59 0.02 4.23 1.84 2.41 5.78 1.38 5.85 0.52

w 1.61 3.21 0.58 1.45 2.27 2.91 1.87 4.08 2.72 3.92

Table 3. Performance comparisons of bQEA, GrA, QEPS and RQEPS

Correlation ratio Cr Computing time per

Mean Var run (Second)

bQEA 0.9505 7.2387e-5 43.25

GrA 0.9668 1.1476e-31 723.39

QEPS 0.9670 1.2400e-5 44.59

RQEPS 0.9706 7.0583e-6 19.87

Table 4. Results of parametric statistical test t-test

Control Algorithm bQEA GrA QEPS

RQEPS 8.0113e-18 1.1684e-10 4.7336e-05

In table 4, a parametric statistical analysis t-test is applied to analyse whether
there is a significant difference over one optimization problem between two algo-
rithms [4]. We employ a 95% confidence Student t-test. The t-test results in Table 4
are far smaller than the level of significance 0.05, which implies that RQEPS really
outperforms the QEPS, GrA and bQEA by introducing the active membranes with
mergence and division operations, real-observation and recombination operations.

An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 367

5 Conclusions

This paper proposes an improved membrane algorithm (RQEPS), by combining
the framework and evolution rules of P systems with RQEA. RQEPS is charac-
terized by active membranes with fusion and division membranes to strengthen
the information communication among individuals and decrease the computa-
tional complexity, respectively, the evolutionary rules in RQEA and transforma-
tion/communication like-rules in P systems to evolve the system. The TFAD of
noised radar emitter signals is considered as an application example to test the ef-
fectiveness and practicality of the introduced method. Experimental results show
that RQEPS performs better than QEPS, GrA and bQEA, in terms of search
capability and convergent speed.

The possible interplay between evolutionary algorithms and membrane com-
puting represents a challenging and promising research topic. This paper intro-
duces RQEA into P systems to solve time-frequency atom decomposition. However,
how to select evolutionary algorithms within elementary membranes and commu-
nication rules in the merged membrane to solve different complex problems, in
order to obtain more efficient methods, is an ongoing and challenging issue.

Acknowledgements.

The authors would like to thank the anonymous referees for their valuable com-
ments. The research of GZ is supported by the National Natural Science Foun-
dation of China (60702026), the Scientific and Technological Funds for Young
Scientists of Sichuan (09ZQ026-040) and the Open Foundation of Engineering Re-
search Centre of Safety Transportation of the Ministry of Education of China. The
research of MG and FI is supported by CNCSIS grant no.643/2009, An integrated
evolutionary approach to formal modelling and testing.

References

1. G. Davis, S. Mallat, M. Avellaneda, Adaptive Greedy Approximation, Journal of
Constructive Approximation, Vol. 13, pp. 57-98, Nov. 1997.

2. A.R. Ferreira da Silva, Evolutionary-based Methods for Adaptive Signal Represen-
tation, Signal Processing. Vol. 81, pp. 927-944, Nov. 2001.

3. R.M. Figueras i Ventura, P. Vandergheynst, Matching Pursuit through Genetic Al-
gorithms, LTS-EPFL Tech. Rep. 2001.

4. S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric
Tests for Analyzing the Evolutionary Algorithms’ Behaviour: A Case Study on the
CEC’2005 Special Session on Real Parameter Optimization, Journal of Heuristics,
doi: 10.1007/s10732-008-9080.

5. R. Gribonval, E. Bacry, Harmonic Decomposition of Audio Signals with Matching
Pursuit, IEEE Transactions on Signal Processing, Vol. 51, pp. 101 - 111, Nov. 2003.

368 C. Liu et al.

6. K. H. Han, J. H. Kim, Quantum-inspired Evolutionary Algorithm for a Class of
Combinatorial Optimization, IEEE Transactions on Evolutionary Computation, Vol.
6, pp. 580 - 593, Nov. 2002.

7. L. Huang, X. X. He, N. Wang and Y. Xie, P Systems based Multi-Objective Opti-
mization Algorithm, Progress in Natural Science, Vol. 17, pp. 458 - 465, 2007.

8. L. Huang, N. Wang, An Optimization Algorithm Inspired by Membrane Computing,
ICNC 2006, Vol. 4222, pp. 49 - 52, 2006.

9. L. Huang, N. Wang, J.H., Zhao, Multiobjective Optimization for Controllers, Acta
Automatica Sinica, Vol. 34, pp. 472-477, Nov. 2008.

10. A. Leporati, D. Pagani, A Membrane Algorithm for the Min Storage Problem,
WMC2006, Lecture Notes in Computer Science, Vol. 4361, pp. 443 - 462, 2006.

11. C. X. Liu, G. X. Zhang, Y. H. Zhu, C. Fang, H. W. Liu, A Quantum-Inspired Evo-
lutionary Algorithm Based on P Systems for Radar Emitter Signals, submitted to
BIC-TA 2009.

12. S. G. Mallat, Z. F. Zhang, Matching Pursuits with Time-Frequency Dictionaries,
IEEE Transactions on Signal Processing, Vol. 41, pp. 3397 - 3415, Nov. 1993.

13. T. Y. Nishida, An Approximate Algorithm for NP-complete Optimization Problems
Exploiting P Systems, In: Proc. Brainstorming Workshop on Uncertainty in Mem-
brane Computing, pp. 185 - 192, 2004.

14. T. Y. Nishida, Membrane Algorithms, WMC 2005, Lecture Notes in Computer Sci-
ence, Vol. 3850, pp. 55 - 66, 2006.

15. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
Vol. 61, pp. 108 - 143, Nov. 2000.

16. Gh. Păun, G. Rozenberg, A Guide to Membrane Computing, Theoretical Computer
Science, vol. 287, pp. 73 - 100, Nov. 2002.

17. S. Qian, D. Chen, Signal Representation Using Adaptive Normalized Gaussian Func-
tions, Signal Processing, Vol. 36, pp. 1 - 11, Nov. 1994.

18. D. Stefanoiu, F. L Ionescu, A Genetic Matching Pursuit Algorithm, In: Proc. 7th
International Symposium on Signal Processing and Its Applications, pp. 577 - 580,
2003.

19. J. Vesin, Efficient Implementation of Matching Pursuit Using a Genetic Algorithm
in the Continuous Space, In: Proc. 10th European Signal Processing Conference, pp.
2 - 5, 2000.

20. D. Zaharie, G. Ciobanu, Distributed Evolutionary Algorithms Inspired by Mem-
branes in Solving Continuous Optimization Problems, WMC2006, Lecture Notes in
Computer Science, Vol. 4361, pp. 536 - 553, 2006.

21. G. X. Zhang, Time-Frequency Atom Decomposition with Quantum-Inspired Evolu-
tionary Algorithm, Circuits Syst Signal Process, 2009 (accepted).

22. G. X. Zhang, M. Gheorghe, C. Z. Wu, A Quantum-inspired Evolutionary Algorithm
based on P Systems for a Class of Combinatorial Optimization, Fundamenta Infor-
maticae, Vol. 87, pp. 93 - 116, Nov. 2008.

23. G. X. Zhang, N. Li, W. D. Jin, Novel Quantum Genetic Algorithm and Its Applica-
tions, Electr. Electron, China, Vol. 1, pp. 31 - 36, Nov. 2006.

24. G. X. Zhang, H. N. Rong, Real-observation Quantum-inspired Evolutionary Algo-
rithm for a Class of Numerical Optimization Problems, ICCS2007, pp. 989 - 996,
2007.

25. G. X. Zhang, H. N. Rong, W. D. Jin, L. Z. Hu, Radar Emitter Signal Recognition
Based on Resemblance Coefficient Features. Lecture Notes in Artificial Intelligence.
Berlin Heidelberg New York: Springer, Vol. 3066, 2004.

Simulating Active Membrane Systems
Using GPUs

Miguel A. Mart́ınez–del–Amor1, Ignacio Pérez–Hurtado1,
Mario J. Pérez–Jiménez1, Jose M. Cecilia2, Ginés D. Guerrero2, José M. Garćıa2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{mdelamor,perezh,marper}@us.es

2 Grupo de Arquitectura y Computación Paralela
Dpto. Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain

{chema,gines.guerrero,jmgarcia}@ditec.um.es

Summary. Software development for cellular computing is growing up yielding new ap-
plications. In this paper, we describe a simulator for the class of recognizer P systems
with active membranes, which exploits the massively parallel nature of P systems com-
putations by using GPUs (Graphics Processing Units). The newest generation of GPUs
provide a massively parallel framework to compute general purpose computations. We
present GPUs as an alternative to obtain better performance in the simulation of P
systems and we illustrate it by giving a solution to the N-Queens problem as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [24]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Up to now, it has not been possible to have implementations neither in vivo
nor in vitro of P systems, so handling and analysis of these devices are performed
by simulators. Therefore, P systems simulators are tools that help the researchers
to extract results from a model. Since the model was presented, many software
applications have been produced [11]. These simulators have to be as much efficient
as possible when handling large problem sizes. Thus, the massively parallel nature

370 M.A. Mart́ınez–del–Amor et al.

of P systems computations points out to looking for a massively parallel technology
where the simulator can run efficiently.

Parallel computation on clusters is the traditional environment to speed-up par-
allel applications. Particularly, many simulators of P systems have been designed
for clusters of computers [4]. However, this computation is relatively expensive and
it is available for organizations that have enough resources to buy and maintain
those clusters. Nowadays, there are other cheaper solutions in the computer market
that provides parallel environments. Among these solutions, the newest generation
of graphics processor units (GPUs) are massively parallel processors which allow
to develop a wide range of parallel applications. We also recall that other paral-
lel computing platforms are being investigated, such as special hardware circuits
[20][6].

GPUs can support several thousand of concurrent threads providing a mas-
sively parallel environment where parallel applications can obtain huge perfor-
mance [14][17][29]. Current Nvidia’s GPUs, for example, contain up to 240 scalar
processing elements per chip [16], they are programmed using C and CUDA
[32][21], and they have low cost compared with a cluster of computers.

In this paper we present a parallel simulator for the class of recognizer P
systems with active membranes using CUDA. The simulator executes the P system
which is defined by using the P-Lingua [5] programming language. The simulator is
divided in two main stages: The selection stage and execution stage. At this point
of development, the selection stage is executed on the GPU and the execution
stage is executed on the CPU.

The rest of the paper is structured as follows. In Section 2 several definitions
and concepts are given for a correct understanding of the paper. Section 3 intro-
duces the Compute Unified Device Architecture (CUDA) and some concepts of
programming on GPUs are specified. In Section 4 we explain the design of the
simulator. In Section 5 we implement a solution to the N-Queens problem using
the simulator and P-Lingua. Finally, in Section 6 we show some results and com-
pare them with the sequential version of the simulator. The paper ends with some
conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
achieved by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in polynomial time. There
are many ways a living cell can produce new membranes: mitosis (cell division),
autopoiesis (membrane creation), gemmation, etc. Following these inspirations a
number of different models of P systems has arisen, and many of them proved to
be computational completeness [5].

In this paper we shall focus on the model of P systems with active membranes.
It is one of the most studied models in Membrane Computing and one of the first

Simulating Active Membrane Systems Using GPUs 371

models presented by Gh. Păun [25]. P systems with active membranes is formed
by a membrane structure, where a label and a polarization is associated to each
membrane. In this model, every elementary membrane is able to divide itself by
reproducing its content into a new membrane.

Here we provide a short recall of its features (see [25] for details). The
model of P system with active membranes is a construct of the form Π =
(O,H, µ, ω1, . . . , ωm, R), where m ≥ 1 is the initial degree of the system; O is
the alphabet of objects, H is a finite set of labels for membranes; µ is a membrane
structure (a rooted tree), consisting of m membranes injectively labelled with el-
ements of H, ω1, . . . , ωm are strings over O, describing the multisets of objects
placed in the m regions of µ; and R is a finite set of rules, where each rule is of
one of the following forms:

(a) [a → v]αh where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects associated with membranes and
depending on the label and the charge of the membranes (evolution rules).

(b) a []αh → [b]βh where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the
initial charge α is changed to β.

(d) [a]αh → b where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh where h ∈ H,α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules). A
membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated by
division during the computation.

• Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e. in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

• Rules (b) to (e) cannot be applied simultaneously in a membrane in one com-
putation step.

• An object a in a membrane labelled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before

372 M.A. Mart́ınez–del–Amor et al.

the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and “after
that” the results are replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved neither
divided.

Note that P systems with active membranes can be seen as devices with two
levels of parallelism: among membranes (every membrane works independently,
with the exception of when there are communication across them) and among
objects inside a membrane (the rules are applied to the existing multiset of objects
in a maximal parallel way).

Recognizer P systems were introduced in [26], and constitute the natural frame-
work to study the solvability of decision problems. The data representing an in-
stance of the problem has to be provided to the P system to compute the appropri-
ate answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation, yes or no, is sent to the environment
in every halting configuration.

Furthermore, the act of simulating something generally entails representing
certain key characteristics or behaviours of some physical, or abstract, system.
However, an emulation tool duplicates the functions of one system by using a
different system, so that the second system behaves like (and appears to be) the
first system. With the current technology, we can not emulate the functionality
of a cellular machine by using a conventional computer to solve NP-complete
problems in polynomial time, but we can simulate these cellular machines, not
necessarily in polynomial time, in order to aid researchers. However, depending
on the underlying technology where the simulator is executed, the simulations can
take too much time.

The technology used for this work is called CUDA (Compute Unified Device
Architecture). CUDA is a co-designed hardware and software solution to make
easier developing general-purpose applications on the Graphics Processor Unit
(GPU) [34]. The GPUs, that are one of the main components of traditional com-
puters, originally were specialized for math-intensive, highly parallel computation
which is the nature of graphics applications. These characteristics of the GPU were
very attractive to accelerate scientific applications which have massively parallel
computations. However, the problem was the way to program general purpose ap-
plications on the GPU. This way involved to deal with GPUs designed for video
games, so they have had to tune their applications using programming idioms tied
to computer graphics, programing environment tightly constrained, etc [17] [14].
The CUDA extensions developed by Nvidia provides an easier environment to pro-
gram general-purpose applications onto the GPU, because it is based on ANSI C,
supported by several keywords and constructs. ANSI C is the standard published
by the American National Standards Institute (ANSI) for the C programming
language, which is one of the most used.

Simulating Active Membrane Systems Using GPUs 373

P systems devices are massively parallel, what fits into massively parallel nature
of the GPUs with thousands of threads running in parallel. These threads are units
of execution which execute the same code concurrently on different pieces of data.

3 Graphics Processing Unit

Driven by the video games market, programmable GPUs (Graphics Processing
Units) have evolved into a highly parallel, multithreaded, manycore processor.
They were designed to accelerate graphics applications, which transform three-
dimensional data (coordinates of triangle vertices) into pixels that are displayed on
a screen, using for this task programming interfaces such as OpenGL and DirectX.
The massively parallel nature of graphics applications and its arithmetic intensity
leads the researches to explore mapping more general non-graphics applications
onto the GPU, creating a new programming field called GPGPU (General-Purpose
on GPUs).

GPUs have become an inexpensive and readily available single-chip massively
parallel system. However, GPGPU programmers had to deal with the limitations
and difficulties of constrained graphics primitives to compute their non-graphics
computations. The emergence of Compute Unified Device Architecture (CUDA)
[34] programming model, proposed by Nvidia Corporation in 2007, has helped
to develop highly-parallel applications onto the GPU easier than it was before.
CUDA allows GPGPU programmers to develop their applications in a more famil-
iar environment by using C/C++ programming language, with some extensions
to manipulate special aspects of the GPU. Moreover, Nvidia consolidated this
trend launching a line of GPUs optimized for general purpose computations called
TESLA [16].

In this work we use a Tesla C1060 graphics processor unit (GPU) from Nvidia as
hardware target for its study. This section introduces the Tesla C1060 computing
architecture. In addition, it analyses the threading model of Tesla architectures,
and also the most important issues in the CUDA programming environment.

3.1 Tesla C1060 base microarchitecture

The Tesla C1060 [16] is based on a scalable processor array which has 240
streaming-processor (SP) cores organised as 30 streaming multiprocessor (SM).
The applications start at the host side (the CPU) which communicates with the
device side (the GPU) through a PCI-Express x16 bus (see the top of figure 1).

The SM is the processing unit, and it is unified graphics and computing mul-
tiprocessor. Every SM contains eight SPs arithmetic cores, one double precision
unit, 16-Kbyte read/write shared memory, a set of 16384 registers, and access to
the off-chip memory (global/local memory). The access to shared memory is very
cheap, however, the access to the off-chip memory has low performance because it
is out of the chip, as it is shown on figure 1. In addition, table 1 shows all memories
available on the GPU and also the cost to access them.

374 M.A. Mart́ınez–del–Amor et al.

GPU

host CPU

system memory

host interface

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3

Off-chip Memory

Interconnection Netwrok

Shared Memory
(16 KB)

SM

SP SP SP SP

SPSPSPSP

Fig. 1. Tesla C1060 GPU with 240 SPs: Streamming Processors, organised in 30 SMs:
Streamming Multiprocessors

Table 1. Memory System on the Tesla C1060

Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM ' 0 cycles R/W

Shared Memory On-Chip 16 KB per SM ' registers R/W

Constant On-Chip 64 KB ' registers R

Texture On-Chip Up to Global > 100 cycles R

Local Off-Chip 4 GB 400-600 cycles R/W

Global Off-Chip 4 GB 400-600 cycles R/W

3.2 Parallel computing with CUDA

The GPU is seen as a cooprocessor that executes data-parallel kernel functions.
The user creates a program encompassing CPU code (Host code) and GPU code
(Kernel code). They are separated and compiled by nvcc (Nvidia’s compiler for
CUDA code) as shown in figure 2

Firstly, the host code is responsible for transfering data from the main memory
(RAM or host memory) to the GPU memory (device memory), using CUDA in-
structions, such as cudamemcpy. Moreover, the host code has to state the number
of threads executing the kernel function and the organization of them. Threads
execute the kernel code, and they are organized into a three-level hierarchy as it
is shown in figure 3. At the highest level, each kernel creates a single grid that
consists of many thread blocks. Each thread block can contain up to 512 threads,

Simulating Active Membrane Systems Using GPUs 375

C/C++ with CUDA
Extensions

NVCC CPU Code

PTX Code

PTX to Target
Compiler

G80

PTX Code

T10

Fig. 2. Nvcc compilation process

which can share data through Shared Memory and can perform barrier synchro-
nization by invoking the –syncthreads primitive [31]. Besides, thread blocks can not
perform synchronization. The synchronization across blocks can only be obtained
by terminating the kernel.

Furthermore, the host code calls the kernel function like a C function by passing
parameters if it is needed, and also by specifying the number of threads per block
and the number of blocks making up the grid. Each block within the grid has their
own identifier [22]. This identifier can be one, two or three dimensions depending
on how the programmer has declared the grid, accessed via .x, .y, and .z index
fields. Each thread within the block have their own identifier which can be one, two
or three dimensions as well. Combining thread and block identifiers, the threads
can access to different data address, and also select the work that they have to do.

The kernel code is specified through the key word global and the syntax is:
global kernelName <<< dimGrid, dimBlock >>> (...parameter list...) where

dimGrid and dimBlock are three-elements vectors that specify the dimensions of
the grid in blocks and the dimensions of the blocks in threads, respectively [21].

3.3 Threading model

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero schedul-
ing overhead. Each thread has its own thread execution state and can execute an
independent code path. The SMs execute threads in a Single-Instruction Multiple-
Thread (SIMT) fashion [16]. Basically, in the SIMT model all the threads execute
the same instruction on different piece of data. The SMs create, manage, schedule
and execute threads in groups of 32 threads. This set of 32 threads is called Warp.
Each SM can handle up to 32 Warps (1024 threads in total, see table 2). Individual

376 M.A. Mart́ınez–del–Amor et al.

Fig. 3. Thread organization in CUDA programming model

threads of the same Warp must be of the same type and start together at the same
program address, but they are free to branch and execute independently.

Table 2. Major Hardware and Software Limitations programing on CUDA

Configuration Parameters Limitation

Threads/SM 1024

Thread Blocks/SM 8

32-bit Registers/SM 16384

Shared Memory/SM 16KB

Threads/Block 512

Threads/Warp 32

Warps/SM 32

Simulating Active Membrane Systems Using GPUs 377

The execution flow begins with a set of Warps ready to be selected. The instruc-
tion unit selects one of them, which is ready for issue and executing instructions.
The SM maps all the threads in an active Warp per SP core, and each thread
executes independently with its own instructions and register state. Some threads
of the active Warp can be inactive due to branching or predication, and it is also
another critical point in the optimisation process. The maximum performance is
achieved when all the threads in an active Warp takes the same path (the same
execution flow). If the threads of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on that path, and when all the
paths complete, the threads reconverge to the original execution path.

4 Design of the Simulator for Recognizer P Systems

In this section we briefly describe the simulator of recognizer P systems with
active membranes, elementary division and polarization. Firstly, we explain the
previous work that we have done in order to prepare the development of the
parallel simulator on the GPU. Then, we introduce the algorithm design in the
CUDA programming language, and finally, we finish with our simulator’s design.

4.1 Design of the baseline simulator

As previously mentioned, CUDA programming model is based on C/C++ lan-
guage. Therefore, the first recommended step when developing applications in
CUDA is to start from a baseline algorithm written in C++, where some parts
can be susceptible to be parallelized on the GPU.

In this work, we have based on the simulator for P systems with active mem-
branes developed in PLinguaCore by I. Pérez–Hurtado et al [5]. This sequential
(or single-threaded) simulator is programmed in JAVA, so the first step was to
translate the code to C++.

The simulator is executed into two main stages: selection stage and execution
stage. The selection stage consists of the search for the rules to be executed in
each membrane. Once the rules have been selected, the execution stage consists of
the execution of these rules.

The input data for the selection stage consists of the description of the mem-
branes with their multisets (strings over the working alphabet O, labels associated
with the membrane in H, etc...), and the set of rules R to be selected. The output
data of this stage is the set of selected rules. Only the execution stage changes the
information of the configuration. It is the reason because execution stage needs
synchronization when accessing to the membrane structure and the multisets. At
this point of implementation, we have parallelized the selection stage on the GPU,
and the execution stage is still executed on the CPU because of the synchronization
problem.

We also have developed an adapted sequential simulator for the CPU (called
fast sequential simulator), which has the same constraints as the CUDA simulator

378 M.A. Mart́ınez–del–Amor et al.

explained in the next subsections to make a fair comparison among them. This
simulator achieves much better performance than the original sequential simulator.

4.2 Algorithm design in CUDA

Whenever we design algorithms in the CUDA programming model, our main effort
is dividing the required work into processing pieces, which have to be processed
by TB thread blocks of T threads each. Using a thread block size of T=256, it is
empirically determined to obtain the overall best performance on the Tesla C1060
[28]. Each thread block access to one different set of input data, and assigns a
single or small constant number of input elements to each thread.

Each thread block can be considered independent to the other, and it is at
this level at which internal communication (among threads) is cheap using explicit
barriers to synchronize, and external communication (among blocks) becomes ex-
pensive, since global synchronization only can be achieved by the barrier implicit
between successive kernel calls. The need of global synchronization in our designs
requires successive kernel calls even to the same kernel.

4.3 Design of the parallel simulator

Fig. 4. Mapping membranes and objects with thread blocks and threads

In our design, we identify each membrane as a thread block where each thread
represents at least an element of the alphabet O (figure 4). Each thread block runs
in parallel looking for the set of rules that has to select for its membrane, and each
individual thread is responsible for selecting the rules associated with the object
that it represents (each thread selects the rules that need to be executed by using
the represented object).

As result of the execution stage, the membranes can vary including news el-
ements, dissolving membranes, dividing membranes, etc. Therefore, we have to

Simulating Active Membrane Systems Using GPUs 379

modify the input data for the selection stage with the newest structure of mem-
branes, and then call the selection again. It is an iterative process until a halting
configuration is reached.

Finally, our simulator presents some limitations, constrained by some pecu-
liarities in the CUDA programming model. The main limitations are showed in
table 3, and the following stand out among them: it can handle only two levels
of membrane hierarchy for simplicity in synchronization (the skin and the rest of
elementary membranes), which is enough for solving lots of NP-complete prob-
lems; and the number of objects in the alphabet must be divisible by a number
smaller than 512 (the maximum thread block size), in order to distribute the ob-
jects among the threads equally.

Table 3. Main limitations in the parallel simulator

Parameter Limitation

Levels of membrane hierarchy 2

Maximum alphabet size 65535

Maximum label set size 65535

Maximum multiplicity of an object in an
elementary membrane

65535

Alphabet size Divisible by a number smaller than 512

5 A Case of Study: Implementing a Solution to the
N-Queens problem

In this section, we briefly present a solution to the N-Queens problem, given by
Miguel A. Gutiérrez–Naranjo et al [10], using our simulator.

5.1 A family of P systems for solving the N-Queens problem

The N-Queens problem can be expressed as a formula in conjunctive normal
form, in such way that one truth assignment of the formula is considered as N-
Queens solution. A family of recognizer P system for the SAT problem [27] can
state whether exists a solution to the formula or not sending yes or no to the
environment.

However, the yes ot no answer from the recognizer P system is not enough
because it is also important to know the solutions. Besides, the system needs to
give us the way to encode the state of the N-Queens problem.

The P system designed for solving the N-Queens problem is a modification
of the P system for the SAT problem. It is an uniform family of deterministic
recognizer P system which solves SAT as a decision problem (i.e., the P system

380 M.A. Mart́ınez–del–Amor et al.

sends yes or no to the environment in the last computation step), but it also stores
the truth assignments that makes true the formula encoded in the elementary
membranes of the halting configuration.

5.2 Implementation

P-Lingua 1.0 [5] is a programming language useful for defining P system models
with active membranes. We use P-Lingua to encode a solution to the N-Queens
problem, and also to generate a file that our simulator can use as input. Figure 5
shows the P-Lingua process to generate the input for our simulator.

Fig. 5. Generation of the simulator’s input

P-Lingua 2.0 [7] translates a model written in P-Lingua language into a binary
file. A binary file is a file whose information is encoded in Bytes and bits (not
understandable by humans like plain text), which is suitable for trying to compress
the data. This binary file contains all the information of the P system (Alphabet,
Labels, Rules, . . .) which is executed by our simulator.

In our tests, we use the P system for solving the 3-Queens and 4-Queens prob-
lems. The former creates 512 membranes and up to 1883 different objects. The
latter creates 65536 membranes and up to 8120 different objects, and now the
simulator can handle it because we have decreased the memory requirement by
the simulator in [18]. On one hand, the P system for 5-Queens needs to generate
33554432 membranes and 25574 objects, what leads in a memory space limitation
(requires up to 1.5TB). On the other hand, note that 2-Queens is a system with
only 4 membranes, what is not enough for exploiting the parallelism in P systems.

6 Performance Analysis

We now examine the experimental performance of our simulator. Our performance
test are based on the solutions to 3-Queens and 4-Queens problems previously

Simulating Active Membrane Systems Using GPUs 381

explained in 5.2. They state an example of how a NP-complete problem can be
solved by the simulator for the P systems with active membranes. We report
the selection stage time which is executed on the GPU, and compare it with
the selection stage for the fast sequential code. We do not include the cost of
transferring input (and output) data from (and to) host CPU memory across
the PCI-Express bus to the GPU’s on board memory, which negatively affects
to the overall simulation time. Selection is one building block of a larger-scale
computation. Our aim is to get a full implementation of the simulator on the
GPU. In such case, the transfers across PCI-Express bus will be close to zero.

We have used the Nvidia GPU Tesla C1060 which has 240 execution cores and
4GB of device memory, plugged in a computer server with a Intel Core2 Quad
CPU and 8GB of RAM, using the 32bits ubuntu server as Operating System.

The selection stage on the GPU takes about 171 msec for the 3-Queens. So
it is 2.7 times faster than the selection stage on the CPU which takes 465 msec.
For the 4-Queens problem our simulator is 2 times faster than the fast sequential
version, taking 315291 and 629849 msec in selection respectively.

Our experimental results demonstrate the results we expect to see: a massively
parallel problem such as selection of the rules in a P-System with active membranes
achieves faster running times on a massively parallel architecture such as GPU.

7 Conclusions and Future Work

In this paper, we have presented a simulator for the class of recognizer P systems
with active membranes using CUDA. P system computations have a double par-
allel nature. The first level of parallelism is presented by the objects inside the
membranes, and the second one is presented between membranes. Hence, we have
simulated these P systems in a platform which provides those levels of parallelism.
This platform is the GPU, with parallelism between thread blocks and threads.
Besides, we have used a programming language called P-Lingua to encode P sys-
tems as input for our simulator. This tool helped us to use the P system for solving
the N-Queens problem in order to test our simulator.

Using the power and parallelism that provides the GPU to simulate P systems
with active membranes is a new concept in the development of applications for
membrane computing. Even the GPU is not a cellular machine, its features help
the researches to accelerate their simulations allowing the consolidation of the
cellular machines as alternative to traditional machines.

The first version of the simulator is presented for P systems with active mem-
branes, elementary division and polarization, specifically, we have developed the
selection stage of the simulator on the GPU. In forthcoming versions, we will in-
clude the execution version on the GPU. This issue allows a completely parallel
execution on the GPU, avoiding CPU-GPU transfers in every step, which degrades
system performance.

382 M.A. Mart́ınez–del–Amor et al.

Moreover, we are working to obtain fully simulation of P systems with active
membranes, deleting the limitations showed in table 3. Besides, we will include
new funcionality in the simulator like not elementary division.

It is also important to point out that this simulator is limited by the resources
available on the GPU as well as the CPU (RAM, Device Memory, CPU, GPU).
They limit the size of the instances of NP-complete problems whose solutions
can be successfully simulated. Although developing general purpose programs on
the GPU is easier than several years ago with tools such as CUDA, to extract the
maximum performance of the GPU is still hard, so we need to make a deep analysis
to obtain the maximum performance available for our simulator. For instance, in
the following versions of the simulator we will reduce the memory requirements
in order to simulate bigger instances of NP-complete problems and avoid idle
threads, by deleting objects with zero multiplicity. For this task we can use spare
matrix in our simulator’s design.

The massively parallel environment that provides the GPUs is good enough
for the simulator, however, we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated codes.

Finally, we will study the adaptation of the design of P systems to the con-
straints of the GPU to make faster simulations. Furthermore, it would be inter-
esting to avoid the brute force algorithms in P system computations, and start
to design heuristics in the design of membrane solutions (i.e. avoiding membrane
division as possible).

Acknowledgement

The first three authors acknowledge the support of the project TIN2006–13425 of
the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and
the support of the “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa”
of the Junta de Andalućıa under grant TIC04200. The last three authors acknowl-
edge the support of the project from the Fundación Séneca (Agencia Regional de
Ciencia y Tecnoloǵıa, Región de Murcia) under grant 00001/CS/2007, and also by
the Spanish MEC and European Commission FEDER.

References

1. A. Alhazov, M.J. Pérez–Jiménez. Uniform solution of QSAT using polarizationless ac-
tive membranes. Machines, Computations, and Universality. Lecture Notes in Com-
puter Science, 4664 (2007), 122–133.

2. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan.
Brook for GPUs: stream computing on graphics hardware. SIGGRAPH ’04, ACM
Press, (2004), 777–786.

3. G. Ciobanu, M.J. Pérez–Jiménez, G. Paun, (eds.) Applications of membrane com-
puting. Natural Computing Series, Springer, (2006).

Simulating Active Membrane Systems Using GPUs 383

4. G. Ciobanu, G. Wenyuan. P systems running on a cluster of computers. Lecture
Notes in Computer Science, 2993 (2004), 123–139.

5. D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. A P-
Lingua programming environment for Membrane Computing. Lecture Notes in Com-
puter Science, 5391 (2009) , 187–203.

6. L. Fernández, V.J. Mart́ınez, F. Arroyo, L.F. Mingo. A hardware circuit for selecting
active rules in transition P systems. Proceedings of the Seventh International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (2005), pp.
415.

7. M. Garćıa–Quismondo, R. Gutiérrez–Escudero, M.A. Mart́ınez–del–Amor, E. Ore-
juela, I. Pérez–Hurtado. P–Lingua 2.0: A software framework for cell-like P systems.
International Journal of Computers, Communications and Control, Vol. IV, 3 (2009),
234–243.

8. M. Garland, S.L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, V. Volkov. Parallel computing experiences with CUDA. IEEE Micro, 28,
4 (2008), 13–27.

9. N.K. Govindaraju, D. Manocha. Cache–efficient numerical algorithms using graphics
hardware. Parallel Computing, 33, 10–11 (2007), 663–684.

10. M.A. Gutiérrez–Naranjo, M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–
Jiménez. Solving the N–Queens Puzzle with P systems. Proceedings of the 7th Brain-
storming Week on Membrane Computing, Vol. I (2009), pp. 199–210.

11. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Available mem-
brane computing software. Applications of Membrane Computing, Natural Comput-
ing Series, Springer–Verlag, 2006. Chapter 15 (2006), pp. 411–436.

12. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a program-
ming language in cellular computing. Electronic Notes in Theoretical Computer Sci-
ence, 123 (2005), 93–110.

13. M. Harris, S. Sengupta, J.D. Owens. Parallel prefix sum (Scan) with CUDA. GPU
Gems, 3 (2007).

14. T.D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, M. Ujaldon. Biomedical
image analysis on a cooperative cluster of GPUs and multicores. ICS ’08: Proceedings
of the 22nd annual international conference on Supercomputing, ACM (2008), pp.
15–25.

15. M.D. Lam, E.E. Rothberg, M.E. Wolf. The cache performance and optimizations of
blocked algorithms. ASPLOS-IV: Proceedings of the fourth international conference
on Architectural support for programming languages and operating systems, ACM
(1991), pp. 63–74.

16. E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. Nvidia Tesla: A unified graphics
and computing architecture. IEEE Micro, 28, 2 (2008), 39–55.

17. W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard. Cg: a system for programming
graphics hardware in a C–like language. SIGGRAPH ’03, ACM (2003), pp. 896–907.

18. M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–Jiménez, Jose M. Cecilia,
Ginés D. Guerrero, José M. Garćıa. Simulation of Recognizer P Systems by using
Manycore GPUs. Proceedings of 7th Brainstorming Week on Membrane Computing,
Vol. II (2009), pp. 45–58.

19. J. Michalakes, M. Vachharajani. GPU acceleration of numerical weather prediction.
IPDPS. (2008), pp. 1–7.

20. V. Nguyen, D. Kearney, G. Gioiosa. An algorithm for non-deterministic object distri-
bution in P systems and its implementation in hardware. Lecture Notes in Computer
Science, 5391 (2009), 325–354.

384 M.A. Mart́ınez–del–Amor et al.

21. J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable parallel programming with
CUDA. Queue, 6, 2 (2008), 40–53.

22. J. D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips. Gpu com-
puting. Proceedings of the IEEE, 96, 5 (2008), pp. 879–899.

23. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, T.J.
Purcell. A survey of general–purpose computation on graphics hardware. Computer
Graphics Forum, 26, 1 (2007), 80–113.

24. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208.

25. G. Păun: Membrane Computing, An introduction. Springer-Verlag, Berĺın (2002).
26. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. Complexity classes

in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

27. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics, 11, 4 (2006), 423–434.

28. N. Satish, M. Harris, M. Garland. Designing Efficient Sorting Algorithms for Many-
core GPUs. To Appear in Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium, 2009.

29. A. Ruiz, M. Ujaldon, J.A. Andrades, J. Becerra, K. Huang, T. Pan, J.H. Saltz. The
GPU on biomedical image processing for color and phenotype analysis. BIBE, (2007),
pp. 1124–1128.

30. S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk, W. mei Hwu. Optimiza-
tion principles and application performance evaluation of a multithreaded GPU using
CUDA. Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, (2008), pp. 73–82.

31. S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Sain-Zee Ueng, S.S. Baghsorkhi,
W.W. Hwu. Program optimization carving for GPU computing. J. Parallel Distrib.
Comput., 68, 10 (2008), 1389–1401.

32. Nvidia CUDA Programming Guide 2.0, (2008): http://developer.download.

nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

33. GPGPU organization. World Wide Web electronic publication: http://www.gpgpu.
org

34. Nvidia CUDA. World Wide Web electronic publication: http://www.nvidia.com/

cuda

A Region-Oriented Hardware Implementation for
Membrane Computing Applications and Its
Integration into Reconfig-P

Van Nguyen, David Kearney, Gianpaolo Gioiosa

School of Computer and Information Science
University of South Australia
{Van.Nguyen, David.Kearney, Gianpaolo.Gioiosa}@unisa.edu.au

Summary. We have recently developed a prototype hardware implementation of mem-
brane computing based on reconfigurable computing technology called Reconfig-P. The
existing hardware design treats reaction rules as the primary computational entities and
represents regions only implicitly. In this paper, we present an alternative hardware de-
sign that more directly reflects the intuitive conceptual understanding of a P system
and therefore promotes the extensibility of Reconfig-P. A key feature of the design is
the fact that regions, rather than reaction rules, are the primary computational entities.
More specifically, in the design, regions are represented as loosely coupled processing
units which communicate objects by message passing. Experimental results show that
for many P systems the region-oriented and rule-oriented designs exhibit similar perfor-
mance and hardware resource consumption. To accomplish a seamless integration of the
rule-oriented and region-oriented designs and other alternative implementation strate-
gies in Reconfig-P, and to make Reconfig-P amenable to future integration of additional
implementation strategies, we have produced a new version of P Builder, our intelli-
gent hardware source code generator. The sophisticated new design for P Builder was
produced in accordance with a novel design pattern called Content-Form-Strategy. We
describe the design and implementation of the new version of P Builder in the paper.

1 Introduction

We have recently developed a prototype hardware implementation of membrane
computing based on reconfigurable computing technology called Reconfig-P. The
existing hardware design treats reaction rules as the primary computational en-
tities and represents regions only implicitly. Consequently there is not always a
direct mapping between the components of the intuitive conceptual understanding
of a P system and the hardware components. Such indirectness is a byproduct of
our attempt to simplify the hardware circuit and therefore promote the perfor-
mance and efficiency of Reconfig-P. Nevertheless, a more faithful rendering of the
intuitive conceptual understanding of a P system in hardware would have benefits

386 V. Nguyen, D. Kearney, G. Gioiosa

for the extensibility of Reconfig-P. In particular, it would facilitate the process of
augmenting Reconfig-P to support additional types of P systems. In this paper,
we present an alternative hardware design that more directly reflects the intuitive
conceptual understanding of a P system and therefore promotes the extensibility
of Reconfig-P. A key feature of the design is the fact that regions, rather than
reaction rules, are the primary computational entities. More specifically, in the
design, regions are represented as loosely coupled processing units which commu-
nicate objects by message passing. Experimental results show that for many P
systems the region-oriented and rule-oriented designs exhibit similar performance
and hardware resource consumption. To accomplish a seamless integration of the
rule-oriented and region-oriented designs and other alternative implementation
strategies in Reconfig-P, and to make Reconfig-P amenable to the future integra-
tion of additional implementation strategies, we have produced a new version of P
Builder, our intelligent hardware source code generator. The sophisticated new de-
sign for P Builder was produced in accordance with a novel design pattern called
Content-Form-Strategy. We describe the design and implementation of the new
version of P Builder in the paper.

The contents of the paper are as follows. In Section 2, we discuss the background
to the research described in the paper. In Section 3, we describe the region-oriented
hardware design. In Section 4, we explain some aspects of our implementation of
regions in hardware. In Section 5, we describe the motivation for a new version of
P Builder, and describe its design and implementation. In Section 6, we present
the results of an empirical analysis of the hardware resource consumption and per-
formance of hardware circuits using the region-oriented design. Finally, in Section
7, we draw some conclusions regarding the significance of our contributions.

2 Background

2.1 The intuitive conceptual understanding of a P system

Although in one sense a P system is a pure mathematical construct, in another
sense a P system is seen as having non-mathematical properties. For example, in
an informal discussion of P systems one might speak of membranes ‘dissolving’,
of regions being ‘inside’ other regions, or of objects being ‘consumed’ by reaction
rules. The very frequent use of such physicalistic metaphors in describing the
operation of a P system is, of course, a result of the fact that P systems have since
their introduction been modelled after biological cells. The biological interpretation
of a P system, far from being dispensable, provides one with a means of intuitively
grasping the computational characteristics of P systems.

According to what we call the intuitive conceptual understanding of a P sys-
tem, a P system comprises a hierarchy of membranes, each of which defines a
region that contains a collection of objects and is associated with a set of reac-
tion rules. The P system evolves in a series of stages. At each stage, the reaction
rules in every region are applied. The application of the reaction rules in a region

A Region-Oriented Hardware Implementation for Membrane Computing 387

results in the occurrence of an object transformation process within the region.
The object transformation processes in the different regions occur independently.
Sometimes an object transformation process results in the movement of objects
between regions. Therefore, although the processes in the different regions occur
independently, they may influence each other indirectly by influencing their re-
spective inputs for the next stage of the evolution of the P system.

Given the intuitive conceptual understanding of a P system, in the context
of implementing P systems on a computing platform, it is natural to regard a P
system as a collection of distributed processing units (the object transformation
processes occurring in the different regions) that interact only by means of message
passing (the transfer of objects).

2.2 Current status of Reconfig-P

Reconfig-P [8] [9] is an implementation of membrane computing based on recon-
figurable hardware (specifically, a field-programmable gate array1) that is able to
execute P systems at high performance. It exploits the reconfigurability of the
hardware by constructing and synthesising a customised hardware circuit for the
specific P system to be executed. The hardware circuit is constructed using the
hardware specification language Handel-C [2].

To maximise performance and minimise hardware resource consumption, the
current version of Reconfig-P takes a minimalistic approach to the implementa-
tion of the features of a P system in hardware. According to this approach, only
those features of the intuitive conceptual understanding of a P system absolutely
necessary to the computational operation of a P system are implemented explic-
itly as processing units or data structures. As a consequence, some features that
are of primary importance in the conceptual understanding of a P system are
not explicitly represented as components of the hardware circuits generated by
the current version of Reconfig-P. Most significantly, membranes and the regions
defined by membranes are not explicitly represented. Instead, the existing imple-
mentation represents these features implicitly as logical constructions arising from
the connections that exist between processing units corresponding to the reaction
rules and arrays corresponding to the multisets of objects available in the regions
of the P system. In other words, the conceptual model of a P system underlying
the design of the current version of Reconfig-P includes only reaction rules and
multisets of objects as primary features; membranes and regions are not directly
represented in the model, but must be inferred on the basis of the connections
that exist between the reaction rules and multisets of objects.
1 A standard field-programmable gate array (FPGA) consists of a matrix of configurable

logic blocks (CLBs). The CLBs, which are connected by means of a network of wires,
can be used to implement logic or memory. The functionality of the logic blocks and
the connections between them can be modified by loading configuration data from a
host computer. In this way, any custom digital circuit can be mapped onto the FPGA,
thereby enabling it to execute a variety of applications.

388 V. Nguyen, D. Kearney, G. Gioiosa

2.3 Motivation for the alternative hardware design

Although it promotes performance and efficiency, the hardware design used in
the existing version of Reconfig-P has some disadvantages. These disadvantages
diminish the elegance, understandability (and therefore maintainability), flexibility
and extensibility of Reconfig-P. First, by deviating from the intuitive conceptual
understanding of a P system, the design is not as elegant and understandable as it
could be. Second, the design does not facilitate the implementation of P systems
that represent membranes as active entities or include membrane-mediated rules
(such as symport and antiport rules). Third, the design removes the possibility of
adopting an elegant region-oriented strategy for the distribution of computation
across parallel processing units. These three disadvantages have motivated us to
develop an alternative hardware design.

The alternative hardware design proposed in this paper, which we call the
region-oriented design, is intended to

• promote the elegance and understandability of Reconfig-P by more closely re-
flecting the intuitive conceptual understanding of a P system,

• promote the extensibility of Reconfig-P by providing a framework within which
the future implementation of additional types of P systems — especially P
systems that include cell-to-cell connections (e.g., tissue-like P systems [12]
and spiking neural P systems [6]), represent membranes as active entities, or
include membrane-mediated rules (e.g., [1], [10], [3], [11] and [12]) — can more
easily be achieved, and

• facilitate an elegant region-oriented approach to the distribution and paralleli-
sation of the computational activities occurring in a P system.

A region-oriented approach to the distribution of the computational activities
occurring in a P system is desirable because, not only does it match the intuitive
conceptual understanding of how these activities are distributed in a P system,
it also allows a very natural means of scaling the amount of available hardware
resources to suit the size of the P system to be executed. For example, one can
envision implementing a P system using multiple hardware circuits, where each
hardware circuit implements the processing associated with a particular region (or
subhierarchy of regions) of the P system. Indeed, the techniques developed in im-
plementing a region-oriented approach could be adapted to allow the composition
of whole P systems into larger systems. That is, these techniques could be adapted
to allow hardware circuits implementing distinct P systems to communicate and
therefore form a larger system.

3 The region-oriented hardware design

In this section, we provide an overview of the region-oriented hardware design.
For the sake of simplicity, in this overview we do not treat aspects of the design
related to nondeterministic object distribution.

A Region-Oriented Hardware Implementation for Membrane Computing 389

.

... main (void)

... {

.....unsigned 8 Reg;

.....chan C;

........

.....par

.....{

.......C ! 8; // ‘send’

.......C ? Reg; // ‘receive’

.....}

........

... }

Fig. 1. Example of a Handel-C chan (channel) construct being used to implement com-
munication between two parallel branches.

3.1 Basic characteristics of the design

In the region-oriented hardware design, instead of being represented only implicitly,
regions are implemented explicitly as hardware components. More specifically, the
design has the following three key attributes:

1. Regions are implemented as core processing units.
2. Region processing units operate independently. That is, each region processing

unit coordinates all the activities occurring in one particular region of the P
system and is not aware of activities occurring in other regions.

3. The movement of objects between regions is implemented as message passing
between region processing units.

A key aspect of the region-oriented implementation is the use of the chan
(channel) construct of Handel-C to accomplish inter-region communication. The
chan construct supports the implementation of synchronous communication be-
tween parallel processing units. The example Handel-C code in Figure 1 shows a
channel C being used to transfer the value 8 to the register Reg.

3.2 Region processing units

Similar to the rule processing units in the rule-oriented design, the region process-
ing units in the region-oriented design complete the execution of a transition in two
phases: an object assignment phase and an object production phase2. In the object
assignment phase, a region processing unit determines the maximum number of
2 The object assignment phase and object production phase roughly correspond to the

preparation phase and updating phase in the rule-oriented design, respectively (see [8]
for details)

390 V. Nguyen, D. Kearney, G. Gioiosa

instances, and hence the applicability status, for each reaction rule in the region
in the current transition. In the object production phase, a region processing unit
carries out the consumption, production and communication of objects for the
reaction rules in the region based on their maximum number of instances. In the
case of P systems that contain reaction rules with relative priorities, the region
processing unit must calculate the maximum numbers of instances for those reac-
tion rules with higher priorities before doing so for those reaction rules with lower
priorities. To save clock cycles, the region processing unit carries out the object
consumption for the reaction rules with higher priorities in the object assignment
phase rather than in the object production phase.

Object assignment phase

An important aspect of the hardware design for the object assignment phase is
the way in which the region processing unit respects the relative priorities of
the reaction rules (if indeed such priorities are defined), while minimising the
number of clock cycles required to complete the phase by avoiding the processing
of inapplicable reaction rules.

It is an assumption of the design that reaction rules in a region that consume
common object types are assigned relative priorities (using the relation >, which
is to be interpreted as ‘has higher priority than’). Given this assumption, the set
of reaction rules in a region may be partitioned into (a) a collection of singleton
sets, where for each reaction rule not related by priority to any other reaction
rule, there is exactly one singleton set containing that reaction rule in the collec-
tion, and there are no other singleton sets in the collection, and (b) a collection
of totally >-ordered sets, where each reaction rule related by priority to another
reaction rule is in exactly one totally >-ordered set, and if two reaction rules have
relative priorities then they belong to the same totally >-ordered set. In the ex-
ample illustrated in Table 1, the columns correspond to totally >-ordered sets
of reaction rules. The totally >-ordered sets are: T1 = {R11, R12, R13, R14, R15},
T2 = {R21, R22, R23, R24, R25}, and T3 = {R31, R32, R33, R34}. From the sets in
the partition formed in this way, one or more partially time-ordered sets of reac-
tion rules can be constructed that may be interpreted as indicating the possible
temporal orders in which the region processing unit can process the reaction rules
in the object assignment phase. The constraints on the possible temporal orders
are that (a) reaction rules with the same priority should be processed at the same
time, and (b) reaction rules with relative priorities should be processed one after
the other according to their priorities.

The temporal order in which the region processing unit should process reaction
rules in the object assignment phase can be determined at compile-time as follows:

A Region-Oriented Hardware Implementation for Membrane Computing 391

.

... In parallel

...... In sequence

......... Process reaction rules in T1

...... In sequence

......... Process reaction rules in T2

...... In sequence

......... Process reaction rules in T3

Which of the possible temporal orders is actually followed depends on how
many clock cycles are required to process each specific reaction rule.

It might appear that this static approach allows the degree of parallelisation to
be maximised. However, the approach neglects the fact that reaction rules may be
inapplicable at the outset of the object assignment phase or become inapplicable
as other reaction rules are assigned objects, and therefore may not need to be fully
processed in the phase. To maximise the performance of the implementation, we
use a technique that avoids the processing of inapplicable reaction rules. Naturally,
such a technique must be applied at run-time. The technique involves checking the
applicability status of reaction rules both at the beginning of the phase and when-
ever any objects have been assigned to a reaction rule, and using this applicability
information to determine the temporal order in which the currently applicable
reaction rules should be processed in order to minimise the total number of clock
cycles used in the remainder of the phase. For the example shown in Table 1,
after checking the applicability of the reaction rules at the beginning of the object
assignment phase, the region processing unit determines that only reaction rules
R11, R13, R15, R25, R32 and R34 are applicable. Based on this information and
the totally >-ordered sets T1, T2 and T3, it determines that the currently most
time-efficient way of processing the reaction rules is to first process R11, R25 and
R32 in parallel, then process R13 and R34 in parallel, and finally process R15. It
then proceeds to process R11, R25 and R32 in parallel. After doing this, it again
checks the applicability of the reaction rules, and based on the applicability infor-
mation obtained re-evaluates the temporal order in which the currently applicable
reaction rules should be processed. The region processing unit continues in this
way until no reaction rules are applicable.

It is desirable to implement the dynamic determination of the partially time-
ordered set of executable reaction rules in as few clock cycles as possible. In our
current implementation, the number of clock cycles required to perform this task
is 0. See Section 4 for details about our implementation.

Object production phase

In the object production phase, a region processing unit (a) updates the multiplic-
ities of the object types in its region and attempts to send objects to and receive
objects from the other regions, and then (b) updates the multiplicities of the ob-
ject types in its region based on the objects it has received from other regions. All

392 V. Nguyen, D. Kearney, G. Gioiosa

Execution order Reaction rules

1 R11 R21 R31

2 R12 R22 R32

3 R13 R23 R33

4 R14 R24 R34

5 R15 R25

......

......

......

......

......

......

......

Execution order Reaction rules

1 R11:a R21:na R31:na
2 R12:na R22:na R32:a
3 R13:a R23:na R33:na
4 R14:na R24:na R34:a
5 R15:a R25:a

Table 1. An illustration of how a region processing unit determines the order in which
to process reaction rules in the object assignment phase. The region processing unit
begins with a preliminary order determined at compile-time, as shown in the table on
the left. At the start of the object assignment phase, the region processing unit checks
the applicability of the reaction rules. The results of the applicability check are shown in
the table on the right (applicable reaction rules are labelled ‘a’, and inapplicable reaction
rules ‘na’). The region processing unit then updates the processing order by removing
the inapplicable reaction rules from consideration. The reaction rules that the region
processing unit processes immediately after the first applicability check are shown in
boldface.

of the updating and communication tasks are accomplished in a massively parallel
manner.

To resolve resource conflicts that may occur in the object production phase (i.e.,
situations in which the multiplicity of an object type is to be updated by more than
one parallel process), the region-oriented design includes two resource conflict reso-
lution strategies: the space-oriented strategy and the time-oriented strategy. These
strategies are similar to those adopted in the rule-oriented hardware design (see [8]
and [9]). In the space-oriented strategy, copy registers are created for those object
types whose multiplicities are to be updated by more than one parallel process,
and the relevant parallel processing units store the updated multiplicity values in
their assigned copy registers. The time-oriented strategy involves interleaving the
operations of distinct parallel processes so that update operations which would
conflict if executed in the same clock cycle are executed in different clock cycles.

The space-oriented strategy is implemented in basically the same way in both
the rule-oriented and region-oriented hardware designs, with a couple of differ-
ences. The first difference is that, whereas in the rule-oriented design a special
multiset replication coordinator processing unit needs to be introduced to coor-
dinate the values stored in the copy registers, in the region-oriented design this
coordination task can be performed by the already introduced region processing
unit. The second difference is that in the region-oriented design copy registers do
not need to be introduced for processing units sending objects to the region from
other regions, because the already introduced register dedicated to the storage of
the data received over the relevant communication channel can be used as a copy
register. As in the rule-oriented design, in the region-oriented design, when the
space-oriented strategy is used, the object production phase takes two clock cycles
to complete. In the first clock cycle, register updates implementing the production
of objects by reaction rules local to the region are performed. In the second clock

A Region-Oriented Hardware Implementation for Membrane Computing 393

cycle, the values stored in the various registers representing multiplicity values of
object types (including registers associated with channels) are coordinated, and
the new multiplicity values for the object types in the region are stored in the
original registers storing such values.

Fig. 2. An illustration of the region-oriented hardware design in comparison to the
rule-oriented hardware design for a sample P system. (a) The sample P system. (b)
The region-oriented design for the sample P system in which regions are implemented
as processing units that communicate via channels. (c) The rule-oriented design for the
sample P system in which reaction rules are implemented as processing units.

The time-oriented strategy is implemented differently in the two designs. In the
rule-oriented design, the way in which updates are interleaved over time can be
completely determined at compile-time, and so can be hard-coded into the source
code defining the hardware circuit (see [8] and [9]). In the region-oriented design,

394 V. Nguyen, D. Kearney, G. Gioiosa

a distinction is drawn between internal objects and external objects for a region in
a particular transition. The internal objects of a region in a transition are those
objects produced in the transition by one of the reaction rules associated with
the region. Objects sent to the region during the transition from other regions are
external to the region. While it is possible to determine at compile-time the ap-
propriate interleaving for updating operations occasioned solely by the production
of internal objects, the interleaving for updating operations occasioned wholly or
partly by the receipt of external objects must be determined at run-time. This
is because, to preserve the independence of region processing units, information
about when it might receive external objects is unavailable to the relevant region
processing unit. To accomplish the run-time determination of the interleaving, an
approach based on the use of semaphores is used.

3.3 Synchronisation

It is necessary to synchronise the execution of the object assignment phases of
distinct region processing units. Without such synchronisation, it would be possible
for objects produced in the object production phase for one region to be sent to
another region still in its object assignment phase, thereby improperly interfering
with the results of the object assignment phase in that region.

Unlike in the rule-oriented design, where synchronisation of the object assign-
ment phases of reaction rules across regions is implemented explicitly using signals
and flags, the synchronisation of the execution of the object assignment phases of
distinct region processing units in the region-oriented design is implemented in a
more implicit manner by having region processing units communicate over chan-
nels.

Channels are also used to perform explicit synchronisation at the end of each
transition. The region-oriented design includes a system coordination processing
unit which is responsible for coordinating the execution of the region processing
units so that the transition-by-transition evolution of the P system can be re-
alised. The system coordination processing unit is connected to each of the region
processing units via dedicated synchronisation channels. Once a region processing
unit has completed all of its tasks for a particular transition, it sends a signal
down its synchronisation channel. Once the system coordination processing unit
has received a signal from every region processing unit, it triggers a new transition.

One potential problem associated with the use of channels to implement the
movement of objects between regions is the occurrence of deadlock. Handel-C
channels operate in a synchronous manner. That is, once a pair of processing units
have started engaging in a communication, neither the sending nor the receiving
processing unit can move on to perform other tasks until the communication has
been accomplished. Consequently, unless the operations of sending and receiving
objects among region processing units are conducted in an appropriate order,
deadlock can occur. To prevent deadlock from occurring we ensure that the channel
communications for different regions are carried out in distinct parallel branches
of execution.

A Region-Oriented Hardware Implementation for Membrane Computing 395

Fig. 3. An illustration of the implementation of a P system with an antiport rule (aa,
in; b, out) using the region-oriented design. In this example, two instances of the antiport
rule are executed.

3.4 Extensibility of the design

The region-oriented hardware design makes it possible to implement P systems
with features that require the explicit presence of membranes in an intuitive way.
In particular, each membrane can be implemented as a processing unit associated
with two region processing units (corresponding to the inner and outer regions of
the membrane) (see Figure 3). Such a membrane processing unit could, for exam-
ple, mediate the exchange of objects between regions effected by antiport rules.
For an antiport rule to be applicable, enough objects of the right types need to be
available in both regions. As each of the two region processing units for the two
regions do not know the multiset of objects available in the other region, it is not
possible for the region processing units to implement the antiport rule on their
own — a membrane processing unit is also required. Nevertheless, it is still pos-
sible for the membrane processing unit to remain quite independent from the two
region processing units. For example, the region-oriented hardware design could
be augmented to implement antiport rules as follows. The region processing units
for the inner and outer regions send objects to a membrane processing unit. The
membrane processing unit attempts to couple objects in the way specified by the
antiport rule, and sends coupled objects to their destination regions and returns
uncoupled objects to their regions of origin. In this way, not only do the region pro-
cessing units not know about each other’s multiset of objects, but the membrane
processing unit does not need to know this information either. It is sufficient that
both region processing units know about the existence of the membrane processing
unit.

396 V. Nguyen, D. Kearney, G. Gioiosa

4 Implementing regions in hardware

In this section, we describe how the regions of a P system are implemented using
Handel-C when the region-oriented hardware design is adopted.

4.1 Atomic operations associated with the application of reaction rules

From one perspective, the overall behaviour of a P system emerges from the ap-
plication of reaction rules. At the implementation level, the execution of a single
application of a reaction rule involves the execution of a certain number of in-
stances of each of a set of logically atomic operations:

Rule execution = (pDIV, qMIN, rMUL, sSUB, tCOM, uADD), where

p = 0 or 1, q, r, s, t, u ≥ 0, DIV denotes the operation of dividing the mul-
tiplicity of the objects of a given type available in the region by the number of
objects of that type required for the application of one instance of the reaction
rule, MIN denotes the operation of computing the maximum number of instances
of the reaction rule that can be applied in the current transition, MUL denotes
the operation of computing the number of objects of a particular object type to be
consumed/produced by the reaction rule in the current transition, SUB denotes
the operation of reducing the multiplicity of a particular object type available
in the region (by a certain amount), COM denotes the operation of sending (or
attempting to send) a certain number of objects of a particular type to a par-
ticular region, and ADD denotes the operation of increasing the multiplicity of a
particular object type available in the region (by a certain amount).

In Reconfig-P, each of the above operations is realised as an atomic operation.
These atomic operations are the building blocks for the construction of any partic-
ular hardware circuit. The names of the operations reflect the main computational
operations involved in their implementation. Mapping the atomic operations onto
a hardware circuit requires making decisions about their temporal granularity. At
fine granularity, an operation is performed over multiple clock cycles and therefore
needs to be decomposed into suboperations. At coarse granularity, an operation
is performed in one clock cycle. Although assigning a logically atomic operation
a fine granularity at implementation results in a greater number of clock cycles,
it often reduces logic depth, and therefore can lead to an increased system clock
rate.

To determine the appropriate degree of granularity for a given logically atomic
operation, it is necessary to examine the implementation characteristics of the
operation in terms of hardware resource consumption and logic depth. Multipli-
cation and division can generate complicated combinatorial circuits and therefore
in general are expensive to implement in one clock cycle. However, in the specific
case of the execution of a P system, in both multiplication and division operations
one of the operands is a constant. This significantly reduces the logic depth of

A Region-Oriented Hardware Implementation for Membrane Computing 397

the combinatorial circuits that implement the operations3. Addition and subtrac-
tion are relatively inexpensive operations and, based on the performance results
for the current version of Reconfig-P (reported in [8]), do not compromise the
performance of the hardware circuit. Given these considerations, in the hardware
implementation the default scenario is that each of the logically atomic operations
is performed in one clock cycle. However, to accommodate situations in which a
large number of processing units is required and therefore the system clock rate
would otherwise be compromised significantly, P Builder has the ability to gen-
erate the hardware circuit in such a way that the logically atomic operations are
performed over several clock cycles.

4.2 Implementations of the logically atomic operations

We now describe how we have implemented the logically atomic operations iden-
tified in the previous section in hardware.

DIV and MUL The DIV and MUL operations are implemented in a similar way.
The obvious implementation approach is to devote a separate piece of hardware
to the execution of each of the operations for each reaction rule. However, this
approach would lead to unnecessary duplication of hardware resources because it
is often the case that different reaction rules consume/produce the same number
of objects for an object type (i.e., the multiplicity of the consumed/produced
object type is the same in the definitions for the reaction rules). Duplication of
hardware resources can be particularly problematic when Handel-C is used as the
specification language, since the Handel-C compiler generates distinct pieces of
hardware for the same division or multiplication operation if this operation occurs
in different places in the source code. Our solution to the problem of unnecessary
hardware duplication is to have distinct DIV/MUL operations which share the
same operands implemented as a single processing unit, and for the collection
of all such processing units to be implemented as a pool of servers. The DIV
and MUL servers continuously perform their respective division/multiplication
operations. They execute their operation in one clock cycle, and then store the
result in an output register. Each of the servers has direct access to the data
for both operands for its operation, and so operates totally independently from its
clients. A client processing unit that needs to evaluate one of the relevant divisions
or multiplications is required to invoke the appropriate server (but is not required
to supply any input to the server). It first waits for one clock cycle (to allow the
server to execute its operation with the current values for the operands), and then
reads the appropriate output register to obtain the result. As there is one division
pool and one multiplication pool per region (rather than for the P system as a

3 The Xilinx Virtex-II FPGA used in the implementation contains hardware multipliers
that allow efficient and high-performance implementation of multiplication operations
[13]. However, where one of the operands is a contant, multiplications can be more ef-
ficiently implemented on slices using either bitshifts or constant coefficient multipliers.

398 V. Nguyen, D. Kearney, G. Gioiosa

Fig. 4. An illustration of the implementation of a pool of DIV servers.

whole), our implementation approach does not cause routing problems. Figure 4
shows an example of a pool of DIV servers.

MIN For reasons similar to those described above, a pool of processing units is
used to perform MIN operations. By default, each MIN operation is implemented
as a hard-coded Handel-C macro expression which executes in one clock cycle.
However, as the logic depth of a MIN operation is linearly proportional to the
numbers of object types consumed by the reaction rules in the region, a MIN
operation can easily be subjected to logic depth reduction.

SUB As reaction rules with relative priorities are not processed simultaneously,
there are two implementations of the SUB operation: SUBM and SUBF. SUBM is
used for those reaction rules that are unrelated by priority to any other reaction
rule. It is implemented in Handel-C as a macro expression, which corresponds to
a single unshareable piece of hardware with both operands hard-coded. SUBF is
used for reaction rules with relative priorities. It is implemented as a Handel-C
function, which corresponds to a single shareable piece of hardware. Since in gen-
eral the subtractions performed by different reaction rules have different operands,
to make SUBF processing units shareable among the processes implementing the
application of reaction rules, the implementation of a SUBF processing unit op-
erates at the level of object types rather than at the level of reaction rules. More
specifically, there is a SUBF processing unit for each object type.

ADD All ADD operations (which are used in the implementation of the produc-
tion of objects by reaction rules, a process which is not subject to any temporal
constraints) can in principle be executed simultaneously. However, unless appro-
priate precautions are taken, the parallel execution of ADD operations can result
in parallel processes attempting to update the same register at the same time.
There are two main strategies for the avoidance of such update conflicts: the time-
oriented strategy and the space-oriented strategy (see Section 3.2).

When the space-oriented strategy is used, for each copy register there is one
ADDM processing unit responsible for updating that register. Each ADDM process-

A Region-Oriented Hardware Implementation for Membrane Computing 399

ing unit is implemented as a Handel-C macro. This allows all updating operations
in the object production phase to be completed in one clock cycle.

When the time-oriented strategy is used, there are three types of processing
units implemented. The first type, called ADDM, is used to update the multiplic-
ity value for an object type with no conflicts. The second type, called ADDF, is
used to update the multiplicity value for a local object type with conflicts. The
third type, called ADDS, is used to update the multiplicity value for an external
object type. ADDS implements semaphore-based interleaving using the trysema
and releasesema constructs provided by Handel-C.

COM COM operations, which apply only to the region-oriented design, are im-
plemented using channels (see Section 3). Whenever it is possible for objects to
move from one region to another region, the implementation includes a channel
connecting the region processing unit for the source region to the region process-
ing unit for the destination region. There are various ways in which one could
implement inter-region communication using channels. The approach one takes
influences the number of channels required, as well as the amount of processing
needed to complete sending and receiving operations. We will now briefly discuss
three possible implementation methods.

In the first method, for every reaction rule r in a region x that sends objects
(of any type) to a region y, there is exactly one channel connecting the region
processing units for x and y. This channel is used only for the distribution of objects
produced by r. Therefore, the data sent over the channel must allow the region
processing unit for y to determine which object types are being sent and how many
of each type are being sent. To avoid making the definition of r available to the
region processing unit for y (and thereby compromising the independence of this
region processing unit), this could be achieved by having the region processing unit
for x send an n-tuple over the channel, where n is the number of object types found
in the whole P system (not only those produced by r destined for y), which contains
for each object type found in the whole P system the multiplicity of that object
type being sent to y. Upon receiving the n-tuple, the region processing unit for y
would proceed to update the multiset array for y. Obviously, if there are multiple
reaction rules in x that produce objects destined for y, there will be multiple
channels between the region processing units for x and y. The region processing
unit for y would need to coordinate the data received over these channels, as it
would receive data relating to the same object type on different channels.

As it is possible to determine at compile-time which types of objects might
be produced by which reaction rules and sent to which regions, it is possible to
hard-code the relevant pieces of this information in the implementation of the
receiving region processing unit. The second method of implementing inter-region
communication illustrates this possibility. To implement this method, we would
need to relax (albeit to a minimal extent) our requirement that region processing
units be independent of each other. In the method, for each reaction rule r in a
region x and for each object type o produced by r to be sent to a region y, there
is exactly one channel connecting the region processing units for x and y. This

400 V. Nguyen, D. Kearney, G. Gioiosa

Fig. 5. An illustration of different strategies of implementing inter-region communication
using channels. Diagram (a) illustrates the first method mentioned in the text, diagram
(b) illustrates the second method, and diagram (c) illustrates the third method.

channel is used only for the distribution of objects of type o produced by r destined
for y. Assume that the region processing unit for y has access to information about
which channel is associated with which object type. Then the region processing
unit for x needs to send only the multiplicity value for o (i.e., the number of objects
of type o that are to be sent in the current transition) down the channel. As in
the first method, because the region processing unit for y might receive objects of
the same type on different channels, it needs to coordinate the data received over
the different channels before proceeding to update the multiset array for y.

In the third method, for every object type that might be produced in a region x
and sent to a region y, there is exactly one channel between the region processing
units for x and y. Again assume that the region processing unit for y knows which
channel is associated with which object type. In this scenario, the region processing
unit for x needs to evaluate for each object type the total number of objects of
that type to send before engaging in the relevant channel communication. Once
it has done this, it sends a single value down the channel. The region processing

A Region-Oriented Hardware Implementation for Membrane Computing 401

unit for y simply stores this value in the appropriate register of the multiset array
for y.

Figure 5 illustrates the three methods of implementing inter-region communi-
cation described above.

We now discuss the relative merits of the three methods of implementing inter-
region communication. As regards faithfulness to the biological inspiration of P
systems, we rank the third method highest. The first method is perhaps the least
in keeping with the biological inspiration of P systems. If we regard the channels
in the implementation as representations of cellular transport mechanisms (such
as ion channels and osmosis), and reaction rules as representations of chemical
reactions, then according to the first method each cellular transport mechanism
facilitates the transportation of only the products of a single chemical reaction. In
the general case, this is biologically unrealistic. The second method is also quite
removed from the biological inspiration of P systems in that cellular transport
mechanisms would again be regarded as facilitating the transportation of only the
products of a specific chemical reaction. The third method is the most biologically
realistic because, in this method, cellular transport mechanisms would be regarded
as facilitating the transportation of single types of chemicals (such as potassium
ions), as is commonly found in biological cells. As regards the extent to which
the independence of region processing units is preserved, the first method ranks
highest, with the second and third methods being roughly equivalent. Even so,
neither the adoption of the second method nor the adoption of the third method
would result in a significant reduction in the independence of region processing
units. This is because in these methods the information a region processing unit
possesses about other region processing units is available only in an implicit sense.
The information is embedded into the very structure of the region processing unit,
and so the region processing unit does not explicitly refer to this information
when carrying out its operations. As regards efficiency, the third method ranks
highest, both in terms of the number of channels used and the amount of processing
required. Based on the considerations just outlined, we decided to adopt the third
method when implementing the region-oriented design.

4.3 Linking and synchronisation

In the previous section, we described the hardware components that implement the
logically atomic operations. To realise operations occurring at the level of reaction
rules, at the level of regions, or at the level of the entire P system, it is necessary to
link and synchronise the execution of these basic components. In this section, we
describe how the components are linked and synchronised to accomplish some of
the processing performed by a region processing unit. We have chosen to focus on
this particular case because it is fundamentally important to the region-oriented
design.

Figure 6 shows a high-level UML activity diagram for the object assignment
phase of the execution of a region processing unit (see Section 3.2 for a description

402 V. Nguyen, D. Kearney, G. Gioiosa

Fig. 6. A UML activity diagram presenting high-level views of the implementations of
the object assignment and object production phases of a region processing unit.

A Region-Oriented Hardware Implementation for Membrane Computing 403

of this phase). Hardware components for logically atomic operations (described in
Section 4.2) are represented as shaded boxes in the diagram. This section contains
a description of how the other aspects of the diagram — the control flow, linking
and synchronisation represented by arrows, solid bars and unshaded boxes — are
implemented in hardware.

Linking and synchronisation within a region processing unit

To implement the simple internal control flow within a region processing unit, we
use the basic control constructs provided by Handel-C. For example, the arrows in
the activity diagram shown in Figure 6 are implemented using the seq construct,
the solid bars are implemented as par constructs, and diamonds are implemented
using conditional constructs such as if.

Linking and synchronisation between a region processing unit and
external processing units

In the implementation of the object assignment phase of a region processing unit, it
is necessary to link the region processing unit with processing units implementing
the logically atomic operations DIV, MIN, MUL, SUB and ADD, and to syn-
chronise the execution of the region processing unit with these other processing
units.

In our implementation, processing units may be categorised according to
whether they execute constantly without invocation or execute only when invoked.
Among the processing units that execute constantly are the processing units im-
plementing the DIV and MUL operations as well as a processing unit responsible
for checking whether at least one reaction rule in the region is applicable (see
below). Due to the continuous execution of these processing units, when a region
processing unit uses one of these processing units, it needs to read the register in
which the processing unit stores the result of its computation. However, to ensure
that it reads the result applicable to the current transition, the region processing
unit must wait for the currently applicable data to be stored in the register. This
can be done by inserting the appropriate number of delay statements in the rel-
evant section of the Handel-C code implementing the region processing unit or,
preferably, by having the region processing unit perform other processing during
the clock cycles over which the external processing unit is performing the currently
applicable computation. As for the processing units that must be invoked, a re-
gion processing unit can invoke these processing units efficiently by using a set of
signals and flags as follows:

404 V. Nguyen, D. Kearney, G. Gioiosa

//Processing unit 1:

while(1) {

...signal = 1; // clock cycle x

......

}

//Processing unit 2:

while(1) {

...par{

......flag = signal; //clock cycle x

......if(flag == 1) {

............ //clock cycle x+1

......} else

.........delay;

...}
}

Checking the region applicability status

Our implementation of the region-oriented design includes for each region process-
ing unit a processing unit which is responsible for checking whether at least one
reaction rule in the relevant region is applicable. This processing unit is used by
the region processing unit for the purpose of preemptive termination. After the
region processing unit calculates the maximum number of instances of a reaction
rule, it immediately records the applicability status of the reaction rule in a 1-bit
register. The external processing unit reads the applicability registers for all the
reaction rules in the region, computes whether there is at least one applicable reac-
tion rule, and then writes the result to a 1-bit output register. Therefore there is a
single delay statement in the Handel-C code implementing the region processing
unit just before the code implementing the reading of the output register.

Reporting completion

As mentioned in Section 3.3, our implementation of the region-oriented design
includes a system execution coordinator processing unit, which is responsible for
checking whether all region processing units have completed their executions for
the current transition, and triggering a new system transition when this condition
is satisfied. In the implementation, once it has completed its operations for the cur-
rent transition, a region processing unit signals this fact to the system execution
coordinator via a synchronisation channel (see Figure 2). The following Handel-C
code shows how this is achieved in the case where there are two region processing
units.

A Region-Oriented Hardware Implementation for Membrane Computing 405

//Region processing unit 1

while(1) {

......

...synChan1 !1; //report completion

}
//Region processing unit 2

while(1) {

......

...synChan2 !1; //report completion

}
//System execution coordinator

while(1) {

...par {

......synChan1 ? temp1; //receive completion signal on first channel

......synChan2 ? temp2; //receive completion signal on second channel

...}

...//trigger new transition

}

Determining which reaction rules are applicable

As discussed in Section 3.2, when processing reaction rules in the object assignment
phase, it is advantageous for a region processing unit to check the applicability
of the reaction rules. If a reaction rule is inapplicable, it need not be processed
further. The implementation approach for the applicability checking operation
that most readily comes to mind is the use of if and else constructs. However,
because the Handel-C compiler enforces an else implementation with every if
implementation, unless one is willing to spread the operation over multiple clock
cycles, this approach will in general result in a deeply nested if-else construction.
This problem does not arise if goto statements are used instead of else constructs.
Consequently, in our implementation we use goto statements. Such statements are
inserted just before the code implementing the processing of a reaction rule, and
allow this code to be skipped. The combination of goto statements results in a
hardware state machine which allows the region processing unit to process the
reaction rules in the most time-efficient manner. Specifically, if it is found that
a reaction rule is inapplicable, the control will jump to the part of the code for
the reaction rule with the highest priority out of all the remaining reaction rules.
Because if and goto statements take zero clock cycles to execute, no clock cycles
are wasted in determining which reaction rule should be processed next. Taking
this implementation approach allows the various reaction rules to be processed in
a consistent manner, and therefore greatly simplifies the control flow required for
the processing of the reaction rules.

406 V. Nguyen, D. Kearney, G. Gioiosa

5 Design and implementation of a new version of P Builder

The existing version of Reconfig-P implements only the rule-oriented hardware de-
sign. In the previous sections, we have described a new design, the region-oriented
design. The region-oriented design has several attractive features, such as its faith-
fulness to the intuitive conceptual understanding of a P system and its modularity.
Nevertheless, the rule-oriented design has features which make it preferable to the
region-oriented design in many scenarios. For example, since the adoption of the
rule-oriented design can result in a higher system clock rate, a user of Reconfig-P
might prefer to use the rule-oriented design when high performance is a prior-
ity. Given that the rule-oriented design and region-oriented design have different
strengths and weaknesses, it is desirable to include both in Reconfig-P. That way,
the decision about which design is most suited to the problem at hand can be
left to the user or made based on an analysis of the characteristics of the input P
system.

P Builder, implemented in Java, is the component of Reconfig-P responsible
for generating customised Handel-C source code for the input P system. When
developing the new version of Reconfig-P, we re-engineered P Builder so that
it can accommodate both the rule-oriented and region-oriented designs. When re-
engineering P Builder, we aimed at promoting its maintainability and extensibility
through the use of appropriate software engineering design patterns. In this section,
we explain the design and implementation of the new version of P Builder.

5.1 Requirements for the new version of P Builder

When determining the hardware specification for the input P system, P Builder
aims to maximise performance and minimise hardware resource consumption. The
existing version of P Builder achieves this aim, as evidenced by the fact that the
existing version of Reconfig-P delivers a good balance between performance, flex-
ibility and scalability as a computing platform for membrane computing applica-
tions. Performance refers to the extent to which the system can execute P systems
in a time-efficient manner. Flexibility refers to the extent to which the system can
support the execution of a variety of classes of P systems. And scalability refers
to the extent to which the system can support the execution of large P systems.
Our primary purpose in re-engineering P Builder was to improve the flexibility of
Reconfig-P, while not too significantly compromising its existing levels of perfor-
mance and scalability. More specifically, our primary purpose was to broaden the
range of implementation approaches according to which P system models can be
realised as hardware circuits, and to develop a sophisticated object-oriented design
that promotes the maintainability and especially the extensibility of Reconfig-P,
where extensibility refers to the extent to which the system can readily be aug-
mented to support additional P system models and additional implementation
approaches.

A Region-Oriented Hardware Implementation for Membrane Computing 407

Fig. 7. The high-level architecture of the new version of P Builder, which was developed
according to the Content-Form-Strategy design pattern.

5.2 Design methodology

In the design of the new version of P Builder, our guiding design principle was
that of separation. First, we viewed the hardware implementation for a P system
as a complex of form and content, and attempted to treat the formal aspects
of this complex in isolation from its content. Second, we attempted to cleanly
separate the different functions performed by P Builder. We achieved the first
type of separation through the use of a novel design pattern, and achieved the
second type by allocating different functions to different modules. We now briefly
discuss these separation strategies.

The Content-Form-Strategy design pattern

The basic problem that P Builder is intended to solve is the generation of Handel-C
source code for a hardware circuit which implements an input P system according
to one of a variety of alternative implementation strategies (for example, with a
rule-oriented design and space-oriented resource conflict resolution). This problem
can be viewed as an instance of a more general problem: that of producing an
algorithm for the solution of a problem, where this algorithm must be constructed

408 V. Nguyen, D. Kearney, G. Gioiosa

according to one of a variety of possible implementation strategies. An implemen-
tation strategy does not affect the logical characteristics of an algorithm, but only
its implementation characteristics (such as performance or memory usage). When
constructing such an algorithm, it is beneficial to separate as much as possible
the logical characteristics of the algorithm from its implementation characteris-
tics. Not only does this make the algorithm easier to understand, it also facilitates
the use of new implementation strategies in the future. However, it is often quite
difficult to achieve a clean separation of the logical and implementation aspects
of an algorithm. Our novel design pattern, which we call Content-Form-Strategy,
prescribes a general solution to the general problem just outlined.

A key idea of the Content-Form-Strategy pattern is that an algorithm may be
viewed as a complex of form and content, where the units of content are logically
atomic computational operations and the form is the way in which these units of
content relate to each other logically and temporally. If an algorithm is viewed
as a flowchart such as that shown in Figure 6, then the shaded boxes in the
flowchart comprise the content of the algorithm, and the diamonds, arrows, bars
and unshaded boxes comprise the form of the algorithm. Note that computational
operations that are included in the algorithm solely for the purpose of linking and
synchronising other computational operations are regarded as part of the form
of the algorithm (they would be represented as unshaded boxes in a flowchart).
A strategy for the construction of an algorithm influences both the content and
form of the algorithm. That is, different strategies may require the inclusion of
different logically atomic computational operations, and will necessitate different
logical and temporal relationships between these operations.

The solution prescribed by the Content-Form-Strategy design pattern consists
of nine steps:

1. Define an abstract model of an algorithm as expressed in the desired imple-
mentation language.

2. For each implementation strategy, identify the logically atomic computational
operations in terms of which the algorithm to be constructed can be defined.

3. Express the logically atomic operations identified in step 2 in terms of the
elements of the abstract model of an algorithm defined in step 1.

4. For each implementation strategy, and for each of the logically atomic op-
erations identified in step 2, determine (a) the preprocessing operations and
postprocessing operations (if any) for the execution of the operation, (b) the
data writing (if any) performed by the operation, and (c) the temporal rela-
tionship of the operation with all the other logically atomic operations.

5. Express the preprocessing operations, postprocessing operations, data writing
and temporal relationships determined in step 4 in terms of the elements of
the abstract model of an algorithm.

6. Based on the results of steps 2 and 4, identify (a) the logically atomic com-
putational operations that apply to all implementation strategies, and (b) in-
variant preprocessing operations, postprocessing operations, data writing and
temporal relationships (i.e., those preprocessing operations, postprocessing op-

A Region-Oriented Hardware Implementation for Membrane Computing 409

erations, data writing and temporal relationships that obtain regardless of the
implementation strategy).

7. Based on the result of step 6, define a template algorithm which specifies the
features common to all possible algorithms for all implementation strategies
in terms of the elements of the abstract model of an algorithm.

8. For each implementation strategy, define an algorithm for the filling out of the
template algorithm defined in step 7 in terms of the elements of the abstract
model of an algorithm.

9. Express each of the algorithms defined in step 8 in the desired implementation
language.

Table 2 illustrates how the Content-Form-Strategy design pattern applies to the
specific problem of generating Handel-C source code for a circuit that implements
an input P system according to one of a variety of alternative implementation
approaches.

Modularisation

The new version of P Builder has been designed as a set of modules. Components
within a module are relatively tightly coupled, whereas components in different
modules are relatively loosely coupled. Each module has a well-defined interface
which indicates the high-level functions performed by the components in the mod-
ule. Via this interface, components in other modules can make use of these func-
tions. Because of the relatively loose coupling between modules, future modifica-
tions to a module will usually not necessitate changes in other modules. Clearly,
this improves the maintainability of P Builder.

5.3 Overview of the design and implementation

Figure 7 shows the high-level architecture of the new version of P Builder. This
architecture was designed according to the Content-Form-Strategy design pattern.
The UML class diagram shown in Figure 10 indicates how some elements of the
architecture are implemented as classes.

The main modules in P Builder are P System Representation, Strategies, Oper-
ation Builder, System Utilities, State Machine and Hardware Circuit Abstraction.
The modules have been designed and implemented with the aid of object-oriented
design patterns [4], which prescribe thoroughly tested and effective solutions to de-
sign problems, and therefore enable the creation of flexible, elegant and reusable
object-oriented designs4. We now briefly describe the modules.
4 For more information about object-oriented design patterns, we refer the reader to [4],

the classic reference in the field.

410 V. Nguyen, D. Kearney, G. Gioiosa

P System Representation

The P System Representation module provides an object-oriented representation of
a P system. It specifies classes of entities (such as Region, Rule and ObjectType),
attributes of these classes (such as the mul-
tiplicity attribute of the ObjectType class), and relationships that hold between
classes (such as the reflexive one-to-many relationship of containment that holds
for the Region class). The main purpose of this module is to allow P Builder to
represent the input P system as an object.

Hardware Circuit Abstraction

The Hardware Circuit Abstraction module provides an abstract representation of
a Handel-C specification of a hardware circuit.

A hardware circuit may be regarded as a complex processing unit composed
of simpler processing units. The most elegant and efficient way to represent such
a compositional structure of processing units in an object-oriented system is to
use of the Composite design pattern [4]. This pattern prescribes a way of repre-
senting part-whole hierarchies using tree structures of objects. The advantage of
using the Composite pattern is that it allows atomic objects (individual objects)
and composite objects (trees of objects) to be treated uniformly. Therefore in P
Builder we represent a Handel-C specification of a hardware circuit as a tree of
processing units. There are two types of processing units: parallel processing units
and sequential processing units. A processing unit may contain other processing
units. If a sequential processing unit contains other processing units, then these
other processing units are to be executed sequentially. If a parallel processing unit
contains other processing units, then these other processing units are to be ex-
ecuted in parallel. A processing unit which is not composed of other processing
units is called an atomic processing unit. For the sake of neatness, we regard an
atomic processing unit as a parallel processing unit. Each atomic processing unit is
associated with the specification of an operation, which we call a statement, which
executes in the smallest possible time interval. Atomic processing units correspond
to Handel-C statements, which execute in one clock cycle. The root node of the
tree of processing units, which is called the root processing unit, represents the
full execution of the hardware circuit. It corresponds to the main function in the
Handel-C program for the circuit. In the region-oriented design, the region pro-
cessing units are immediate children of the root processing unit, whereas in the
rule-oriented design the immediate children of the root processing unit include the
rule processing units. The leaf nodes of the tree are all atomic processing units.
To allow for the representation of control flow, every processing unit begins with
a preprocessing phase and ends with a postprocessing phase. Each type of phase
consists of a sequence of zero or more operations. Such an operation might be the
checking of a condition (for example, the condition for a while loop), the execu-
tion of a single statement (for example, the storage of data in a register), or the
execution of a collection (block) of statements.

A Region-Oriented Hardware Implementation for Membrane Computing 411

Aspect of Content- Example of how the aspect applies to
Form-Strategy pattern the generation of a hardware

circuit for a P system

Algorithm to be Handel-C program that specifies the
generated hardware circuit for the input P system

Rule-oriented/region-oriented design;
Current implementation space-oriented/time-oriented resource

approaches conflict resolution; deterministic/
nondeterministic execution

Possible future Alternative algorithms for
implementation approaches nondeterministic object distribution

Logically atomic DIV, MIN, MUL, SUB, COM, ADD
computational operations (see Section 4.2)

Preprocessing for the An ADD operation proceeds only
execution of a logically if the corresponding reaction

atomic operation rule is applicable

Temporal relationship A SUB operation should execute
between logically atomic only after its associated

operations MIN operation has executed

Operations included solely Operations performed
for the purpose of linking by system execution

and synchronisation coordinator

Abstract model of an algorithm Abstract model of a
as expressed in the hardware circuit as expressed in

implementation language a Handel-C program

An algorithm that specifies
Template algorithm the high-level stages of a

transition (e.g., object assignment)

Inclusion of object assignment
Filling out of for reaction rules with

the template algorithm priorities and object production when
space-oriented strategy is used

Table 2. Illustration of how the Content-Form-Strategy design pattern applies to the
problem of generating Handel-C source code for a circuit that implements an input P
system according to one of a variety of implementation approaches.

The UML class diagram in Figure 9 explains how these ideas are represented in
the implementation of P Builder. Figure 8 shows an example of Handel-C source
code generated from a tree of processing units. The correspondence between the
processing units and code sections is marked in the figure.

412 V. Nguyen, D. Kearney, G. Gioiosa

Fig. 8. Illustration of the correspondence between Handel-C source code and a tree of se-
quential processing units (SPUs), parallel processing units (PPUs) and atomic processing
units (APUs).

General design for all modules

All the modules share the same basic structure. More specifically, each module
contains four layers. The top layer is an interface which is exposed to the other
modules. The rest of the layers constitute a hierarchy of classes. The second layer
is a class that implements general operations for the module. When a client mod-
ule requests that one of these operations be performed in a certain way, the class
returns the specific subclass that implements the operation as requested. The third
layer consists of classes responsible for implementing specific overall implementa-
tion strategies (the currently available overall implementation strategies are the
rule-oriented and region-oriented strategies). The bottom layer consists of classes
responsible for implementing resource conflict resolution strategies (the currently
available resource conflict resolution strategies are the space-oriented and time-
oriented strategies).

Strategies

The Strategies module contains classes that realise different overall strategies for
the implementation of a P system on a hardware circuit. Currently there are

A Region-Oriented Hardware Implementation for Membrane Computing 413

Fig. 9. The main classes of entities used in an abstract representation of a hardware
circuit.

classes for the rule-oriented and region-oriented strategies. This module could be
extended to include classes for other strategies, such as nondeterministic reaction
rule application (see [7]).

GeneralStrategy

The top-level class of this module is GeneralStrategy. This class implements
the features common to all strategies. Depending on the requirements of the client
using the Strategies module, a specific strategy for the implementation of the input
P system on a hardware circuit needs to be applied. To decouple the client from the
various complex algorithms for the specific strategies, the Strategy design pattern
[4] is used. This design pattern states that a family of algorithms solving the same
problem in different ways should be defined in such a way that (a) the algorithm
that is used to solve the problem for a client is selected dynamically based on
the specific requirements of the client, and (b) the client does not need to know
which particular algorithm is used. In our design, the algorithms for the different
strategies are implemented in different subclasses of the GeneralStrategy class,
which implements the StrategyInterface interface. When a client wishes for the
strategy most appropriate to its requirements to be applied, it needs only to pass
its requirements as parameters to an instance of a class called StrategySelector,
which returns an instance of a subclass of GeneralStrategy which satisfies the
requirements, and then invoke the execute() method of the returned instance. So

414 V. Nguyen, D. Kearney, G. Gioiosa

all the client needs to know is its own requirements and the interface specified in
StrategyInterface.

One way of implementing different strategies for the hardware representation
of the execution of a P system and for resource conflict resolution is to implement
each specific algorithm in a separate class. However, taking such an approach
would likely result in duplication of code, which is bad for maintainability. Hence
a better implementation approach is required.

As discussed in Section 3.2, the high-level execution algorithm that underlies
each of the different implementation strategies consists of an object assignment
phase and an object overall production phase, each of which is defined in terms of
a set of logically atomic operations. Distinct strategies for the hardware represen-
tation of the execution of a P system differ with respect to the way in which the
logically atomic operations are put together to realise high-level operations. There-
fore, we implement the high-level execution algorithm in the GeneralStrategy
class, and implement the specialised versions of the execution algorithm for the
different strategies in different subclasses of GeneralStrategy. This is achieved in
an elegant way through the use of the Template design pattern [4]. By following
this design pattern, we can enforce that specialised algorithms in the subclasses
conform to the high-level algorithm, and make the implementation transparently
reflect the logical characteristics of the execution of a P system. A template method
in a superclass defines the skeleton of an algorithm, which can be filled out in
different ways in different subclasses. That is, a subclass fills some or all of the
placeholders in the template method in order to implement a more specialised algo-
rithm. As shown in Figure 10, the algorithms defined by the assignObjects() and
produceObjects() methods, which implement the object assignment and object
production phases in terms of the logically atomic operations, are implemented as
template methods. They define the sequence of logically atomic operations that
needs to be executed to accomplish the processing for the relevant phase. Each
method is declared as final in order to prevent subclasses from overriding the
method (and therefore from being able to change the order in which the logically
atomic operations are executed). To define specialised algorithms, one need only
provide implementations of the logically atomic operations in the subclasses of the
class containing the template method.

SpecificImplementationStrategy

A SpecificImplementationStrategy class implements the execution algorithm
for a specific overall implementation strategy (i.e., currently either the rule-
oriented strategy or region-oriented strategy). This can be achieved by (a) im-
plementing the relevant atomic operations defined in the template methods for
assignObjects() and produceObjects() so that the object assignment and ob-
ject production phases take on the specific behaviours characteristic of the imple-
mentation strategy, and/or (b) implementing suitable wrapper code for the object
assignment and object production phases.

A Region-Oriented Hardware Implementation for Membrane Computing 415

Fig. 10. A high-level view of the major modules in P Builder and their relationships.

416 V. Nguyen, D. Kearney, G. Gioiosa

SpecificImplementationAndConflictResolutionStrategy

A SpecificImplementa-
tionAndConflictResolutionStrategy class represents a strategy combining both
an overall implementation strategy and a resource conflict resolution strategy
(e.g., a combination of the region-oriented implementation strategy and the time-
oriented resource conflict resolution strategy). The class implements the specific
resource conflict resolution strategy by implementing the methods relevant to re-
source conflict resolution. For instance, because the updating of the multiset of
objects in a region is accomplished in different ways in the different resource con-
flict resolution strategies, the definition of the method which is devoted to this
operation is deferred to the SpecificImplementationAndConflictResol-
utionStrategy classes.

Builder

Instead of having each implementation class implement the complicated steps of
generating the source code for a logically atomic operation, which would result
in complicated code, we separate the actual construction of complex objects from
the high-level procedure or algorithm according to which the construction is to
proceed by delegating the actual construction to other classes. This is done in
accordance with the Builder design pattern [4].

The Builder module has a similar structure to the Strategy module, and the
classes in each of its layers fulfil similar roles. Briefly, a BuilderManager determines
the specific Builder to instantiate and execute based on the options passed by the
client to the Strategies module. The BuilderInterface interface specifies the ba-
sic functionality of Builder instances. The Builder class defines a template method
which specifies all the steps a specific Builder implementation should execute (see
Figure 10), and is responsible for selecting the specific Builder to execute given the
client’s requirements. The SpecificBuilder classes implement concrete Builder
implementations for specific atomic operations (e.g., ADDBuilder, DIVBuilder and
COMBuilder). The classes in the bottom layer of the module refine these concrete
Builder implementations in order to accommodate the overall implementation
strategy and conflict resolution strategy.

One of the major operations a concrete Builder implementation carries out is
generateFunctionPUnit, which involves generating the hardware component that
implements a specific logically atomic operation. There may be more than one ap-
proach to the implementation of the operation. For instance, at present the MIN
operation is implemented as a macro expression which executes in one clock cycle.
However, when the input P system is large, one might wish to apply logic-depth
reduction in the implementation of this operation, or implement the operation in a
different way. To add flexibility to the implementation of hardware components for
the logically atomic operations, the Visitor pattern [4] is used. The Visitor pattern
applies to contexts in which an operation needs to be performed on elements of

A Region-Oriented Hardware Implementation for Membrane Computing 417

an object structure. It allows a new operation to be defined without changing the
classes of the elements on which it operates. The source code below illustrates how
the Visitor pattern allows the addition of a new method of implementing the MIN
operation — a method which reduces the logic depth of the operation — without
changing any of the existing classes.

interface MINMethod {
...generateMINImplementation();

...getNumberOfClockCyclesConsumed(); //needed for synchronisation purposes

}
class NoLogicDepthMIN implements MINMethod {
......

}
class LogicDepthMIN implements MINMethod {
......

}
class MINBuilder{
...MINMethod method; //the method of implementing MIN

...public MINBuilder() {

......method = new NoLogicDepthMIN;//default method is NoLogicDepthMIN

...}
...public void accept (MINMethod newMethod){
......method = newMethod; //set the method of implementing MIN

...}

...public void generateFunctionPUnit(){

......method.generateMINImplementation();

.........

...}
}

StateMachineGenerator

This module implements the linking and synchronisation of processing units dis-
cussed in Section 4.3 by generating the appropriate state machines. This involves
using the control constructs of Handel-C (e.g., if and for) to implement basic state
machines, as well as defining special-purpose components for the implementation of
high-level linking and synchronisation of application-level processing units. When
generating hardware source code for an operation, the Builder classes implement
the state machine for the internal implementation of the operation. The StateMa-
chineGenerator module is different in that it implements state machines for the
linking and synchronisation of application-level processing units: at the level of
reaction rules, at the level of regions, and at the level of the whole P system.

The representation of the hardware circuit as a tree structure of processing
units (see Section 5.3) facilitates powerful and flexible approaches to the imple-
mentation of state machines. A ProcessingUnitManager is able to traverse the

418 V. Nguyen, D. Kearney, G. Gioiosa

tree of processing units. It can link and synchronise processing units by adding
code to the preprocessing and postprocessing phases of the processing units. The
added code can take on the form of a conditional expression, a single statement or
a block of statements. It can create new processing units, delete processing units,
include a processing unit in another processing unit, and modify the temporal
relationships between processing units.

As already mentioned, the StateMachineGenerator module generates state ma-
chines at three levels. These three levels are handled by three different classes:
RuleStateMachine, RegionStateMachine and SystemStateMachine. For exam-
ple, if the region-oriented implementation strategy is adopted, SystemStateMach-
ine produces state machines and processing units (such as the system execution
coordinator mentioned in Section 3.3) for the synchronisation of the execution of
region processing units in order to accomplish the transition-by-transition evolu-
tion of the P system.

Utilities

To ensure that the names of variables, functions, macros, signals and other con-
structs in the Handel-C representation of a hardware circuit consistently follow
predefined naming conventions, a class called NameGenerator is implemented.
This class contains a method for each type of construct that returns a unique
identifier following the relevant naming convention. Although the functionality of
NameGenerator is quite basic, it plays a fundamental role in the generation of
understandable code, and therefore in the promotion of the maintainability of P
Builder.

In the source code generated for a hardware circuit, various types of procedures
are repeated in different parts of the code. For example, the procedure of initial-
ising an array of registers is usually instantiated multiple times. A class called
FunctionGenerator contains various methods which, when invoked with the ap-
propriate parameters, returns the code for common types of procedures specialised
according to the parameters. By eliminating duplication of code, the inclusion of
FunctionGenerator promotes the maintainability of P Builder.

A class called SystemConstants defines all of the constant values used by the
various components of P Builder. Defining the constant values in one place has
two advantages, both of which promote the maintainability of P Builder. First, if
any of these constants need to be modified in the future, only one modification
needs to be made. Second, it eliminates the possibility of different components
giving different values to the same constant, and therefore helps to prevent errors.

GenerationContext

To avoid the passing of parameters related to the current status of P Builder’s
operations (e.g., the region of the input P system currently being processed by P
Builder), which can be error-prone and inefficient, a class called GenerationContext

A Region-Oriented Hardware Implementation for Membrane Computing 419

is implemented using the Singleton design pattern [4]. The use of the Singleton
pattern ensures that there is only one instance of the class. The various classes
of objects implementing the functionality of P Builder access the fields of this
instance in order to obtain information about the current status of P Builder’s
operations, and also update these fields in order to reflect changes to this status
brought about by their own operations.

6 Evaluation of the region-oriented design

In this section, we evaluate our new region-oriented hardware design. More specif-
ically, we report on the hardware resource consumption and clock rates exhibited
by hardware circuits implementing P systems using the region-oriented design,
and compare the results obtained with those obtained for hardware circuits imple-
menting P systems using the rule-oriented design. We conclude the section with
comments about the performance and scalability of the region-oriented hardware
design in particular and Reconfig-P in general.

6.1 Details of the experiments

In the experiments, Reconfig-P was used to synthesise hardware circuits for a set of
input P systems, according to different implementation strategies. This hardware
source code was then synthesised into hardware circuits. The target hardware
platform was a Virtex-II RC2000.

Table 3 describes the characteristics of the input P systems used in the ex-
periments, including the number of regions and reaction rules in the P system,
the number of objects (i.e., the product of the number of object types and the
number of regions), the number of inter-region communications of object types in
the definitions of reaction rules, the number of communication channels used in
the implementation of the P system, and the total number of resource conflicts.
In the table, P systems P1 through to P5 are used to test the effect of increasing
the size of the input P system, and P6 and P7 are used to investigate the effect of
using channels for the communication of objects and the effect of using semaphores
for the dynamic updating of multisets of objects, respectively. Unlike P systems
P1 through to P5, which have region hierarchies, P system P7 contains regions
connected in a tissue-like fashion. P7 was included in order to facilitate the testing
of the effect of having large numbers of communications and channels.

6.2 Experimental results

Efficiency of hardware circuits using the region-oriented design

Figure 11 illustrates the hardware circuits generated for the input P system P5
(which contains 5 regions and 50 reaction rules) using different implementation

420 V. Nguyen, D. Kearney, G. Gioiosa

P system Rules Regions Total objects Inter-region communications Channels Total conflicts

P1 10 1 3 80 0 21
P2 20 2 6 16 5 32
P3 30 3 9 36 9 32
P4 40 4 12 44 12 40
P5 50 5 15 49 15 42
P6 50 25 75 74 64 42
P7 50 25 200 319 315 45

Table 3. Details of the input P systems used in the experiments.

strategies. In keeping with the desired logical independence of regions in the region-
oriented design, the five regions are realised as five separate, decoupled processing
units on the hardware circuits using this design (‘region-oriented circuits’). In
contrast to the region-oriented circuits, the circuits using the rule-oriented de-
sign (‘rule-oriented circuits’) implement the P system as 50 rule processing units
which operate both within and across the (merely conceptual) regions, resulting
in intermingled, strongly coupled circuits (especially when the time-oriented con-
flict resolution strategy is used). Although regions are not explicitly represented
when the rule-oriented design is used, it is still possible to discern the regions in
the rule-oriented, space-oriented circuits. This is a consequence of the existence of
processing units which operate at the region level (e.g., processing units involved
in the replication of registers storing the multiplicity values of object types in a
region and in the coordination of the values stored in these registers) and therefore
implicitly represent regions.

Hardware resource consumption

The results of the experiments demonstrate that region-oriented circuits tend to
be more efficient in terms of hardware resource consumption than rule-oriented
circuits. This is because (a) there are fewer core processing units to realise (since
the number of regions is usually smaller than the number of reaction rules) in
region-oriented circuits than in rule-oriented circuits, and (b) the number of chan-
nels used to implement inter-region communication, the main extra resource used
in the region-oriented design, is minimised in our design and is therefore rela-
tively small in general. As expected, among region-oriented circuits, those circuits
using the time-oriented resource conflict strategy (region-oriented time-oriented
circuits) consume fewer hardware resources than those using the space-oriented
resource conflict strategy (region-oriented space-oriented circuits).

A Region-Oriented Hardware Implementation for Membrane Computing 421

Region-oriented, space-oriented circuit

Rule-oriented, space-oriented circuit

Region-oriented, time-oriented circuit

Rule-oriented, time-oriented circuit

Fig. 11. Hardware circuits implementing input P system P5.

However, when the number of regions becomes large (e.g., in P system P6), the
hardware resource consumption exhibited by region-oriented circuits is similar to
that exhibited by rule-oriented circuits. If the number of communications is also
large, and the number of channels used is large due to the specific characteris-
tics of these communications (as is the case in, for example, P system P7), the
hardware resource consumption exhibited by region-oriented circuits is greater
than that exhibited by rule-oriented circuits. It is notable that in this case the
region-oriented time-oriented circuits consume more hardware resources than the
region-oriented space-oriented circuits. This is because our time-oriented conflict
resolution strategy performs static interleaving for updating operations only for
local objects (which account for only 2% of all updating operations in the case of
P system P7) and therefore has to rely on Handel-C semaphores for the updating
of external objects (a method which is less efficient in terms of hardware resource
consumption).

422 V. Nguyen, D. Kearney, G. Gioiosa

Resource consumption (%LUT)

P Region-oriented Rule-oriented

system Space- Time- Space- Time-
oriented oriented oriented oriented

P1 2.03 1.83 2.25 2.08
P2 3.82 3.53 4.24 3.75
P3 5.72 5.47 6.49 5.79
P4 7.34 7.16 8.29 7.69
P5 9.20 8.85 10.43 9.33
P6 12.28 11.68 12.00 11.81
P7 14.20 14.72 13.00 13.32

...

Clock rate (MHz)

P Region-oriented Rule-oriented

system Space- Time- Space- Time-
oriented oriented oriented oriented

P1 63.84 65.62 67.20 66.96
P2 60.07 64.63 66.05 64.30
P3 58.15 60.41 66.51 66.52
P4 63.69 59.67 66.18 66.47
P5 58.9 58.52 65.78 64.90
P6 65.74 66.56 65.95 63.61
P7 58.79 43.48 62.50 60.00

Table 4. Experimental results for the hardware resource consumption and clock rates
exhibited by circuits implementing the P systems listed in Table 3 according to various
implementation strategies.

Clock rates

The clock rates achieved by region-oriented circuits tend to be lower than those
achieved by rule-oriented circuits. This is due to the logic depth associated with
the dynamic determination of applicable reaction rules in the object assignment
phase in region-oriented circuits. However, the lower clock rates are compensated
by a possible reduction in the number of clock cycles consumed in region-oriented
circuits: the dynamic determination of applicable reaction rules guarantees that
an optimal number of clock cycles is used in each round of the object assignment
phase in region-oriented circuits, which is something that cannot be guaranteed
in rule-oriented circuits. Therefore, in general the performance of region-oriented
circuits is satisfactory. Having said this, however, when the object production
phase involves a large number of external objects (as is the case in P system P7),
the clock rate achievable by region-oriented time-oriented circuits is significantly
reduced due to the logic depth associated with the use of semaphores.

Other observations

The experimental results show that circuits generated by Reconfig-P are very
efficient in terms of hardware resource consumption, with the biggest P system
P7 consuming only 14% of the total available resources when the region-oriented
strategy is used and only 12% when the rule-oriented strategy is used.

As the target computing platform used in the experiments was the Virtex-II
RC2000, the maximum clock rate at which a hardware circuit could execute and
communicate with the host computer was 65 MHz. Given this maximum clock
rate, the clock rates achieved by all the generated circuits are satisfying, especially
when one considers that Reconfig-P did not apply logic-depth reduction in the
experiments.

A Region-Oriented Hardware Implementation for Membrane Computing 423

Reconfig-P also achieves good scalability. The hardware resource consumption
increases sub-linearly as the size of the P system increases. Therefore increasing
the size of the input P system does not have a significant effect on the circuits
(especially rule-oriented circuits).

Fig. 12. Graphs of the experimental results presented in Table 4.

Since in the rule-oriented design a P system is implemented in such a way
that the application of reaction rules is accomplished by dedicated rule processing
units, hardware circuits generated according to this design are relatively insensi-

424 V. Nguyen, D. Kearney, G. Gioiosa

tive to those characteristics of a P system related to regions (e.g., the number of
regions, the hierarchical structure of regions, and the way in which regions commu-
nicate). Therefore, in the experiments rule-oriented circuits exhibited consistently
good performance. Region-oriented circuits, for obvious reasons, are more sensi-
tive to region-related characteristics of the input P system. Nevertheless, for many
P systems, region-oriented circuits and rule-oriented circuits exhibited a similar
level of performance. Therefore, unless having the highest possible performance is
important, if one wishes to execute a P system that involves computational activ-
ities directly associated with membranes or regions, the region-oriented strategy
is perhaps the better choice.

7 Conclusion

In the course of developing the newest version of Reconfig-P, we have contributed

• an implementation of an elegant region-oriented hardware design that closely
matches the intuitive conceptual understanding of a P system, exhibits good
performance and scalability, and facilitates the future implementation of addi-
tional types of P systems,

• a novel design pattern which prescribes a general solution to the problem of
designing an algorithm (source code) generation system in such a way that the
logical and implementation aspects of the algorithm are kept separate, and

• a new version of P Builder designed according to the aforementioned design
pattern which seamlessly integrates the rule-oriented, region-oriented, space-
oriented and time-oriented implementation strategies and facilitates the adop-
tion of additional implementation strategies.

We believe that the work described in this paper has enhanced the versatility
of Reconfig-P and provided a solid foundation for the eventual development of a
hardware platform for membrane computing applications responsive to the needs
of a wide range of users. Indeed, we envision that Reconfig-P could be used in the
not-too-distant future for the execution of significant real-life applications.

One of the most interesting potential application areas is the simulation of
biological processes. In one sense, Reconfig-P is already ready for the simulation
of biological processes. The only requirement is that such processes be modelled
in terms of the basic P system models supported by Reconfig-P. However, the
biological applications of membrane computing published to date typically involve
P systems that incorporate non-standard or special features (such as reaction
rates). For Reconfig-P to be able to execute specialised biological applications
involving P systems with non-standard features, it would need to be augmented
to incorporate these features. The extensibility of the newest version of Reconfig-P
would facilitate such an augmentation.

One aspect of Reconfig-P that has been relatively neglected until now is its user
interface. In particular, currently an ad hoc language for the specification of input

A Region-Oriented Hardware Implementation for Membrane Computing 425

P systems is used. To enhance the usability of Reconfig-P, a more standardised
language for the specifications of input P systems could be incorporated. One
possibility is the incorporation of the P-Lingua language [5].

References

1. Bernardini, F. and Manca, V. 2002. P Systems with Boundary Rules. In G. Pǎun
et al. (eds) WMC-CdeA 2002. Vol. 2597 of Lecture Notes in Computer Science,
Springer, pp. 107–118.

2. Celoxica Ltd. 2005. Handel-C Language Reference Manual. http://babbage.cs.

qc.edu/courses/cs345/Manuals/HandelC.pdf

3. Freund, R. and Oswald, M. 2002. P Systems with Activated/Prohibited Membrane
Channels. In G. Pǎun et al. (eds) WMC-CdeA 2002. Vol. 2597 of Lecture Notes in
Computer Science, Springer, pp. 261–269.

4. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman.

5. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I. and Pérez-
Jiménez, M. J. 2009. P-Lingua 2.0: New Features and First Applications. In R.
Gutiérrez-Escudero et al. (eds), Proceedings of the Seventh Brainstorming Week on
Membrane Computing, Sevilla, Spain, February 2–6, 2009, Vol. 1, pp. 141–167.

6. Ionescu, M., Pǎun, G. and Yokomori, T. 2007. Spiking Neural P Systems with an
Exhaustive Use of Rules. International Journal of Unconventional Computing, Vol.
3, pp. 135–154.

7. Nguyen, V., Kearney, D. and Gioiosa, G. 2008. An Algorithm for Non-deterministic
Object Distribution in P Systems and Its Implementation in Hardware. In D. W.
Corne et al. (eds) WMC9 2008. Vol. 5391 of Lecture Notes in Computer Science,
Springer, pp. 325–354.

8. Nguyen, V., Kearney, D. and Gioiosa, G. 2007. Balancing Performance, Flexibility
and Scalability in a Parallel Computing Platform for Membrane Computing Appli-
cations. In G. Eleftherakis et al. (eds) WMC8 2007. Vol. 4860 of Lecture Notes in
Computer Science, Springer, pp. 385–413.

9. Nguyen, V., Kearney, D. and Gioiosa, G. 2008. An Implementation of Membrane
Computing using Reconfigurable Hardware. Computing and Informatics, Vol. 27,
pp. 551–569.

10. Pǎun, A. and Pǎun, G. 2002. The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing, Vol. 20, pp. 295–305.

11. Pǎun, G. 2000. Computing with Membranes — A Variant: P Systems with Polarized
Membranes. International Journal of Foundations of Computer Science, Vol. 11, pp.
167–182.

12. Pǎun, G. 2002. Membrane Computing: An Introduction. Springer.
13. Xilinx. 2007. Virtex-II Complete Data Sheet. http://www.xilinx.com/support/

documentation/data sheets/ds031.pdf.

Discovering the Membrane Topology of Hyperdag
P Systems

Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand
{radu,mjd}@cs.auckland.ac.nz tkim021@aucklanduni.ac.nz

Summary. In an earlier paper, we presented an extension to the families of P systems,
called hyperdag P Systems (hP systems), by proposing a new underlying topological
structure based on the hierarchical dag structure (instead of trees or digraphs). In this
paper, we develop building-block membrane algorithms for discovery of the global topo-
logical structure from the local cell point of view. In doing so, we propose more convenient
operational modes and communication transfer modes, that depend only on each of the
individual cell rules.

Finally, by extending our initial work done in visualization of hP system membranes
with interconnections based on dag structures without transitive arcs, we propose several
ways to represent all communication channels, including transitive ones, in the plane by
3D-folded (and possibly twisted) simple-closed regions.

1 Introduction

In this paper we continue our study [8]. Specifically, we are interested to validate
the adequacy of our hP system model for describing a subset of fundamental
distributed algorithms that present relevance to networking.

For several algorithms, especially Algorithms 1 and 5 below, we follow and
extend to dags the approach used by Ciobanu et al. in [4, 3]. We also use traditional
rewriting rules, without pseudo-code.

In this process, we identify areas where our initial model was not versatile
enough and we propose corresponding adjustments, that can also be retrofitted to
other models of the P family, such as the refinement of the rewrite and transfer
modes. We also advocate the weak policy for priority rules [10], which we believe
is closer to the actual task scheduling in operating systems.

This paper focuses on basic building blocks that are relevant for network discov-
ery (see also [7]): broadcast, convergecast, flooding, and a simple synchronization
solution, that highlights the versatility of the dag structure underlying hP systems.

We have earlier proposed an algorithm to visually represent hP systems, where
the underlying cell structure was restricted to a canonical dag (i.e., without tran-

Discovering the Membrane Topology of Hyperdag P Systems 427

sitive arcs) [8]. Nodes were represented as simple closed regions on the plane (with
possible nesting or overlaps) and communication channels by direct containment
relationships of the regions. In this paper, we extend this planar representation
by presenting several plausible solutions that enable us to visualize any hP sys-
tem, modelled as an arbitrary dag, in the plane. Additionally, for these solutions,
we discuss their advantages and limitations. Finally, in Section 6, we describe a
new algorithm for representing general hP systems, where transitive arcs are not
excluded.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations [8]:
relations, graphs, nodes (vertices), arcs, directed graphs, directed acyclic graphs
(dags), canonical dags (dags without transitive arcs), trees, node height (number
of arcs on the longest path to a descendant), topological order, set or multiset
based hypergraphs, simple closed curves (Jordan curves), alphabets, strings and
multisets over an alphabet.

We also assume familiarity with transition P systems and their planar repre-
sentation [10] and with hyperdag P systems (hP systems) [8].

Without giving all functional details, we recall here the basic notations and
the definition of hP systems. Given a set of objects O, we define the following sets
of tagged objects: O↑ = {o↑ | o ∈ O}, O↓ = {o↓ | o ∈ O}, O↔ = {o↔ | o ∈ O},
Ogo = {ogo | o ∈ O}, Oout = {oout | o ∈ O}. Intuitively, the ↑, ↓, ↔ tags indicate
objects that will be transferred to parents, children, siblings, respectively; the go

tags indicate transfer to all neighbors (parents, children and siblings); the out tags
indicate transfer to the environment.

Definition 1 (Hyperdag P systems). An hP system of order m is a system
Π = (O, σ1, . . . , σm, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set of states;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects;
• Pi is a finite set of multiset rewriting rules of the form sx → s′x′u↑v↓w↔

ygozout, where s, s′ ∈ Qi, x, x′ ∈ O∗, u↑ ∈ O∗↑, v↓ ∈ O∗↓, w↔ ∈ O∗↔,
ygo ∈ O∗go and zout ∈ O∗out, with the restriction that zout = λ for all
i ∈ {1, . . . ,m}\Iout;

3. δ is a set of dag parent-child arcs on {1, . . . ,m}, i.e., δ ⊆ {1, . . . ,m} ×
{1, . . . ,m}, representing duplex communication channels between cells;

4. Iout ⊆ {1, . . . ,m} indicates the output cells, the only cells allowed to send
objects to the “environment”.

428 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

The dynamic operations of hP systems, i.e., the configuration changes via ob-
ject rewriting and object transfer, are a natural extension of similar operations
used by transition P systems and nP systems. Our earlier paper, [8], describes the
dynamic behavior of hP systems, in more detail.

We measure the runtime complexity of a P system in terms of P-steps, where
a P-step corresponds to a transition on a parallel P machine. If no more transi-
tions are possible, the hP system halts. For halted hP systems, the computational
result is the multiset of objects emitted out (to the “environment”), over all the
time steps, from the output cells Iout. The numerical result is the set of vectors
consisting of the object multiplicities in the multiset result. Within the family of
P systems, two systems are functionally equivalent if they yield the same compu-
tational result.

Example 1. Figure 1 shows the structure of an hP system that models a computer
network. Four computers are connected to “Ethernet Bus 1”, the other four com-
puters are connected to “Ethernet Bus 2”, while two of the first group and two
of the second group are at the same time connected to a wireless cell. In this fig-
ure we also suggest that “Ethernet Bus 1” and “Ethernet Bus 2” are themselves
connected to a higher level communication hub, in a generalized hypergraph.

We have already shown, [8], that our hP systems can simulate any transi-
tion P system [10] and any bidirectional nP system [9], with the same number of
steps and object transfers. To keep the arguments simple, we have only considered
systems without additional features, such as dissolving membranes, priorities or
polarities. However, our definition of hP systems can also be extended, as needed,
with additional features, in a straightforward manner, and we do so in this paper.

Model refinements

• As initially defined [8], the rules are applied according to the current cell state s,
in the rewrite mode α(s) ∈ {min, par, max}, and the objects are sent out in the
transfer mode β(s) ∈ {one, spread, repl}. In this paper, we propose a refinement
to these modes and allow that the rewrite and transfer modes to depend on the
rule used (instead of the state), as long as there are no conflicting requirements.
We will highlight the cases where this modes extension is essential.

• We also consider rules with priorities, in their weak interpretation [10]. In the
current paper, lower numbers (i.e., first enumerated) indicate higher priority.
In the weak interpretation of the priority, rules are applied in decreasing order
of their priorities — where a lower priority rule can only applied after all
higher priority rules have been applied (as required by the rewriting modes).
In contrast, in the strong interpretation, a lower priority rule cannot be applied
at all, if a higher priority rule was applied. We will highlight the cases where
the weak interpretation is required.

Discovering the Membrane Topology of Hyperdag P Systems 429

Ethernet Bus 1 Ethernet Bus 2

Wireless Bus

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Bus

Fig. 1. A computer network and its corresponding hP representation.

3 Basic algorithms for network discovery—without IDs

In this section and the following, we study several basic distributed algorithms
for network discovery, adapted to hP systems. Essentially, all cells start in the
same state and with the same or similar set of rules, but there are several different
scenarios:

1. Initially, cells know nothing about the structure in which they are linked,
and must even discover their local neighborhood (i.e., their parents, children,
siblings), as well as some global model topology characteristics (such as various
dag measures or shortest paths).

2. As above, but each cell has its own ID (identifier) and is allowed to have custom
rules for this ID.

3. As above, each cell has its own ID and also knows the details of its immediate
neighbors (parents, children and, optionally, siblings).

430 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

1

2 3

4 5 6

7

8

9

Fig. 2. Sample dag for illustrating our algorithms.

Algorithm 1: Broadcast to all descendants.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules. The initiating cell has an
additional object a, that is not present in any other cell.

Postcondition: All descendant cells are eventually visited and enter state s1.

Rules:

1. s0a→ s1a↓, with α = min, β = repl.
2. s1a→ s1, with α = par.
ut

Proof. This is a deterministic algorithm. Rule 1 is applied exactly once, when the
cell is in state s0 and an a is available. This a is consumed, the cell enters state
s1 and another a is sent to all the children, replicated as necessary. Additional a’s
may appear in a cell, because, in a dag structure, a cell may have more than one
parent. Rule 2 is applicable in state s1 and silently discards any additional a’s,
without changing the state and without interacting with other cells. All a’s will
eventually disappear from the system—however, cells themselves may never know
that the algorithm has completed and no other a’s will come from its parents. By
induction, all descendants will receive an a and enter state s1. ut

Remark 1.

• This broadcast algorithm can be initiated anywhere in the dag. However, it is
probably most useful when initiated on a dag source, or on all sources at the
same time (using the same object a or a different object for each source).

Discovering the Membrane Topology of Hyperdag P Systems 431

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other broadcasting algorithms can be built in a similar manner, such
as broadcast to all ancestors or broadcast to all reachable cells (ancestors and
descendants).

• This algorithm family follows the approach used by Ciobanu et al. [4, 3], for tree
based algorithms, called Skin membrane broadcast and Generalized broadcast.

Example 2. We illustrate the algorithm for broadcasting to all descendants, for the
hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0a s0a s0 s0 s0 s0 s0 s0
2 s1 s1 s1 s0a s0aa s0a s0 s0 s0
3 s1 s1 s1 s1 s1a s1 s0a s0a s0
4 s1 s1 s1 s1 s1 s1 s1 s1a s0
5 s1 s1 s1 s1 s1 s1 s1 s1 s0

Algorithm 2: Counting all paths from a given ancestor.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0 and with the same rules. The initiating cell has an
additional object a, not present in any other cell.

Postcondition: All descendant cells are eventually visited, enter state s1 and will
have a number of b’s equal to the number of distinct paths from the initiating cell.

Rules:

1. s0a→ s1ba↓, with α = par, β = repl.
2. s1a→ s1ba↓, with α = par, β = repl.
ut

Proof. This is a deterministic algorithm. Rule 1 is applied when the cell is in state
s0 and an a is available. This a is consumed, the cell enters state s1, a b is gener-
ated and another a is sent to all its children, replicated as necessary. Additional
a’s may appear in a cell, because, in a dag structure, a cell may have more than
one parent. Rule 2 is similar to rule 1. State s1 is similar to state s0 and is not
essential here, it appears here only to mark visited cells. The number of generated
b’s is equal to the number of received a’s, which eventually will be equal to the
number of paths from the initiating cell. All a’s will eventually disappear from the

432 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

system—however, cells themselves may never know that the algorithm has com-
pleted, that no other a’s will come from a parent and all paths have been counted.
A more rigorous proof will proceed by induction. ut

Remark 2.

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other path counting algorithms can be built in a similar manner, such
as the number of paths to a given descendant.

Example 3. We illustrate the algorithm for counting all paths from a given ances-
tor, for the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1b s0a s0a s0 s0 s0 s0 s0 s0
2 s1b s1b s1b s0a s0aa s0a s0 s0 s0
3 s1b s1b s1b s1b s1bb s1b s0a s0aa s0
4 s1b s1b s1b s1b s1bb s1b s1b s1abb s0
5 s1b s1b s1b s1b s1bb s1b s1b s1bbb s0

Algorithm 3: Counting the children of a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. The initiating cell and its children start in state s0 and with the same rules.
The initiating cell has an additional object a, not present in any other cell.

Postcondition: The initiating cell ends in state s1 and with a number of c’s equal
to its child count. The child cells end in state s1. As a side effect, other parents
(if any) of these children will receive superfluous c’s—however, these c’s can be
discarded, if needed (rules not shown here).

Rules:

1. s0a→ s1p↓, with α = min, β = repl.
2. s0p→ s1c↑, with α = min, β = repl.
ut

Proof. This is a deterministic algorithm with a straightforward proof, not given
here. ut

Discovering the Membrane Topology of Hyperdag P Systems 433

Remark 3.

• This algorithm completes after 2 P-steps.
• Several other algorithms that enumerate the immediate neighborhood can be

built in a similar manner, such as counting parents, counting siblings, counting
neighbors.

Algorithm 4: Broadcast for counting all children.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0 and with the same rules. The initiating cell has an
additional object a, not present in any other cell.

Postcondition: Each descendant cell enters state s1 and, eventually, will contain
a number of c’s equal to its child count.

Rules:

0. For state s0:
1) s0a→ s1p↓, with α = min, β = repl.
2) s0p→ s1p↓c↑, with α = min, β = repl.

1. For state s1:
1) s1p→ s1, with α = par.
ut

Proof. This a deterministic algorithm: the proof combines those from the broad-
cast algorithm (Algorithm 1) and the child counting algorithm (Algorithm 3). ut

Remark 4.

• This algorithm runs in h + 1 P-steps, where h is the height of the initiating
cell.

• State s1 may be reached before the algorithm completes its cleanup phase and
cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of
the initiating node will receive superfluous c’s.

• Several other algorithms that broadcast a request to count the immediate
neighborhood can be built in a similar manner, such as broadcast for count-
ing all parents, broadcast for counting all siblings, broadcast for counting all
neighbors.

Example 4. We illustrate the algorithm for counting all children via broadcasting,
for the hP system shown in Figure 2.

434 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p s0p s0 s0 s0 s0 s0 s0
2 s1cc s1 s1 s0p s0pp s0p s0 s0 s0
3 s1cc s1cc s1cc s1 s1p s1 s0p s0p s0c
4 s1cc s1cc s1cc s1 s1c s1c s1c s1p s0c
5 s1cc s1cc s1cc s1 s1c s1c s1c s1 s0c

Algorithm 5: Counting heights by flooding.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules and have no initial object.

Postcondition: All cells end in state s2. The number of t’s in each cell equals
the distance from a furthest descendant.

Rules:

0. For state s0:
1) s0 → s1ac↑, α = min, β = repl.

1. For state s1, the rules will run under the following priorities, under the weak
interpretation:
1) s1ac→ s1atc↑, α = max, β = repl.
2) s1c→ s1, α = max.
3) s1a→ s2, α = min.
ut

Proof. Each cell emits a single object c to each of its parents in the first step.
During successive active steps, a cell either: (a) uses rule 1.3 to enter the termi-
nating state s2 or (b) continues via rule 1.1 to forward one c up to each of its
parents. In the latter case, since we have α = max, and as enabled by the weak
interpretation of priorities, rule 1.2 is further used to remove all remaining c’s (if
any), in the same step. The cell safely enters the end state s2 when no more c’s
appear. Induction shows that the set of times that c’s appear is consecutive: if a
cell at k > 1 links away emitted a c, then there must be another cell at k − 1
links away emitting another c. Finally, the number of times rule 1.1 is applied is
the number of times a cell receives at least one new c from below. These steps are
tallied by occurrences of the object t. ut

Remark 5.

• The time complexity of this quick algorithm is h + 2 P-steps, where h is the
height of the dag. The two extra P-steps correspond to the initial step and the
step to detect no more c’s.

Discovering the Membrane Topology of Hyperdag P Systems 435

• This algorithm, like other distributed flooding based algorithms, requires that
all cells start at the same time. Achieving this synchronization could be a
non-trivial task—see Section 5.

• This algorithm follows the approach by Ciobanu et al. [4, 3], for the tree based
algorithm called Convergecast. Here we prefer to use the term flooding, and
use the term convergecast for a result accumulation triggered by an initial
broadcast.

• This algorithm makes critical use of the weak interpretation for priorities.

Example 5. We illustrate the algorithm for counting heights by flooding, for the
hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0 s0 s0 s0 s0 s0 s0 s0 s0
1 s1acc s1acc s1acc s1a s1ac s1ac s1ac s1a s1ac
2 s1acct s1act s1acct s2 s1at s1act s1at s2 s1act
3 s1acctt s1att s1actt s2 s2t s1att s2t s2 s1actt
4 s1act

3 s2tt s1at
3 s2 s2t s2tt s2t s2 s1at

3

5 s1at
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

6 s2t
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

Algorithm 6: Counting nodes in a single-source dag.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules. The initiating cell is the source
of a single-sourced dag and has an additional object a, not present in any other
cell.

Postcondition: Eventually, the initiating cell will contain a number of c’s equal
to the number of all its descendants, including itself, which is also the required
node count.

Rules:

0. For state s0:
1) s0a→ s3p↓c, with α = min, β = repl.
2) s0p→ s1p↓, with α = min, β = repl.

1. For state s1:
1) s1 → s2c↑, with α = min, β = one.

2. For state s2:
1) s2c→ s2c↑, with α = max, β = one.
2) s2p→ s2, with α = max.
ut

Proof. We prove that the source will eventually contain the k copies of object c,
where k is the order of the single-source dag. The source cell will produce a copy

436 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

of c following rule 0.1. A non-source cell σi will send one c to a parent σj , where
j ∈ δ−1(i), because a node is at state s1 during at most one P-step, by rule 1.1.
A cell σi will forward up, using rule 2.1, additional c’s to one of its parents, which
will eventually arrive at the source. ut

Remark 6.

• This algorithm takes up to 2h P-steps, where h is the height of the initiating
cell.

• The end state s3 is not halting, may be reached before the algorithm completes
and cannot be used as a termination indicator.

Example 6. We illustrate the algorithm for counting nodes in a single-sourced dag
via convergecast, for the hP system shown in Figure 2, after removing node 9.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0a s0 s0 s0 s0 s0 s0 s0
1 s3c s0p s0p s0 s0 s0 s0 s0
2 s3c s1 s1 s0p s0pp s0p s0 s0
3 s3c

3 s2 s2 s1 s1p s1 s0p s0p
4 s3c

3 s2c s2cc s2 s2p s2 s1 s1p
5 s3c

6 s2 s2 s2 s2 s2c s2c s2p
6 s3c

6 s2 s2c s2 s2 s2c s2 s2
7 s3c

7 s2 s2c s2 s2 s2 s2 s2
8 s3c

8 s2 s2 s2 s2 s2 s2 s2

4 Basic algorithms for network discovery—with IDs

In this section we assume each cell has an unique ID and the cells only know their
own ID. Objects may be tagged with IDs to aid in communication.

Algorithm 7: Counting descendants by convergecast—with cell IDs.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. For each cell with index i, 1 ≤ i ≤ m, the alphabet includes special ID objects
ci and c̄i. All cells start in state s0 and have the same rules, except several similar,
but custom specific, rules to process the IDs. The initiating cell has an additional
object a, not present in any other cell.

Postcondition: All visited cells enter state s1 and, eventually, each cell will con-
tain exactly one c̄i for each descendant cell with index i, including itself: the
number of these objects is the required count.

Discovering the Membrane Topology of Hyperdag P Systems 437

Rules:

0. For state s0 and cell i (these are custom rules, specific for each cell):
1) s0a→ s1p↓c̄i, with α = min, β = repl.
2) s0p→ s1p↓ci↑c̄i, with α = min, β = repl.

1. For state s1, the rules will run under the following priorities:
1) s1cj c̄j → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1c̄j c̄j → s1c̄j , for 1 ≤ j ≤ m, with α = max.
3) s1cj → s1cj↑c̄j , for 1 ≤ j ≤ m, with α = max, β = repl.
4) s1p→ s1, with α = max.
ut

Proof. Assume that δ is the underlying dag relation. For each cell σi, consider the
sets Ci = {cj | j ∈ δ∗(i)}, C̄i = {c̄j | j ∈ δ∗(i)}, which consist of ID objects
matching σi’s children. By induction on the dag height, we prove that each vis-
ited cell σi will eventually contain the set C̄i, and, if it is not the initiating cell,
will also send up all elements of the set Ci, possibly with some duplicates (up to
all its parents). The base case, height h = 0, is satisfied by rule 0.1, if σi is the
initiator, or by rule 0.2, otherwise. For cell σi at height h+ 1, by induction, each
child cell σk sends up Ck, possibly with some duplicates. By rules 0.1 and 0.2,
cell σi further acquires one c̄i and, if not the initiator, sends up one ci. From its
children, cell σi acquires the multiset C ′i, consisting of all the elements of the set⋃
k∈δ(i) Ck = Ci \ ci, possibly with some duplications. Rule 1.3 sends up one copy

of each element of multiset C ′i and records a barred copy of it. Rule 1.2 halves
the number of duplicates in multiset C ′i. Rule 1.1 filters out duplicates in multiset
C ′i, if a barred copy already exists. Rule 1.4 clears all p’s, which are not needed
anymore. ut

Remark 7.

• Other counting algorithms can be built in a similar manner, such as counting
ancestors, counting siblings, counting sources or counting sinks.

• The end state s1 is not halting, it may be reached before the algorithm com-
pletes and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of
the initiating node may receive superfluous ci’s.

• This algorithm works under both strong and weak interpretation of priorities.

Example 7. We illustrate the algorithm for counting descendants via convergecast
using cell IDs, for the hP system shown in Figure 2.

438 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1c1 s0p s0p s0 s0 s0 s0 s0 s0
2 s1c2c3 s1 s1 s0p s0pp s0p s0 s0 s0

c̄1 c̄2 c̄3
3 s1 s1c4c5 s1c5c6 s1 s1p s1 s0p s0p s0c6

c̄1c̄2c̄3 c̄2 c̄3 c̄4 c̄5 c̄6
4 s1c4c5c5c6 s1 s1 s1 s1c8 s1c7 s1c8 s1p s0c6

c̄1c̄2c̄3 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5 c̄6 c̄7 c̄8
5 s1 s1c8 s1c7c8 s1 s1 s1c8 s1 s1 s0c6c7

c̄1c̄2c̄3c̄4c̄5c̄5c̄6 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5c̄8 c̄6c̄7 c̄7c̄8 c̄8
6 s1c7c8c8 s1 s1c8 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
7 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
8 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

Algorithm 8: Shortest paths from a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. For each cells with indices i, j, 1 ≤ i, j ≤ m, the alphabet includes special ID
objects: pi, p̄i, c̄i, xij . All cells start in state s0 and have the same rules, except
several similar but custom specific rules to process the IDs. The initiating cell has
an additional object a, not present in any other cell.

Postcondition: This algorithm builds a shortest paths spanning tree, that is a
breadth-first tree rooted at the initiating cell and preserving this dag’s relation δ.
Each visited cell σi, except the initiating cell, will contain one p̄k, indicating its
parent σk in the spanning tree. Each visited cell σi will also contain one c̄j for
each σj that is a child of σi in the spanning tree, i.e., it will contain all elements
of the set {c̄j | (i, j) ∈ δ, σj contains p̄i}.

Rules:

0. For state s0 and cell i (custom rules, specific for cell i):
1) s0a→ s1pi↓, with α = min, β = repl.
2) s0pj → s1p̄jpi↓xji↑, for 1 ≤ j ≤ m, with α = min, β = repl.
3) s0xkj → s0, for 1 ≤ k, j ≤ m, k 6= i, with α = max.

1. For state s1 and cell i (custom rules, specific for cell i):
1) s1xij → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1pj → s1, for 1 ≤ j ≤ m, with α = max.
3) s1xkj → s1, for 1 ≤ k, j ≤ m, k 6= i, with α = max.
ut

Proof. It is clear that every visited cell σi, except the initiating cell, contains one
p̄k where k ∈ δ−1(i) from rule 0.2. By a node’s height, we prove that a cell σi will

Discovering the Membrane Topology of Hyperdag P Systems 439

contain the set Ci = {c̄j | (i, j) ∈ δ, σj contains p̄i}. For height 0, Ci = ∅ is true
since a sink σi does not have any children to receive an xji—see rule 0.2. For a
cell σi of height greater than 0, first observe that rule 1.1 is only applied if rule
0.2 has been applied for a child cell j. Thus, Ci contains all c̄j such that (i, j) is
in the spanning tree. Those xkj ’s are removed by rule 0.3, and xij ’s that are not
converted to c̄j are removed by rule 1.3. ut

Remark 8.

• For this algorithm, cells need additional symbols, see the precondition.
• This algorithm takes h+ 1 P-steps, where h is the height of the initiating cell.
• The end state s1 is not halting, it may be reached before the algorithm com-

pletes and cannot be used as a termination indicator.
• As a side effect, any parent of the visited children that is not a descendant of

the initiating node will receive superfluous xij ’s, but they are removed by rule
0.3.

• The rules for state s0 make effective use of our rewrite mode refinement: rules
0.1 and 0.2 use α = min, while rule 0.3 uses α = max.

• Provided that arcs are associated with weights, this algorithm can be extended
into a distributed version of the Bellman-Ford algorithm [7].

Example 8. We illustrate the algorithm for counting nodes in a single-source dag
via convergecast, for the hP system shown in Figure 2. The thick arrows in Figure 3
show the resulting spanning tree.

1

2 3

4 5 6

7

8

9

Fig. 3. A spanning tree created by the shortest paths algorithm (Algorithm 8).

440 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p1 s0p1 s0 s0 s0 s0 s0 s0
2 s1x12x13 s1p̄1 s1p̄1 s0p2 s0p2p3 s0p3 s0 s0 s0
3 s1c̄2c̄3 s1p̄1x24x25 s1p̄1x25x36 s1p̄2 s1p3p̄2 s1p̄3 s0p6 s0p5 s0x36

4 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2x58 s1p̄3x67 s1p̄6x58 s1p7p̄5 s0
5 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2c̄8 s1p̄3c̄7 s1p̄6 s1p̄5 s0

5 The Firing-Squad-Synchronization-Problem (FSSP)

More sophisticated network algorithms can be built on the fundamental building
blocks discussed in the previous sections.

For a given hP system, with cells σ1, . . . , σm, we now consider the problem
of synchronizing a set of cells F ⊆ {σ1, . . . , σm}, where all cells in the set F
synchronize by entering a designated firing state simultaneously and (of course)
for the first time.

There are several ways to solve the problem. In the simplest scenario, we are
allowed to extend the structure. The tree structures allow only limited extensions,
that are not useful in solving this problem. However, dag structures (or more
general models) allow extensions that greatly simplify the solution to this problem
and other similar problems, to the point that they become “trivial”. We take this
as an additional argument supporting the introduction of dag structures in the
context of P systems.

Here, we consider only the first scenario, in which we may extend the structure.
We select an arbitrary subset of squad cells, F ⊆ {σ1, . . . , σm}, that we wish to
synchronize (possibly the whole set), and an arbitrary commander cell σc ∈ F .
As a simple solution to this problem, we add an external cell, called sergeant, to
the existing hP system and additional communication channels from the sergeant
to all cells in the set F . The commander initiates the synchronization process by
sending a notification to the sergeant. When the sergeant receives this notification,
the sergeant sends commands to all cells in the set F , which prompts the cells to
synchronize by entering the firing state. The algorithm below does not consider
the sergeant as part of the firing squad. However, with a simple extension (not
shown here), we can also cover the case when the sergeant is to be part of the
firing squad.

Algorithm 9: A dag synchronization algorithm.

Precondition: We are given an hP system with m cells σ1, . . . , σm, a squad
subset F ⊆ {σ1, . . . , σm}, and a commander cell σc ∈ F . We extend the underlying
dag structure by adding a new sergeant cell σm+1 and additional communication
channels from σm+1, as parent, to σi, as child, for each i ∈ F ⊆ X.

All cells start in the state s0 and have the same rules. The state s1 is the firing
state. Initially, the sergeant σm+1 has an object c, the commander σc has an object

Discovering the Membrane Topology of Hyperdag P Systems 441

a, and all other cells have no object.

Postcondition: All cells in the set F enter the state s1, simultaneously and for
the first time, after 3 P-steps.

Rules:

0. For state s0, the rules will run under the following priorities:
1) s0a→ s0b↑, with α = min, β = repl.
2) s0bc→ s0f↓, with α = min, β = repl.
3) s0b→ s0, with α = min.
4) s0f → s1 with α = min.
ut

Proof. At step 1, the commander sends a b notifier to all its parents, including
the newly created sergeant, via rule 0.1. At step 2, the sergeant sends the firing
command f to all squad cells, using rule 0.2. All other commander’s parents clear
their b notifiers at step 2, using rule 0.3. At step 3, all squad cells enter the firing
state s1, using rule 0.4. This algorithm will work under both weak and strong
interpretations of priorities. ut

Example 9. We illustrate the algorithm for synchronizing the hP system shown in
Figure 4. This hP system consists of 7 cells {σ1, . . . , σ7}, F = {σ1, . . . , σ5} and
σ5 is the commander. The actual system structure is irrelevant in this case and
was replaced by a blob that circumscribes the cells σ1, . . . , σ7. In the diagram,
this structure has already been extended by the sergeant cell σ8 and the required
communication channels.

σ2 σ3

σ1 σ7 σ4

σ6 σ5

σ8

Fig. 4. An hP system for the synchronization algorithm (Algorithm 9), extended by the
sergeant cell σ8 and the required communication channels.

442 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 s0 s0 s0 s0a s0 s0 s0c

1 s0 s0 s0 s0 s0 s0 s0 s0bc

2 s0f s0f s0f s0f s0f s0 s0 s0
3 s1 s1 s1 s1 s1 s0 s0 s0

Bernardini et al. present a deterministic solution for transition P systems with
polarizations and priorities [2], which works in time 4N + 2H, where N and H
are the number of tree nodes and tree height, respectively. Alhazov et al. present
another deterministic solution for P systems with promoters and inhibitors [1],
which works in time 3H, where H is the tree height.

In a follow-up paper, [5], we provide a more constrained solution, that does not
need structural extension, and covers both hP and nP systems. Our deterministic
solution uses rules applied under the weak priority scheme and works in time 6R,
where R is the radius of the commander in the underlying dag/digraph.

6 Planar representation

We define a simple region as the interior of a simple closed curve (Jordan curve).
By default, all our regions will be delimited by simple closed curves that are also
smooth, with the possible exception of a finite number of points. This additional
assumption is not strictly needed, but simplifies our arguments.

A simple region Rj is directly contained in a simple region Ri, if Rj ⊂ Ri and
there is no simple region Rk, such that Rj ⊂ Rk ⊂ Ri (where ⊂ denotes strict
inclusion).

It is well known that any transition P system has a planar Venn-like repre-
sentation, with a 1:1 mapping between its tree nodes and a set of hierarchically
nested simple regions. Conversely, any single rooted set of hierarchically nested
simple regions can be interpreted as a tree, which can further form the structural
basis of a number of transition P systems.

We have already shown that this planar representation can be generalized for
hP systems based on canonical dags (i.e., without transitive arcs) and arbitrary
sets of simple regions (not necessarily nested), while still maintaining a 1:1 mapping
between dag nodes and simple regions [8].

Specifically, any hP system structurally based on a canonical dag can be inten-
sionally represented by a set of simple regions, where direct containment denotes
a parent-child relation. The converse is also true, any set of simple regions can be
interpreted as a canonical dag, which can further form the structural basis of a
number of hP systems.

We will now provide several solutions to our open question [8]: How to represent
the other dags, that do contain transitive arcs? First, we discuss a negative result.
First, a counter-example that appeals to the intuition, and then a theorem with a
brief proof.

Discovering the Membrane Topology of Hyperdag P Systems 443

Example 10. Consider the dag (a) of Figure 5, where nodes 1, 2, 3 are to be repre-
sented by simple regions R1, R2, R3, respectively. We consider the following three
candidate representations: (e), (f) and (g). However, none of them properly match
the dag (a), they only match dags obtained from (a) by removing one of its arcs:

(e) represents the dag (b), obtained from (a) by removing the arc (1, 3);
(f) represents the dag (c), obtained from (a) by removing the arc (1, 2);
(g) represents the dag (d), obtained from (a) by removing the arc (2, 3).

Theorem 1. Dags with transitive arcs cannot be planarly represented by simple
regions, with a 1:1 mapping between nodes and regions.

Proof. Consider again the counter-example in Example 10. The existence of arcs
(2, 3), (1, 2) requires that R3 ⊂ R2 ⊂ R1. This means that R3 cannot be directly
contained in R1, as required by the arc (1, 3). ut

1

2

3

R1

R2

R3

R1 R2R3

(a)

1

2

3

(b)

(e)

1 2

3

1

2 3

(c) (d)

(f)

R1

R3R2

(g)

Fig. 5. A counter-example for planar representation of non-canonical dags.

It is clear, in view of this negative result, that we must somehow relax the
requirements, if we want to obtain meaningful representations for general hP sys-
tems, based on dag structure that may contain transitive arcs. We consider in turn
five tentative solutions.

444 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

6.1 Solution I: Self-intersecting curves

We drop the requirement of mapping nodes to simple regions delimited by simple
closed curves. We now allow self-intersecting closed curves with inward folds. A
node can be represented as the union of subregions: first, a base simple region,
and, next, zero, one or more other simple regions, which are delimited by inward
folds of base region’s contour (therefore included in the base region). For this
solution, we say that there is an arc (i, j) in the dag if and only if a subregion
of Ri directly contains region Rj , where regions Ri, Rj represent nodes i, j in the
dag, respectively.

1

2

3

R1R2R3R′′
1

Fig. 6. Solution I: R1 is delimited by a self-intersecting closed curve.

Example 11. The region R1 in Figure 6 is delimited by a self-intersecting closed
curve with an inward fold that defines the inner R′′1 subregion. Note the following
relations:

• R1 = R1 ∪R′′1 , thus R′′1 is a subregion of R1;
• R1 directly contains R2, which indicates the arc (1, 2);
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1

is a subregion of R1.

Remark 9. It is difficult to visualize a cell that is modelled by a self-intersecting
curve. Therefore, this approach does not seem adequate.

6.2 Solution II: Distinct regions

We drop the requirement of a 1:1 mapping between dag nodes and regions. Specif-
ically, we accept that a node may be represented by the union of one or more
distinct simple regions, here called subregions. Again, as in Solution I, an arc (i, j)
is in the dag if and only if a subregion of Ri directly contains region Rj .

Example 12. In Figure 7, the simple region R1 is the union of two simple regions,
R′1 and R′′1 , connected by a dotted line. Note the following relations:

Discovering the Membrane Topology of Hyperdag P Systems 445

1

2

3

R′
1

R2R3
R′′

1

Fig. 7. Solution II: R1 is the union of two simple regions, R′
1 and R′′

1 .

• R1 = R′1 ∪R′′1 , thus R′1 and R′′1 are subregions of R1;
• R′1 directly contains R2, which indicates the arc (1, 2), becauseR′1 is a subregion

of R1;
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1

is a subregion of R1.

Remark 10. In Example 12, a dotted line connects two regions belonging to the
same node. It is difficult to see the significance of such dotted lines in the world of
cells. Widening these dotted lines could create self-intersecting curves—a solution
which we have already rejected. Two distinct simple regions should represent two
distinct cells, not just one. Therefore, this approach does not seem adequate either.

6.3 Solution III: Flaps

We again require simple regions, but we imagine that our representation is an
infinitesimally thin “sandwich” of several superimposed layers, up to one distinct
layer for each node (see Figure 8b). Initially, each region is a simple region that is
conceptually partitioned into a base subregion (at some bottom layer) and zero, one
or more other flap subregions, that appear as flaps attached to the base. These flaps
are then folded, in the three-dimensional space, to other “sandwich” layers (see
Figure 8c). The idea is that orthogonal projections of the regions corresponding
to destinations of transitive arcs, which cannot be contained directly in the base
region, will be directly contained in such subregions (or vice-versa). Because the
thin tethered strip that was used for flapping is not relevant, it is represented by
dots (see Figure 8d). As in the previous solutions, an arc (i, j) is in the dag if and
only if a subregion Sk of Ri directly contains region Rj .

Superficially, this representation looks similar to Figure 7. However, its inter-
pretation is totally different, it is now a flattened three-dimensional object. We
can visualize this by imagining a living organism that has been totally flattened
by a roller-compactor (apologies for the “gory” image).

We next give a constructive algorithm that takes as input a dag (X, δ) and
produces a set of overlapping regions {Rk | k ∈ X}, such that (i, j) ∈ δ if and only
if a subregion of Ri directly contains Rj .

446 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Fig. 8. The process described in Solution III.

Algorithm 10: DagToRegions.

Input: dag (X, δ).
Output: flattened regions {Rk | k ∈ X}.

Step 1: Reorder the nodes of the dag (X, δ) to be in reverse topological order.
(That is, sink nodes come before source nodes.)

Step 2: For each node i in δ ordered as in step 1 do:
If i is a sink:

Create a new region Ri disjoint from all previous regions.
Otherwise:

Create a base region of Ri by creating a simple closed region prop-
erly containing the union of all regions Rj such that (i, j) ∈ δ.
Further, for any transitive arc (i, j) create a flap subregion that
directly contains Rj and attach it with a strip to the edge of the
base region.ut

Remark 11. In the set constructed by this algorithm, if two or more transitive arcs
are incident to a node j then the respective flaps (without tethers) may share the
same projected subregion directly containing region Rj .

Example 13. Figure 9 shows an input dag with 6 nodes, 3 transitive arcs and its
corresponding planar region representation. Note the reverse topological order is
6, 5, 4, 3, 2, 1 and the regions R1 and R2 use the same flap subregions containing
the region R6.

Discovering the Membrane Topology of Hyperdag P Systems 447

1 2

3 4

5 6

R5R1 R6 R4 R2R3

Fig. 9. Illustration of Algorithm 10.

Theorem 2. Every dag with transitive arcs can be represented by a set of regions
with folded flaps, with a 1:1 mapping between nodes and regions.

Proof. We show by induction on the order of the dags that we can always produce
a corresponding planar representation. First, note that any dag can be recursively
constructed by adding a new node i and arcs incident from i to existing nodes.
Note that Algorithm 10 builds planar representations from sink nodes (induction
base case) to source nodes (inductive case). Hence, any dag has at least one folded
planar representation, depending on the topological order used. We omit the de-
tails of how to ensure non-arcs; this can be easily achieved by adding “spikes” to
the regions—see our first paper for representing non-transitive dags [8]. ut

Theorem 3. Every set of regions with folded flaps can be represented by a dag
with transitive arcs, with a 1:1 mapping between nodes and regions.

Proof. We show how to produce a unique dag from a folded planar representation.
The first step is to label each region Rk, which will correspond to node k ∈ X
of a dag (X, δ). We add an arc (i, j) to δ if an only if a subregion of Ri directly
contains the region Rj . ut

Remark 12. One could imagine an additional constraint, that nodes, like cells,
need to differentiate between its outside and inside or, in a planar representation,
between up and down. We can relate this to membrane polarity, but we refrain
from using this idea here, because it can conflict with the already accepted role of
polarities in P systems. It is clear that, looking at our example, this solution does
not take into account this sense of direction.

For example, considering the scenario of Figure (9), regions R3, R2 and R′1 (the
base subregion of R1) can be stacked “properly”, i.e., with the bottom side of R3

on the top side of R2 and the bottom side of R2 on the top side of R′1. However,
the top side of R′′1 (the flap of R1) will improperly sit on the top side of R3, or,
vice-versa, the bottom side of R′′1 will improperly sit on the bottom side of R3.

Can we improve this? The answer follows.

448 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

6.4 Solution IV: Flaps with half-twists

This is a variation of Solution III, that additionally takes proper care of the out-
side/inside (or up/down) directions. We achieve this by introducing half-twists (as
used to build Moebius strips), of which at most one half-twist is needed for each
simple region.

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Half twist

Fig. 10. The process described in Solution IV.

Example 14. Figure 10 describes this process.

(a) a given dag with three nodes, 1, 2 and 3;
(b) three simple regions, R1, R2 and R3, still in the same plane;
(c) R1 flapped and half-twisted in three-dimensional space;
(d) final “roller-compacted” representation, where dots represent the thin strip

that was flapped, and the mark × a possible location of the half-twist.

Corollary 1. Dags with transitive arcs can be represented by regions with half-
twisted flaps, with a 1:1 mapping between nodes and regions.

Proof. Since half-twisted flaps are folded flaps, the projection of the boundary of
the base and flaps used for a region is the same region as given in the proof of
Theorems 2 and 3, provided we always twist a fold above its base. ut

Remark 13. This solution solves all our concerns here and seems the best, taking
into account the impossibility result (Theorem 1).

Discovering the Membrane Topology of Hyperdag P Systems 449

1

2

3

4

R4 R3

R2

R1

(a) (b)

(c) (d)

R4 R3 R2R1

R4
R3

R2R1

Half twist

Half twist

Fig. 11. The process described in Solution IV.

6.5 Solution V: Moebius strips

To be complete, we mention another possible solution, which removes any distinc-
tion between up and down sides. This representation can be obtained by repre-
senting membranes by (connected) Moebius strips.

Perhaps interestingly, Solutions IV and V seem to suggest links (obviously
superficial, but still links) to modern applications of topology (Moebius strips and
ladders, knot theory) to molecular biology, for example, see [6].

7 Conclusions

In this paper we have presented several concrete examples of hP systems for the
discovery of basic membrane structure. Our primary goal was to show that, with

450 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

R3

R1

R2

Fig. 12. The process described in Solution IV.

the correct model in terms of operational and communication modes, we could
present simple algorithms. Our secondary goal was to obtain reasonably efficient
algorithms.

We first started with cases, where the cells could be anonymous, and showed,
among other things, how an hP system could (a) broadcast to descendants, (b)
count paths between cells, (c) count children and descendants, and (d) determine
cell heights. We then provided examples where we allowed each cell to know its
own ID and use it as a communication marker. This model is highlighted by our
algorithm that computes all the shortest paths from a given source cell —a sim-
plified version of the distributed Bellman-Ford algorithm, with all unity weights.
For each of our nontrivial algorithms, we illustrated the hP system computations
on a fixed dag, providing step-by-step traces.

We then moved onto a simple solution that can be used to synchronize a subset
(possibly all) of the states of the membrane’s cells. We presented a fast trivial
solution that requires structural extensions, which are straightforward with dags,
but not applicable to trees. In a related paper [5], we describe a sophisticated
solution that works on dags without extending the structure.

Finally, we focused on visualizing hP systems in the plane. We presented a
natural model, using folded simple closed regions to model the membrane inter-
connections, including the transitive channels, as specified by an arbitrary dag
structure of a hP system.

As with most ongoing projects, there are several open problems regarding prac-
tical computing using P systems and their extended models. We end by mentioning
just a few, closely related to the development of fundamental algorithms for dis-
covery of membrane topology.

• In terms of using membrane computing as a model for realistic networking, is
there a natural way to route a message between cells (not necessarily connected
directly) using messages, tagged by addressing identifiers, in analogy to the
way messages are routed on the internet, with dynamically created routing
information?

Discovering the Membrane Topology of Hyperdag P Systems 451

• What are the system requirements to model fault tolerant computing? The tree
structure seems to fail here, because a single node failure can disconnect the
graph and make consensus impossible. Is the dag structure versatile enough?

• Do we have the correct mix of rewrite and transfer modes for membrane com-
puting? For example, in which situations can we exploit parallelism and in
which scenarios are we forced to sequentially apply rewrite rules?

Acknowledgements

The authors wish to thank John Morris and the three anonymous reviewers for
detailed comments and feedback that helped us improve the paper.

References

1. A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems. In
David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Workshop on Membrane Computing, volume 5391 of Lecture Notes
in Computer Science, pages 118–128. Springer, 2008.

2. F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci., 19(5):1183–
1198, 2008.

3. G., R. Desai, and A. Kumar. Membrane systems and distributed computing. In
Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, editors,
WMC-CdeA, volume 2597 of Lecture Notes in Computer Science, pages 187–202.
Springer, 2002.

4. G. Ciobanu. Distributed algorithms over communicating membrane systems. Biosys-
tems, 70(2):123–133, 2003.

5. M.J. Dinneen, Y.-B. Kim, and R. Nicolescu. The firing squad problem revisited
(work in progress). Technical report, The University of Auckland, 2009.

6. E. Flapan. When Topology Meets Chemistry: A Topological Look at Molecular Chi-
rality. Cambridge University Press, 2000.

7. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1996.

8. R. Nicolescu, M.J. Dinneen, and Y.-B. Kim. Structured modelling with hyperdag
P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics and
Theoretical Computer Science, The University of Auckland, Auckland, New Zealand,
December 2008.

9. Gh. Păun. Membrane Computing-An Introduction. Springer-Verlag, 2002.
10. Gh. Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.

Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 1–42. Springer, 2006.

Reversible P Systems with Symport/Antiport
Rules

Taishin Y. Nishida

Department of Information Systems
Toyama Prefectural University
Kurokawa 5180, Imizu-shi, 939-0398 Toyama, Japan
nishida@pu-toyama.ac.jp

Summary. A deterministic computing system is reversible if every configuration of the
system has just one previous configuration or it is an initial configuration. In this paper
it is proved that for every reversible register machine there exists a reversible P system
with symport/antiport rules such that the P system accepts the same set of integers
as the register machine accepts. The result shows that the family of sets accepted by
reversible P systems with symport/antiport rules is the family of recursively enumerable
sets of integers.

1 Introduction

E. Schrödinger has pointed out, in his famous essay [8], that living organisms
incorporate energy of low entropy, maintain systematic activity (including self-
reproduction, which is a kind of information processing), and emit energy of high
entropy. That is, life uses “negative entropy”, to keep its structure, which in-
evitably generates heat.

On the other hand, it has been also shown that a reversible information pro-
cessing system is physically possible [4]. Because such a system is reversible, com-
putation is performed without entropy generation, without information loss, or
equivalently, without heat generation. More specifically, an external force (e.g.,
mechanical, electrical, etc) proceeds a reversible computing system to the “for-
ward” direction. The force does some work on the system and hence consumes
some energy. The energy is stored in the reversible system and is restored from
the system to the source of the external force during the reverse computation.
Thus reversible computation is performed without energy dissipation or heat gen-
eration. This property, in turn, may help us to resolve the contemporary problem
of huge heat emission in a large data processing centre.

There are two researches on reversible P systems [1, 2, 5]. In [5], simulation
of the Fredkin gate is focused. Backward dynamics of a P system with object
rewriting rules are considered in [1] by introducing dual P systems. The notion of

Reversible P Systems with Symport/Antiport Rules 453

dual P systems with determinism leads reversibility. In [2], reversible P systems
with symport/antiport rules are considered. It is shown that such systems with
one membrane and with control of priorities or inhibitors are universal. In this
paper, we proceed studies on reversible P systems with symport/antiport rules and
without any control on rules. The family of reversible P systems with 4 membranes
is proved to be computationally universal. The result is shown by constructing
a reversible P system which simulates a reversible register machine. Reversible
register machines which are suitable for reversible P systems are explored in the
next section, although a general study of them are already done by K. Morita [6].

2 Reversible register machine

Because nondeterministic change cannot be reversible, we consider deterministic
systems only. First we introduce reversible register machine.

Let M = (n,B, l0, lh, R) be a deterministic register machine, where n is the
number of registers, B is the set of instruction labels, l0 is the start label, lh is
the halt label, and R is the set of instructions. An instruction is one of the forms
li : (ADD(r), lj) or li : (SUB(r), lj , lk). The former adds 1 to register r and then
executes the instruction labelled by lj . The latter subtract 1 from register r if
register r has a positive integer then executes the instruction labelled by lj ; or, if
register r is 0, executes the instruction labelled by lk. For every instruction label
but the halt label, there is exactly one instruction. There are no instructions which
are labelled by the halt label.

An n+1-tuple (l, ii, . . . , in) is said to be a configuration of M if l ∈ B and ij ∈ N
for every 1 ≤ j ≤ n where ij is the number which is stored in register rj and N is the
set of nonnegative integers. An instruction ι ∈ R maps a configuration (l, i1, . . . , in)
to a configuration (l′, i′1, . . . , i

′
n), denoted by ι((l, i1, . . . , in)) = (l′, i′1, . . . , i

′
n), if one

of the following three conditions holds:

1. ι = l : (ADD(rj), l′), i′j = ij + 1, and i′k = ik for k 6= j.
2. ι = l : (SUB(rj), l′, lk), ij > 0, i′j = ij − 1, and i′p = ip for p 6= j.
3. ι = l : (SUB(rj), lk, l′), ij = 0, and i′p = ip for every p.

For two configurations c and c′, if there is an instruction ι of M such that ι(c) = c′,
then c′ is said to be directly derived from c and is denoted by c `M c′. As usual,
the reflective and transitive closure of `M is denoted by `∗M . We write ` and `∗
instead of `M and `∗M if M is understood.

A configuration (l, i1, . . . , in) is called an initial (resp. halting) configuration
if l = l0 (resp. l = lh). A sequence of configurations c0, c1, . . . , ck where c0 is an
initial configuration is said to be a computation of M if for every i = 0, 1, . . . , k−1
ci ` ci+1. A computation is said to be successful if the last configuration ck is a
halting configuration.

Let M = (n,B, l0, lh, R) be a register machine. Let c0 = (l0, i, 0, . . . , 0) be
an initial configuration of M where i ∈ N. If there is a successful computation
c0, c1, . . . , ck, then the input i is accepted by M . The set

454 T.Y. Nishida

N(M) = {i | i ∈ N is accepted by M}
is the set of integers which is accepted by M .

Definition 1 (reversible register machine). A deterministic register machine
M is reversible if every configuration of M which is reachable from an initial
configuration has just one previous configuration or the configuration is an initial
configuration.

In order to have a deep insight into the meaning of the notion of a reversible
register machine, let us consider a computation c0, c1, . . . , cn of a non-reversible
deterministic register machine M . Let us assume that configuration c in the com-
putation is not reversible, that is there are two configurations c′ and c′′ such that
c′ 6= c′′, c′ ` c, and c′′ ` c. If c′ appears earlier than c′′ in the sequence c0, c1, . . . , cn,
then c′′ appears after c, that is, c `∗ c′′. This means that the computation is cyclic
and hence cannot be successful. In other words, for every successful computation
c0, . . . , cn of a non-reversible deterministic register machine, every configuration c
has at most one configuration c′ such that c′ ` c. The “non-reversibility” emerges
in the situation that two different initial configurations c0 and c′0 derive the same
configuration c. By keeping the inputs, which are the non-zero values of registers
in the initial configuration, in all subsequent configurations, the situation may be
avoided, that is, a non-reversible register machine may be converted to a reversible
machine. But the next property must be took into account.

Property 1. Let M be a reversible register machine. Then M does not contain a
SUB instructions of the type li : (SUB(r), li, lk) which is executable from two
different initial configurations and register r has non-zero initial value in at least
one initial configuration.

Proof . The instruction li : (SUB(r), li, lk) clears register r, in other words, loses
information of the initial configuration. Reversible computation cannot contain
such an instruction. ¤

We note that an instruction ι = li : (SUB(r), li, lk) in a non-reversible register
machine can be removed by introducing a new register r′ with initially 0. That is,
the previous instruction of ι is modified to go directly to the instruction labelled
by lk and successive instructions of lk which operate on register r are modified to
operate on register r′.

A sequence of instructions ι1, ι2, . . . , ιp such that ι1 = li1 : (SUB(r), lj1 , lk1),
the next instruction label of ιp is li1 , and that ι1, ι2, . . . , ιp are executable in this
order may cause the same situation as Property 1, i.e., register r may be cleared.
In order to avoid losing information in register r, a new register r′ which contains
initially 0 and a new instruction ιn = ln : (ADD(r′), lj1) are introduced and ι1 is
modified to ι′1 = li1 : (SUB(r), ln, lk1). Then information in register r is copied to
register r′ and is kept for the reverse computation.

We also note that an ADD instruction which adds an initially 0 register is
treated specially. The reverse of an ADD instruction is a SUB instruction. If a

Reversible P Systems with Symport/Antiport Rules 455

reverse SUB instruction encounters 0 in the register, then it is the initial state and
there are no previous configurations, that is, the reverse computation should halt
at this point.

The next theorem follows from the definition of reversible register machines
and Property 1 and its notes. Under slightly different notations, the same theorem
is described in [6] with more detailed and sophisticated proof.

Theorem 1. The family of sets accepted by reversible register machines is NRE,
where NRE is the family of Turing computable sets of nonnegative integers.

Now let us consider reverse instructions of a register machine. First, it should
be noted that an instruction of a register machine is not reversible — a SUB
instruction has two possible successors. By associating informations of register
contents, it may be possible to make reverse transformation of configurations of a
register machine. We modify, however, instructions to fit reverse operations, which
corresponds to the transition functions of a reversible Turing machine [3].

Let G be the set of register names, let Op = {−, 0, +}, and let S = {0, 1, ∗}.
An instruction ι is an element in (B ×G× S)×Op × (G× S ×B) which has one
of the forms:

(li, r, ∗) + (r, 1, lj) (1)

(li, r, 0) 0 (r, 0, lk) (2)

(li, r, 1)− (r, ∗, lj) (3)

The left triplet shows the instruction label, register of the instruction, and the
content of the register, where 0 means that the register is 0, 1 means that the
register has a positive integer, and ∗ means that there may be both cases 0 and
positive. The middle symbol, +, 0, or −, is the operation of the instruction, in
which + means that the register is added by one, 0 represents that the register
is unchanged, and − represents that the register is subtracted by one. The right
triplet shows the register and its content after the operation and the label of the
next instruction. An instruction of the form (1) is an add instruction. Instructions
(2) and (3) form a subtract instruction. That is, an instruction of type (3) is
accompanied by an instruction of type (2) which has the same instruction label at
the first position in the left triplet. If register r is 0, then the instruction of type
(2) is executed. Otherwise, type (3) is executed. We note that a single instruction
of type (2) may be used as a goto instruction.

Reverse instructions are summarised by Table 1.

The next example shows a construction of a reverse machine from a reversible
register machine.

Example. Let us consider a function f(x, y) = x− y· which is defined by

x− y· =

{
x− y if x > y

0 if x ≤ y
.

456 T.Y. Nishida

Table 1. Reverse instructions

forward reverse notes

(li, r, ∗) + (r, 1, lj) (lj , r, 1)− (r, ∗, li) If register r is initially 0, then instruction
(lj , r, 0) 0 (r, 0, l0) is added where l0 is the
halt label of the reverse machine.

(li, r, 0) 0 (r, 0, lk) (lk, r, 0) 0 (r, 0, li)

(li, r, 1)− (r, ∗, lj) (lj , r, ∗) + (r, 1, li)

Because f(x, y) is not logically reversible, we modify it to a function f ′ which maps
a triple of nonnegative integers (x, y, 0) to a triple (f(x, y), f(y, x), min(x, y)). The
register machine with 3 registers and instructions

(1, r2, 1)− (r2, ∗, 2)
(1, r2, 0) 0 (r2, 0, lh)
(2, r1, 1)− (r1, ∗, 3)
(2, r1, 0) 0 (r1, 0, 4)
(3, r3, ∗) + (r3, 1, 1)
(4, r2, ∗) + (r2, 1, lh)

computes the function f ′. Registers have initial values r1 = x, r2 = y, and r3 = 0.
The reverse instructions are

(2, r2, ∗) + (r2, 1, 1)
(lh, r2, 0) 0 (r2, 0, 1)
(3, r1, ∗) + (r1, 1, 2)
(4, r1, 0) 0 (r1, 0, 2)
(1, r3, 1)− (r3, ∗, 3)
(1, r3, 0) 0 (r3, 0, l0)
(lh, r2, 1)− (r2, ∗, 4)

Figure 1 shows the flows of instructions of the forward machine (left) and the
reverse machine (right).

3 Reversible P system with symport/antiport rules

In this section a reversible P system with symport/antiport rules is defined and
the family of such systems is proved to be computationally universal. We first
briefly summarise the notion of a P system with symport/antiport rules and with
accepting mode; for details the reader is referred to [7].

A P system with symport/antiport rules of degree n ≥ 1 is a construct of the
form

Reversible P Systems with Symport/Antiport Rules 457

Fig. 1. Flow graphs of a register machine (left) and its reverse machine (right).

Π = (O, µ, w1, . . . , wn, E, R1, . . . , Rn, iI),

where:

1. O is the alphabet of objects.
2. µ is a membrane structure consisting of n membranes. Membranes are injec-

tively labelled with 1, . . . , n.
3. w1, . . . , wn are strings of objects which represent the multiset over O initially

associated with the regions 1, . . . , n of µ.
4. E ⊆ O is the set of objects which are supposed to appear in the environment

in arbitrary many copies.
5. R1, . . . , Rn are finite sets of symport/antiport rules over O associated with the

membranes labelled 1, . . . , n.
6. iI is the input region.

Rules are applied in the usual nondeterministic maximally parallel manner. An
input of a P system with symport/antiport rules Π is the multiplicity of objects
initially associated with the input region, i.e., the multiplicity of wiI

. The system Π
accepts its input if and only if its computation halts. The set of numbers accepted
by Π is the set of all inputs which are accepted by Π and is denoted by Nacc(Π).

Definition 2 (reversible P system). A P system with symport/antiport rules Π
is said to be reversible if Π is deterministic and every configuration C of Π which
is reachable from an initial configuration satisfies that C is an initial configuration
or there is just one configuration C ′ such that C ′ is changed to C by Π.

In [2], a notion of a strongly reversible P system, in which every (including
non-reachable) configuration has at most one previous configuration, is defined

458 T.Y. Nishida

in addition to the above reversible P system. But dynamics of configurations of
a strongly reversible P system without inhibitors and without priorities in rules
are extremely limited (Theorem 2 of [2]). Therefore, in this paper, we consider
reversible P systems which are defined by Definition 2.

The next theorem is the main result of this paper.

Theorem 2. For a reversible register machine M = (n,B, l0, lh, R), there exists a
P system with symport/antiport rules Π of degree 4 such that Π is reversible and
that Nacc(Π) = N(M).

Proof . The P system

Π = (O, [1 [2 [3]3]2 [4]4]1, w1, w2, w3, w4, E,R1, R2, R3, R4, 1)

is constructed by:

O = E = {l, l′, l′′, l′′′, liv, lv | l ∈ B} ∪ {ar | 1 ≤ r ≤ n} ∪ {t0, t1, t2},

w1 = ak
1 for an initial configuration (l0, k, 0, . . . , 0) of M,

w2 = t0, w3 = t1, w4 = l′′′0 t2

R2 = {(t0, out; t1, in), (t1, out; t2, in), (t2, out; t0, in)},
R3 = {(t0, out; t2, in), (t1, out; t0, in), (t2, out; t1, in)},

R4 = {(l′′′0 t2, out)}
and R1 consists of the rules

(li, out; l′jar, in), (l′j , out; l′′j , in), (l′′j , out; l′′′j , in), (l′′′j , out; livj , in),

(livj , out; lvj , in), (lvj , out; lj , in)

for an add instruction (li, r, ∗) + (r, 1, lj) and the rules

(liar, out; l′j , in), (l′j , out; l′′j , in), (l′′j , out; l′′′j , in), (l′′′j , out; livj , in),

(livj , out; lvj , in), (lvj , out; lj , in)

(lit2, out; l′′′k t2, in), (l′′′k , out; livk , in), (livk , out; lvk, in), (lvk, out; lk, in)

for subtract instructions (li, r,+)−(r, ∗, lj) and (li, r, 0) 0 (r, 0, lk). R1 also contains
the rules

(l′′′0 , out; liv0 , in), (liv0 , out; lv0 , in), (lv0 , out; l0, in).

The rule from R4 is applied at an initial configuration only and brings l′′′0 t2 to
region 1. At the same time, objects in regions 2 and 3 are exchanged by the rule
(t1, out; t0, in) from R3. The successive computations are illustrated in the next
table.

Reversible P Systems with Symport/Antiport Rules 459

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (l′′′0 , out; liv0 , in) ak
1 l′′′0 t2 (t1, out; t2, in) t1 — t0

2 (liv0 , out; lv0 , in) ak
1 liv0 t1 — t2 (t0, out; t2, in) t0

3 (lv0 , out; l0, in) ak
1 lv0t1 (t0, out; t1, in) t0 — t2

4 ak
1 l0t0 t1 t2

From the last low of the above table, Π starts to simulate M .
An add instruction (li, r, ∗) + (r, 1, lj) is simulated by Π as follows:

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (li, out; l′jar, in) ap
r lit0 — t1 (t2, out; t1, in) t2

2 (l′j , out; l′′j , in) ap+1
r l′jt0 (t2, out; t0, in) t2 — t1

3 (l′′j , out; l′′′j , in) ap+1
r l′′j t2 — t0 (t1, out; t0, in) t1

4 (l′′′j , out; livj , in) ap+1
r l′′′j t2 (t1, out; t2, in) t1 — t0

5 (livj , out; lvj , in) ap+1
r livj t1 — t2 (t0, out; t2, in) t0

6 (lvj , out; lj , in) ap+1
r lvj t1 (t0, out; t1, in) t0 — t2

7 next rule ap+1
r ljt0 — t1 (t2, out; t1, in) t2

where p ≥ 0.
Subtract instructions (li, r, 1)− (r, ∗, lj) and (li, r, 0) 0 (r, 0, lk) are simulated by

Π as follows:

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (liar, out; l′j , in) ap
r lit0 — t1 (t2, out; t1, in) t2

2 (l′j , out; l′′j , in) ap−1
r l′jt0 (t2, out; t0, in) t2 — t1

3 the following steps are similar to the add case

where p ≥ 1 and

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 — lit0 — t1 (t2, out; t1, in) t2
2 — lit0 (t2, out; t0, in) t2 — t1
3 (lit2, out; l′′′k t2, in) lit2 — t0 (t1, out; t0, in) t1
4 (l′′′k , out; livk , in) l′′′k t2 (t1, out; t2, in) t1 — t0
5 the following steps are similar to the add case

.

Therefore Π accepts its input if and only if M accepts its input, that is, Nacc(Π) =
N(M).

By the construction of rules, Π is deterministic and every configuration but
the initial configuration has just one previous configuration. Thus Π is reversible.
¤

Corollary 1. The family of sets accepted by reversible P systems with sym-
port/antiport rules is NRE.

460 T.Y. Nishida

Remark. Theorem 2 and Corollary 1 give a negative answer to Conjecture 1 of
[2]. The P system which is constructed in the proof of Theorem 2 uses nested
membranes [1[2[3]3]2]1 and three timing objects t0, t1, and t2 in order to do a
zero-test by try-and-wait-then-check strategy. It is a future work to reduce the
numbers of membranes and objects in Theorem 2.

References

1. O. Agrigoroaiei and G. Ciobanu, Dual P systems, in: D. Corne et al. (Eds.) Membrane
Computing - 9th International Workshop, LNCS 5391 (Springer, Berlin, 2009) 95–
107.

2. A. Alhazov and K. Morita, A short note on reversibility in P system, in: Proc. of
7th Brainstorming Week on Membrane Computing, Sevilla, February 2009, Fenix
Editora, Sevilla, 23–28.

3. C. H. Bennett, Logical reversibility of computation, IBM Journal of Research and
Development , 17 (1973) 525–532.

4. R. Landauer, Irreversibility and heat generation in the computing process, IBM Jour-
nal of Research and Development , 5 (1961) 183–191.

5. A. Leporati, C. Zandron, and G. Mauri, Reversible P systems to simulate Fredkin
circuits, Fundamenta Informaticae 74 (2006) 529–548.

6. K. Morita, Universality of a reversible two-counter machine, Theoretical Computer
Science 168 (1996) 303–320.

7. Gh. Păun, Membrane Computing (Springer, Berlin Heidelberg, 2002).
8. E. Schrödinger, What Is Life? , (Cambridge University Press, Cambridge, 1944).

Approaching a Question
of Biologically Plausible Applications
of Spiking Neural P Systems
for an Explanation of Brain Cognitive Functions

Adam Obtu lowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland
A.Obtulowicz@impan.pl

Summary. The approaches to the following question: Do spiking neural P systems cf.
[9], [16] provide biologically plausible mathematical models of brain cognitive functions?
are discussed.

1 Introduction

The (hierarchical) clustering (scene segmentation in particular) and binding (fea-
ture integration) problem solution in cortical neural network together with cortical
subnetworks realizing Radial Basic Functions (briefly RBFs) represent among oth-
ers cognitive functioning of brain. Recently various network models of clustering,
binding problem solution, and realization of RBFs in cortical network have been
proposed, where spiking neural networks are the most biologically plausible mod-
els, see [15], [17], [1], [2], [11], [13], [14], and [10] for a review. The main common
feature of these models is Hebbian learning which provides their biological evi-
dence. On the other hand, a transformation of an idea of Hebbian learning from a
framework of spiking neural networks to a framework of spiking neural P systems
has been proposed in [7]. Thus one formulates the following question:

Do spiking neural P systems provide biologically plausible mathematical
models of brain cognitive functions?

We approach the question and an answer to it in Section 2 by a brief review
of state of art for spiking neural nets and spiking neural P systems, discussion of
conjectures, and setting open problems.

462 A. Obtu lowicz

2 State of art, conjectures and open problems

The papers [4], [8] contain promising applications of spiking neural P systems for
solving topic problems related to some cognitive brain functions. But biological
evidence of these applications seems problematic because Hebbian learning proce-
dures approach is not considered for them.

On the other hand the Hebbian learning modelled by spiking neural P systems
with only input neurons and one output neuron presented in [7] and solution
of XOR problem by spiking neural networks equipped with a Hebbian learning
procedure and with only three input neurons and one output neuron described
in [3] gives rise to the following conjecture:

Conjecture. There exists a learning problem, understood as in [7], whose output
is a spiking neural P system solving XOR problem.

If we compare precise timing of spikes approach for spiking neural networks
to the number of spikes approach for spiking neural P systems, then the latter
seems coarse and hence less biologically plausible than the spiking neural network
approach.

On the other hand the precise timing of spikes approach for spiking neural
networks is less biologically plausible than probabilistic spiking neural networks
because a relevant amount of noise is contained in the behaviour of neurons (cf. [6]).
Therefore it is worth to initiate a research of probabilistic spiking neural P systems.

The view that human mind is “massively modular” (cf. [5], [12]) argued by
massively parallel functioning of brain neural network modules gives rise to a
question of approaching these massive modularity and massive parallelism of mind
and brain by application of a concept of a network of communicating spiking neural
P systems equipped with Hebbian learning procedures, respectively. The spiking
neural P systems constituting that network could correspond to brain network
modules realizing simultaneously various cognitive functions, respectively.

On the other hand, since spiking neural P systems seem more coarse with
respect to an approach to time than spiking neural networks with precise timing
of spikes, like e.g. in [1], we propose the following conjecture.

Conjecture. A biologically plausible modularity of brain could be represented
(modelled) by the following hybrid constructs:

• a two-level construct of a spiking super-neural P system which is a spiking
neural P system whose neurons are superneurons, i.e. multi-layer spiking neural
networks with a precise timing of spikes like e.g. in [1],

• a three-level construct of a spiking sub-super-neural P system which is a spik-
ing super-neural P system as above, where the neurons of superneurons are
P systems approaching neurons as cells which produce and transport copies of
molecules between electrically charged membranes.

A Plausible Application of SN P Systems 463

References

1. Bohte, S. M., Spiking Neural Networks, Professorschrift, Leiden University 2003.
2. Booij, O., Temporal Pattern Classification using Spiking Neural Networks, M.Sc.

Thesis, Amsterdam University 2004.
3. Booij, O., Hieu tat Nguyen, A gradient descent rule for spiking neurons emitting

multiple spikes, in: Applications of Spiking Neural Networks, ed. S. M. Bohte and
J. N. Kok, Information Processing Letters, Amsterdam 2005.

4. Ceterchi, R., Tomescu, I. A., Spiking Neural P systems—a Natural Model for Sorting
Networks, in: Proceedings of Sixth Brainstorming Week on Membrane Computing,
Sevilla, February 4–8, 2008, ed. D. Diaz-Perenil et al., RGNC Report 01/2008, Sevilla
University Fenix Editora 2008, pp. 93–105.

5. Geary, D., The Origin of Mind: Evolution of Brain, Cognition, and General Intelli-
gence, American Psychological Association 2005.

6. Gerstner, W., Population Dynamics of Spiking Neurons: Fast Transients, Asyn-
chronous States, and Locking, Neural Computation 12 (2000), pp. 43–89.

7. Gutierez-Naranjo, M. A., Perez-Jimenez, M. J., A spiking neural P systems based
model for Hebbian learning, in: Proceedings of 9th Workshop on Membrane Com-
puting, Edinburgh, July 28 – July 31, 2008, ed. P. Frisco et al., Technical Report
HW-MASC-TR-0061, School of Mathematical and Computer Sciences, Heriot–Watt
University, Edinburgh, UK, 2008, pp. 189–207.

8. Ionescu, M., Suburlan, D., Some Applications of Spiking Neural P Systems, in: Pro-
ceedings of the 8th Workshop on Membrane Computing, Thessaloniki, June 25–28,
2007, ed. Eleftherakis et al., South-East European Research Centre 2007, pp. 383–
394.

9. Ionescu, M., Păun, Gh., Yokomori, Y., Spiking neural P systems, Fund. Inform.
71 (2006), pp. 279–308.

10. Kasiński, A., Ponulak, F., Comparison of Supervised Learning Methods for Spike
Time Coding in Spiking Neural Networks, Int. J. Appl. Math. Comput. Sci. 16 (2006),
pp. 101–113.

11. Knoblauch, A., Palm. G., Scene segmentation by spike synchronization in reciprocally
connected visual areas. II. Global assemblies and synchronization on larger space and
time scales, Biol. Cybern. 87 (2002), pp. 168–184.

12. MacDonald, K., Chiappe, D., Review of [5] in Human Ethology Bulletin 21:2 (2006),
pp. 14–18.

13. Meftah, B., Benyettou, A., Lezoray, O., Qingxiang, W., Image Clustering with Spiking
Neuron Network, in: World Congress on Computational Intelligence, International
Joint Conference on Neural Networks, Hong-Kong 2008.

14. Moore, S. C., Back-propagation in spiking neural networks, M.Sc. Thesis, University
of Bath 2002, http://www.simonchristianmoore.co.uk/Thesis4.html.

15. Natschläger, T., Ruf, B., Spatial and temporal pattern analysis via spiking neurons,
Network: Comp. Neural Systems 9 (1998), pp. 319–332.

16. Păun, Gh., Perez-Jimenez, M. J., Spiking neural P systems. Recent results, research
topics, presented at the 6th Brainstorming Week on Membrane Computing, Sevilla
2008, web page http://psystems.disco.unimib.it/download/leidenGR65.pdf

17. Ruf, B., Computing and Learning with Spiking Neurons—Theory and Simulation,
Doctoral Thesis, Technische Universität Graz 1998.

A Note on Small Universal Spiking Neural
P Systems

Linqiang Pan?, Xiangxiang Zeng

Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
lqpan@mail.hust.edu.cn, xzeng@foxmail.com

Summary. In the “standard” way of simulating register machines by spiking neural
P systems (in short, SN P systems), one neuron is associated with each instruction of
register machine that we want to simulate. In this note, a new way is introduced for
simulating register machines by SN P systems, where only one neuron is used for all
instructions of a register machine; in this way, we can use less neurons to construct
universal SN P systems. Specifically, a universal system with extended rules (without
delay) having 12 neurons is constructed.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [1], and
then investigated in a large number of papers. We refer to the respective chapter
of [6] for general information in this area, and to the membrane computing web
site from [10] for details.

Informally, an SN P system consists of a set of neurons placed in the nodes of
a directed graph, called the synapse graph. The content of each neuron consists
of a number of copies of a single object type, called the spike. The rules assigned
to neurons allow a neuron to send information to other neurons in the form of
electrical impulses (also called spikes). An output can be defined in the form of
the spike train produced by a specified output neuron.

Looking for small universal computing devices of various types is a well in-
vestigated issue in computer science, see, e.g. [2, 7], and the references therein.
Recently, this issue was considered also in the case of SN P systems [4], where a
universal SN P system was obtained using 84 neurons for standard rules and 49
neurons for extended rules in the case of computing functions; used as generators
of sets of numbers, a universal system with standard rules (resp. extended rules)

? Corresponding author. Tel.: +86-27-87556070. Fax: +86-27-87543130.

A Note on Small Universal SN P Systems 465

having 76 neurons (resp. 50 neurons) was found. An improvement is presented in
[9] in the sense that less neurons are used to construct a universal SN P system.
Specifically, in the computing function mode, 68 neurons (resp. 43 neurons) are
used to construct a universal SN P system with standard rules (resp. extended
rules); in the number generating mode, universal SN P systems are obtained with
64 neurons (resp. 43 neurons) using standard rules (resp. extended rules). All of
the above universal SN P systems are obtained by simulating a register machine
from [2], where a neuron is associated with each register of the register machine
that we want to simulate; a neuron is associated with each instruction of the regis-
ter machine; some auxiliary neurons are also used. If in the register machine that
we want to simulate, there are m instructions and n registers, then the number of
neurons in the universal SN P system obtained by this way is not less than m+n.

In this note, we present a new approach to a simulate register machine, where
one neuron (denoted by σstate) is used for all instructions of the register machine.
The function of neuron σstate is similar with “the finite set of states” in a Turing
machine. In this way, universal SN P systems with less neurons can be obtained.
Specifically, a universal SN P system is constructed with extended rules (without
delay) having 12 neurons.

The rest of this paper is organized as follows. In the next section, we intro-
duce some necessary prerequisites. In Section 3, a small universal SN P system is
constructed. Conclusions and remarks are presented in Section 4.

2 Prerequisites

We assume the reader to be familiar with (basic elements of) language theory [8],
as well as basic membrane computing [5] (for more updated information about
membrane computing, please refer to [10]), hence we directly introduce some basic
notions and notations including register machines and SN P systems.

For an alphabet V , let V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we write a∗ and a+ instead of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each expression E we associate a language
L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all a ∈ V ,
(ii) L((E1)∪(E2)) = L(E1)∪L(E2), L((E1)(E2)) = L(E1)L(E2), and L((E1)+) =
L(E+

1), for all regular expressions E1, E2 over V . Non-necessary parentheses are
omitted, and also (E)+ ∪ {λ} can be written as E∗.

2.1 Register Machines

A register machine is a construct M = (m,H, l0, lh, I), where m is the number of
registers, H is the set of instruction labels, l0 is the start label (labeling an ADD

466 L. Pan, X. Zeng

instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers being empty (i.e., storing the number zero), we apply
the instruction with label l0 and we continue to apply instructions as indicated
by the labels (and made possible by the contents of registers); if we reach the
halt instruction, then the number n present in specified register r0 at that time
is said to be generated by M . If the computation does not halt, then no number
is generated. It is known (see, e.g., [3]) that register machines generate all sets
of numbers which are Turing computable, even using register machines with only
three registers as well as registers 1 and 2 being empty whenever the register
machine halts, where we assume that the three registers are labeled with 0, 1, 2.

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

2.2 Spiking Neural P Systems

We briefly recall the basic notions concerning spiking neural P systems (in short,
SN P systems). For more details on such kind of systems, please refer to [1].

A spiking neural P system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0,
p ≥ 1, with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . , m} indicates the input and the output neurons, respectively.

A Note on Small Universal SN P Systems 467

If we always have p = 1 for all rules of the form E/ac → ap; d, then the rules
are said to be of the standard type, else they are called by extended rules.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap; d ∈ Ri can be applied. This means consuming (removing) c spikes
(thus only k− c remain in σi), the neuron is fired, and it produces p spikes after d
time units (as usual in membrane computing, a global clock is assumed, marking
the time for the whole system, hence the functioning of the system is synchronized).
If d = 0, then these spikes are emitted immediately, if d = 1, then these spikes are
emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in steps t,
t + 1, . . . , t + d− 1 the neuron is closed (this corresponds to the refractory period
from neurobiology), so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send several spikes along it, then these particular
spikes are lost). In the step t + d, the neuron spikes and becomes again open, so
that it can receive spikes (which can be used starting with the step t+d+1, when
the neuron can again apply rules).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d has E = ac, then we will write it in the simplified form
ac → a; d.

If a rule E/ac → a; d has d = 0, then we will write it in the simplified form
E/ac → a.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, at most one
in each step, but neurons function in parallel with each other. It is important to
notice that the applicability of a rule is established based on the total number of
spikes contained in the neuron.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration of the system is described by both the number
of spikes present in each neuron and by the state of the neuron, more precisely, by
the number of steps to count down until it becomes open (this number is zero if the
neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neu-
ron σi contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps, i = 1, 2, . . . ,m;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons

468 L. Pan, X. Zeng

are open and no rule can be used. In this note, we use SN P systems as number
generating devices, we start from the initial configuration and we define the result
of a computation as the number of steps between the first two spikes sent out by
the output neuron.

In the next section, as usual, an SN P system is represented graphically, which
may be easier to understand than in a symbolic way. We give an oval with rules
inside to represent a neuron, and directed graph to represent the structure of SN
P system: the neurons are placed in the nodes of a directed graph and the directed
edges represent the synapses; the input neuron has an incoming arrow and the
output neuron has an outgoing arrow, suggesting their communication with the
environment.

3 A Small Universal SN P System

In this section we shall give a small universal SN P system (where extended rules,
producing more than one spikes at a time, are used).

Let Mu = (3,H, l0, lm−2, I) be a universal register machine with 3 registers
labeled by 0, 1, 2, where m ≥ 2, H = {l0, l1, l2, . . . , lm−2} is the set of instruction
labels, l0 is the start label (labeling an ADD instruction) and lm−2 is the halt label
(assigned to instruction HALT), I is the set of instructions.

We modify the universal register machine Mu such that the register where
we place the result is not subject to subtraction operations in the new register
machine. To this aim, we add a further register 3 to output the result, and replace
the halt instruction lm−2 of Mu with the following instructions:

lm−2 : (SUB(0), lm−1, lm), lm−1 : (ADD(3), lm−2), lm : HALT.

The new register machine M ′
u has 4 registers, m + 1 instructions (m ADD and

SUB instructions, and one halt instruction). In the following proof of Theorem 1,
a small universal SN P system is constructed by simulating the register machine
M ′

u.

Theorem 1. There is a universal SN P system with extended rules (without delay)
having 12 neurons.

Proof. We shall present an SN P system Π with 12 neurons to simulate register
machine M ′

u. The structure of system Π is given in Figure 1, where spiking rules
are omitted, which will be specified below. In system Π, neuron σstate contains all
spiking rules associated with all instructions of M ′

u (it is a point different with the
“standard” way of simulating register machines by SN P systems, where one neuron
is associated with each instruction of register machine that we want to simulate);
neurons σi and σai (i = 0, 1, 2, 3) are associated with registers 0, 1, 2, 3; neuron
σout is used to output the result of computation; auxiliary neurons σb1 , σb2 are
used to send a fixed number of spikes to neuron σstate at each step of computation.

A Note on Small Universal SN P Systems 469

We point out that each neuron σi (i = 0, 1, 2) has a synapse (i, state) going to
neuron σstate except for neuron σ3 (as you will see below, the difference originates
from the fact that register 3 is not subject to substraction instructions); however,
neuron σ3 has a synapse (3, b2) going to neuron σb2 , which is used to stop the work
of neurons σb1 and σb2 when the computation of system Π halts.

state
a1 1

a2 2

a3 out3

a0 0

a2

aT4

b2b1 aT aT

Fig. 1. The structure of system Π with the initial numbers of spikes

In system Π, each neuron is assigned with a set of rules, see Table 1, where
P (i) = 4(i+1), for i = 0, 1, 2, . . . , m, and T = 4(m+1)+1. Neurons σi (i = 0, 1, 2)
have the same set of rules except of neuron σ3, the difference originates from
the fact neuron σ3 is not subject to subtraction instruction and it is related to
output the result of computation. In neuron σstate, there are m + 1 groups of
rules R0, R1, . . . , Rm, specifically, for each ADD instruction li : (ADD(r), lj , lk), the
set of rules Ri = {aP (i)(aT)+/aP (i)+T−P (j) → a2r+3, aP (i)(aT)+/aP (i)+T−P (k) →
a2r+3} is associated; for each SUB instruction li : (SUB(r), lj , lk), the set
of rules Ri = {aP (i)(aT)+/aT+3 → a2r+2, aP (i)−1(aT)+/aP (i)−1+T−P (j) →
a, aP (i)−2(aT)+/aP (i)−2+T−P (k) → a} is associated; for instruction lm : HALT,
Rm = {aP (m)(aT)+/aP (m) → a8} is associated. If the number of spikes in neuron
σstate is of the form P (i) + sT for some s ≥ 1 (that is, if the number of spikes
is n, then n ≡ P (i) (mod T); the value of multiplicity of T does not matter with
the restriction that it should be greater than 0), then system Π starts to simulate
instruction li. In particular, in the initial configuration of M ′

u, neuron σstate has
T + 4 spikes, which is the form T + 4 = P (0) + T , system Π starts to simulate
the initial instruction l0 of M ′

u; with P (m) + sT = 4(m + 1) + sT spikes in σstate,
system Π starts to output the result of computation; if the number of spikes in
σstate is of the form sT , then no rule in σstate is enabled, which happens after the

470 L. Pan, X. Zeng

halt instruction is reached. That is why we use the label state for this neuron, and
the function of this neuron is somewhat similar with “the finite set of states” in
Turing machine.

Table 1. The rules associated with neurons in system Π

neurons associated rules

σb1 , σb2 aT → aT

σi, i = 0, 1, 2 a → a, a(a3)+/a4 → a2

σ3 a → a, a(a3)+/a3 → a3

σai , i = 0, 1, 2, 3 a2i+2 → a, a2i+3 → a3, a → λ,
a2j+2 → λ, a2j+3 → λ, j ∈ {0, 1, 2, 3} − {i}

σout a → a, a3 → λ, a5 → a

σstate Rstate = R0 ∪R1 ∪ · · · ∪Rm, where:

Ri = {aP (i)(aT)+/aP (i)+T−P (j) → a2r+3,

aP (i)(aT)+/aP (i)+T−P (k) → a2r+3},
for instruction li : (ADD(r), lj , lk);

Ri = {aP (i)(aT)+/aT+3 → a2r+2, aP (i)−1(aT)+/aP (i)−1+T−P (j) → a,

aP (i)−2(aT)+/aP (i)−2+T−P (k) → a},
for instruction li : (SUB(r), lj , lk);

Rm = {aP (m)(aT)+/aP (m) → a8},
for instruction lm : HALT

Initially, all neurons have no spike, with exception that each of neurons σb1 , σb2

contains T spikes, neuron σstate contains P (0)+T = 4+T spikes, and neuron σout

contains 2 spikes. As you will see, during the computation of M ′
u, the contents

of registers r, 0 ≤ r ≤ 3 are encoded by the number of spikes from neuron r in
the following way: if the register r holds the number n ≥ 0, then the associated
neuron σr will contain 3n spikes; the increase (resp. decrease) of the number stored
in register r is simulated by adding (resp. removing) three spikes.

With T spikes inside, neurons σb1 and σb2 fire by the rule aT → aT , sending
T spikes to each other; in this way, from step 1 until system Π starting to output
the result of computation (that is, until a step when neuron σ3 fires), at each step,
neuron σb2 will send T spikes to σstate.

In what follows, we check the simulation of register machine M ′
u by system

Π, by decomposing system Π into three modules (i.e., modules ADD, SUB, and
OUTPUT), and checking the work of each module.

Module ADD (Figure 2) – simulating an ADD instruction li : (ADD(r), lj , lk)
The initial instruction of M ′

u, the one with label l0, is an ADD instruction.
Assume that we are in a step when we have to simulate an ADD instruction
li : (ADD(r), lj , lk), with the number of spikes being the form P (i) + sT (for some
s ≥ 1) in neuron σstate (in the initial configuration, neuron σstate contains P (0)+T
spikes, and the simulation of the initial instruction with label l0 is triggered). The

A Note on Small Universal SN P Systems 471

state
a P iaT /a P iT−P ja2 r3

a2 r2 a a r

a2r3 a3

a2 f 2 , f ∈{0,1,2,3}−{r }
a2 f 3 , f ∈{0,1, 2,3}−{r }

a a3 /a4 a2
r

a a

a

R0 ,⋯, Ri−1 , Ri1 ,⋯, Rm

a P iaT /a P iT−P k a2 r3
Ri:

Fig. 2. Module ADD simulating li : (ADD(r), lj , lk)

rules aP (i)(aT)+/aP (i)+T−P (j) → a2r+3 and aP (i)(aT)+/aP (i)+T−P (k) → a2r+3 are
enabled, non-deterministically choosing one of them to be applied.

If aP (i)(aT)+/aP (i)+T−P (j) → a2r+3 is applied, then neuron σstate fires, sending
out 2r + 3 spikes to neurons σai (i = 0, 1, 2, 3). Neuron σar sends 3 spikes to
neuron σr by rule a2r+3 → a3. In neurons σat (t ∈ {0, 1, 2, 3} − {r}), these 2r + 3
spikes are forgotten by rule a2r+3 → λ. Therefore, neuron σr increases its number
of spikes by 3, and does not fire, which simulates the increase of the number
stored in register r by 1. After consuming P (i) + T − P (j) spikes by the rule
aP (i)(aT)+/aP (i)+T−P (j) → a2r+3, the number of spikes in neuron σstate is of the
form P (j) + sT (for some s ≥ 1) (recalling that neuron σstate receives T spikes
from neuron σb2 at each step), hence system Π starts to simulate an instruction
with label lj .

Similarly, if aP (i)(aT)+/aP (i)+T−P (k) → a2r+3 is applied, then neuron σr in-
creases its number of spikes by 3, and the number of spikes in neuron σstate is
of the form P (k) + sT (for some s ≥ 1). This implies that the number stored in
register r is increased by 1, and system Π starts to simulate an instruction with
label lk.

The simulation of the ADD instruction is correct: we have increased the number
of spikes in neuron σr by three, and we have passed to the simulation of one of
the instructions lj and lk non-deterministically.

Remark: (1) The auxiliary neurons σb1 and σb2 are necessary for the function
of system Π. They send T spikes to neuron σstate at each step, which ensures that
the number of spikes in neuron σstate not less than 0.

(2) In the simulation of an ADD instruction, when neuron σstate fires, it sends
2r + 3 spikes to all neurons σai (i = 0, 1, 2, 3). Checking the rules in neurons σai

(i = 0, 1, 2, 3) (listed in Table 1), we can find that in neuron σar only rule a2r+3 → a

472 L. Pan, X. Zeng

is enabled and applied, sending three spikes to neuron σr; in neuron σat with t 6= r,
only rule a2r+3 → λ is enabled and applied, these 2r + 3 spikes are forgotten, and
neuron σt, t 6= r, receives no spike. In general, there is a bijection relation: neuron
σr receives 3 spikes if and only if neuron σstate sends out 2r + 3 spikes, where
r = 0, 1, 2, 3. So, the neurons σai (i = 0, 1, 2, 3) work like a “sieve” such that only
the register that the ADD instruction acts on can increase its number by 1.

(3) As you will see below, when a SUB instruction that acts on register r is
simulated, neuron σstate sends out 2r + 2 spikes. In this case, neurons σai (i =
0, 1, 2, 3) also work like a “sieve”, but with different bijection relation: neuron
σr receives 1 spike if and only if neuron σstate sends out 2r + 2 spikes, where
r = 0, 1, 2, 3.

Module SUB (Figure 3) – simulating a SUB instruction li : (SUB(r), lj , lk).

state a P iaT /aT3 a2 r2

a2 r2 a a r

a2 r3 a3

a2 f 2 , f ∈{0,1,2,3}−{r }
a2 f 3 , f ∈{0,1,2,3}−{r }

a a3 /a4 a2
r

a a

a

a P i−2aT /aP i − 2T−P k a

a P i−1aT /a P i−1T−P j a

R0 ,⋯, Ri−1 , Ri1 ,⋯, Rm

Ri:

Fig. 3. module SUB simulating li : (SUB(r), lj , lk)

The execution of instruction li : (SUB(r), lj , lk) is simulated in Π in the following
way. With the number of spikes in neurons σstate having the form P (i) + sT (for
some s ≥ 1), rule aP (i)(aT)+/aT+3 → a2r+2 is enabled and applied, sending out
2r + 2 spikes; we suppose it is at step t. At step t + 1, neuron σar spikes by the
rule a2r+2 → a, sending one spike to neuron σr; these 2r + 2 spikes in neuron σat ,
t 6= r, are forgotten by the rule a2r+2 → λ (that is, the “sieve” function of neurons
σai , i = 0, 1, 2, 3, works again). For the number of spikes in neuron σr at step t,
we consider the following two cases: (1) neuron σr contains at least three spikes
(that is, register r is not empty); (2) neuron σr contains no spike (that is, register
r is empty).

A Note on Small Universal SN P Systems 473

(1) If the number of spikes in neuron σr at step t is 3n with n > 0, then receiving
one spike from neuron σar

at step t+1; neuron σr has 3n+1 spikes at step t+2,
and rule a(a3)+/a4 → a2 is enabled and applied, consuming 4 spikes, sending
2 spike to neuron σstate. In this way, the number of spikes in neuron σr is
3(n− 1), simulating the number stored in register r is decreased by one. After
receiving these 2 spikes, the number of spikes in neuron σstate is of the from
P (i) − 1 + sT (for some s ≥ 1), so rule aP (i)−1(aT)+/aP (i)+T−1−P (j) → a
can be applied. Consuming P (i) − 1 + T − P (j) at step t + 3 by rule
aP (i)−1(aT)+/aP (i)+T−1−P (j) → a, the number of spikes in neuron σstate is
of the from P (j) + sT (for some s ≥ 1), which means that the next simulated
instruction will be lj . Note that this one spike emitted by neuron σstate will
be immediately forgotten by all neurons σa0 , . . . , σa3 at the next step because
of the rule a → λ in these neurons.

(2) If the number of spikes in neuron σr at step t is 0, then at step t + 2, neuron
σr contains one spike (received from neuron σar

at step t + 1), and the rule
a → a is applied, consuming the single spike present in neuron σr and sending
one spike to neuron σstate. Neuron σstate contains P (i) − 2 + sT (for some
s ≥ 1) spikes at step t + 3, rule aP (i)−2(aT)+/aP (i)+T−2−P (k) → a is enabled
and applied, consuming P (i)−2+T −P (k) spikes. So, the number of spikes in
neuron σstate is of the from P (k) + sT (for some s ≥ 1), and system Π starts
to simulate the instruction lk.

The simulation of the SUB instruction is correct: starting from the simulation
of instruction li, we passed to simulate the instruction lj if the register was non-
empty and decreased by one, and to simulate instruction lk if the register is empty.

Remark: In the set of rules Ri associated with a SUB instruction li, the regular
expressions have numbers P (i), P (i)−1, P (i)−2, P (i)−3. Because P (i) = 4(i+1)
for each instruction li, which implies that {P (i1), P (i1) − 1, P (i1) − 2, P (i1) −
3}∩{P (i2), P (i2)− 1, P (i2)− 2, P (i2)− 3} = ∅, for i1 6= i2, the simulation of SUB
instructions do not interfere with each other. On the other hand, in the set of rules
Ri associated with an ADD instruction li, the regular expressions have number
P (i), it is not difficult to see that the simulations of an ADD instruction and a
SUB instruction do not interfere with each other too. That is why we take P (i) as
a multiplicity of number 4.

Module OUTPUT (Figure 4) – outputting the result of computation.
Assume now that the computation in M ′

u halts, which means that the halt
instruction lm is reached. For system Π, this means that neuron σstate contains
P (m)+sT spikes (for some s ≥ 1). At that moment, neuron σ3 contains 3n spikes,
for n being the content of register 3 of M ′

u. Having P (m)+sT spikes inside, neuron
σstate gets fired and emits 8 spikes by the rule aP (m)(aT)+/aP (m) → a8. After that,
the number of spikes in neuron σstate is of the form sT (for some s ≥ 1), no rule
can be applied anymore in neuron σstate.

At the next step, neurons σa0 , σa1 , σa2 forget these 8 spikes received from
σstate by the rule a8 → λ; only neuron σa3 sends one spike to neuron σ3 by the

474 L. Pan, X. Zeng

a8 a

state

a3

a9a3

a2 f 2 f =0,1,2
a2 f 3 f =0,1,2

Rm: aP maT /a Pm a8

a a

3

a a3 /a3 a3
a2

out

a

a5 a
a3
a a

aT aT

b2

R0 ,⋯, Rm−1

Fig. 4. Module OUTPUT

rule a8 → a. In this way, neuron σ3 has 3n+1 spikes, hence the rule a(a3)+/a3 → a3

can be applied, sending three spikes to neuron σout. With five spikes inside (three
spikes were received from neuron σ3; two spikes were contained from the initial
configuration), neuron σout fires by the rule a5 → a, which is the first spike sent
out by system Π to the environment. Let t be the moment when neuron σout fires.

When neuron σ3 spikes at step t − 1, neuron σb2 also receives 3 spikes from
neuron σ3, which gets “over flooded” and is blocked. So, neurons σb1 and σb2 stop
their works.

Note that at step t, neuron σ3 contains 3(n− 1) + 1 spikes (three spikes were
already consumed at step t − 1). From step t on, at each step, three spikes are
consumed in neuron σ3 by the rule a(a3)+/a3 → a3, sending 3 spikes to neuron
σout; these three spikes in neuron σout are forgotten by the rule a3 → λ. So, at
step t + (n− 1), neuron σ3 contains one spike, and the rule a → a is enabled and
applied, sending one spike to neuron σout. With one spike inside, neuron σout fires
for the second (and last) time by the rule a → a at step t+n. The interval between
these two spikes sent out to the environment by the system is (t + n) − t = n,
which is exactly the number stored in register 3 of M ′

u at the moment when the
computation of M ′

u halts.
From the above description, it is clear that the register machine M ′

u is correctly
simulated by system Π. Therefore, Theorem 1 holds.

4 Conclusions and Remarks

In this note, a new way is introduced for simulating register machines by SN P
systems, where a neuron works like “the finite set of states” in Turing machine.
By this new way, we can use less neurons to construct universal SN P systems.
Specifically, a universal system with extended rules (without delay) having 12
neurons is constructed.

A Note on Small Universal SN P Systems 475

In the universal SN P system Π constructed in Section 3, four neurons are
associated with 4 registers; one neuron is used to output the result of computation;
one neuron is used for all instructions of a register machine; 2 auxiliary neurons are
used to feed spikes at each step; 4 auxiliary neurons are used between the neuron
associated with all instructions and neurons associated with registers, which work
as a “sieve”. Can we remove these 4 auxiliary neurons to get smaller universal SN
P systems? One possible way of removing these auxiliary neurons is to use more
rules in the neuron associated with instructions realizing the function of “sieve”.

In this note, we only considered SN P systems with extended rules without
delay. Can we extend this way to the case of SN P systems with standard rules
(a little more neurons seems necessary), asynchronous SN P systems, or other
variants and modes of SN P systems?

The universal SN P system constructed in this note is already quite small. If we
start from universal register machines to construct universal SN P systems, then
it may be not easy to get significant improvement. Of course, it is still possible
to have smaller universal SN P systems, if we start construction from other small
universal computational devices.

Acknowledgements. The comments from three anonymous referees are greatly
acknowledged. The work was supported by National Natural Science Foundation
of China (Grant Nos. 60674106, 30870826, 60703047, and 60533010), Program for
New Century Excellent Talents in University (NCET-05-0612), Ph.D. Programs
Foundation of Ministry of Education of China (20060487014), Chenguang Pro-
gram of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science
Foundation of Hubei Province (2008CDB113 and 2008CDB180).

References

1. M. Ionescu, Gh. Păun and T. Yokomori, Spiking neural P systems, Fundamenta
Informaticae, 2006, 71(2–3): 279–308

2. I. Korec, Small universal register machines, Theoretical Computer Science, 1996, 168:
267–301

3. M. Minsky, Computation – Finite and Infinite Machines, Prentice Hall, New Jersey,
1967

4. A. Păun, Gh. Păun. Small universal spiking neural P systems, BioSystems, 2007,
90(1): 48–60

5. Gh. Păun, Membrane Computing – An Introduction, Springer-Verlag, Berlin, 2002
6. Gh. Păun, G. Rozenberg, A. Salomaa, eds., Handbook of Membrane Computing, Ox-

ford University Press, 2010
7. Y. Rogozhin, Small universal Turing machines, Theoretical Computer Science, 1996,

168: 215–240
8. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes. Springer-

Verlag, Berlin, 1997
9. X. Zhang, X. Zeng, L. Pan, Smaller universal spiking neural P systems, Fundamental

Informaticae, 2008, 87(1): 117–136
10. The P System Web Page: http://ppage.psystems.eu

On the Power of Computing with Proteins on
Membranes

Petr Sośık1,2, Andrei Păun1,3,4, Alfonso Rodŕıguez-Patón1, and David Pérez1

1 Departamento de Inteligencia Artificial, Facultad de Informática
Universidad Politécnica de Madrid, Campus de Montegancedo s/n
Boadilla del Monte, 28660 Madrid, Spain
{psosik,apaun,arpaton,dperez}@fi.upm.es

2 Institute of Computer Science, Silesian University, 74601 Opava, Czech Republic
3 Department of Computer Science/IfM, Louisiana Tech University, P.O. Box 10348,

Ruston, LA 71272, USA
4 Bioinformatics Department, National Institute of Research and Development for

Biological Sciences, Splaiul Independenţei, Nr. 96, Sector 6, Bucharest, Romania

Summary. P systems with proteins on membranes are inspired closely by switching
protein channels. This model of membrane computing using membrane division has been
previously shown to solve an NP-complete problem in polynomial time. In this paper
we characterize the class of problems solvable by these P systems in polynomial time
and we show that it equals PSPACE. Therefore, these P systems are computationally
equivalent (up to a polynomial time reduction) to the alternating Turing machine or the
PRAM computer. The proof technique we employ reveals also some interesting trade-offs
between certain P system properties, as antiport rules, membrane labeling by polarization
or the presence of proteins.

1 Introduction

We continue the work on P systems with proteins on membranes, a model com-
bining membrane systems and brane calculi as introduced in [7]. We consider a
rather restrictive case, where the “main” information to process is encoded in the
multisets from the regions of a P system, but these objects evolve under the control
of a bounded number of proteins placed on membranes. Also, the rules we use are
very restrictive: move objects across membranes, under the control of membrane
proteins, changing or not the objects and/or the proteins during these operations.
In some sense, we have an extension of symport/antiport rules [5], with the men-
tioning that we always use minimal rules, dealing with only one protein, one object
inside the region and/or one object outside of it.

The motivation came from the observation by several authors recently that the
maximal parallelism way of processing different species of molecules in the mem-
brane structure is not very close to reality, thus we are considering a model that

On the Power of Computing with Proteins on Membranes 477

is limiting the parallelism through the modeling of the trans-membrane proteins
(protein channels) observed in nature. A second motivation comes from the brane
calculi in which many rules act at the level of the membrane (unlike rules which
act within the region enclosed by the membrane). In brane calculi introduced in
[3], one works only with objects – called proteins – placed on membranes, while the
evolution is based on membrane handling operations, such as exocytosis, phago-
cytosis, etc. In the membrane computing area we have rules associated with each
region defined by a membrane, and in the recent years the rules in membrane
computing have been considered mainly to work on symbol objects rather than
other structures such as strings. The extension considered in [7] and in [8] was to
have both types of rules (both at the level of the region delimited by membranes
and also at the level of membrane controlled by a protein). The reason for con-
sidering both extensions was that in biology, many reactions taking place in the
compartments of living cells are controlled/catalysed by the proteins embedded
in the membranes bilayer. For instance, it is estimated that in the animal cells,
the proteins constitute about 50% of the mass of the membranes, the rest being
lipids and small amounts of carbohydrates. There are several types of such pro-
teins embedded in the membrane of the cell; one simple classification places these
proteins into two classes, that of integral proteins (these molecules can “work” in
both inside the membrane as well as also in the region outside the membrane),
and that of peripheral proteins (macromolecules that can only work in one region
of the cell) – see [1].

In this paper we show that P systems with proteins on membranes can solve
in polynomial time exactly the class of problems PSPACE. Mathematically, this
property can be expressed as

M -PTIME = M -NPTIME = PSPACE, (1)

where M -(N)PTIME is the class of problems solved in polynomial time by a (non-)
deterministic machine M. (In our case, the machine M will be a P system with
proteins on membranes.) This relation is also known as the Parallel Computation
Thesis [12]. Computational devices with this property form the so-called second
machine class. Another members of this class are the alternating Turing machine,
SIMDAG (also known as SIMD PRAM) and other standard parallel computer
models [12].

The rest of the paper is organized as follows: after introducing basic concepts
used throughout the paper in Section 2, we show in Section 3 that the P systems
with proteins on membranes can solve the problem QSAT in linear time. Then
in Section 4 we show that such a P system can be simulated with a conventional
computer (and hence also with Turing machine) in a polynomial space. Section 5
concludes the paper and mentions also some open problems.

478 P. Sosik et al.

2 Definitions

We will start by giving some preliminary notations and definitions which are stan-
dard in the area of membrane systems. The reader is referred to [4, 9] for an
introduction and overview of membrane systems, and to [13] for the most recent
information. The membranes delimit regions precisely identified by the membranes.
In these regions we place objects — elements of the set O. Several copies of the
same object can be present in a region, so we work with multisets of objects. For
a multiset M we denote by |M |a the multiplicity of objects a in M. A multiset
M with the underlying set O can be represented by a string x ∈ O∗ (by O∗ we
denote the free monoid generated by O with respect to the concatenation and the
identity λ) such that the number of occurrences of a ∈ O in x represents the value
|M |a.

In the P systems which we consider below, we use two types of objects, proteins
and usual objects; the former are placed on the membranes, the latter are placed in
the regions delimited by membranes. The fact that a protein p is on a membrane
(with label) i is written in the form [

i
p|]

i
. Both the regions of a membrane

structure and the membranes can contain multisets of objects and of proteins,
respectively.

We consider the types of rules introduced in [7]. In all of these rules, a, b, c, d
are objects, p is a protein, and i is a label (“res” stands for “restricted”):

Type Rule Effect
1res [

i
p|a]

i
→ [

i
p|b]

i
a[

i
p|]

i
→ b[

i
p|]

i
modify an object, but not move

2res [
i
p|a]

i
→ a[

i
p|]

i
a[

i
p|]

i
→ [

i
p|a]

i
move an object, but not modify

3res [ip|a] i → b[ip|] i
a[ip|] i → [ip|b] i modify and move one object

4res a[ip|b] i → b[ip|a] i interchange two objects
5res a[ip|b] i → c[ip|d] i interchange and modify two objects

In all cases above, the protein is not changed, it plays the role of a catalyst, just
assisting the evolution of objects. A generalization is to allow rules of the forms
below (now, “cp” means “change protein”):

Type Rule Effect (besides changing also the protein)
1cp [ip|a] i → [ip

′|b] i
a[ip|] i → b[ip

′|] i modify an object, but not move
2cp [ip|a] i → a[ip

′|] i
a[

i
p|]

i
→ [

i
p′|a]

i
move an object, but not modify

3cp [
i
p|a]

i
→ b[

i
p′|]

i
a[

i
p|]

i
→ [

i
p′|b]

i
modify and move one object

4cp a[
i
p|b]

i
→ b[

i
p′|a]

i
interchange two objects

5cp a[
i
p|b]

i
→ c[

i
p′|d]

i
interchange and modify two objects

On the Power of Computing with Proteins on Membranes 479

where p, p′ are two proteins (possibly equal, and then we have rules of type res).
An intermediate case can be that of changing proteins, but in a restricted

manner, by allowing at most two states for each protein, p, p̄, and the rules either
as in the first table (without changing the protein), or changing from p to p̄ and
back (like in the case of bistable catalysts). Rules with such flip-flop proteins are
denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we allow both rules which
do not change the protein and rules which switch from p to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in their complementary state (from p into p̄ and vice versa).
Such rules are said to be of pure ff or cp type, and we indicate the use of pure ff
or cp rules by writing ffp and cpp, respectively.

To divide a membrane, we use the following type of rule, where p, p′, p′′ are
proteins (possible equal): [ip|] i → [ip

′|] i[ip
′′|] i

The membrane i is assumed not to have any polarization and it can be non-
elementary. The rule doesn’t change the membrane label i and instead of one
membrane, at next step, will have two membranes with the same label i and
the same contents replicated from the original membrane: objects and/or other
membranes (although the rule specifies only the proteins involved).

Definition 1. A P system with proteins on membranes and membrane division
(in the sequel simply P system, if not stated otherwise) is a system of the form
Π = (O, P, µ, w1/z1, . . . , wm/zm, E,R1, . . . , Rm, io), where

m is the degree of the system (the number of membranes),
O is the set of objects, P is the set of proteins (with O ∩ P = ∅),
µ is the membrane structure,
w1, . . . , wm are the (strings representing the) multisets of objects present in the m

regions of the membrane structure µ,
z1, . . . , zm are the multisets of proteins present on the m membranes of µ,
E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each),
R1, . . . , Rm are finite sets of rules associated with the m membranes of µ, and
io is the label of the output membrane.

The rules are used in the non-deterministic maximally parallel way: in each
step, a maximal multiset of rules is used, that is, no rule is applicable to the objects
and the proteins which remain unused by the chosen multiset. At each step we have
the condition that each object and each protein can be involved in the application
of at most one rule, but the membranes are not considered as involved in the rule
applications except the division rules, hence the same membrane can appear in
any number of rules of types 1–5 at the same time. By halting computation we
understand a sequence of configurations that ends with a halting configuration
(there is no rule that can be applied considering the objects and proteins present
at that moment in the system). With a halting computation we associate a result,
in the form of the multiplicity of objects present in region io at the moment when
the system halts. We denote by N(Π) the set of numbers computed in this way

480 P. Sosik et al.

by a given system Π. We denote, in the usual way, by NOPm(pror;list-of-types-of-
rules) the family of sets of numbers N(Π) generated by systems Π with at most m
membranes, using rules as specified in the list-of-types-of-rules, and with at most
r proteins present on a membrane. When parameters m or r are not bounded, we
use ∗ as a subscript.

Example: Consider the P system

Π = (O, {p, q}, [0[1]1]0, ∅/∅, {a1}/{p}, ∅, ∅, R1, 0), where

O = {a1, . . . , an}
R1 = {[1p|]1 → [1q|]1[1q|]1, [1q|an]1 → an[1q|]1}

∪ {[1q|ai]1 → [1p|ai+1]1 | 1 ≤ i ≤ n− 1}.

Fig. 1. An example of a P system with proteins on membranes.

In its initial configuration the system contains two membranes and one object.
In every odd step all the membranes labelled 1 are divided and their membrane
proteins are changed from p to q. In every even step the proteins change back
from q to p, and objects ai in the membranes evolve to ai+1, for 1 ≤ i ≤ n − 1.
Therefore, every two steps the number of membranes labelled 1 is doubled. In 2n-
th step the objects an are expelled to the membrane labelled 0, which is the output
membrane, and the systems halts. The computation of the system is illustrated in
Fig. 1. Therefore, we can write that N(Π) = {2n |n ∈ N}.

Several computational universality results are known to hold for P systems
with proteins on membranes [8, 7], from which we recall only two:

NOP1(pro2; 2cpp) = NOP1(pro∗; 3ffp) = NRE ,

where NRE is the class of all recursively enumerable sets of non-negative integers.
In this paper, however, we focus on P systems working in accepting mode, described
in the next section, which can solve decision problems.

On the Power of Computing with Proteins on Membranes 481

2.1 Families of membrane systems

Most of the membrane computing models are universal, i.e., they allow for a con-
struction of a universal machine capable of solving any Turing-computable prob-
lem. However, when we try to employ the massive parallelism of P systems for
effective solutions to intractable problems, the concept of one universal P systems
solving all the instances of the problem is rather restrictive. The effective use of
parallelism can be restricted by the particular structure of such a P system. For
instance, the depth of the structure is fixed during the computation in most P
system models. But for an effective parallel solution to various instances, various
depths of the membrane structure might be needed.

Therefore, to attack intractable problems, we frequently use families of P sys-
tems instead of a single P system. Generally, given a computational problem X,
each machine Mn of the family M = (M0,M1, . . .) is able to solve the instances
of X of size n. We denote by |xi| the size of an instance xi of a problem X. In the
usual representation xi, i = 1, 2, . . . , are words over a fixed finite alphabet and |xi|
is the length of xi. The following definition is due to [6].

Definition 2. Let D be a class of P systems and let f : N −→ N be a total function.
The class of problems solved by uniform families of P systems of type D in time
f, denoted by MCD(f), contains all problems X such that:

1. there exists a uniform family of P systems ΠX = (ΠX(1);ΠX(2); . . .) of type
D : each ΠX(n) can be constructed by a deterministic Turing machine with
input n in a time polynomial to n.

2. Each ΠX(n) is sound: ΠX(n) starting with a (properly encoded) input x ∈ X
of size n expels out a distinguished object yes if and only if the answer to x is
“yes”.

3. Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result: “yes” or “no”.

4. ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Alternatively we can consider semi-uniform families of P systems ΠX =
(ΠX(x1); ΠX(x2); . . .) whose members ΠX(xn) can be constructed by a deter-
ministic Turing machine with input xn in a polynomial time w.r.t. |xn|. In this
case, for each instance of X we have a special P system which therefore does not
need an input. The resulting class of problems is denoted by MCS

D(f). Obviously,
MCD(f) ⊆ MCS

D(f) for a given class D and a constructible function f.
Particularly, we denote by

PMCD =
⋃

k∈N
MCD(O(nk)), PMCS

D =
⋃

k∈N
MCS

D(O(nk)),

the classes of problems solvable by uniform (semi-uniform, respectively) families
of P systems in polynomial time. Let us denote by MP the class of P systems
with proteins on membranes. The following relation follows by [8] for P systems
with proteins on membranes:

482 P. Sosik et al.

NP ⊆ PMCS
MP . (2)

3 Solving QSAT in linear time

In this section we show that P systems with proteins on membranes can solve in
linear time the PSPACE-complete problem QSAT. More precisely, there exists
a semi-uniform family of these P systems such that for each instance of QSAT,
a proper P system solving that instance in a linear time can be constructed in a
polynomial time w.r.t. the size of the instance. We also observe interesting trade-off
between the use of certain elementary P systems operations.

The problem QSAT (satisfiability of quantified propositional formulas) is a
standard PSPACE-complete problem. It asks whether or not a given quantified
boolean formula in the conjunctive normal form assumes the value true. A formula
as above is of the form

γ = Q1x1Q2x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm), (3)

where each Qi, 1 ≤ i ≤ n, is either ∀ or ∃, and each Cj , 1 ≤ j ≤ m, is a clause
of the form of a disjunction Cj = y1 ∨ y2 ∨ . . . ∨ yr, with each yk being either a
propositional variable, xs, or its negation, ¬xs. For example, let us consider the
propositional formula

β = Q1x1Q2x2[(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)]

It is easy to see that it is true when Q1 = ∀ and Q2 = ∃, but it is false when
Q1 = ∃ and Q2 = ∀.

The proof given below is based on the technique already employed in [10]
which deals with P systems with active membranes. However, since the function
of membrane proteins is different, the proof was substantially adapted. Notice,
e.g., that in the P systems with active membranes, the division operation is driven
by both membrane contents and polarization, while here it is controlled solely by
membrane proteins. As a result, in [10] the membrane structure divides in the
bottom-up manner, here the reverse top-down order must be employed.

Theorem 1. PSPACE ⊆ PMCS
MP .

Proof. Consider a propositional formula γ of the form (3) with

Ci = yi,1 ∨ . . . ∨ yi,pi ,

for some pi ≥ 1, and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.
We construct the P system

Π = (O,P, µ, w0/z0, w1/z1, . . . , wn+2/zn+2, ∅, R0, R1, . . . , Rn+2, 0)

with the components

On the Power of Computing with Proteins on Membranes 483

O = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri, ri | 1 ≤ i ≤ m} ∪ {t, s},
P = {p0, p+, p−, px},
µ = [

0
[
1
. . . [

n
[
n+1

]
n+1

[
n+2

]
n+2

]
n

. . .]
1
]
0
,

w0 = wn+2 = λ,

wi = ai, for each i = 1, 2, . . . , n,

wn+1 = r1r2 . . . rm,

z0 = p0, z1 = px,

zi = p0, for all i = 2, . . . , n + 2.

The rules contained in the sets Ri are defined below:

In Ri, 1 ≤ i ≤ n :

[
i
px|]

i
→ [

i
p+|]

i
[
i
p−|]

i
, [

i
p+|ai] i

→ [
i
p+|ti] i

, [
i
p−|ai] i

→ [
i
p−|fi] i

(4)

In Ri, 1 ≤ i ≤ n− 1 :

ti[i+1
p0|]

i+1
→ [

i+1
px|ti] i+1

, fi[i+1
p0|]

i+1
→ [

i+1
px|fi] i+1

(5)

In Ri, 3 ≤ i ≤ n :

tj [i
p0|]

i
→ [

i
p0|tj] i

, fj [i
p0|]

i
→ [

i
p0|fj] i

for all j, 1 ≤ j ≤ i− 2 (6)

In Rn+1 :

ti[n+1
p0|rj]n+1

→ rj [n+1
p0|ti]n+1

for all i, j, 1 ≤ i ≤ n, ≤ j ≤ m such that the clause Cj contains xi
(7)

In Rn+1 :

fi[n+1
p0|rj]n+1

→ rj [n+1
p0|fi]n+1

for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that the clause Cj contains ¬xi
(8)

In Rn+1 :

[
n+1

p0|ti]n+1
→ ti[n+1

p0|]
n+1

, [
n+1

p0|fi]n+1
→ fi[n+1

p0|]
n+1

for all i, 1 ≤ i ≤ n
(9)

In Rn+2 :
r1[n+2

p0|]
n+2

→ [
n+2

p0|r1]n+2
(10)

In Rn+2 :

ri+1[n+2p0|ri]n+2 → ri[n+2p0|ri+1]n+2 for all i, 1 ≤ i ≤ n− 1 (11)

In Rn+2 :
[
n+2

p0|rm]
n+2

→ t[
n+2

p0|]
n+2

(12)

484 P. Sosik et al.

0

1

2

...

n−1

n

s

s

s

s

s

...

p0

p0

px

p0

p0

s

s

s

s

s

s

s

s

s

p0

p+

p0

p−

p0

p0

p0

p0

p0

⇒
...

s

s s

s s s s

s

s sp+ p−

...
...

...

p+

p+

p−

p0

p+ p−

p−s

s sp+ p−

p+ p−

⇒∗

. . .

Fig. 2. Expansion of the initial membrane structure into a binary tree (only the first
n + 1 levels shown). The symbols at nodes indicate the proteins present on membranes.

In Ri, 1 ≤ i ≤ n such that Qi = ∀ :

[
i
p−|t] i

→ s[
i
p−|]

i
, s[

i
p+|t] i

→ t[
i
p+|s] i

(13)

In Ri, 1 ≤ i ≤ n such that Qi = ∃ :

[ip−|t] i → t[ip−|] i, [ip+|t] i → t[ip+|] i (14)

It is easy to check that the size of the P system Π (the number of objects,
membranes, rules, the size of the initial configuration etc.) is O(nm), n being the
number of variables and m the number of clauses. Also the system can obviously
be constructed in a polynomial (linear) time.

Initial phase of computation of the system Π is illustrated in Fig. 2. In the
first step the non-elementary membrane at level 1 is divided by the first rule in (4)
into two parts with different membrane proteins. In the next step, symbols f1 and
t1 are produced in the two resulting membranes, see the next rules in (4). In the
third step, these symbols are moved one level lower, into the membranes labeled 2,
see (5). The membrane protein on these membranes is changed to px. This cycle is
repeated n times and waves corresponding to the division by rules (4) descend the
membrane tree towards its leaves. Simultaneously, the produced symbols ti and fi

move towards the leaves of the tree thanks to the rules (6). This phase is finished
after 3n− 1 steps when the membrane structure forms a balanced binary tree, see
Fig. 2. Each of its 2n nodes at level n contains a set of objects {x1, x2, . . . , xn},
where xi ∈ {fi, ti}, 1 ≤ i ≤ n, such that all possible n-tuples are present.

Second phase consists of checking whether the formula without quantifiers is
satisfied by the n-tuples of logical values (x1, x2, . . . , xn). The checking is done for
all the n-tuples in parallel. It starts by moving of those objects ri, 1 ≤ i ≤ m,
corresponding to the clauses Ci which are satisfied by a particular n-tuple, from

On the Power of Computing with Proteins on Membranes 485

the membrane [
n+1

]
n+1

to [
n
]
n
. Rules (7)–(9) are responsible for this process.

Whenever objects r1, . . . , rm appear in membrane [n]n, another process starts
whose purpose is to check whether all ri, 1 ≤ i ≤ m, are present. This is done
by their movements to-and-from membrane [

n+2
]
n+2

driven by rules (10)–(12).
Eventually, object t is released into the membrane [

n
]
n
.

The application of rules of the second phase can partially overlap with the
initial phase: whenever first objects ti or fi arrive into the membrane [

n
]
n
, the

second phase starts, while remaining ti’s and fi’s can arrive later. However, the
application of the rules in the second phase described above is not altered.

Finally, third phase of computation checks whether the whole formula with
quantifiers is satisfied. Objects t move upwards the membrane structure tree,
checking at each level one quantifier ∀ or ∃. Observe that rules (13)–(14) allow
for existence of more than one symbol t per membrane (in the case of ∃) which,
however, do not alter the computation. Eventually, object t appears in membrane
0, signaling that the formula is satisfied, and the system halts.

The whole computation is performed by time linearly limited from above by
the values of n and m. More specifically, the initial phase is finished in 3n − 1
steps, the second phase takes up to 3m steps and the last phase up to 2n steps.
In total, the computation takes O(n + m) steps.

Observe that rules (5) are the only rules of type 2cp. All the rest are restricted
(or division) rules. Furthermore, these 2cp rules are used only to control the mem-
brane division process. The membrane division rules can be controlled solely by the
presence of a specific membrane protein. Assume that we introduced division rules
similar as in P systems with active membranes, i.e., of type [

i
p|a]

i
→ [

i
p|b]

i
[
i
p|c]

i
,

controlled by the presence of certain object in a membrane. Then the rules (5)
would not be needed and the whole P systems could use only restricted and divi-
sion rules.

Hence, it turns out that the only necessary purpose of membrane proteins is
the control of membrane division forced by the specific type of division rules. If
we compare our proof with that in [10], we observe that the role played in [10] by
the membrane polarization (which is in some sense generalized in the concept of
membrane proteins) is in our proof frequently replaced by the use of antiport rules
of types (4) and (5). Therefore, there is a trade-off between membrane labeling
(polarization, proteins) and antiport rules.

This suggests that from the point of view of efficiency, there is no substantial
difference between restricted and “change protein” rules. The paper [8] shows that
the universality can be reached only with the restricted rules, too. However, there
is another trade off between the number of membranes and the use of “change
protein” rules in this case.

486 P. Sosik et al.

4 Simulation of a P system with proteins on membranes in
polynomial space

In this section we demonstrate an algorithm for simulation of P systems with pro-
teins on membranes which proves the relation reverse to that given in Theorem 1.
Notice that the simulated P system is confluent (hence possibly non-deterministic),
therefore the conditions of the Parallel Computation Thesis are satisfied. However,
our simulation itself is deterministic – at each step we simulate only one chosen
multiset of applicable rules. Hence we simulate one possible sequence of config-
urations of the P system. The algorithm of selection of the rules to be applied
corresponds to introducing a weak priority between rules: (i) bottom-up priority
between rules associated to different membranes, (ii) priority between rules in the
same membrane, given by the order in which they are listed, including the priority
between types 1–6, in this order. The confluency condition ensures that such a
simulation leads always to a correct result.

We employ the technique of reverse-time simulation which is known from the
general complexity theory when dealing with the second class machines. Instead
of simulating a computation of a P system from its initial configuration onwards
(which could require an exponential space for storing configurations), we create
the recursive function State which returns the state of any membrane h after a
given number of steps. The recursive calls evaluate contents of the membranes
interacting with h in a reverse time order (towards the initial configuration). The
key observation is that the state of the membrane is determined by its own state,
states of the embedded membranes and its parent membrane at the previous com-
putational step. In such a manner we do not need to store a state of any mem-
brane, but instead we calculate it recursively whenever it is needed. The depth of
the recursive calls is proportional to the number of steps of the simulated P sys-
tem. Furthermore, at each level of the call stack we must store a state of a single
membrane which can be done in a polynomial space. In this way a result of any
T (n)-time-bounded computation of a confluent accepting P system with proteins
on membranes can be found in a space polynomial to T (n).

Theorem 2. PMCS
MP ⊆ PSPACE.

The proof of the above theorem is not included for its extensive length. The in-
terested reader can consult the technical report downloadable at the web address
http://ui.fpf.slu.cz/~sos10um/TR 2009-01.pdf.

If we put together Theorems 2 and 1, we obtain the parallel computation thesis
for semi-uniform families of confluent P systems with proteins on membranes:

Corollary 1. PMCS
MP = PSPACE.

5 Discussion

We have shown that semi-uniform families of P systems with proteins on mem-
branes can solve in polynomial time exactly the class of problems PSPACE.

On the Power of Computing with Proteins on Membranes 487

Therefore, they are computationally equivalent to other parallel computing model
as PRAM or alternating Turing machine. We conjecture that the same result holds
with regards to uniform families of P systems but no formal proof is known yet.
Possibly a construction similar to that in [2] could be used to solve this problem.
Also the characterization of power of non-confluent P systems with proteins mem-
branes remains open. The presented proof cannot be simply adapted to this case
by using a non-deterministic Turing machine. The reason is that we cannot store
non-deterministic choices of such a P system along a chosen trace of computation,
as this would require an exponential space. Therefore, we do not know what is the
power of non-confluent P systems with proteins on membranes.

A similar result has been previously shown in [11] for the case of P systems with
active membranes. Therefore, taking into the account another results of this kind
related to other types of natural or molecular computing, one could suggest that
the class PSPACE represents natural characterization of deterministic natural
computations. It is important to note that certain operations used in P systems
with proteins on membranes, as the division of non-elementary membranes, seem
to have in practice very limited scalability, on one hand. On the other hand,
certain properties of biocomputing models, as the massive parallelism, minimal
energy consumption, microscopic dimensions of computing elements etc. makes it
very attractive to seek for ways how to harness the micro-biological machinery for
algorithmic tasks.

Among further problems we mention restricted variants of the P systems with
proteins on membranes. How would the computational power of (semi)uniform
families of such systems change if only certain types of rules were allowed?

Acknowledgements. Research was partially supported by the National Science
Foundation Grant CCF-0523572, INBRE Program of the NCRR (a division of
NIH), support from CNCSIS grant RP-13, support from CNMP grant 11-56 /2007,
support from the Ministerio de Ciencia e Innovación (MICINN), Spain, under
project TIN2006-15595 and the program I3, and by the Comunidad de Madrid
(grant No. CCG06-UPM/TIC-0386 to the LIA research group).

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, New York, 4th edition, 2002.

2. A. Alhazov, C. Mart́ın-Vide, and L. Pan. Solving a PSPACE-complete problem by P
systems with restricted active membranes. Fundamenta Informaticae, 58(2):67–77,
2003.

3. L. Cardelli. Brane calculi – interactions of biological membranes. In Computational
Methods in Systems Biology, LNCS 3082, 257–280, Springer, Berlin, 2005.

4. P. Frisco. Computing with Cells. Advances in Membrane Computing. Oxford Uni-
versity Press, Oxford, 2009.

5. A. Paun and Gh. Paun. The power of communication: P systems with sym-
port/antiport. New Generation Comput., 20(3):295–306, 2002.

488 P. Sosik et al.

6. M.J. Pérez-Jiménez, A.R. Jiménez, and F. Sancho-Caparrini. Complexity classes in
models of cellular computing with membranes. Natural Computing, 2:265–285, 2003.

7. A. Păun and B. Popa. P systems with proteins on membranes. Fundamenta Infor-
maticae, 72(4):467–483, 2006.

8. A. Păun and B. Popa. P systems with proteins on membranes and membrane division.
In O.H. Ibarra and Z. Dang, editors, DLT 2006, LNCS 4036, 292–303, Springer,
Berlin, 2006.

9. G. Păun. Membrane Computing – An Introduction. Springer, Berlin, 2002.
10. P. Sośık. The computational power of cell division in P systems: Beating down

parallel computers? Natural Computing, 2(3):287–298, 2003.
11. P. Sośık and A. Rodŕıguez-Patón. Membrane computing and complexity theory: A

characterization of PSPACE. J. Comput. System Sci., 73(1):137–152, 2007.
12. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume A, pages 1–66. Elsevier, Amster-
dam, 1990.

13. The P systems web page. http://ppage.psystems.eu/.

An Efficient Simulation of Polynomial-Space
Turing Machines by P Systems
with Active Membranes

Andrea Valsecchi, Antonio E. Porreca, Alberto Leporati,
Giancarlo Mauri, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{valsecchi,porreca,leporati,mauri,zandron}@disco.unimib.it

Summary. We show that a deterministic single-tape Turing machine, operating in poly-
nomial space with respect to the input length, can be efficiently simulated (both in terms
of time and space) by a semi-uniform family of P systems with active membranes and
three polarizations, using only communication rules. Then, basing upon this simulation,
we prove that a result similar to the space hierarchy theorem can be obtained for P sys-
tems with active membranes: the larger the amount of space we can use during the
computations, the harder the problems we are able to solve.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [11] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain multisets of objects (represented by symbols of an alphabet) and
evolution rules. Using these rules, the objects may evolve and/or move from a
region to a neighboring one. Usually, the rules are applied in a nondeterministic
and maximally parallel way. A computation starts from an initial configuration of
the system and terminates when no evolution rule can be applied. The result of
a computation is the multiset of objects contained into an output membrane, or
emitted from the skin of the system. An interesting subclass of membrane systems
is constituted by recognizer P systems, in which: (1) all computations halt, (2) only
two possible outputs exist (usually named yes and no), and (3) the result produced
by the system only depends upon its input, and is not influenced by the particular
sequence of computation steps taken to produce it. For a systematic introduction

490 A. Valsecchi et al.

to P systems we refer the reader to [13], whereas the latest information can be
found in [22].

Since the introduction of membrane systems, many investigations have been
performed on their computational properties: in particular, many variants have
been proposed in order to study the contribution of various ingredients (associ-
ated with the membranes and/or with the rules of the system) to the achievement
of the computational power of these systems. In this respect, it is known [14, 20, 6]
that the class of all decision problems which can be solved in polynomial time by a
family of recognizer P systems that use only basic rules, that is, evolution, commu-
nication and membrane dissolution, coincides with the complexity class P. Hence,
in order to efficiently solve computationally difficult (for example, NP-complete)
problems by means of P systems it seems necessary to be able to exponentially in-
crease (in polynomial time) the number of membranes, that can be regarded as the
size of the workspace. In particular, two features have proven to be of paramount
importance in establishing whether a membrane system is able to solve compu-
tationally difficult decision problems in polynomial time: membrane dissolution
and division. Dissolution rules simply dissolve the surrounding membrane when
a specified symbol occurs. Division rules are inspired from the biological process
called mitosis: they allow to duplicate a given membrane that contains a specified
symbol, possibly rewriting this symbol in a different way in each of the membranes
produced by the process. All the other symbols, as well as the rules, which are con-
tained in the original membrane are copied unaltered into each of the resulting
regions. As for the membranes possibly contained in the original region (if any), we
can consider the following situations. If no membrane occurs, then we say that the
division is elementary ; if one or more membranes occur, then we have to specify
how they are affected by the division operation. If all the membranes are copied
to each of the resulting regions, then we have a weak (non-elementary) division;
if, instead, we can choose what membranes are copied into each of the resulting
regions, then we have a strong (non-elementary) division.

Recognizer P systems with active membranes (using division rules and, pos-
sibly, polarizations associated to membranes) have been successfully used to effi-
ciently solve NP-complete problems. The first solutions were given in the so called
semi-uniform setting [12, 20, 9, 10], which means that we assume the existence of
a deterministic Turing machine that, for every instance of the problem, produces
in polynomial time a description of the P system that solves such an instance. The
solution is computed in a confluent manner, meaning that the instance given in
input is positive (resp., negative) if and only if every computation of the P system
associated with it is an accepting (resp., rejecting) computation. Another way to
solve NP-complete problems by means of P systems is by considering the uniform
setting, in which any instance of the problem of a given length can be fed as input
– encoded in an appropriate way – to a specific P system and then solved by it.
Sometimes, a uniform solution to a decision problem Q is provided by defining a
family {ΠQ(n)}n∈N of P systems such that for every n ∈ N the system ΠQ(n)
reads in input an encoding of any possible instance of size n, and solves it. P sys-

A Simulation of Polynomial-Space Turing Machines by P Systems 491

tems with active membranes have thus been successfully used to design uniform
polynomial-time solutions to some well-known NP-complete problems, such as
sat [15].

All the papers mentioned above deal with P systems having three polarizations,
that use only division rules for elementary membranes (in [19] also division for non-
elementary membranes is permitted, and in this way a semi-uniform solution to
the PSPACE-complete problem qsat is provided), and working in the maximally
parallel way. As shown in [2], the number of polarizations can be decreased to two
without loss of efficiency. On the other hand, in [5] the computational power of
recognizer P systems with active membranes but without electrical charges and dis-
solution rules was investigated, establishing that they characterize the complexity
class P. Finally, in [21] it was shown that polarizationless P systems with active
membranes that use strong division for non-elementary membranes and dissolution
rules, working in the maximally parallel way, are able to solve in polynomial time
the NP-complete problem 3-sat. This result establishes that neither evolution nor
communication rules, and no electrical charges are needed to solve NP-complete
problems, provided that we can use strong division rules for non-elementary mem-
branes (as well as dissolution rules, otherwise we would fall in the case considered
in [5]).

By looking at the literature one can see that, until now, the research on the
complexity theoretic aspects of P systems with active membranes has mainly fo-
cused on the time resource. In particular, we can find several results that compare
time complexity classes obtained by using various ingredients (such as, e.g., polar-
izations, dissolution, uniformity, etc.). Other works make a comparison between
these classes and the usual complexity classes defined in terms of Turing machines,
either from the point of view of time complexity [14, 4, 20], or space complexity
[19, 1, 17]. A first definition of space complexity for P systems was given in [7],
where the measure of space is given by the maximum number of objects occurring
during the computation. The definition was then generalized to P systems with
mutable membrane structure [16], in particular P systems with active membranes,
thus formalizing the usual notion of exponential workspace generated through
membrane division.

In this paper, basing upon the formal definitions given in [16], we present some
results concerning the relations among space complexity classes defined in terms
of P systems, under some specified constraints. In particular, we first show how to
simulate a deterministic single-tape Turing machine by a semi-uniform family of
P systems with active membranes and three polarizations.

Then, by focusing our attention on computations occurring in polynomial
space, we define a pseudo-hierarchy of space complexity classes. Such classes are
inspired by the space hierarchy theorem, that we restate and prove (albeit in a
slightly different form) for P systems with active membranes. Let us note that a
different hierarchy for catalytic P systems with a fixed membrane structure has
been introduced in [7].

492 A. Valsecchi et al.

The paper is organized as follows. In section 2 we recall the definition of recog-
niser P systems with active membranes, thus establishing our model of computa-
tion, and we recall some basic notions that will be used in the rest of the paper. In
section 3 we show how to simulate a deterministic single-tape Turing machine by
means of a semi-uniform family of P systems with active membranes. In section
4 we recall the space hierarchy theorem and, inspired by it, we define a pseudo-
hierarchy of space complexity classes determined by P systems with active mem-
branes. Finally, section 5 contains the conclusions and some directions for further
research.

2 Definitions

We begin by recalling the definition of P systems with active membranes.

Definition 1. A P system with active membranes of the initial degree m ≥ 1 is a
tuple

Π = (Γ,Λ, µ, w1, . . . , wm, R)

where:

• Γ is a finite alphabet of symbols, also called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of m mem-

branes enumerated by 1, . . . ,m; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m initial regions of µ;

• R is a finite set of rules.

Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

The rules are of the following kinds:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having polarization α
and containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having polarization α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the polarization of h is changed to
β.

A Simulation of Polynomial-Space Turing Machines by P Systems 493

• Communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the polarization of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the membrane h is dissolved and its
contents are left in the surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having polarization α, con-
taining an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and polarizations β
and γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form[
[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α
h
→
[
[]δh1
· · · []δhk

]β
h

[
[]εhk+1

· · · []εhn

]γ
h

They can be applied to a membrane labeled by h, having polarization α, contain-
ing the positively charged membranes h1, . . . , hk, the negatively charged mem-
branes hk+1, . . . , hn, and possibly some neutral membranes. The membrane h
is divided into two copies having polarization β and γ, respectively; the positive
children are placed inside the former, their polarizations changed to δ, while
the negative ones are placed inside the latter, their polarizations changed to ε.
Any neutral membrane inside h is duplicated and placed inside both copies.

A configuration in a P system with active membranes is described by its current
membrane structure, together with its polarizations and the multisets of objects
contained in its regions. The initial configuration is given by µ, all membranes
having polarization 0 and the initial contents of the membranes being w1, . . . , wm.
A computation step changes the current configuration according to the following
principles:

• Each object and membrane can be subject to only one rule during a computation
step.

• The rules are applied in a maximally parallel way: each object which appears
on the left-hand side of applicable evolution, communication, dissolution or
elementary division rules must be subject to exactly one of them; the same holds
for each membrane which can be involved in a communication, dissolution or
division rule. The only objects and membranes which remain unchanged are
those associated with no rule, or with unapplicable rules.

• When more than one rule can be applied to an object or membrane, the actual
rule to be applied is chosen nondeterministically; hence, in general, multiple
configurations can be reached from the current one.

494 A. Valsecchi et al.

• When dissolution or division rules are applied to a membrane, the multiset of
objects to be released outside or copied is the one resulting after all evolution
rules have been applied.

• The skin membrane cannot be divided, nor it can be dissolved. Furthermore,
every object which is sent out from the skin membrane cannot be brought in
again.

A (halting) computation C of a P system Π is a sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π, every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration can
be reached from Ck (i.e., no rule can be applied).

We can use families of P systems with active membranes as language recognis-
ers, thus allowing us to solve decision problems.

Definition 2. A recogniser P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

If all computations starting from the initial configuration agree on the result,
then Π is said to be confluent; if this is not necessarily the case, then it is said to
be non-confluent (and the global result is acceptance iff an accepting computation
exists).

Definition 3. Let L ⊆ Σ? be a language and let Π = {Πx : x ∈ Σ?} be a family
of recogniser P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ?, the result of Πx is acceptance iff x ∈ L.

Usually, a condition of uniformity, inspired by those of families of Boolean
circuits, is imposed on families of P systems.

Definition 4. A family of P systems Π = {Πx : x ∈ Σ?} is said to be semi-
uniform when the mapping x 7→ Πx can be computed in polynomial time by a
deterministic Turing machine.

Time complexity classes for P systems are defined as usual, by restricting the
amount of time available for deciding a language. By MC?

D(f(n)) we denote the
class of languages which can be decided by a semi-uniform class of confluent P sys-
tems Π of classD (e.g.,AM denotes the class of P systems with active membranes)
where each computation of Πx ∈ Π halts within f(|x|) steps. The class of lan-
guages decidable in polynomial time is denoted by PMC?

D.
Recently, a space complexity measure for P systems has been introduced [16].

We recall here the relevant definitions.

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is defined
as the sum of the number of membranes in µ and the total number of objects they

A Simulation of Polynomial-Space Turing Machines by P Systems 495

contain1. If C = (C0, . . . , Ck) is a halting computation of Π, then the space required
by C is defined as

|C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then

|Π| = max{|C| : C is a halting computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems; also let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ?.

Next, we formally define the variant of Turing machine we use in the following
sections.

Definition 6. A single-tape deterministic Turing machine is a tuple

M = (Q,Σ, Γ, δ, q0, A,R)

where:

• Q is a finite and nonempty set of states;
• Σ is the finite input alphabet;
• Γ is the tape alphabet, a finite superset of Σ;
• the partial function δ : Γ ×Q→ Γ ×Q×{←,−,→} is the transition function;

we assume that δ is undefined on both accepting and rejecting states;
• q0 ∈ Q is the initial state;
• A ⊆ Q is the set of accepting states;
• R ⊆ Q is the set of rejecting states, disjoint from A.

Finally, we recall the definition of constructible function (for further informa-
tion on this topic see, for instance, [8, 3, 18]).

Definition 7. A function f : N → N is said to be time-constructible iff the map-
ping 1n 7→ 1f(n), i.e., from the unary representation of n to the unary represen-
tation of f(n), can be computed by a deterministic Turing machine in O(f(n))
time.

The function f is space-constructible iff the mapping 1n 7→ 1f(n) can be com-
puted by a deterministic Turing machine in O(f(n)) space.

1 An alternative definition, where the size of a configuration is given by the sum of
the number of membranes and the number of bits required to store the objects they
contain, has been considered in [16]. However, the choice between the two definitions
is irrelevant as far as the results of this paper are concerned.

496 A. Valsecchi et al.

3 Simulating Turing machines

In this section we show that a single-tape Turing machine M having Σ = {0, 1}
as input alphabet and operating in polynomial space f(n) and time g(n) can be
simulated efficiently (i.e., by using O(f(n)) space and O(g(n)) time) by a semi-
uniform family ΠM = {ΠM,x : x ∈ {0, 1}?} of P systems with active membranes
and three polarizations, where each ΠM,x simulates the computation of M on
input x. We also stress the fact that these P systems can be defined in such a way
that communication is the only required kind of rule.

Turing machines operate by reading and writing symbols on a tape divided into
cells: the main idea of our simulation is representing each cell by a membrane. In a
Turing machine the tape cells are linearly ordered (we assume they are numbered
by nonnegative integers); one way to organise the membranes without losing this
information is in a nested way, i.e., one inside the other. Either the innermost or
the outermost membrane can be put into correspondence with the leftmost tape
cell; without loss of generality, we choose the outermost one.

Each cell of the Turing machine contains a symbol taken from the tape al-
phabet, which we assume to be Γ = {0, 1, }, where denotes the blank symbol.
In the P system, the symbol written in a cell is stored in the polarization of the
corresponding membrane. The default neutral polarization represents a blank cell,
while the negative and positive polarizations represent 0 and 1, respectively.

A single object in the P system represents the state of the Turing machine
(an element q of the finite set Q), and its location inside the membrane structure
represents the position of the tape head: the object is located immediately inside
the i-th membrane iff the tape head of the simulated machine is located on the
i-th leftmost tape cell. The object is changed (via communication rules) both in
form and location in order to reflect the change of state and position of the tape
head of the Turing machine.

Finally, the transition function δ : Γ ×Q→ Γ ×Q× {←,−,→} of the Turing
machine is implemented by using a set of communication rules. The object rep-
resenting the head position and state of the Turing machine is moved to the new
position, while simultaneously changing the polarization of the current membrane
in order to update the contents of the tape; it is also rewritten into a (possibly
different) symbol, representing the new state of the machine. In order to execute
these operations, the P system requires a constant number of steps for each com-
putation step of the simulated Turing machine.

Let M be a single-tape deterministic Turing machine operating in space f(n).
Let x = x1x2 · · ·xn ∈ {0, 1}? be an input for M . The membrane structure µM,x

is made of f(n) membranes labelled by h and placed one inside the other; this
structure is surrounded by a further membrane h0, which also contains a membrane
labelled by w. The initial configuration of µM,x is as follows:

[[q̂0]0w

f(n) membranes︷ ︸︸ ︷
[x1[x2 · · · [xn︸ ︷︷ ︸
n membranes

[· · · [

f(n) membranes︷ ︸︸ ︷
]0h · · ·]0h]0h · · ·]0h]0h︸ ︷︷ ︸

n membranes

]0h0

A Simulation of Polynomial-Space Turing Machines by P Systems 497

Each of the outermost n membranes labelled by h contains an object xi ∈ {0, 1},
representing the i-th input symbol of M ; these objects are used to set up the
initial contents of the tape (recall that, by definition, all membranes are initially
required to be neutral). The following communication rules serve the purpose of
changing the polarization of a membrane h according to the symbol contained in
the corresponding tape cell:

[0]0h → []−h # (1)

[1]0h → []+h # (2)

where # is a “junk” object, i.e., an object which does not appear on the left-hand
side of any rule.

While the initial configuration of the simulated machine M is being set up
(only one step is required to do so) the head/state object q̂0, where q0 is the initial
state of M , is sent out from w by means of the following rule:

[q̂0]0w → []0w q̂0 (3)

After that, q̂0 enters the membrane corresponding to the leftmost tape cell, while
simultaneously losing the “hat”, by using one of the following communication rules:

q̂0 []αh → [q0]αh ∀α ∈ {−, 0,+} (4)

Object q̂0 is initially located inside w so that it requires two steps in order to reach
the membrane corresponding to the initial cell of M , thus avoiding conflicts with
the rules setting up the initial tape contents.

Now the real simulation begins. To each quintuple (a, q1, b, q2, d) describing a
transition of M (i.e., denoting the fact that δ(a, q1) = (b, q2, d)) corresponds a
constant number of communication rules. If δ(a, q1) = (b, q2,←) then there is a
single rule

[q1]αh → []β q2 (5)

where α and β are − or + when a and b are 0 or 1 respectively. The rule moves
the head/state object outwards (which corresponds to moving the tape head of M
one position to the left) while changing it as the state of M does.

If the tape head does not move, as in δ(a, q1) = (b, q2,−), then two rules are
needed:

[q1]αh → []βh q
′
2 (6)

q′2 []βh → [q2]βh (7)

The first rule changes the symbol in the current cell, while the second one moves
the (updated) head/state symbol back to that cell.

When the tape head moves right, i.e., δ(a, q1) = (b, q2,→), five rules are needed:

[q1]αh → []β q′′2 (8)

q′′2 []βh → [q′2]βh (9)
q′2 []γh → [q2]γh ∀γ ∈ {−, 0,+} (10)

498 A. Valsecchi et al.

The three rules in (10) are used to move the head/state symbol one membrane
deeper, thus completing the simulated movement of the tape head to the right.

Finally, the result of the computation of M is sent out of the membrane struc-
ture. If M enters an accepting state q, the head/state symbol is changed to yes
and expelled:

[q]αh → []αh yes ∀α ∈ {−, 0,+} (11)
[yes]αh → []αh yes ∀α ∈ {−, 0,+} (12)

[yes]0h0
→ []0h0

yes (13)

An analogous situation occurs when q is a rejecting state:

[q]αh → []αh no ∀α ∈ {−, 0,+} (14)
[no]αh → []αh no ∀α ∈ {−, 0,+} (15)

[no]0h0
→ []0h0

no (16)

Definition 8. With a slight abuse of notation, we denote by µM,x the whole P sys-
tem “module” consisting of both the membrane structure described above and the
set of rules (1)–(16). We also denote by ΠM the family of P systems with active
membranes {ΠM,x : x ∈ {0, 1}?}, where ΠM,x consists of the module µM,x only.

Theorem 1. Let M be a single-tape deterministic Turing machine halting on ev-
ery input and operating in space f(n), where f(n) = Ω(n), f(n) = O(nk) for some
fixed k and f(n) is time-constructible. Also assume that M operates in time g(n).
Then ΠM is semi-uniform and decides the same language as M in O(f(n)) space
and O(g(n)) time; furthermore, ΠM can be constructed in O(f(n)) time.

Proof. Each P system ΠM,x consists of f(n) + 2 membranes and contains n + 1
objects, where n = |x|; hence ΠM clearly uses O(f(n)) space.

Each transition of M on input x is simulated by ΠM,x in at most three steps;
another step is required to set up the initial contents of the tape. When the result
object yes/no is produced, it is expelled from the system after a number of steps
which equals the number of the tape cell where M enters the final state, plus a
further step to exit the outermost membrane h0. Hence, the total time is O(g(n)).

The mapping x 7→ ΠM,x can be computed in time O(f(n)), as

• the membrane structure consists of f(|x|) identical membranes (and two further
membranes w and h0) and can be constructed in O(f(n)) time steps, as f is
time-constructible by hypothesis;

• the initial configuration of the P system can be constructed in linear time from
x, as exactly n symbols are to be placed inside the outermost membranes;

• the set of communication rules only depends on M , and not on x.

Since f(n) is bounded by a polynomial, the construction of ΠM is semi-uniform.

A Simulation of Polynomial-Space Turing Machines by P Systems 499

4 A space pseudo-hierarchy

The space hierarchy theorem, a fundamental result in complexity theory, states
that Turing machines are able to solve harder problems when given a larger amount
of space to exploit. The proof [18] is constructive, as for every space bound f(n)
an explicit language is described which cannot be decided by using less space.

Definition 9. Let f : N → N. We denote by L(f) the language of strings x ∈
{0, 1}? of the form 〈M〉10?, where 〈M〉 is the binary description of a single-tape
deterministic Turing machine that rejects x without using more than f(|x|) space.

Theorem 2 (Space hierarchy theorem). Let f be a space-constructible func-
tion such that f(n) = Ω(n). Then L(f) is decidable in space O(f(n)) but not in
space o(f(n)).

Proof (Proof sketch). The language L(f) can be decided by a deterministic Turing
machine D which simulates M on x within a f(|x|) space limit, flipping the re-
sult whenever the simulation completes successfully and rejecting if the non-blank
portion of the tape of M becomes longer than the space limit. Such a simulation
can be carried out in space O(f(n)).

If L(f) could be decided in space g(n) = o(f(n)) by some deterministic Turing
machine M , then D on input 〈M〉10k (for large enough values of k) could complete
the simulation within the space limit and give a different result from M , thus
contradicting the hypothesis that L(D) = L(M) = L(f).

The trailing k zeros in the description of L(f) are a technical requirement:
since g(n) may be larger than f(n) for small n even when g(n) = o(f(n)), for some
inputs the simulation might not complete successfully; but D certainly answers the
opposite of M on all strings 〈M〉10k for large enough values of k, thus ensuring
they decide different languages.

A related result can be proved in the setting of P systems with active mem-
branes. The main idea is to modify the Turing machine D of the above proof,
in such a way that, instead of directly simulating the machine M it receives as
input, it constructs a P system Π ′′M,x,f which carries out this task. Π ′′M,x,f is a
variant of the P system ΠM,x described in the previous section; notice that ΠM,x

is not suitable for the present task, as it is designed to simulate only halting Turing
machines operating in polynomial space. The Turing machine D, instead, receives
arbitrary machines M as input, which on some input x could try to use more space
than we took into account when constructing ΠM,x; alternatively, they could also
run forever, whereas we need to always give an answer.

We begin by modifying the P system module µM,x such that, when M exceeds
the allocated space (i.e., when the tape head moves to the right of the rightmost
cell), the simulation ends by rejecting. Furthermore, when the simulation is com-
pleted correctly, we return the opposite result of M .

The P system module µ′M,x,f , simulating M on x with a f(|x|) space bound,
has the following membrane structure and initial configuration:

500 A. Valsecchi et al.

[[q̂0]0w

f(n) membranes︷ ︸︸ ︷
[x1[x2 · · · [xn︸ ︷︷ ︸
n membranes

[· · · [[]0h1

f(n) membranes︷ ︸︸ ︷
]0h · · ·]0h]0h · · ·]0h]0h︸ ︷︷ ︸

n membranes

]0h0

that is, the same structure of µM,x except for an additional membrane h1 in the
innermost position. Such a membrane is used to detect a space “overflow” and
halt the simulation if this event occurs, according to the following rules:

q []0h1
→ [yes]0h1

for all states q of M (17)

[yes]0h1
→ []0h1

yes (18)

Furthermore, the same rules (1)–(16) of definition 8 are used, except that rules
(13) and (16), involving the outermost membrane, are changed in order to flip the
result:

[yes]0h0
→ []0h0

no (13′)

[no]0h0
→ []0h0

yes (16′)

Definition 10. The P system consisting only of module µ′M,x,f is denoted by
Π ′M,x,f ; we also define the family Π′M,f = {Π ′M,x,f : x ∈ {0, 1}?}.

Lemma 1. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible; let M be a single-tape Turing machine which halts on
every input. Then the family of P systems Π′M,f is semi-uniform, in particular
constructible in O(f(n)) time, and

L(Π′M,f) = {x ∈ {0, 1}? : M rejects x in f(|x|) space}.

Proof. The family Π′M,f is obviously constructible in O(f(n)) time (hence semi-
uniform) as in the proof of theorem 1, since there is only one extra membrane and
the new rules (17)–(18) do not depend on x.

The language decided by Π′M,f is, by construction, the complement of that of
M , except that strings x generating computations which require more that f(|x|)
cells are rejected.

Another stumbling block we need to overcome is the fact that some Turing
machines might operate within the space bound we fixed, but without halting.
Fortunately, we know that a single-tape Turing machine, having tape alphabet
{0, 1, } and operating in f(n) space, either halts within f(n) · |Q| · 3f(n) steps
(Q being its set of states), or does not halt at all. We can solve the problem by
counting the number of simulated steps, and halting the simulation when such time
bound is exceeded. The usual solution, i.e., having an object which is successively
rewritten into all values of the counter, does not work, as the counter may assume
exponentially large values (with respect to n). Hence, a more sophisticated solution
is needed.

A Simulation of Polynomial-Space Turing Machines by P Systems 501

Definition 11. We define a P system module κn, having the following (n + 1)-
degree membrane structure and initial configuration:

[

n− 2︷︸︸︷
[· · · [[d]0c0]0c1 · · ·]

0
cn−1

]0cn

The device is, essentially, an (n + 1)-bit binary counter. Each membrane corre-
sponds to one bit, c0 and cn being the least significant and most significant bits re-
spectively. Neutral and positive polarizations represent 0 and 1, respectively. Thus,
in the initial configuration, κn stores the value 0. By using communication rules,
such value is incremented up to 2n. Since all membranes c1, . . . , cn−1 have identi-
cal behaviour, they can all be given the same label, thus simplifying the structure
(and reducing the time required to construct it) as follows:

[

n− 2︷︸︸︷
[· · · [[d]0c0]0c · · ·]0c]0cn

Recall that incrementing a binary integer is performed by flipping its bits, one by
one and starting from the least significant one, until a 0 is flipped into 1. The
object d moves inside the membrane structure in order to perform this task. The
following rules (which are identical for membranes labeled by c0 and c) move d
outwards, and change it into d′ when the current increment operation has finished:

[d]0c0 → []+c0 d
′ (19)

[d]+c0 → []0c0 d (20)

[d]0c → []+c d
′ (21)

[d]+c → []0c d (22)

The next rules take d′ back to the starting position; when d′ re-enters the innermost
membrane c0 it is rewritten into d, and the next increment operation may begin:

d′ []αc → [d′]αc ∀α ∈ {0,+} (23)
d′ []αc0 → [d]αc0 ∀α ∈ {0,+} (24)

Finally, when d crosses the outermost membrane cn it is left outside (i.e., there is
no rule bringing it back inside), as a signal that the counter has reached the value
2n:

[d]0cn
→ []+cn

d (25)

Lemma 2. The P system module κn can be constructed in linear time, given the
unary representation of n; it sends out the object d after at least 2n steps.

Proof. The membrane structure is of linear size, and there is a constant number
of communication rules, hence the construction can be performed in O(n) time.
Since incrementing the binary counter requires at least two applications of com-
munication rules (and 2n in the worst case), the object d is not set out before 2n

time steps have passed.

502 A. Valsecchi et al.

When the object d is sent out from κn, we can use it to stop the simulation of
the Turing machine, as we know that if it has not halted yet, then it will never
do (assuming we have chosen a suitable value for n). The obvious solution is to
use d to dissolve the whole membrane structure µ′M,x,f ; however, besides requiring
the introduction of dissolution rules (recall that we have only used communica-
tion rules so far), there might exist computations during which d is not able to
enter a membrane in µ′M,x,f because it is blocked by the head/state object which
continuously enters and exits from that membrane (e.g., if the head of the Turing
machine is stuck on a single tape cell). Both problems can be solved by slightly
changing the definition of module µ′M,x,f .

We define a P system module µ′′M,x,f with the following membrane structure
and initial configuration:

[[q̂0]0w

2f(n) membranes︷ ︸︸ ︷
[[x1[[x2 · · · [[xn︸ ︷︷ ︸

2n membranes

[[· · · [[[]0h1

2f(n) membranes︷ ︸︸ ︷
]0h]0j · · ·]0h]0j]0h]0j · · ·]0h]0j]

0
h]0j︸ ︷︷ ︸

2n membranes

]0h0

that is, each membrane labelled by h is surrounded by a further membrane labelled
by j. The communication rules used to move the head/state object are changed
so that, when it crosses a membrane h (in either direction), it also crosses the
membrane j immediately outside whenever it is neutrally charged, without any
further change. However, when the head/state object crosses a membrane labelled
by j that is positively charged, it is changed into the object yes, so that it can be
sent outside as if machine M has accepted.

The module µ′′M,x,f still simulates M on input x with space bound f ; the double
membrane structure, besides slowing down the simulation by a multiplicative con-
stant, does not alter the simulated computation of M . However, we can combine
this module with κ`(n) (where `(n) is a value large enough to ensure that object d
is not sent out prematurely) in such a way that when the object d is sent out, it
traverses the membrane structure µ′′M,x,f and changes the polarization of all mem-
branes labelled by j to positive, thus stopping the simulation if it has not already
ended. Since the head/state object must always cross at least two membranes in
order to simulate a transition of M , the situation in which it continuously crosses
the same membrane forward and backward, thus blocking the object d, does never
happen.

Definition 12. The P system Π ′′M,x,f is defined as follows:

[µ′′M,x,f κ`(n)]0s

that is, a skin membrane containing the P system modules µ′′M,x,f and κ`(n), with
the initial configuration and rules given by those of the two modules together. A
further pair of rules is used to send out the result from the skin membrane s:

[yes]0s → []+s yes (26)

[no]0s → []+s no (27)

A Simulation of Polynomial-Space Turing Machines by P Systems 503

As noticed above, the value of `(n) must be large enough to ensure that object d is
not sent out from κ`(n) before the result of a possibly halting computation of M is
expelled from µ′′M,x,f . Since each transition of M can be simulated by at most six
steps of µ′′M,x,f , and since M may accept when its head is on the rightmost position
(the f(n)-th position) of the tape, thus requiring us to wait until the result object
has travelled through the whole membrane structure, an appropriate value is

`(n) = log
(
6 · f(n) · |Q| · 3f(n) + 2f(n) + 1

)
.

The system is augmented with a set of communication rules which cause the object
d, once it has been sent out from κ`(n), to traverse the nested membrane structure
of µ′′M,x,f while changing the polarization of all membranes labelled by j to positive
(without changing any other polarization), thus aborting any non-halting simulated
computation.

We denote by Π′′M,f the family of P systems {Π ′′M,f,x : x ∈ {0, 1}?}.

From this definition, and lemmata 1 and 2, we can prove the following result.

Lemma 3. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible; let M be a single-tape Turing machine (which does not
necessarily halt on every input). Then the family of P systems Π′′M,f is semi-
uniform, in particular constructible in O(f(n)) time, and

L(Π′′M,f) = {x ∈ {0, 1}? : M rejects x in f(|x|) space}.

We are now finally able to prove that L(f) can be recognised by a family of
P systems in O(f(n)) space.

Theorem 3. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible. Then L(f) can be decided by a semi-uniform family of
P systems ΠL(f) using only communication rules, operating in space O(f(n)) and
constructible in time O(f(n)).

Proof. We only need to prove that the mapping 〈M〉, x 7→ Π ′′M,x,f (i.e., we are
given both M and its input, and not only x) can be computed in O(f(n)) time.
The only feature of Π ′′M,x,f which depends on M (in contrast with other features
depending on x) is the set of communication rules. The number of rules is linear
with respect to the length of the encoding of M (due to the rules in (5)–(10)
and (17)). Assuming a “reasonable” encoding of M , all the communication rules
can be constructed in linear time, hence O(f(n)) time.

The family ΠL(f) of P systems is then constructed in O(f(n)) time by the
following Turing machine (here described informally):

If the input x is not of the form 〈M〉10?, then construct a P system which
rejects immediately. Otherwise, construct Π ′′M,x,f .

The P systems constructed by this Turing machine work in O(f(n)) space, and
the thesis follows.

504 A. Valsecchi et al.

In [17] a simulation algorithm for P systems with active membranes is de-
scribed. Although the precise space requirements are not detailed (only an asymp-
totic upper bound is given), by looking at the description of the algorithm one
can observe that, essentially, in order to simulate a P system Π we need to store
its current configuration, step by step (some auxiliary space is needed; however,
it does not exceed the space required by the configuration). Notice that a Turing
machine storing the configuration of Π does not have the same space requirements
as Π itself: indeed, a membrane structure of degree n may require up to n log n
space, since the labels of the membranes (which do not contribute to the space
required by Π) need to be stored in order to correctly apply the rules (especially
non-elementary division rules); all the labels may be different in the worst case.
Keeping in mind this detail, we can prove the following result.

Theorem 4. Let f : N→ N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed k,
be time-constructible. Then no family Π of P systems with active membranes, con-
structible in o(f(n)) time and operating in o(f(n)/ log f(n)) space, decides L(f).

Proof. Suppose otherwise. Let M be the Turing machine constructing Π and con-
sider a Turing machine M ′ implementing the following algorithm:

On input x, simulate M on x thus obtaining a description of a P system
Πx deciding whether x ∈ L(f). Then simulate Πx and return the same
result.

Then L(M ′) = L(Π) = L(f), and M ′ has the following space requirements:

o

(construction︷︸︸︷
f(n) +

simulation︷ ︸︸ ︷
f(n)

log f(n)
log

f(n)
log f(n)

)
= o(f(n))

This means that M ′ decides L(f) in o(f(n)) space, thus contradicting the space
hierarchy theorem.

Notice that there is no restriction on the kind of rules the family Π can use.
By combining theorems 3 and 4 we obtain:

Theorem 5. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible. Then there exists a language L which can be decided by
a semi-uniform family of P systems with active membranes (and using only com-
munication rules) that can be built in O(f(n)) time and works in O(f(n)) space.
On the other hand, L cannot be decided by any family of P systems constructible
in o(f(n)) time and working in o(f(n)/ log f(n)) space.

5 Conclusions

In this paper we showed that a deterministic single-tape Turing machine, which
operates in polynomial space with respect to the input length, can be efficiently

A Simulation of Polynomial-Space Turing Machines by P Systems 505

simulated (both in terms of time and space) by a semi-uniform family of P systems
with active membranes and three polarizations. The proposed simulation contains,
in our opinion, a very interesting construction which has never been considered
before (to the best of our knowledge), and which is exploited to obtain the result:
the contents of the cells of the simulated Turing machine are stored in the po-
larization of the membranes. This allowed us to use only communication rules to
compute the result.

Basing upon the above simulation, we proved that a result similar to the space
hierarchy theorem can be obtained for P systems with active membranes: the larger
the amount of space we can use during the computations, the harder the problems
we are able to solve.

Several open problems and research directions still remain to be investigated.
First of all, the result related to the space (pseudo)-hierarchy for P systems con-
tains a logarithmic factor, which arises from the simulation we proposed. Can we
avoid such a factor, thus obtaining a theorem which exactly corresponds to the
space hierarchy theorem related to Turing machines?

Following this direction, we could also consider different classes of P systems
with active membranes (e.g., using different parallel semantics), and check whether
the space (pseudo)-hierarchy theorem still holds for such classes.

As for the simulation of the single-tape deterministic Turing machine we pre-
sented in section 3, we conjecture that it can be extended to consider nondetermin-
istic Turing machines, as well as multi-tape Turing machines, to obtain efficient
simulations both in terms of time and space also in these cases. It would also be
interesting to consider if such an efficient simulation can be performed for other
different computational models.

References

1. A. Alhazov, C. Mart́ın-Vide, L. Pan: Solving a PSPACE-complete problem by rec-
ognizing P systems with restricted active membranes. Fundamenta Informaticae,
58(2):67–77, 2003.

2. A. Alhazov, R. Freund: On efficiency of P systems with active membranes and two
polarizations. In: G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, G. Rozenberg, A. Salo-
maa, eds., Membrane Computing, Fifth International Workshop, WMC 2004, LNCS
3365, Springer-Verlag, Berlin, 2005, pp. 81–94.

3. J. L. Balcázar, J. Dı́az, J. Gabarró: Structural complexity I (second edition), Springer,
1995.

4. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero: P systems with active membranes, without polarizations and without dis-
solution: a characterization of P. In: C. Calude, M. J. Dinneen, G. Păun, M. J. Pérez-
Jiménez, G. Rozenberg, eds., Unconventional Computation, 4th International Con-
ference, UC 2005, Sevilla, Spain, LNCS 3699, Springer-Verlag, 2005, pp. 105–116.

5. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero: On the power of dissolution in P systems with active membranes. In:
R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds., Membrane Computing, Sixth

506 A. Valsecchi et al.

International Workshop, WMC 2005, LNCS 3850, Springer-Verlag, Berlin, 2006,
pp. 224–240.

6. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero, A. Romero-Jiménez: Characterizing tractability by cell-like membrane
systems. In: K. G. Subramanian, K. Rangarajan, M. Mukund, eds., Formal models,
languages and applications, Series in Machine Perception and Artificial Intelligence,
Vol. 66, World Scientific, 2006, pp. 137–154.

7. O. H. Ibarra: On the computational complexity of membrane systems, Theoretical
Computer Science, 320:89–104, 2004.

8. K. Kobayashi: On proving time constructibility of functions. Theoretical Computer
Science, 35:215–225, 1985.

9. S. N. Krishna, R. Rama: A variant of P systems with active membranes: solving
NP-complete problems. Romanian Journal of Information Science and Technology,
2(4):357–367, 1999.

10. A. Obtulowicz: Deterministic P systems for solving sat problem. Romanian Journal
of Information Science and Technology, 4(1–2):551–558, 2001.

11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

12. Gh. Păun: P Systems with active membranes: attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

13. Gh. Păun: Membrane computing. An introduction. Springer-Verlag, Berlin, 2002.
14. M. J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: The P versus NP

problem through cellular computing with membranes. In: N. Jonoska, Gh. Păun,
G. Rozenberg, eds., Aspects of Molecular Computing, LNCS 2950, Springer-Verlag,
Berlin, 2004, pp. 338–352.

15. M. J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In: E. Csuhaj-Varjú, C. Kintala,
D. Wotschke, G. Vaszil, eds., Proceedings of the Fifth Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automation Research
Institute of the Hungarian Academy of Sciences, Budapest, 2003, pp. 284–294.

16. A. E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complex-
ity measure for P systems, International Journal of Computers, Communications &
Control, 4(3):301–310, 2009.

17. A. E. Porreca, G. Mauri, C. Zandron: Complexity classes for membrane systems.
RAIRO Theoretical Informatics and Applications, 40(2):141–162, 2006.

18. M. Sipser: Introduction to the theory of computation (second edition), Course Tech-
nology, 2005.

19. P. Sośık: The computational power of cell division. Natural Computing, 2(3):287–298,
2003.

20. C. Zandron, C. Ferretti, G. Mauri: Solving NP-complete problems using P systems
with active membranes. In: I. Antoniou, C. S. Calude, M. J. Dinneen, eds., Uncon-
ventional Models of Computation, Springer-Verlag, Berlin, 2000, pp. 289–301.

21. C. Zandron, A. Leporati, C. Ferretti, G. Mauri, M. J. Pérez-Jiménez: On the compu-
tational efficiency of polarizationless recognizer P systems with strong division and
dissolution. Fundamenta Informaticae, 87(1):79–91, 2008.

22. The P systems Web page: http://ppage.psystems.eu

Look-Ahead Evolution for P Systems

Sergey Verlan

LACL, Département Informatique, Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. This article introduces a new derivation mode for P systems that permits to
make a look-ahead on the next configuration and check for some forbidding conditions on
it. The interesting point is that the software implementation of this mode needs very small
modifications to the standard algorithm of rule assignment for maximally parallelism.
As benefits of this mode some non-deterministic proofs become deterministic. As an
example we present a generalized communicating P system that accepts 2n in n steps in
a deterministic way. Another example shows that in the deterministic case this mode is
more powerful than the maximally parallel derivation mode. Finally, this mode gives a
natural way to define P systems that may accept or reject a computation.

1 Introduction

P systems are defined as non-deterministic computational devices. However, for
implementation reasons, it is better to limit the inherent non-determinism to a
smaller degree and eventually have a deterministic evolution. One of such ap-
proaches is based on an examination of the next configuration(s) and cutting off
non-deterministic computational branches that have some pre-defined properties.
The notion of k-determinism [7, 2] is closely related to such optimizations. For
a system having the k-determinism property one can examine all possible future
configurations for at most k steps and find a single evolution that is not forbidden.
This gives an efficient procedure of the construction of the next configuration.
However, it is not an easy task to prove that a P system has this property.

A derivation mode lies in the heart of the semantics of P systems as it permits to
specify which multiset among different possible applicable multisets of rules can be
applied. When P systems were introduced, only the maximally parallel derivation
mode was considered which states that corresponding multisets should be maximal,
i.e. non-extensible. With the apparition of the minimal parallel derivation mode [3]
the concept of the derivation mode had to be precisely defined and [5] presents a
framework that permits to easily define different derivation modes.

508 S. Verlan

This article tries to express the notion of one-step look-ahead in terms of a
derivation mode which gives a way to implement P systems in a more efficient
way. The look-ahead is a forbidding condition formalized by a set of forbidden
rules that should not be applicable after a maximally parallel multiset of normal
(non-forbidding) rules was chosen. Such a formalization needs a small overhead
and can be easily incorporated and efficiently implemented in already existing
software simulators for P systems. In more general way, the look-ahead derivation
can be considered as a further evolution of the notion of k-determinism (more
precisely of 1-determinism), but without restricting to a deterministic evolution.

The look-ahead mode can give advantages in terms of deterministic evolu-
tion of the system and we show an example that demonstrates that the evolution
in the look-ahead mode introduces more power into the system. Moreover, it is
known that a deterministic evolution usually sequentializes the computation and
it needs more steps. With the look-ahead derivation mode we show that deter-
ministic computations can be efficient by giving an example of a P system with
minimal interaction that can recognize 2n in n steps. An interesting side effect of
the definition permits to define computations that are accepted or rejected without
introducing additional symbols.

2 Definitions

We do not present here standard definitions. We refer to [10] for all details.
We also assume that the reader is familiar with standard notions of P systems,

which can be consulted in the book [8] or at the web page [9]. We shall only
focus on the semantics of the evolution step. We will follow the approach given
in [5], however we will not enter into deep details concerning the notation and the
definition of derivation modes given there. Consider a P system Π of any type
evolving in any derivation mode. The key point of the semantics of P systems
is that according to the type of the system and the derivation mode δ for any
configuration of the system C a set of multisets of applicable rules, denoted by
Appl(Π,C, δ), is computed. After that, one of the elements from this set is chosen
non-deterministically for the further evolution of the system. In order to define
the look-ahead derivation mode we suppose that the set of rules of Π, denoted
by R, is composed from two parts: normal rules RN and forbidden rules Rf , i.e.
R = RN ∪Rf . Then we define Appl(Π,C,LAδ) as follows:

Appl(Π,C,LAδ) = {R′ | R′ ∈ Appl(Π,C, δ) and R′ ∩Rf = ∅}.

This means that only those multisets of rules which do not contain any rule
from the forbidden set Rf can be considered for further evolution of the system.
The set Rf can be replaced by other checking conditions, we shall discuss them in
Section 4. By convention, we shall skip δ if it is the maximally parallel derivation
mode (δ = max) and call the obtained mode simply look-ahead derivation mode
or LA mode.

Look-Ahead Evolution for P Systems 509

We remak that the look-ahead derivation can be considered for any derivation
mode, however in this article we shall consider only look-ahead derivation for the
maximally parallel derivation mode, which is the most commonly used.

Let us consider the particularities of the look-ahead derivation mode. In fact,
the rule set Rf gives conditions that shall not be satisfied by the current configura-
tion with the condition that a particular multiset of rules from Appl(Π,C, δ) will
be applied. This differentiates the look-ahead derivation mode from permitting or
forbidding conditions which are checked before the assignment of objects to rules
is done (in order to see if the rule is applicable), while the conditions in LA mode
are checked after all assignments of objects to rules are done. This gives a greater
flexibility as such a procedure permits to evaluate next possible configurations and
to cut off some of them according to Rf . In such a way the non-determinism of
the system may be significantly decreased.

We remark that the overhead introduced by such a procedure is minimal and we
discuss in Section 4 possible implementations of the look-ahead derivation mode.

Another interesting point is that it is possible that all multisets from the set
Appl(Π,C, δ) contain rules from Rf . In this case, Appl(Π,C,LAδ) will be empty,
hence a halting configuration is reached. It is possible to differentiate this halting
case from the case when Appl(Π,C, δ) is also empty and naturally introduce re-
jecting and accepting computations. This is particulary interesting for decision P
systems, because it gives a natural way to obtain an answer yes or no without the
need for additional symbols.

3 Examples

In this section we give two examples that show the interest of the look-ahead
derivation mode. The first example presents a deterministic recognition of 2n in n
steps using minimal symport/antiport and conditional uniport, while the second
example shows how the initial number of symbols can be increased by minimal
symport/antiport P systems in a deterministic way.

3.1 Deterministic recognition of 2n

In this subsection we consider P systems with minimal interaction which are a
restricted variant of generalized communicating P systems [12]. We recall that the
later systems are a purely communicating model defined on a graph and having
rules of form (A, i)(B, k)→ (A, j)(B,m), where A and B are two multisets of
objects and i, j, k,m are labels of membranes (cells). This rule permits to move
multisets A and B from cells i and k to cells j and m synchronously. We remark
that symport, antiport and conditional uniport [11] rules are a particular case of
these general communication rules.

The minimal interaction rules are obtained from the generalized communication
rule by restricting multisets A and B to one symbol each. Minimal symport and
minimal antiport rules are a particular case of minimal interaction rules.

510 S. Verlan

Consider the following system Π = (O,E,w1, w2, R), having 2 cells (0 denotes
the environment) where O = {A,B,Z}, E = ∅, w1 = {Ak}, w2 = {B,Z} and
R = RN ∪Rf is defined as follows.

RN = {1 : (A, 1)(A, 1)→ (A, 2)(A, 1), 2 : (A, 1)(B, 2)→ (A, 2)(B, 1)} and
Rf = {3 : (A, 1)(Z, 2)→ (A, 0)(Z, 2)}.
We remark that the first rule is a conditional uniport rule that sends a copy of

A from cell 1 to cell 2, providing that another A remains in cell 1. The second rule
is an antiport rule exchanging A and B in cell 1 and 2. The third rule is in fact an
uniport rule of A to the environment, but because of the definition an interaction
of two symbols is required, hence a dummy symbol Z is present in cell 2.

Consider now the evolution of the system. Let C0 be the initial configuration. If
k is even then all three rules are applicable. Hence, Appl(Π,C0,max) contains two
multisets of applicable rules: {1k/2} and {1k/2−1, 2, 3}. By the definition of the LA
mode, the second multiset is eliminated and only the first possibility remains. It is
clear that a similar reasoning applies to all configurations C having an even number
of symbols A in cell 1 and a symbol B in cell 2. If k is odd, then Appl(Π,C0,max)
contains following multisets of rules: {1(k−1)/2, 2} and {1(k−1)/2, 3}. By the defini-
tion of LA mode the second possibility is eliminated and only the first one remains.
The same holds for all configurations having an odd number of A in cell 1 and a
copy of symbol B in cell 2.

Now consider the first application of rule 2. It might happen only when the
number of symbols A in cell 1 is odd. In all consequent configurations symbol B is
present in cell 1. Consider a further configuration having m symbols A in the first
cell. If m is even, then again two multisets of rules are applicable in max mode:
{1m/2} and {1m/2−1, 3} and only the first one remains in the LA mode. If m is
odd, then there is only one applicable multiset in max mode: {1(m−1)/2, 3} and
there are no applicable rules in LA mode.

The recognition of 2n is done as follows. It is known that if a number k = 2n

is divided by 2 in a cycle, then at each step the quotient is always even, except at
the end when it becomes 1. For a number k 6= 2n, a similar process yields an odd
number t > 2. Repeating this procedure for t−1 yields another odd number t′ ≥ 1.
Rule 1 permits to divide the number of A’s in cell 1 by two at each step. Rule 2
permits to decrement once the number of A’s in cell 1. Hence, if initially k = 2n,
then at each step an even number of A’s will be present in cell 2, except the last
one where the rule 2 will be applied. Otherwise, when an odd number t > 2 of
symbols A will be present in cell 1, both rules 1 and 2 will be applied. Further,
an odd number of symbols A will appear in cell 1 and the computation will stop.
In the first case we obtain an accepting computation, while in the second one the
computation is rejecting. We remark that the acceptance of a computation may
be done in other ways as it is shown in Section 4.

3.2 Deterministic minimal symport/antiport on a tree structure

In this subsection we consider P systems (having a tree structure) with minimal
symport and antiport rules. An antiport rule is denoted as (u, in; v, out) and per-

Look-Ahead Evolution for P Systems 511

mits to exchange the multiset of objects v present in the membrane i where this
rule is located with the multiset of objects u present in the parent membrane of
i. A symport rule, denoted as (u, in) or (v, out), permits to send a multiset v to
the parent membrane or the multiset u to one of inner membranes. In the case of
minimal antiport, respectively symport, the size of the multisets u and v is equal
to one, respectively two.

We start by the following remark.

Remark 1 For any deterministic P system with minimal symport/antiport rules
working in maximally parallel derivation mode, the number of objects initially
present inside the system, i.e. not in the environment, cannot be increased.

The proof of the above assertion may be done in a similar way as it was done for
the case of one membrane in [1] and [6]. The main argument used in those articles
remains valid: if the number of objects is increasing, then any rule that permits to
bring an additional symbol from the environment will be used an arbitrary number
of times because of the minimality of rules and determinism.

However, the situation changes if the look-ahead derivation mode is permitted.
Then the following construction permits to bring one symbol from the environ-
ment, deterministically.

Let Π = ({p,A}, {A}, [1[2]2]1, {p}, ∅, R1, R2 ∪Rf
2) be a P system with minimal

symport rules having two membranes (the first membrane contains initially symbol
p while the second one is empty). We define the sets of rules R1 and R2 as follows
(by the superscript f we denote the forbidding set of rules).

R1 = {1 : (p, out); 2 : (pA, in)},
R2 = {3 : (pA, in)} and Rf

2 = {4 : (A, in)}.
The system works as follows. Firstly the symbol p is sent to the environment by

rule 1 and after that it brings a copy of symbol A by rule 2. Now, in the maximally
parallel derivation mode there are two applicable multisets of rules: {3} and {1, 4}.
In LA mode the second multiset is eliminated, hence only rule 3 can be applied.
In such a way, the number of symbols (A) is increased, deterministically.

Since the number of objects can be varied, we conjecture that a deterministic
register machine can be simulated, i.e. we conjecture that deterministic P systems
with minimal symport/antiport working in LA mode can recognize any recursively
enumerable set of numbers.

4 Implementation ideas

In this section we discuss some ideas about the practical implementation of the
look-ahead maximally parallel derivation mode. We consider the classical imple-
mentation of the maximally parallel derivation mode which orders rules and ap-
plies the rules maximal number of times according to the order and after that uses
backtracking to decrease the number of applications of rules of a higher order and
increase the number of applications of rules of a lower order. In this setup it is

512 S. Verlan

enough to place rules from Rf after the rules from RN and to use an additional
condition that if a rule from Rf is chosen then the current multiset should be dis-
carded and a new backtracking round should begin. Hence, only the last condition
shall be additionally implemented, which is not so difficult.

Another possibility is to replace rules from Rf by an union of finite sets that
check the presence of the symbols from the left-hand side of rules from Rf . In this
case it is enough to check that these sets are not present in the configuration after
all rules are chosen, supposing that the choice of rules marks or blocks in some
way used symbols. We recall that the difference between this check and ordinary
permitting/forbidding checks is that it should be done after an assignment of
object to rules is done.

The rejecting condition may be replaced by an emptiness check of a particular
cell, or, in a more general setup, by checking for some finite state conditions like
it is done for P automata (see [4] for an overview).

5 Final remarks

In this paper we introduced a new derivation mode for P systems: the look-ahead
mode. In some sense, this mode is an extension of the maximally parallel derivation
mode and all results formulated for the latter one are true for the look-ahead
mode. We also think that in the non-deterministic case both modes have same
computational properties. In a lot of cases forbidden rules can be replaced by
trapping rules that will move corresponding symbols to a trap membrane or will
transform them to trapping symbols and the computation will never stop. However,
in the deterministic case the behavior of two modes is very different, as it is shown
in Subsection 3.2.

We would like to mention some differences between the look-ahead mode and
the concept of k-determinism introduced in [7]. The notion of k-determinism is a
property of a P system that permits to examine all possible future configurations
for at most k steps and find a single evolution that is not forbidden. This property
cannot be easily checked for a P system. The look-ahead derivation mode is not
a property but a procedure that permits to possibly limit the non-determinism of
the system.

As further research topics we would mention the extension of the look-ahead
for k steps ahead. However, it is not clear if the gain in power is justified as
the computational overhead needed to compute further k configurations is quite
big. Another interesting problem would be the study of the efficiency of the new
mode. We think that a lot of existing proofs can be simplified using the look-ahead
and, moreover, efficient deterministic or almost deterministic solutions for different
computational problems may be constructed. In particular, it would be interesting
to give a deterministic simulation of a register machine by deterministic minimal
symport/antiport P systems.

Instead of forbidden rules one may consider sets or even multisets of rules that
cannot be applied together. This is a generalization of the concept of forbidden

Look-Ahead Evolution for P Systems 513

rules, because set Rf corresponds to set of pairs {(r, r′) | r ∈ RN , r
′ ∈ Rf}. This

permits a finer control of rules, in some sense similar to programmed grammars,
and it can be implemented quite easily.

Acknowledgements

The author would like to thank A. Alhazov, E. Csuhaj-Varjú and R. Freund for
their precious comments related to the topic of the paper. The author also ac-
knowledges the support by the Science and Technology Center in Ukraine, project
4032.

References

1. A. Alhazov, Y. Rogozhin, S. Verlan: Symport/antiport tissue P systems with minimal
cooperation, In Proceedings of the ESF Exploratory Workshop on Cellular Computing
(Complexity Aspects), Sevilla (Spain), 37–52.

2. A. Binder, R. Freund, G. Lojka, M. Oswald: Implementation of catalytic P systems.
In Proc. of CIAA 2004 (M. Domaratzki et al. eds.), LNCS 3317, 45–56.

3. G. Ciobanu, L. Pan, G. Păun, M. J. Pérez-Jiménez: P systems with minimal paral-
lelism. Theor. Comput. Sci. 378(1), (2007), 117–130.

4. E. Csuhaj-Varjú: P automata. In Proc. of WMC 2004 (G. Mauri et al., eds.), Milano,
Italy, 2005, LNCS 3365, 19-35.

5. R. Freund, S. Verlan: A formal framework for static (tissue) P systems. Proc. of WMC
2008 (G. Eleftherakis et al., eds.), Thessaloniki, Greece, Springer, 2007, LNCS 4860,
271–284.

6. P. Frisco and H. Hoogeboom. P systems with symport/antiport simulating counter
automata. Acta Informatica, 41(2-3):145–170, 2004.

7. M. Oswald: P Automata. PhD thesis. Vienna University of Technology (2003).
8. Gh. Păun, Membrane Computing. An Introduction. SpringerVerlag, 2002, 163, 226–

230.
9. The Membrane Computing Web Page: http://ppage.psystems.eu

10. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

11. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: On communica- tion in
tissue P systems: conditional uniport. In Proc. of WMC 2006 (H. J. Hoogeboom et
al., eds.), Leiden, 2006, LNCS 4361, 521–535.

12. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: Generalized communicating
P systems. Theor. Comput. Sci. 404 (1-2) (2008), 170–184.

Spiking Neural P Systems
with Weights and Thresholds

Jun Wang1, Hendrik Jan Hoogeboom2, Linqiang Pan1,3?, Gheorghe Păun3,4

1 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
junwangjf@gmail.com, lqpan@mail.hust.edu.cn

2 Leiden Institute of Advanced Computer Science, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
hoogeboom@liacs.nl

3 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

4 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
george.paun@imar.ro, gpaun@us.es

Summary. A variant of spiking neural P systems is introduced, with (positive or nega-
tive) weights on synapses and with the restriction that the rules of a neuron fires when
the potential of that neuron equals a given threshold. The involved numbers – weights,
thresholds, potential consumed by each rule – can be real (computable) numbers, ratio-
nal, integer, natural numbers. The power of the obtained systems is investigated. For
instance, it is shown that integer numbers (very restricted: 1,−1 for weights, 1 and 2 for
thresholds and for writing the rules) suffice in order to compute all Turing computable
sets of numbers, both in the generative and the accepting modes. Using only natural
numbers we characterize the family of semilinear sets of numbers. Some open problems
and suggestions for further research are formulated.

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced in [5] in the
aim of defining computing models based on ideas specific to spiking neurons, cur-
rently much investigated in neural computing (see, e.g., [4], [7], [8]). The resulting
models are a variant of tissue-like and neural-like P systems from membrane com-
puting – we refer to [10] for basic information in this research area, to [11] for a

? Corresponding author

Spiking neural P systems with weights and thresholds 515

comprehensive presentation, and to the web site [13] for the up-to-date informa-
tion.

In short, an SN P system consists of a set of neurons placed in the nodes of a
directed graph and sending signals (spikes, denoted in what follows by the symbol
a) along synapses (arcs of the graph). Thus, the architecture is that of a tissue-like
P system, with only one kind of objects present in the cells. The objects evolve by
means of spiking rules, which are of the form E/ac → a; d, where E is a regular
expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is
that a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can consume c
spikes and produce one spike, after a delay of d steps. This spike is sent to all
neurons to which a synapse exists outgoing from the neuron where the rule was
applied. There also are forgetting rules, of the form as → λ, with the meaning that
s ≥ 1 spikes are forgotten, provided that the neuron contains exactly s spikes.
The system works in a synchronized manner, i.e., in each time unit, the rule to be
applied is non-deterministically chosen, each neuron which can use a rule should
do it, but the work of the system is sequential in each neuron: only (at most)
one rule is used in each neuron. One of the neurons is considered to be the output
neuron, and its spikes are also sent to the environment. The moments of time when
a spike is emitted by the output neuron are marked with 1, the other moments
are marked with 0. This binary sequence is called the spike train of the system –
it might be infinite if the computation does not stop. The result of a computation
is encoded in the distance between consecutive spikes sent into the environment
by the (output neuron of the) system.

In SN P systems, the applicability of each rule is determined by checking the
content of the neuron against a regular set associated with the rule. There is a
considerable computational power hidden into the implicit mechanism that SN P
systems use to decide whether a given rule can be applied or not. For instance, in
[6] it is proved that deciding whether a rule can be applied is at least NP-complete.

In this paper, a variant of SN P systems is presented, aiming to decide in an
easy way the applicability of rules. To this aim, we do not count spikes, as in usual
SN P systems, but we consider that each neuron contains a potential, which, in
the general case, can be expressed by a real number (to avoid any complication,
in what follows we always use computable real numbers). Each neuron fires when
its potential is equal to a given threshold; at that time, part of the potential is
consumed and a unit potential is produced (a spike). This unit potential passes
to neighboring neurons multiplied with the weights of synapses. The weights can
also be real numbers, hence both positive and negative. In this way, we can define
computations and the result of computations as usual in SN P systems (the result is
associated with the spike train of the computation – here we consider the distance
between the first two spikes which leave the output neuron; SN P systems working
in the accepting mode are also considered).

An important convention is assumed: when the potential of a neuron is higher
than its firing threshold, then the potential remains unchanged (can be changed
– increased or decreased – by adding new amounts coming from other neurons,

516 J. Wang et al.

amounts which can be positive or negative, depending on synapses weights), but
when the potential of a neuron is smaller than the firing threshold, then this
potential vanishes, the potential of the neuron is set to zero. These assumptions
are essentially used in the proofs below, but we do not know what happens when,
for instance, potentials smaller than the firing thresholds remain unchanged instead
of being removed.

As we will see, SN P systems with integer values for weights and potentials are
computationally universal, and the proofs are rather simple (and they use very
small numbers, only 1,−1 as weights, and 1, 2 for writing the rules).

Besides the above computer science motivation, considering SN P systems with
weights and firing thresholds has also a biological motivation. Like most other cells
in the body, the plasma membrane of excitable cells exhibits a membrane potential
(an electrical voltage difference across the membrane), called resting membrane
potential, and its typical value is −70 mV. Moreover, each neuron has its own
threshold potential which is the membrane potential to which a membrane must be
depolarized to initiate an action potential. If the membrane potential of a neuron
equals its threshold potential, then the neuron will fire, sending out an action
potential (signal), and its membrane potential will return to the resting membrane
potential. If the membrane potential is smaller than the threshold potential, then
no signal is emitted and the membrane potential will also return to the resting
membrane potential. For more details see [4] and [8].

Let us note that SN P systems with synapses which transmit negative amounts
of spikes to the destination neurons were investigated, e.g., in [1], [2], where also
further biological motivations can be found.

In what follows, the reader is assumed to have some familiarity with (basic
elements of) language theory, e.g., from [12], as well as basic membrane computing
[10] (for more updated information about membrane computing, please refer to
[13]). We here mention that by N,Z,Q,Rc we denote the sets of natural, integer,
rational, and computable real numbers, respectively, while SLIN, NRE denote the
families of semilinear and of Turing computable sets of numbers. (Note that SLIN
is the family of length sets of regular languages and NRE is the family of length
sets of recursively enumerable languages.)

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

2 Spiking Neural P Systems with Weights and Firing
Thresholds

We introduce directly the type of spiking neural P systems which we investigate
in this paper; the reader is assumed familiar with the basic elements of “classic”
SN P systems.

An SN P system with weights and thresholds (from now on we will deal only
with such systems, hence sometimes we say shortly SN P systems; when necessary

Spiking neural P systems with weights and thresholds 517

to stress the new type of systems, we will write WTSN P systems), of degree
m ≥ 1, is a construct of the form

Π = (σ1, . . . , σm, syn, in, out), where:

1. σ1, . . . , σm are neurons, of the form σi = (pi, Ri), 1 ≤ i ≤ m, where:
a) pi ∈ Rc is the initial potential in neuron σi;
b) Ri is a finite set of spiking rules of the from Ti/dj → 1, j = 1, 2, . . . , ni

for some ni ≥ 1, where Ti ∈ Rc, Ti ≥ 1, is the firing threshold potential of
neuron σi, and dj ∈ Rc with the restriction 0 < dj ≤ Ti;

2. syn ⊆ {1, 2, . . . , m}× {1, 2, . . . , m}×Rc are synapses between neurons, where
i 6= j, r 6= 0 for each (i, j, r) ∈ syn;

3. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The spiking rules are applied as follows. Assume that at a given moment,
neuron σi has the potential equal to p. If p = Ti, then any rule Ti/dj → 1 ∈ Ri can
be applied. The execution of this rule consumes an amount of dj of the potential
(thus leaving the potential Ti − dj) and prepares one unit potential (we also say
a spike) to be delivered to all the neurons σj such that (i, j, r) ∈ syn. Specifically,
each of these neurons σj receives a quantity of potential equal to r, which is added
to the existing potential in σj . Note that r can be positive or negative, hence the
potential of the receiving neuron is increased or decreased. The potential emitted
by a neuron σi passes immediately to all neurons σj such that (i, j, r) ∈ syn, that
is, the transition of potential takes no time. If a neuron σi spikes and it has no
outgoing synapse, then the potential emitted by neuron σi is lost.

We stress that (1) each neuron σi has only one fixed threshold potential Ti; (2) if
a neuron has the potential equal to its threshold potential, then all rules associated
with this neuron are enabled, and only one of them is non-deterministically chosen
to be applied; (3) when a neuron spikes, there is always only one unit potential
emitted.

If neuron σi has the potential p such that p < Ti, then the neuron σi returns
to the resting potential 0. If neuron σi has the potential p such that p > Ti, then
the potential p keeps unchanged.

Summing up, if neuron σi has potential p and receives potential k at step t,
then at step t + 1 it has the potential p′, where:

p′ =

k, if p < Ti;
p− dj + k, if p = Ti and rule Ti/dj → 1 is applied;
p + k, if p > Ti.

As usual in membrane computing, a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized. Each
neuron uses at most one rule in each step, non-deterministically chosen among its
rules, provided that its potential equals the firing threshold, but all neurons which
can use a rule must do it.

518 J. Wang et al.

The configuration of the system is described by the distribution of potentials
in neurons. The initial configuration of the system is the tuple 〈p1, . . . , pm〉. Us-
ing the rules as suggested above, we can define transitions among configurations.
Any sequence of transitions starting from the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where no rule can be
used. With any computation, halting or not, we associate a spike train, the binary
sequence with occurrences of 1 indicating time instances when the output neuron
sends one unit potential (a spike) out of the system (we also say that the system
itself spikes at that time).

The result of a computation can be defined in several ways. In this paper, with
any spike train containing at least two spikes, the first two being emitted at step
t1, t2, one associates a result, in the form of the number t2 − t1; we say that this
number is computed by Π. The set of all numbers computed in this way by Π
is denoted by N2(Π) (the subscript indicates that we only consider the distance
between the first two spikes of any computation; note that 0 cannot be computed,
that is why we disregard this number when investigating the computing power of
any device).

SN P systems can also work in the accepting mode: we start the computation
from the initial configuration, and we introduce in the input neuron two spikes, in
steps t1 and t2 (hence we introduce in σin one unit of potential in each step t1 and
t2); the number t2 − t1 is accepted by the system if the computation eventually
halts. We denote by Nacc(Π) the set of numbers accepted by Π.

In the generative case, the neuron with label in is ignored; in the accepting
mode, the neuron with label out is ignored (sometimes below, we identify the
neuron σi with its label i, so we say “neuron i” understanding that we speak
about “neuron σi”).

We denote by NαWTXSNPm the families of all sets Nα(Π), α ∈ {2, acc},
computed by WTSN P systems with at most m ≥ 1 neurons, using weights,
thresholds, and amounts of consumed potentials in the rules taken from the set X,
for X ∈ {N,Z,Q,Rc}. When the number of neurons is not bounded, the subscript
m is replaced with ∗.

Usually, in the SN P systems area one takes into account several other param-
eters describing the size of the used systems, such as the maximal number of rules
in a neuron, the maximal number of spikes consumed by a rule, etc. Here we can
also consider the maximal firing threshold, the maximal positive weight and the
minimal negative weight of a synapse, etc. However, as we will see in the following
sections, these parameters will have very small values in all results we obtain, so
we prefer to simplify the notation and ignore these parameters.

3 One Example

In the next sections we will give several explicit constructions of SN P systems with
weights and thresholds, always with integer numbers for describing the potentials

Spiking neural P systems with weights and thresholds 519

and the rules, that is why we discuss here only one example, where rational non-
integer numbers are used.

As usual in this area, the systems are represented graphically, which may be
easier to understand than in a symbolic way. We use an oval with the initial
potential and spiking rules inside to represent a neuron, and arrows between these
ovals to represent the synapses; numbers will mark these arrows, indicating the
weights. The input neuron has an incoming arrow and the output neuron has an
outgoing arrow, suggesting their communication with the environment. When the
weight on a synapse is one, we omit writing it.

Consider the SN P system Π as shown in Figure 1, which consists of three
neurons.

out

2

1

3

1.5/1 1

2
1/1 1

1/1 1−1

−1.5−0.5
1.5

0.5

1

1.5/1.5 1

Fig. 1. Example of a WTSN P system Π

At step 1, only output neuron σout spikes, while the other two neurons σ1, σ2

maintain their potentials, because their potentials are greater than their corre-
sponding firing thresholds. Neurons σ1 and σ2 receive potentials −1.5 and −1,
respectively, from neuron σout. At step 2, neurons σ1 and σ2 have potentials 1.5
and 1, respectively, which equal their corresponding firing thresholds, hence both
neurons σ1 and σ2 spike.

When neuron σ2 spikes, it consumes one unit of potential and, at the same
time, it receives one unit of potential from neuron σ1, hence at next step it still
has potential 1, and spikes again. Neuron σ1 has two rules, 1.5/1.5 → 1 and
1.5/1 → 1, and one of them is non-deterministically chosen. If rule 1.5/1.5 → 1 is
applied, then with consuming potential 1.5 and receiving potential 1.5 from neuron
σ2, the potential of neuron σ1 is still 1.5, hence it will spike again. In this way,
neurons σ1 and σ2 can spike as long as rule 1.5/1.5 → 1 is chosen to be applied.
During this process, at each step, neuron σout receives potential −0.5 from σ1 and
potential 0.5 from σ2, which means that neuron σout has potential 0 and does not
spike.

If at step t ≥ 2, rule 1.5/1 → 1 is chosen to be applied, then at step t + 1,
neuron σ1 has the potential 1.5− 1 + 1.5 = 2, which is greater than its threshold

520 J. Wang et al.

and it will not spike. At step t + 1, neuron σ2 has potential 1 and spikes; neuron
σout receives potential 1 from neuron σ2 at step t + 1 and spikes at step t + 2.
At step t + 2, neuron σ1 receives potential −1.5 from neuron σout, its potential
changes to 2 − 1.5 = 0.5, which is less than its threshold potential 1.5 and the
neuron returns to resting potential 0 at step t+3. At step t+2, neuron σ2 receives
potential −1 from neuron σout, its potential changes to 0 − 1 = −1, which is less
than its threshold potential 1 and returns to resting potential 0 at step t + 3. So,
the system halts after step t + 3.

The number generated is (t + 2) + 1 = t + 3, where t ≥ 2, and the value of
t depends on the non-deterministic choice of rules 1.5/1.5 → 1 or 1.5/1 → 1 in
neuron σ1. Thus, N2(Π) = N − {1, 2} (recall that the number 0 is ignored when
investigating the computational power of devices).

4 Preliminary Results

Let us start by noting some immediate relations, following from the definitions:

Lemma 1. (i) NαWTNSNPm ⊆ NαWTZSNPm ⊆ NαWTQSNPm ⊆
NαWTRcSNPm ⊆ NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗.

(ii) NαWTXSNPm ⊆ NαWTXSNPm′ ⊆ NαWTXSNP∗, for all α ∈ {2, acc},
m′ ≥ m ≥ 1, and X ∈ {N,Z,Q,Rc}.

All relations are obvious, with the inclusion NαWTRcSNPm ⊆ NRE being a
consequence of the fact that we use only computable real numbers and of Turing-
Church thesis.

For a given WTSN P system Π = (σ1, . . . , σm, syn, in, out) and a constant
k ∈ Rc, let us denote by kΠ the system obtained by multiplying by k all weights
and potentials from Π (if a rule of Π is of the form Ti/dj → 1, then in kΠ we
use the rule kTi/kdj → 1; a synapse (i, j, r) will become (i, j, kr) in kΠ, hence
transporting a potential equal to kr when neuron σi produces one spike).

Lemma 2. For any WTSN P system Π and constant k ∈ Rc, with kΠ constructed
as above, we have Nα(Π) = Nα(kΠ), for all α ∈ {2, acc}.

The assertion directly follows from the way kΠ is defined, and has the next
interesting consequence:

Corollary 1. NαWTZSNPm = NαWTQSNPm for all α ∈ {2, acc} and m ≥ 1 or
m = ∗.

One inclusion is pointed out in Lemma 1, the opposite one follows from Lemma
2: take an arbitrary WT SN P systems with all constants in Q, let k be the
least common multiple of all denominators of rational numbers in Π (weights
and potentials), and consider kΠ. This has all used numbers integers and it is
equivalent with Π.

Spiking neural P systems with weights and thresholds 521

5 Universality of WTSN P Systems with Integer Numbers

Expected enough, we obtain universality both in the generative and the accepting
case. However, these results cannot be obtained as particular cases of universality
results known for usual SN P systems: the weights and thresholds bring additional
possibilities to “program” the computation of an SN P system, but instead we
are very much restricted by the fact that all the rules of a neuron are enabled
at the same time, when the firing threshold is reached; this corresponds to usual
SN P systems with a finite number of spikes in each neuron (and only one regular
expression – identifying a singleton!), and such systems are known to only compute
semilinear sets of numbers.

5.1 The Generative Case

Consider first the case of sets N2(Π); we have the following result:

Theorem 1. N2WTZSNP∗ = NRE.

Proof. We only have to prove the inclusion NRE ⊆ N2WTZSNP∗, and to this
aim we use the characterization of NRE by means of register machines used in
the generating mode.

Let us consider a register machine M = (m,H, l0, lh, I) (number of registers,
set of labels, initial label, halt label, set of instructions) which is assumed that in
the halting configuration has all registers different from the first one empty, and
that output register is never decremented during the computation. We construct
a WTSN P system Π to simulate M as follows. We construct modules ADD and
SUB to simulate the instructions of M , as well as an output module FIN which
provides the result (in the form of a suitable spike train). Each register r of M
will have a neuron σr in Π, and if the register contains the number n, then the
associated neuron will have the potential 2n + 2. A neuron σli is associated with
each label li ∈ H, and some auxiliary neurons σ

l
(j)
i

, j = 1, 2, 3, . . . , will also be
considered, thus precisely identified by label li (remember that each li ∈ H is
associated with a unique instruction of M).

The modules will be given in a graphical form. In the initial configuration, all
neurons have the potential 0, except that the neuron associated with label l0 of
M has potential 1 and the neurons associated with the registers have potential 2.
In general, when a neuron σli , where li ∈ H, has potential 1, then that neuron
becomes active and the module associated with the respective instruction of M
starts to work, simulating the instruction.

Module ADD – simulating an ADD instruction li : (ADD(r), lj , lk).
Module ADD, shown in Figure 2, is composed of eight neurons: neuron σr

for register r, neurons σli , σlj , σlk for instructions with labels li, lj , lk, and four
auxiliary neurons.

The initial instruction of M , the one with label l0, is an ADD instruction. Let
us assume that at step t we have to simulate an instruction li : (ADD(r), lj , lk),

522 J. Wang et al.

li r
2

1/1 1

li
22 /2 1

li
1 1/1 1

2 /11

li
3 2 /2 1

l j
1/1 1

li
41/1 1

l k
1/1 1

2−1−1

Fig. 2. Module ADD (simulating li : (ADD(r), lj , lk))

with neuron σli having potential 1 and other neurons having resting potential 0,
except those neurons associated with registers. Having potential 1, neuron σli fires
by rule 1/1 → 1. Simultaneously, neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr receive potentials 1,
2, 2, respectively. In this way, the potential of neuron σr increased by two, thus
simulating the increase of the number stored in register r by one.

At the next step, the computation of M passes non-deterministically to one
of the instructions with labels lj and lk; that is, we have to ensure the firing of
neurons σlj or σlk in system Π, non-deterministically choosing one of them. To
this aim, we use the non-deterministic choice of rules 2/2 → 1 and 2/1 → 1 in
σ

l
(2)
i

. Because neuron σ
l
(2)
i

has potential 2 (received from neuron σli at the last
step), it has to choose non-deterministically one of these rules. We have two cases.

(1) If rule 2/2 → 1 is applied at step t+1, then neuron σ
l
(2)
i

consumes its potential
for spiking. With receiving potential 1 from neuron σ

l
(1)
i

at step t+1, neuron σ
l
(2)
i

has potential 1 at step t + 2, which is less than its threshold potential, hence the
neuron returns to the resting potential 0. At step t+1, neuron σlj receives potential
−1 from neuron σ

l
(2)
i

, which is less than its firing threshold and it returns to the
resting potential 0 at step t + 2. At step t + 1, neuron σ

l
(4)
i

receives potential −1
from neuron σ

l
(1)
i

and potential 1 from neuron σ
l
(2)
i

, hence its potential is still 0.
At step t + 1, neuron σ

l
(3)
i

receives potential 2 from neurons σ
l
(1)
i

and σ
l
(2)
i

and
at step t + 2 it spikes by rule 2/2 → 1. Receiving potential 1 from neuron σ

l
(3)
i

,
neuron σlj becomes active, starting to simulate the instruction lj of M .
(2) If rule 2/1 → 1 is applied at step t + 1, then neuron σ

l
(2)
i

consumes one unit
of its potential for spiking. With receiving potential 1 from neuron σ

l
(1)
i

at step

Spiking neural P systems with weights and thresholds 523

t+1, neuron σ
l
(2)
i

still has potential 2 at step t+2, and spikes again. At step t+1,
neuron σlj receives potential −1 from neuron σ

l
(2)
i

, which is less than its threshold
potential and returns to the resting potential 0 at step t+2. At step t+2, neuron
σlj receives potential −1 from neuron σ

l
(2)
i

and potential 1 from neuron σ
l
(3)
i

, so
its potential is zero. At step t + 1, neuron σ

l
(4)
i

receives potential −1 from neuron
σ

l
(1)
i

and potential 1 from neuron σ
l
(2)
i

, so its potential remains 0. At step t + 2,
neuron σ

l
(4)
i

receives one unit of potential from neuron σ
l
(2)
i

and it spikes at step
t + 3. Receiving potential 1 from neuron σ

l
(4)
i

at step t + 3, neuron σlk becomes
active, starting to simulate the instruction lk of M .

Therefore, from firing neuron σli , we pass to firing non-deterministically one of
neurons σlj , σlk , which correctly simulates the ADD instruction li : (ADD(r), lj , lk).

Module SUB – simulating a SUB instruction li : (SUB(r), lj , lk)
Module SUB, shown in Figure 3, is composed of seven neurons: neuron σr

for register r, neurons σli , σlj , σlk for instructions with labels li, lj , lk, and three
auxiliary neurons σ

l
(1)
i

, σ
l
(2)
i

, σ
l
(3)
i

.

li

li
1r

2

1/1 1

1/1 1 1/1 1

1/1 1 2 /2 1

1/1 1 1/1 1

li
3li

2
l kl j

−1

−1−1

Fig. 3. Module SUB (simulating instruction li : (SUB(r), lj , lk)

Instruction li is simulated in Π in the following way. Initially, neuron σli has
potential 1, and other neurons have potential 0, except neurons associated with

524 J. Wang et al.

registers. Let t be the moment when neuron σli fires. At step t, neurons σ
l
(1)
i

and σr

receive potentials 1 and −1, respectively. At step t+1, neurons σ
l
(1)
i

fires, neurons
σ

l
(2)
i

and σ
l
(3)
i

receive potential 1 from neuron σ
l
(1)
i

. For neuron σr, there are the
following two cases.
(1) The potential of neuron σr is 2 at step t (that is, the number stored in register
r is 0). Then, at step t+1, neuron σr has potential 1 (it has received potential −1
from neuron σli at the previous step), and it spikes by rule 1/1 → 1. At step t+1,
neuron σ

l
(2)
i

receives potential −1 from neuron σr and potential 1 from neuron
σ

l
(1)
i

, so it has potential 0. At step t+1, neuron σ
l
(3)
i

receives potential 2 (one unit
of potential from neuron σr, another one from neuron σ

l
(1)
i

), and it spikes at step
t+2. Receiving potential 1 from neuron σ

l
(3)
i

, neuron σlk becomes active, and start
to simulate the instruction lk of M . Note that at step t + 2, neuron σr receives
potential 2 from neuron σ

l
(3)
i

, and in this way, it correctly ends with potential 2,
which corresponds to the fact that the number stored in register r is 0.
(2) The potential of neuron σr is 2n + 2 (n > 0) at step t. Then, at step t + 1,
neuron σr has potential 2n + 1, which is greater than its threshold, and will keep
unchanged. At step t+1, neuron σ

l
(3)
i

receives potential 1 from neuron σ
l
(1)
i

, which
is less than its threshold potential, hence it will not spike and have potential 0 at
step t + 2. At step t + 1, neuron σ

l
(2)
i

receives potential 1 from neuron σ
l
(1)
i

, and
it spikes at step t + 2. Receiving potential −1 from neuron σ

l
(2)
i

at step t + 2, the
potential of neuron σr changes to 2n, and in this way, it simulates that the number
stored in register r is decreased by one. Receiving potential 1 from neuron σ

l
(2)
i

at
step t + 2, neuron σlj becomes active, and starts to simulate the instruction lj of
M .

The simulation of SUB instruction is correct, we started from σli and ended in
σlj (if the register r is not empty and decreased by one), or in σlk (if the register
is empty).

Note that there is no interference between neurons used in the ADD and the
SUB modules, other than correctly firing the neurons σlj or σlk which may label
instructions of the other kind. However, it is possible to have interference between
neurons in two SUB modules. Specifically, if there are several SUB instructions lt
which act on register r, then neurons σ

l
(2)
t

and σ
l
(3)
t

receive potentials −1 and 1
from neuron σr, respectively, while simulating the instruction li : (SUB(r), lj , lk).
After receiving these potentials, neurons σ

l
(2)
t

and σ
l
(3)
t

have potentials that are
less than their corresponding firing thresholds, so both of them return to resting
potential 0 at next step. Consequently, the interference among SUB modules will
not cause undesired steps in Π.

Module FIN – outputting the result of the computation.
Module FIN is shown in Figure 4. Assume that the computation in M halts,

which means that the halting instruction is reached. This means that neuron σlh

in Π has potential 1 and fires by rule 1/1 → 1. At that moment, neuron σ1 has

Spiking neural P systems with weights and thresholds 525

l h1/1 1

c2

1/1 1c11/1 1
c3

1/1 1

out
1/1 1 11/1 1

−1
−1−1

−1

−1

Fig. 4. Module FIN (outputting the result of computation)

potential 2n + 2, for the number n ≥ 1 stored in register 1 of M . When σlh fires,
each neuron σc1 , σc2 , σc3 receives potential 1; neuron σ1 receives potential −1,
changing its potential to 2n + 1; suppose that this is step t. At step t + 1, neuron
σc1 spikes; neuron σout receives potential 1 from neuron neuron σc1 , and spikes at
step t + 2 (this is the first spike sent out by system Π).

From step t + 1 on, consuming one unit potential, neurons σc2 and σc3 send
potential 1 to each other, and this process continues until they receive potential
−1 from neuron σ1. During this process, at each step, neuron σ1 receives potential
−1 from neuron σc2 and −1 from σc3 , which corresponds to decreasing by one the
value of the register 1. At step t + n + 1, neuron σ1 has potential 1 and spikes;
neurons σc2 and σc3 has potential 0 after receiving potential −1 from neuron σ1.
Receiving potential 1 from σ1 at step t + n + 1, neuron σout spikes again at step
t+n+2, the system sends the second spike to environment. The interval between
these two spikes sent out by the system is (t+n+2)− (t+2) = n, which is exactly
the number stored in register 1 of M at the moment when the computation of M
halts.

Note that after system Π sends out the second spike, all neurons in Π have
potential 0 except that neurons σi (i = 2, 3, . . . , m) have potential 2. For mathe-
matical elegance, we can return the potentials of neurons σi (i = 2, 3, . . . , m) to
0 when the computation of Π halts. To this aim, we just need to add synapses
(out, i,−2) (i = 2, 3, . . . , m) in system Π.

If the number stored in register 1 is 0 when register machine M halts, then
at step t + 1, neuron σout has potential 2, which is greater than its threshold
potential 1. In this case, neuron σout is blocked, and system Π sends no spike

526 J. Wang et al.

to the environment. Furthermore, 0 is ignored when we investigate the power of
devices.

From the above description of the modules and their work, it is clear that the
register machine M is correctly simulated by the system Π. Therefore, N2(Π) =
N(M) and this completes the proof. 2

Let us now examine the weights used in the previous proof. In the ADD module
we have two synapses with weight 2. This value can be avoided, so that the module
only uses weights 1 and −1 in the following way: consider two new neurons, say σa

and σb, intermediate between σli and its neighboring neurons (specifically, with
synapses (li, a, 1), (li, b, 1), (a, r, 1), (b, r, 1), (a, l

(1)
i , 1), (a, l

(2)
i , 1), (b, l(2)i , 1). Each of

the new neurons holds the rule 1/1 → 1. In this way, both σr and σ
l
(2)
i

get two
potential units, two steps after activating σli , simultaneously with one potential
unit coming to σ

l
(1)
i

. From now on the work of the module continues as described
above. The same trick can be used in the SUB module in order to remove the
single synapse with weight 2, with the mentioning that now no synchronization
problem appears, hence the synapse is removed and two intermediate neurons are
introduced, similar to σa, σb above, between σ

l
(3)
i

and σr. Module FIN contains
only synapses with weights 1 and −1.

Consequently, the universality is obtained with WTSN P systems of a rather
restricted form. This observation deserves to be formulated as a normal form result:

Corollary 2. The universality of WTSN P systems is preserved if we use only (i)
weights 1 and −1 for synapses, (ii) at most two rules per neuron, and (iii) all
rules are of one of the following three forms: 1/1 → 1, 2/2 → 1, and 2/1 → 1.

The use of two rules in at least one neuron cannot be avoided, because in
the generative case the system should be non-deterministic, otherwise we generate
nothing or a singleton; non-determinism means choosing between rules, hence we
need at least two in the same neuron.

5.2 The Accepting Case

The number of rules per neuron can be decreased to one in this case, due to the
fact that the ADD instructions of a register machine used in the accepting mode
can be taken deterministic.

The number to be computed is introduced in the system as the distance between
the first two unit potentials which enter the input neuron. This is done by means
of a module INPUT as indicated in Figure 5. After receiving two unit potentials,
if the system halts, then the number is accepted. So, we do not need a module for
outputting the result of computation. For a SUB instruction li : (SUB(r), lj , lk), we
use the same module as in Figure 3. For a deterministic ADD instruction, of the
form li : (ADD(r), lj), we consider the simple module given in Figure 6. Initially,
all neurons in the system have the potential 0. The way the modules work can be
checked in a similar way as in the proof of Theorem 1.

Spiking neural P systems with weights and thresholds 527

i01/1 1

a2

1/1 1
a1

1/1 1
a3

1/1 1

l 0

1/1 1 1

2 2

Fig. 5. Module INPUT (initializing the computation)

li1/1 1

l j1/1 1 r

2

Fig. 6. Module ADD in the deterministic case

We conclude with the following counterpart of Theorem 1 (with the mentioning
that also the assertions in Corollary 2 hold true, with point (ii) stating that exactly
one rule per neuron is used; the removing of synapses with weight 2 is done in the
same way as described above):

Theorem 2. NaccWTZSNP∗ = NRE.

The previous results can be summarized as follows:

Corollary 3. NαWTNSNPm ⊆ NαWTZSNPm = NαWTQSNPm =
NαWTRcSNPm = NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗.

528 J. Wang et al.

6 Systems with Natural Numbers as Weights and
Thresholds

The only case which has remained unsettled is that when our systems use natural
numbers as weights, thresholds, and potentials. Somewhat surprising at the first
sight, such systems characterize the family of semilinear sets. For the proof of this
assertion we use a series of lemmas.

Lemma 3. Every finite set of natural numbers is in the family N2WTNSNP∗.

Proof. Let us take a finite set of natural numbers, U = {n1, n2, . . . , nk}, all of
them different from zero. We construct a WTSN P system as suggested in Figure
7. Specifically, for each number ni we have a “subsystem” composed of neurons
σ(i,a), σ(i,b), σ(i,c), σ(i,0), σ(i,1), . . . , σ(i,ni+1), with synapses, rules, and initial poten-
tials as indicated in figure. A synapse exists from neuron σ(i,ni+1) to the output
neuron, σout. There also exists one further neuron, σ0, for which only two synapses
exist, ((1, 0), 0, 1) and (0, out, 1). Figure 7 only shows two generic subsystems, and
the subsystem which helps in generating number nk = 1.

This system works as follows. All neurons behave deterministically, except
σ(i,c), for each 1 ≤ i ≤ k. As long as such a neuron uses its second rule, 2/1 → 1, it
can spike again in the next step: one potential unit remains inside and a further one
is received from σ(i,b), hence the initial amount, equal to the firing threshold, is re-
stored. In turn, as long as σ(i,c) spikes, the sequence of neurons σ(i,1), . . . , σ(i,ni+1)

continues to work, moving to the right towards σout, the neuron which can fire:
a neuron in this sequence must receive two spikes in order to fire, one from the
preceding neuron (initially, σ(i,0) fires, because it has inside one potential unit),
and one from σ(i,c). Note that each time unit, σ(i,c) is fed by one potential unit by
σ(i,b), which works forever in cooperation with σ(i,a) (they can be stopped, e.g.,
when σout spikes, by sending to them a further spike, but this detail is not impor-
tant for our result – it can be so for other ways of defining the output, if halting
is relevant). If all neurons in the sequence σ(i,1), . . . , σ(i,ni+1) work, then in step
ni + 2 a spike is set to σout and in step ni + 3 a spike is sent to the environment.
Note however that the first spike is sent out of the system in step 3, on the path
σ(1,0), σ0, σout. Consequently, the distance between these spikes is (ni+3)−3 = ni.

However, any of these processes of sending a spike towards σout along the path
σ(i,1), . . . , σ(i,ni+1) can be stopped at any step after the first one, by using the rule
2/2 → 1 in neuron σ(i,c): using this rule consumes both potential units of σ(i,c), only
one unit is received from σ(i,b), which is removed, and σ(i,c) remains idle. Therefore,
non-deterministically, we can stop all but one sequence σ(i,1), . . . , σ(i,ni+1) of neu-
rons, 1 ≤ i ≤ k, so that the output neuron receives only two spikes, the one in step
3, along the path σ(1,0), σ0, σout, and the one along the path σ(i,1), . . . , σ(i,ni+1)

which remained unblocked. In conclusion, each number in the set {n1, n2, . . . , nk}
can be generated, that is, N2(Π) = U , hence FIN ⊆ N2ATNSNP∗.

Of course, the number of neurons depends on the sum of numbers in the set
U , but some neurons in the previous construction can be saved (a unique pair
σ(i,a), σ(i,b) can fed up all neurons σ(i,c)), but this aspect is not relevant for us. 2

Spiking neural P systems with weights and thresholds 529

'

&

$

%

#
"

!
�
�
�
�
�
�
�
�'

&
$
%

#
"

!

'

&

$

%

'
&
$
%

'
&
$
%

'
&
$
%

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%

'
&
$
%

'
&
$
%

'
&
$
%

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

-

? 6

- -

�
�

��3

����������*

�
�
�
�
�
�
�
�
�
�
�
��

?

-

?

6

?

6

-

- - - - -

�
�

��>

�����������1

�������������������:

- - - -

�
�

��>

�����������1

��������������������: B
B
B
B
B
B
B
B
B
BBN

�
�

��
-

?

(k, a)

1

1/1→ 1

(k, b)

1

1/1→ 1

(k, c)

2

2/2→ 1

2/1→ 1

(k, 0)

1

1/1→ 1

(k, 1)

2/2→ 1

(k, 2)

2/2→ 1

. . .

(2, a)

1

1/1→ 1

(2, b)

1

1/1→ 1

(2, c)

2

2/2→ 1

2/1→ 1

1

1/1→ 1
(2, 0)

(2, 1)

2/2→ 1

(2, 2)

2/2→ 1 . . .

(2, n2+1)

2/2→ 1

out

1/1→ 1

0

1/1→ 1

1

1/1→ 1

2

2/2→ 1

2/1→ 1

(1, 1)

2/2→ 1

(1, 2)

2/2→ 1 . . .

(1, n1+1)

2/2→ 1

(1, 0)

(1, c)(1, b)

1

1/1→ 1

(1, a)

1

1/1→ 1

Fig. 7. A WTSN P system generating a finite set of numbers

Lemma 4. Any arithmetical progression Pk,l = {kn + l | n ≥ 1} with k ≥ 2, l ≥ 2
is in the family N2WTNSNP∗.

Proof. Let us consider the system Π in Figure 8. It generates the set N2(Π) =
{2n + 2 | n ≥ 1}.

The output neuron spikes in the first step and then only after receiving a spike
from neuron σ4. In turn, this neuron spikes only after receiving a spike from each
neuron σ2 and σ3 (if we have only one spike in σ4, then it is removed). Then,
neuron σ2 can sent a spike to σ4 simultaneously with σ3 only if it, after receiving
two spikes from σ2 (note that the synapse (0, 2, 2) is the only one with weight
2), uses first the rule 2/1 → 1, so that one spike remains inside, making possible
the firing in the next step. If neuron σ2 uses the rule 2/2 → 1, then its spike will
re-initiate the work of neuron σ0, and the spikes from σ2 (received from σ1) and,
after one step from σ4, are removed. Thus, the output neuron fires for the second
time after a number of passings through the cycle σ0, σ1, σ0 (which means two

530 J. Wang et al.

'

&

$

%

'

&

$

%

'

&

$

%

�
�

�
�

�
�

�
�

�
�

�
�

-

�

6

- -
Q

Q
Q

Q
Q

QQs �
�

�
�

�
��3

?

-

0

1

1/1→ 1

2

1

1/1→ 1

2

2/2→ 1

2/1→ 1

3

1/1→ 1

4

2/2→ 1

out

1

1/1→ 1

Fig. 8. A WTSN P system generating an infinite set of numbers

steps), then ending the computation, which needs two further steps. The precise
checking of the functioning of the system in Figure 8 is left to the reader.

Thus, we can generate the arithmetical progression P2,2. If we want to generate
a progression Pk,l with k = 2 + i and l = 2 + j, then we add i neurons between
σ2 and σ0, (instead of the synapse (2, 0, 1)) and j neurons between σ4 and σout,
arranged in a sequence, with the rule 1/1 → 1 in each of them. These neurons
will lengthen the cycle σ0, σ2, . . . , σ0 with further i steps, and the path from σ4 to
σout with j steps. We denote by Πi,j the obtained system. We have N2(Πi,j) =
{(2 + i)n + (2 + j) | n ≥ 1} = Pk,l. 2

Lemma 5. If Π1, . . . , Πn are WTSN P systems with natural numbers as weights
and potentials, and for each 1 ≤ i ≤ n there is Tj ≥ 1 such that all computations in
Πi spike for the first time at the same step Ti, then

⋃n
i=1 N2(Πi) ∈ N2WTNSNP∗.

Proof. Let us take separately neurons σ1, σ2, σ3, σ4, σout from Figure 8, with two
spikes present in σ2 and one in σ1 from the beginning; change also the label of
σout, for instance, to σ5, without having here any spike in the initial configuration.
This system behaves like a “trigger”: it sends or not a spike out of σ5, depending
on the non-deterministic behavior of σ2.

Consider now a finite set of WTSN P systems Π1, . . . , Πn as in the statement
of the lemma. Let T be the maximum of all Ti, 1 ≤ i ≤ n. From the output neuron
of each Πi we consider a chain of additional T − Ii neurons with the unique rule
1/1 → 1, ending with a new output neuron. Irrespective of the length of this chain,
the set of numbers generated by Πi remains the same, as the first two spikes leaving
the system remain at the same distance in time, they only leave later the system.
Moreover, in this way all modified systems spikes for the first time at step T .

Take a “trigger” as above for each of the modified systems Πi (we continue to
denote by Πi thm). Assume that a neuron σs from some Πi contains rs ≥ 1 spikes
in the initial configuration of Πi. We remove these spikes from σs and establish a
synapse (5, s, rs). In this way, when the neuron σ5 of the trigger spikes, the system
Π is “loaded” with exactly as many spikes as it contained initially.

In this way, non-deterministically, the “triggers” will load one or more of the
systems Πi, 1 ≤ i ≤ n. Take now an additional neuron which will be considered the
output neuron of the whole system, let us call it σf , and connect all output neurons

Spiking neural P systems with weights and thresholds 531

of systems Πi to it. With a delay of one step, the spike train of each Πi, 1 ≤ i ≤ n,
is produced by the new system. It is important that all systems Πi spike for the
first time at the same moment: only one of the “triggers” has to activate a system
Π, all other systems Πj , j 6= i, should remain idle, without any spike inside,
otherwise the system produces no output. Indeed, if two spikes arrive at the same
time in neuron σf (this is the case if two systems Πi,Πj were activated), then σf

is blocked forever, its potential is higher than its firing threshold.
Consequently, the system whose construction was suggested above generates

the union of sets N2(Πi), 1 ≤ i ≤ n. 2

Theorem 3. N2WTNSNP∗ = SLIN .

Proof. (i) In order to obtain the inclusion SLIN ⊆ N2WTNSNP∗ we use the
known fact that any semilinear set is a finite union of a finite set with a finite
number of arithmetical progressions. From the previous lemmas we know that
finite sets and arithmetical progressions of the form Pk,l with k ≥ 2 and l ≥ 2
are in N2WTNSNP∗. Let us note that the systems constructed in the proofs of
Lemmas 3 and 4 have the property in the statement of Lemma 5, to have all
computations spiking for the first time at the same step. What remains to show is
that also arithmetical progressions which are not of the form Pk,l with k ≥ 2 and
l ≥ 2 are also in N2WTNSNP∗.

Such progressions are P2,1, P2,0, and P1,l for all l ≥ 0. However, we have

P2,1 = {3} ∪ P2,3, P2,0 = {2} ∪ P2,2,

consequently, with Lemmas 4 and 5, they belong to N2WTNSNP∗. Moreover,

P1,l = (P1,l ∩ {1, 2, 3}) ∪ (P1,l ∩ P2,2) ∪ (Pl,l ∩ P3,2).

Let l1 = min(P1,l ∩ P2,2) and l2 = min(P1,l ∩ P3,2). (Note that l1 ≥ 4 and l2 ≥ 5.)
Then, we have

(P1,l ∩ P2,2) = {l1} ∪ P2,l1 , (P1,l ∩ P3,2) = {l2} ∪ P3,l2 .

Using again Lemmas 4 and 5, we get L1,l ∈ N2WTNSNP∗, and this completes the
proof of the inclusion SLIN ⊆ N2WTNSNP∗.

(ii) The inclusion N2WTNSNP∗ ⊆ SLIN is somewhat straightforward, after
making the observation that, because all weights are positive, the potential accu-
mulated in a neuron can be decreased only if it is smaller than or equal to the
firing threshold of that neuron. Otherwise stated, if a neuron σi accumulates a
potential strictly larger than Ti, then the potential remains larger than Ti for-
ever (and no rule can be applied in σi). Therefore, the configurations of a sys-
tem Π = (σ1, . . . , σm, syn, out) can be described by a vector 〈α1, . . . , αm〉 where
αi ∈ {0, 1, . . . , Ti} ∪ {T̄}, where T̄ is just a symbol indicating that the potential
of σi is strictly greater than Ti. If new amounts of potential are brought to a neu-
ron whose content is already described by T̄ , then the same symbol will describe

532 J. Wang et al.

that neuron at the next step. In this way, the functioning of the system can be
described by a finite state device – e.g., by a regular (actually, right-linear, be-
cause we also need rules producing no terminal symbol) grammar: we start from
the initial configuration (its description is the axiom of the grammar) and to each
transition we associates a rule; because we have finitely many configurations, we
have finitely many rules. As long as no spike is sent to the environment, no ter-
minal is produced. When the first spike exits the system, we mark somehow the
reached nonterminal, and from now on we produce a terminal symbol in each step
(and we carry on the marking of nonterminals); when a second spike is produced
by the output neuron, the derivation stops, we no longer introduce a nonterminal.
The number of terminals produced is exactly the number generated by the system.
The formal details are left to the reader. 2

A similar result is expected for the case when WTSN P systems with natural
numbers are used in the accepting mode.

7 Final Remarks

In this paper, a variant of SN P systems is introduced, using weighted synapses,
potentials in neurons, and rules which handle these potentials under the control
of given firing thresholds. The universality is obtained for integers used for rep-
resenting all of these parameters, with the case of natural numbers as weights,
potentials, and thresholds remaining to be further investigated.

Several other issues remain to be clarified about these devices.
First, we just ignored non-computable real numbers; which is their effect on

the functioning and the computing power of WTSN P systems? What about con-
sidering as the result of a computation not a number related to the spike train
produced by the system, but the potential of the output neuron in the halting
configuration? In this case we compute real numbers, which is a rather new aspect
in membrane computing. Is this feature useful for applications of SN P systems in
learning and pattern recognition?

Returning to the definition: in the proofs above we have essentially used the fact
that a neuron whose potential is strictly smaller than its firing threshold vanishes,
it is reset to zero. What happens if this resetting does not hold, but the potential
remains as it is – in the same way as a potential greater than the threshold remains
unmodified. What about using the idea of decaying (e.g., as in [3]): the unused
potential, irrespective of its size, decreases in each step with a specified amount
(one unit, for instance)?

We stop concluding with the belief that SN P systems with weights and po-
tentials deserve further research efforts.

Acknowledgements

The work of J. Wang and L. Pan was supported by National Natural Science
Foundation of China (Grant Nos. 60674106, 30870826, 60703047, and 60803113),

Spiking neural P systems with weights and thresholds 533

Program for New Century Excellent Talents in University (NCET-05-0612), Ph.D.
Programs Foundation of Ministry of Education of China (20060487014), Chen-
guang Program of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural
Science Foundation of Hubei Province (2008CDB113 and 2008CDB180). The work
of Gh. Păun was supported by Proyecto de Excelencia con Investigador de Recono-
cida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended spiking neural P systems
generating strings and vectors of non-negative integers. Pre-proceedings of the 7th
Workshop on Membrane Computing (H.J. Hoogeboom, Gh. Păun, G. Rozenberg,
eds.), WMC7, Leiden, 2006, 88–101.

2. A. Binder, R. Freund, M. Oswald, L. Vock: Extended spiking neural P systems with
excitatory and inhibitory astrocytes. Proceedings of Fifth Brainstorming Week on
Membrane Computing (M.A. Gutiérrez–Naranjo et al., eds.), Fenix Editora, Sevilla,
2007, 63–72.

3. R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with decaying
spikes and/or total spiking. Intern. J. Found. Computer Sci., 19 (2008), 1223–1234.

4. W. Gerstner, W. Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, Cambridge, 2002.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

6. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. Proceedings of Fifth Brainstorming Week on Membrane
Computing (M.A. Gutiérrez–Naranjo et al., eds.), Fenix Editora, Sevilla, 2007, 227–
246.

7. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

8. W. Maass, C. Bishop, eds.: Pulsed Neural Networks. MIT Press, Cambridge, 1999.
9. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
10. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
11. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-

ford University Press, Cambridge, 2010 (in press).
12. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer-

Verlag, Berlin, 1997.
13. The P System Web Page: http://ppage.psystems.eu

A Note on P Systems with Small-Size Insertion
and Deletion?

Artiom Alhazov1,2, Alexander Krassovitskiy3, Yurii Rogozhin1,3, Sergey Verlan4

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
{artiom,rogozhin}@math.md

2 IEC, Department of Information Engineering, Graduate School of Engineering
Hiroshima University,
Higashi-Hiroshima 739-8527 Japan

3 Research Group on Mathematical Linguistics, Rovira i Virgili University
Av. Catalunya, 35, Tarragona 43002 Spain
alexander.krassovitskiy@estudiants.urv.cat

4 LACL, Département Informatique, Université Paris Est
61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. We present an overview of recent results on small size insertion-deletion
P systems. Together with the ordinary definition we consider systems with priority of
deletion over insertion. In both cases, obtained P systems are strictly more powerful than
ordinary insertion-deletion systems, and in most of the cases they are computationally
complete. We list several such results. When using the priority relation, the computational
completeness may be achieved by context-free insertion and deletion of one symbol only.

1 Introduction and definitions

Insertion and the deletion operations originate from the language theory, being in-
troduced mainly with linguistic motivation. In general form, an insertion operation
means adding a substring to a given string in a specified (left and right) context,
while a deletion operation means removing a substring of a given string from a
specified (left and right) context. More precisely, an insertion rule (u, α, v) corre-

? A.A. acknowledges the support of the Japan Society for the Promotion of Science, and
the Grant-in-Aid, project 20·08364. A.A., Y.R. and S.V. acknowledge the support by
the Science and Technology Center in Ukraine, project 4032. Y.R. acknowledges the
support of the European Commission, project MolCIP, MIF1-CT-2006-021666. A.K.
acknowledges the support PIF program of University Rovira i Virgili, and project no.
MTM2007-63422 from the Ministry of Science and Education of Spain.

On P Systems with Small-Size Insertion and Deletion 535

sponds to the rewriting rule uv → uαv, and a deletion rule (u, α, v) corresponds
to the rewriting rule uαv → uv.

An insertion-deletion system is a construct ID = (V, T,A, I,D), where V is an
alphabet, T ⊆ V , A is a finite language over V , and I,D are finite sets of insertion
and deletion rules, respectively. The language L(ID) generated by ID is defined
as {w ∈ T ∗ | A 3 x =⇒∗ w}, where =⇒ is the relation defined by an insertion or
deletion rule.

The size of an InsDel system ID = (V, T,A, I,D) is defined as
(n,m,m′; p, q, q′), where

n = max(u,α,v)∈I |α|, m = max(u,α,v)∈I |u|, m′ = max(u,α,v)∈I |v|,
p = max(u,α,v)∈D |α|, q = max(u,α,v)∈D |u|, q′ = max(u,α,v)∈D |v|.

The corresponding families of languages are denoted by INSm,m
′

n DELq,q
′

p .
Insertion-deletion systems of a “sufficiently large” size characterize RE.

An insertion-deletion P system is a tuple Π = (O, T, µ,M1, . . . ,
Mn, R1, · · · , Rn), where O is a finite alphabet, T ⊆ O is the terminal alphabet, µ is
the (tree) structure of n membranes, it can be represented by a string of correctly
nested labeled parentheses. Region i is delimited by membrane i, 1 ≤ i ≤ n. The
set Mi is a finite language of initial objects, and Ri is a set of insertion and deletion
rules of region i, of the following forms: (u, x, v; tar)a, where (u, x, v) is an insertion
rule, and (u, x, v; tar)e, where (u, x, v) is a deletion rule, and the target indicator
tar is from the set {here, inj , out | 1 ≤ j ≤ n}. The configurations, transitions and
computations of the system are defined in the standard way. The result L(Π) of
generated by Π consists of strings over T ever sent out of the system during its
computations.

We denote by ELSPk(insm,m
′

p , delq,q
′

p) the family of languages L(Π) gener-
ated by insertion-deletion P systems with k ≥ 1 membranes and insertion and
deletion rules of size at most (n,m,m′; p, q, q′). We omit letter E if T = O. If
deletion rules have a priority over insertion rules, the corresponding class is de-
noted as (E)LSPk(insm,m

′

p < delq,q
′

p). Letter ”t” is inserted before P to denote
classes for the tissue case (defined similarly to the membrane case). We write ∗ if
corresponding parameter is unbounded.

We consider register machines with three types of instructions: p :
(ADD(k), q, s), p : (SUB(k), q, s) and p : (WRITE(A), q), where p, q, s are states,
k is a register, and A is a symbol. The last form of instruction writes a symbol on
the output tape. Register machines generate PsRE. RE is generated if WRITE
instructions are used.

2 Minimal context-free insertion-deletion P systems

Systems in INS0,0
1 DEL0,0

∗ only generate strings obtained by inserting any number
of specific symbols anywhere in words of a finite language ([6]); this is included in

536 A. Alhazov et al.

the regular languages family; strictly as, e.g., for {a∗b∗} the system has no control
on the place of insertion or deletion in the string and the initial language is finite.
Therefore, INS0,0

1 DEL0,0
1 ⊂ REG.

Adding a membrane structure, by mutual simulation of blind register machines
(which do not have the zero check in the decrement instruction) it can be obtained:

Theorem 1. PsStP∗(ins
0,0
1 , del0,01) = PsMAT .

However, {a∗b∗} cannot be generated, while non-context-free languages are
generated even without priorities and deletion. Therefore,

Theorem 2. REG\LStP∗(ins0,0n < del0,01) 6= ∅, for any n > 0, and
LStP∗(ins

0,0
1 , del0,00) \ CF 6= ∅.

A more general inclusion holds:

Theorem 3. ELStP∗(ins0,0n , del0,01) ⊂MAT , for any n > 0.

/.-,()*+
p

(λ,Ak,λ;q)a //

(λ,Ak,λ;r)a

��

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

(λ,Ak,λ;q)e //

(λ,N,λ;p′)a

��

/.-,()*+
q

/.-,()*+
p′

(λ,N,λ;r)e ///.-,()*+
r

Fig. 1. Simulating p : (ADD(k), q, r)(left) and p : (SUB(k), q, r) (right).

Nevertheless, minimal context-free insertion-deletion systems with priorities
do generate PsRE. This is especially clear for the tissue P systems: jumping to
an instruction corresponds to sending a string to the associated region, and the
entire construction is a composition of graphs shown in Figure 1. Notice the use
of priority of deletion over insertion in decrement.

A more sophisticated proof can be done for the tree-like membrane structure [2].

Theorem 4. PsSP∗(ins
0,0
1 < del0,01) = PsRE.

3 Small contextual insertion-deletion P systems

Although Theorem 4 shows that the systems from the previous section are quite
powerful, they cannot generate RE without control on the place where a symbol
is inserted. Once we allow a context in insertion or deletion rules, they can.

Theorem 5. LSP∗(ins
0,1
1 < del0,01) = RE.

A similar result holds if contextual deleting operation is allowed.

Theorem 6. LSP∗(ins
0,0
1 < del1,01) = RE.

On P Systems with Small-Size Insertion and Deletion 537

Proof. As in Theorem 5, we use the construction from Theorem 4. However, 7k
additional membranes are needed to simulate k writing instructions.

The WRITE instruction is simulated by inserting symbols to be written (to-
gether with some temporary marking symbols) in the string and performing a
check that they are located at the end by using trap rules and the priority of the
deletion. If the corresponding symbol is not inserted at the rightmost position,
then it would be able to delete the symbol that just follows it. In such a way the
trapping mechanism is realized.

Corollary 1. LSP∗(ins
1,0
1 < del0,01) = LSP∗(ins

0,0
1 < del0,11) = RE.

The contextual deletion can be replaced by a context-free deletion of two symbols.

Theorem 7. LSP∗(ins
0,0
1 < del0,02) = RE.

We mention that the counterpart of Theorem 7 obtained by interchanging
parameters insertion and deletion rules is not true, see Theorem 2.

If one considers a context dependency in both insertion and deletion rules, then
the priority relation can be avoided. The following results are from [3].

Theorem 8. ELSP5(ins1,01 del1,01) = ELSP5(ins1,01 del0,02) =
REELSP5(ins0,02 del1,01) = RE.

Note that corresponding insertion-deletion systems cannot generate RE. In
particular, the last two systems cannot generate the language L = (ba)+, [3]. In
the same article, a characterization of the class INS1,0

1 DEL1,0
1 in terms of context-

free grammars is also given.
Finally, we remark that the context is important when no priorities are used:

Theorem 9. REG \ ELSP∗(ins0,02 del0,02) 6= ∅.
As it was shown in [3], the language Lab = a∗b /∈ ELSPk(ins0,02 del0,02), for any
k ≥ 1.

References

1. A. Alhazov, A. Krassovitskiy, Y. Rogozhin, S. Verlan: P Systems with Minimal In-
sertion and Deletion. In R. Gutiérrez-Escudero, et al eds., Proc. of Seventh Brain-
storming Week on Membrane Computing Sevilla, February 2-6, 2009, Fénix Editora,
Sevilla, Vol. I, 9–21.

2. A. Alhazov, A. Krassovitskiy, Y. Rogozhin, S. Verlan: P Systems with Minimal In-
sertion and Deletion, submitted. Extended version of [1].

3. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Computational Power of Insertion-
Deletion (P) Systems with Rules of Size Two, submitted. Extended version of [4, 5].

4. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: One-Sided Insertion and Deletion: Tradi-
tional and P Systems Case, CBM 2008, Vienna, 53–64.

5. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Computational Power of P Systems with
Small Size Insertion and Deletion Rules. CSP 2008, Cork, 137–148.

6. S. Verlan: On Minimal Context-Free Insertion-Deletion Systems. Journal of Au-
tomata, Languages and Combinatorics 12, 2007, 1/2, 317-328.

Could Procaryotic (as Well as Eukaryotic Cells)
Provide Software and Hardware for P Systems
Based Computers?

Ioan I. Ardelean

Institute of biology, Romanian Academy
Splaiul Independentei 296, Bucharest 060031
Romania
ioan.ardelean57@yahoo.com

Summary. The aim of this contribution is to re-stress that i) biological roots of P sys-
tems are the chemical reactions and physical processes performed by living cells, and to
further hope/claim/argue(?) that microscopic structures and functions within Prokary-
otic cells (as well as eukaryotic cells) could provide both the software and the hardware
for true P computer.

1 Introduction

Prokaryotes (Bacteria and Archaea) are unicellular (there are few interesting ex-
ceptions without relevance for the topic of this paper, however), as compared with
more developed organisms(plants, animals and humans, for example) in which case
the biological individual is composed of billions of cells; furthermore the prokary-
otic cell has a simpler structure than the eukaryotic cell, thus being a easier model
to study (Ardeleam, 2006, Ardelean et al., 2006). The main problem is how to pass
from am biological reality to a computer device.

Biological hardware and software for a P systems based computer

There are ultrastructures in prokaryotes which, in my opinion, could provide both
hardware and software for a P systems based computer. The cell membrane in
prokaryotes (the skin membrane in P system language) is an excellent example of
how a biological entity could contribute to both the software and the hardware of
a true P - Computer. The basic structure of Cell membrane found in all biologi-
cal cells, either prokaryotes or eukaryotes is basically composed of a lipid bilayer
forming a semifluid matrix in which the membrane proteins are floating. The huge
diversity in CM belonging to different cells is related to the chemical composition
of CM, namely the identity of proteins and lipids. The membrane proteins are

Could Cells Provide Software and Hardware for P Systems Based Computers? 539

involved in chemical reactions and physical processes occurring at the biological
membranes which are essential for the living bacterial cell to grow and to multiply;
however. In Bacteria the cell is enclosed by a cell wall and a cell membrane and
contains cytoplasm and nucleoid. Cell membrane is basically composed of a lipid
bilayer forming a semifluid matrix in which the membrane proteins are floating.
This model of CM is called fluid mosaic model and is universally accepted. This is
the basic structure of CM found in all biological cells. The huge diversity in CM
belonging to different cells is related to the chemical composition of CM, namely
the identity of proteins and lipids.

The general biological functions of CM are basically the following:

1. CM serves as a selectively permeable barrier
2. CM contains transport systems used for such tasks as nutrient uptake, waste

secretion and protein secretion
3. CM holds the enzymatic machinery for crucial metabolic processes: respiration

and photosynthesis
4. CM synthesizes lipids and cell wall constituents
5. CM contains special receptor molecules that help bacteria detect and respond

to signal in their surrounding thus affecting their behavior.

However, one main problem is determined by the fact that the ultimate biologi-
cal output of a (prokaryote) cell is its transformation in two identical cells, whereas
the ultimate informational output of a P systems based computer will be a calculus
(here, in this presentation we do not take into account the interesting aspect/topic
that now seems to be a pure science fiction dream/nightmare that the P systems
based computer could be switched (by the operator or by it/himself – see Isaac
Asimov’s “I, the Robot”) to an operational state when it performs calculations
OR to another operational state when it performs self-duplication. In this last
respect, the P systems based computer could behave in the real world as a virus
behaves into a living cell, by changing drastically the output of the living cells:
the living cells which is dying no more synthesize chemicals and nanostructures
and microstructures for another living cell, but synthesizes exclusively chemicals
and nanostructures needed for the auto-assembly of many new viruses). Even in
the first case, the changes operated by the scientist in the cell function, should
be dramatic in the sense that the cell programme will be changed drastically, in
order to perform calculations and not organized chemical reactions which end into
the process of cell division with the formation of two separate and (theoretically)
identical cells. It would be interesting to try to think how a given biological pro-
cess should be changed by the scientist in order to used that process (eventually
integrated in other biological processes OR isolated functionally in a mechanically
stable support) to perform a calculation needed by the scientist/human operator.

For any living cell, thermodynamically speaking, some of the energy and mate-
rial processed by the living cells are for its own maintenance in the physical world
and some for its multiplication; this is why the yield of a biological process is not 1,
always is a mixture of anabolic processes and catabolic processes. What would be

540 I.I. Ardelean

the case with a P systems based computer, which should obey the laws of Physics
and Chemistry... (and Biology?...

In my opinion/intuition a P systems based computer would not be simply
basically composed of a cell (either prokaryote or eukaryote) which has some wiring
to conduct inputs and outputs, but composed by a re-synthesized (artificial?) cell
whose molecular components interact each other in a different way than in vivo,
just to produce another type of output: NOT other two living (identical) cells but
a computation.

It could be possible that the molecules and assemblages of molecules, the hard-
ware produced by living cell, would be isolated and purified by the scientist, [after
being synthesized in vivo by the living cell (or synthesized in vitro by the scien-
tist)], assembled, connected each other in such a way the obtained device/artificial
cell will be a true computing machine.

Probably, there are also physical constrains with respect to the physical stabil-
ity in time of a such complicated proteic structure, as compared with the physical
stability of a silicon based component (here, we have not to forget that Edison’s
first bulbs had a rather short working “life”). The ability of scientist/mankind to
design chemicals, proteins first of al, with changed /desired chemical and physical
characteristics has improved significantly in the last decade, and the hardware of
a P systems based computer probably needs even more progress in this demiurgic
(thus dangerous) activity.

The biological property of each living cell to synthesize (almost in some cells)
and assemble all its chemicals, micro- and nanostructures and, in the case of ge-
netically engineered bacterial cells for example, even foreign/alien components (E
coli which produce human insuline) seems to be an attractive way for the scien-
tist/humans to produce huge numbers of bio-components to act as basic elements
in constructing a P systems based computer. This ability of living cells is already
used in nanotechnology to synthesize nanomaterials such as S-layers.

The occurrence in cell membrane of protein assemblages active in respiratory
electron transfer which perform logic functions (AND, OR logic gates) could be
used to ex vivo implement basic processes in computers “physiology”. Natural
occurring or artificial assembly of these kind of proteic logic gates to perform not
circular biochemical reactions leading to overall metabolism but linear biochemical
reaction leading to output as a calculus could become a reality. One such biological
process is respiration.

Respiration is the biological process that allows the cells (from bacteria to hu-
mans) to obtain energy. In short, respiration promotes a flux of electrons from
electron donors to a final electron acceptor, which in most cases is molecular oxy-
gen. Thus, during the last step of respiration shortly presented above water is
formed from molecular oxygen, protons (4H+) and electrons(4e−), and 4 protons
are simultaneously transferred across membrane from inside to outside the cell con-
tributing to energy conservation. Furthermore, the process of respiration involves
a few other steps before that catalyzed by specific enzymes, each of these steps
being an example of how given protein function as molecular logic gates. These

Could Cells Provide Software and Hardware for P Systems Based Computers? 541

molecular logic gates, arranged in vitro in a different way than in vivo, could be
for P systems based computer what electronic logic circuits are for “normal” com-
puters. These logic gates active in vivo in respiration are diverse in the bacteria
world, opening the possibilities that natural occurring biologic gates could be put
to perform in vitro rather different operations.

For example, in Escherichia coli, cytochrome bd has a high affinity for oxy-
gen and is involved in energy conversion with a medium efficiency: more exactly
for every electron (passed through the cytochrome bd to molecular oxygen) one
proton (one atom of bound hydrogen without its electron) is transported from in-
side the cell to outside the cell. Thus, because of these properties, the cytochrome
bd works at relative low oxygen concentration in the growing medium. The cy-
tochrome bo oxidase has a lower affinity for oxygen (and a higher efficiency in
energy conversion); thus, cytochrome bo works at high oxygen concentration in
the growing medium. Simply, but correctly, we can say that, at low oxygen con-
centration in the growing medium (lower than about 40% of oxygen saturation)
the cytochrome bo oxydase is responsible for the entire respiratory activity of the
cells: in other words, the flux of electrons to molecular oxygen proceeds 100high
oxygen concentration in the growing medium (this means in between 90 and 100%
of oxygen saturation), the cytochrome bd oxydase, is responsible for almost the
entire respiratory activity of the cells. Furthermore, in between 40 and 90%, the
two types of terminal oxidases contributes together to the respiration of cell.

Other type of proteins which could become physical substrate for the hard-
ware of a P systems based computer are the proteins involved in the transport
of ions and molecules across the plasma membrane. For example, the tripartite
ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake
carriers requiring a periplasmic solute binding protein. They are active in prokary-
otes (Bacteria and Archaea) and form a distinct family of transporters. They have
been discovered in the anoxygenic phototrophic bacterium Rhodobacter capsulatus,
its biological function being the unidirectional transport inside the cell of organic
solutes such as succinate, malate, fumarate. These substances are needed by the
bacterium for photosynthesis, respiration, growth and related biological processes.
Other proteins form the so called efflux pumps. The efflux pumps for antibiotics
and hydrocarbons work with exceptional efficiency in Gram-negative bacteria due
to synergistic action of cytoplasmic membrane with outer membrane. In Gram-
positive bacteria, the efflux pumps move the substrate across just one membrane.
This is rather inefficient, as they have to compete with the rapid spontaneous
influx of the lipophilic molecule back into the cytoplasm. A high rate of efflux is
therefore required to produce significant levels of resistance. The efflux pumps in
the Gram-negative bacteria traverse both the cytoplasmic and outer membranes.
As the outer membrane is composed largely of lipopolysaccharides (LPS), it has
different permeability properties compare to the membrane of Gram-positive bac-
teria. And the examples could be (mechanically) extended...

542 I.I. Ardelean

2 Conclusions and perspectives

We have not to forget that Turing was the first to notice/ to argue mathemati-
cally the possibility that nonuniform steady state could exist in chemical reaction
(Turing, 1952), thus leading at bifurcations called by Prigogine, Turing bifurca-
tions; these bifurcations are essentials for the complexity of biochemical reaction
within a living cell as well as for the physical possibility of a living cell /systems
to exists and to be used as a basic element in a computational (nonliving) device.
(The function of many proteins as logic gates is also dependent on this property
of bifurcation.)

The incorporation of different active (mainly) protein molecules in artificial
membranes opens the possibility to move objects across these membranes, and
to perform a calculus. This kind of experiments could lead to the construction of
P systems-based computers. In conclusion, I claim that membrane proteins could
provide both the software and the hardware for a P systems based computer

References

1. I. Ardelean: Biological roots and applications of P systems. Further suggestions. Mem-
brane Computing, WMC 2006 (H.J. Hoogeboom et al., eds.), LNCS 4361, Springer,
2006, 1–17.

2. I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy: P system models for
mechanosensitive channels. Applications of Membrane Computing (G. Ciobanu, Gh.
Păun, M.J. Pérez-Jiménez, eds.), Springer, 2006, 43–81.

3. A.M. Turing: Thechemical basis of moprhogenesis. Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences, 237, 641 (1952), 37–72.

On the Efficiency of Promoters and of
Cooperative Rules in P Systems

Roberto Barbuti1, Andrea Maggiolo-Schettini1, Paolo Milazzo1, Simone Tini2

1 Dipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy
{barbuti,maggiolo,milazzo}@di.unipi.it

2 Dip. di Scienze della Cultura, Politiche e dell’Informazione, Università dell’Insubria
Via Carloni 78, 22100 Como, Italy
simone.tini@uninsubria.it

1 Introduction

Membrane systems (P systems) were introduced by Paun in [5] as distributed
parallel computing devices inspired by the structure and the functioning of cells.
In the extension of [3] the application of rules may be conditioned by the presence
of promoter objects. A promoter does not participate in the application of rules,
and a single promoter may enable the application of several rules and multiple
applications of each one of these rules. P systems with promoters have been shown
to be universal even when non-cooperative rules are considered [3]. The same
holds for P systems without promoters but with cooperative rules [5]. We aim at
comparing the use of promoters with the use of cooperative rules from the point
of view of efficiency. Actually, the kind of efficiency we are interested in is not the
ability of solving NP complete problems in polynomial time (as in [6]), but the
ability of solving in constant time problems solvable in linear time. In this paper
we show that there exists a problem that can be solved in constant time with
cooperation and that requires at least linear time with promoters. Whether also
the opposite holds is left as an open problem.

2 P Systems with Promoters

In P systems with promoters [3] an evolution rule may have some promoters that
are objects required to be present in the membrane in order to enable the rule.
We can assume that all evolution rules have the following form:

u→ (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|p

where u is the multiset of objects consumed by the rule, {l1, . . . , ln} is a set of
membrane labels, vh, vo, v1, . . . , vn are the objects (grouped in multisets by target)

544 R. Barbuti et al.

produced by the rule and p is the multiset of promoters of the rule. Application
of evolution rules is done with maximal parallelism, as usual. Formally:

Definition 1. A P system Π is given by Π = (V, µ, w1, . . . , wn, R1, . . . , Rn),
where: (i) V is an alphabet whose elements are called objects; (ii) µ ⊂ IN× IN is
a membrane structure, such that (l1, l2) ∈ µ denotes that the membrane labeled by
l2 is contained in the membrane labeled by l1; (iii) wj with 1 ≤ j ≤ n are strings
from V ∗ representing multisets over V associated with the membranes 1, . . . , n of
µ; (iv) Rj with 1 ≤ j ≤ n are finite sets of evolution rules associated with the
membranes 1, . . . , n of µ.

In this paper we assume P systems to be closed computational devices, namely
objects cannot be sent out of the skin membrane (i.e. rules sending objects out are
not allowed in the skin membrane) and cannot be received by the skin membrane
from outside. We will usually consider the multiset of objects initially contained
in the skin membrane as the input of the P system and the multiset of objects
contained in the skin membrane of a final configuration as an output. Note that
infinite evolutions are not considered as valid computations.

From [1] it follows that any P system with promoters can be translated into
another one that computes the same function, by performing equivalent evolution
steps, having a flat membrane structure consisting only of the skin. The idea is to
enrich the alphabet of the P system with objects labeled with membrane indexes
and to use such objects in the skin membrane of the flat system to represent
objects placed in some inner membrane of the original system. This technique was
previously used in [2] but with P systems without promoters.

Theorem 1. Every P system with promoters can be translated into another one
whose membrane structure consists only of the skin membrane.

P systems dealing with multiset languages can be either language acceptors or
generators. In the first case a multiset is provided as the input and the result of
the computation says whether such a multiset belongs to a language or not. In the
second case the P systems has a fixed initial configuration and can give as results,
in a non-deterministic way, all possible multisets belonging to a given language.

Let us formalize the notion of P system used as language acceptor.

Definition 2. An acceptor P system for a multiset language L over an alphabet
Σ is a P system ΠL = (Σ ∪ C ∪ {T}, µ, w1 ∪ `, w2, . . . , wn, R1, . . . , Rn) where: (i)
C is a set of control objects such that Σ ∩ C = ∅; (ii) T is a special object not
contained in Σ ∪C; (iii) wi, for 1 ≤ i ≤ n, are multisets of objects in C; (iv) when
the placeholder ` is replaced by a multiset of objects the output of the computation
of the P system says whether such a multiset belongs to L as follows: the multiset
is accepted (belongs to L) if and only if a final configuration can be reached with
T appearing in the output.

We remark that one could define equivalent notions of acceptor P systems
without assuming Σ and C to be disjoint sets or by assuming that a multiset

Efficiency of Promoters and of Cooperative Rules in P Systems 545

is accepted if and only if a final configuration can be reached (by ignoring the
presence of T). The first of these two alternative notions can be simulated by ours
by assuming that there exists in C a primed copy a′ of every object a that should
be shared with Σ. Such primed objects are then rewritten into their unprimed
version in the first evolution step of the system. The second of the two alternative
notions can be simulated simply by adding T to w1 and by ensuring that there is
no rule in R1 using such a special object.

3 Efficiency of Promoters and of Cooperation

Let us take the language L = {a2n | n ≥ 0}. By exploiting cooperative rules, L
can be accepted in constant time. In fact, we can take a P system with only one
membrane containing the object T and the rules aa→ λ and aT → λ.

A solution without cooperation and exploiting promoters consists in a mem-
brane with objects T and 1 and the following rules:

a→ a|1 T → F |bb2 b→ λ|ok 1→ 2 2→ 3
a→ b|1 T → F |cc2 c→ λ|ok 3→ 4 4→ 1 |a
a→ c|1 T → OK|bc3 OK → T
Such a solution is linear in time w.r.t. n. We can show that without cooperation

a solution in constant time cannot be given.

Theorem 2. The language {a2n | n ≥ 0} cannot be accepted in constant time
without using cooperating rules.

Proof. By contradiction, let us assume that L = {a2n | n ≥ 0} can be accepted in
constant time, actually, that there exists and acceptor P system P able to accept
any multiset of the language L in at most k execution steps.

Given a possible accepting execution of P, let R1, . . . , Rk be the sets of rules
that are applied at least once in each of the k execution steps, respectively. Let ri,j ,
with 1 ≤ i ≤ k, denote one of the mi rules of set Ri, namely Ri = {ri,1, . . . , ri,mi

}.
Since L is infinite, whereas the number of execution steps and of evolution rules
are bounded, there must exist an infinity of different executions (each accepting
a different multiset in L) with the same sets of applied rules R1, . . . , Rk and that
differ only on the number of times such rules are applied in each execution step.
Let xi,j be the number of times rule ri,j is applied (in the i-th execution step).

Let N ⊂ IN be an infinite set s.t. L′ = {a2n | n ∈ N} is a set of multisets (sub-
language of L) accepted by executions in which the same sets of rules R1, . . . , Rk

are applied. At least one of the sets R1, . . . , Rk must contain a rule in which object
a is either consumed or used as a promoter, otherwise we would have that only
control objects are used so that P would accept any multiset.

Let us assume first that a is not consumed by any of the rules in R1, . . . , Rk, but
used as a promoter of some of these rules. Let ri,j be any of the rules having a as
a promoter, namely ri,j = o→ u|vap with o ∈ V , u, v ∈ V ∗ and p ∈ IN+. Since ri,j
has been applied (xi,j times), we have that at the i-th step there must be at least

546 R. Barbuti et al.

p occurrences of a. This must hold for any multiset in L′ to be accepted, namely
for any n1 ∈ N . Now, given any n1 ∈ N , let us take n2 = n1 + 1. It holds that
n2 6∈ N , since N contains only even numbers whereas n2 is odd by construction.
We have that an2 6∈ L but it is accepted by an execution of the acceptor P system
in which rules R1, . . . , Rk are applied exactly as many times as in the execution
that accepts an1 . This holds because the additional a is not consumed by any rule
and has not an influence on the applicability of rules having such an object as a
promoter. Hence, we have a contradiction.

Let us assume now that there are some rules in R1, . . . , Rk consuming a. Let
ri,j be any of these rules, namely ri,j = a → u|vap with u, v ∈ V ∗ and p ∈ IN.
Since ri,j has been applied (xi,j times), we have that at the (i + 1)-th step xi,j

copies of u are present. This holds for any multiset in L′ to be accepted, namely
for any n1 ∈ N , and, differently from the previous case, we have that the value
of xi,j might be proportional to n1. Given any n1, n2 ∈ N with n1 < n2, let us
take n3 = n1 + 1. It holds that n3 6∈ N , since N contains only even numbers
whereas n3 is odd by construction. We have that an3 6∈ L but it is accepted by an
execution of P in which applied rules are R1, . . . , Rk, and they are applied at least
as many times as in the execution that accepts an1 and at most as many times
as in the execution that accepts an2 . The fact that T is produced is guaranteed
by the fact that, in order to accept an1 , T was either present from the beginning
as a control object of the initial configuration or produced by one of the rules
in R1, . . . , Rk, and this still holds for an3 where the initial control objects and
the applied rules are the same. Moreover, the fact that the accepting execution
of an3 terminates is guaranteed by the fact that the objects produced during the
execution were produced (possibly in a greater quantity) also during the accepting
execution of an2 . This means that the accepting execution of an3 does not enable
the application of rules that were not applicable in the accepting execution of an2 .
Summing up, also this case leads to a contradiction.

Open Problem. Does there exist any language that can be accepted in constant
time only if promoters are exploited?

References

1. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and S. Tini: A P systems flat form
preserving step-by-step behaviour. Fundam. Inform. 87, 1–34, 2008.

2. L. Bianco and V. Manca: Encoding–decoding transitional systems for classes of P
systems. Proc. Work. on Membrane Computing, LNCS 3850, 134–143, 2006.

3. P. Bottoni, C. Martin-Vı́de, G. Pǎun and G. Rozemberg. Membrane systems with
promoters/inhibitors. Acta Informatica 38, 695–720, 2002.

4. M. Ionescu and D. Sburlan: On P systems with promoters/inhibitors. J. Univ.
Comp. Sci. 10, 581-599, 2004.

5. G. Păun, Membrane computing. An introduction, Springer, 2002.
6. C. Zandron, C. Ferretti and G. Mauri: Solving NP-Complete problems using P

systems with active membranes. Proc. UMC’2K, 289-301, 2000.

Power and Size of Generalized Communicating
P Systems with Minimal Interaction Rules ?

Erzsébet Csuhaj-Varjú, Sergey Verlan

1 Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, 1111 Budapest, Hungary, and
Eötvös Loránd University, Faculty of Informatics
Department of Algorithms and Their Applications
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@sztaki.hu

2 Laboratoire d’Algorithmique, Complexité et Logique
Département Informatique, Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. In this paper, we present results on the power and the size of generalized
communicating P systems in the case of eight restricted variants of communication rules.
These constructs are purely communicating tissue-like membrane systems with commu-
nication rules which allow the movement of only pairs of objects. We show that seven
of these restricted variants are computationally complete, even with limited size, while
systems belonging to the remaining one variant are able to compute only finite single-
tons of non-negative integers. The obtained results complete the investigations of the
computational power of generalized communicating P systems.

1 Introduction

The theory of P systems provides several examples for computational models with
large computational power and at the same time with simple architecture and
small size complexity.

One of the main research directions in P systems theory is the study of the
computational power of purely communicating membrane systems. Adequate ex-
amples of these constructs are the symport/antiport P systems [1]. Motivated
by the problem how to define a common generalization of various purely com-
municating models in the framework of P systems, the concept of a generalized
communicating P system was introduced in [3].
? The research of the first author was supported in part by the Hungarian Scientific

Research Fund “OTKA”, Grant No. K75952. The second author acknowledges the
Science and Technology Center in Ukraine, project 4032.

548 E. Csuhaj-Varjú, S. Verlan

A generalized communicating P system, or a GCPS for short, corresponds to
a graph where each node, called a cell, contains a multiset of objects which - by
communication - may move between the cells. The communication rules are rather
restricted, any rule identifies four cells, two input cells and two output cells, such
that a pair of objects from the two input cells move synchronously to the two
output cells. The form of a communication rule is (a, i)(b, j)→ (a, k)(b, l) where a
and b are objects and i, j, k, l are numbers that identify the input and the output
cells. Such a rule means that an object a from cell i and an object b from cell j
move synchronously to cell k and cell m, respectively. It can easily be seen that
these very simple communication rules can also be interpreted as interaction rules.
Although a GCPS realizes a graph structure, the cells are defined implicitly, since
the system is given as a set of communication rules over an alphabet.

Depending on the relation of i, j, k, l, nine restricted variants of communication
rules (modulo symmetry) can be distinguished. (For example, i 6= j 6= k 6= l is one
of these restrictions, called a parallel-shift rule.) When the GCPS has only one
type of these restricted rules, we speak of generalized communicating P systems
with minimal interaction, a GCPSMI for short.

In this article, we consider generalized communicating P systems which use
only one type of the above interaction operations. In [3] it was shown that any
register machine can be simulated by a GCPS having 19 cells and using only
parallel-shift rules. Continuing the examination of the power of GCPSMIs, we
study the remaining eight restricted variants of communication rules. We prove
that in most of the cases (7 of 8) computational completeness is obtained, i.e.,
the corresponding GMPCSs are able to determine any recursively enumerable set
of non-negative integers; the only exception determines only finite singletons of
natural numbers. The constructions in the proofs also demonstrate that this large
expressive power can be obtained by P systems with relatively small numbers of
cells and simple graph architectures.

2 Definitions

In this section we recall some basic notions and notations commonly used in mem-
brane computing and some basic concepts of formal language theory that we need
throughout the paper.

We consider register machines with two types of instructions: (p,A+, q, s) and
(p,A−, q, s), where p, q, s are states and A is a register. Register machines generate
NRE.

Next we present the basic definitions concerning generalized communicating P
system; for further details and motivations of these constructs, see [3].

Definition 1. A generalized communicating P system of degree n (a GCPS, for
short) is a construct: Π = (O,E,w1, . . . , wn, R, io), where:

1. O is a finite alphabet,

Power and Size of Generalized Communicating P Systems 549

2. E ⊆ O;
3. wi ∈ O∗, for all 1 ≤ i ≤ n, the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules of the form (a, i)(b, j)→ (a, k)(b, l), where
a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and j = 0, then {a, b} ∩ (O \ E) 6= ∅;
i.e. a /∈ E or b /∈ E;

5. io ∈ {1, . . . , n} is the output cell.

The system consists of n cells, numbered from 1 to n, that contain multisets of
objects over O; initially cell i contains the multiset wi. There is also a special cell
distinguished, numbered by 0, called the environment. The environment contains
symbols of E ⊆ O in an infinite number of copies.

The cells interact with each other by means of the rules in R of form r =
(a, i)(b, j)→ (a, k)(b, l), with a, b ∈ O and 0 ≤ i, j, k, l ≤ n. Such an interaction
rule may be applied if there is an object a in cell i and an object b in cell j. As the
result of the application of r, the object a moves from cell i to cell k and b moves
from cell j to cell l. If two objects from the environment are moved to some other
cell or cells, then at least one of them must not appear in the environment in an
infinite number of copies.

Notice that the structure of a GCPS corresponds neither to a tree as in cell-like
P systems nor to a graph as in tissue P systems, though some models of cell-like
P systems and tissue P systems can be seen as special variants of GCPSs.

In general, for a given GCPS, every rule is defined over a block of cells which
allows certain objects to pass from the input cells to the output cells; altogether
these rules define a network of communicating cells.

Let Π = (O,E,w1, . . . , wn, R, io), n ≥ 1, be a GCPS. A configuration of Π
is a tuple (z0, z1, . . . , zn) with z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0
is the multiset of objects possibly present in the environment in a finite number
of copies, whereas, for all 1 ≤ i ≤ n, zi is the multiset of objects present inside
cell i. The initial configuration of Π is the tuple (λ,w1, . . . , wn). Then, given a
configuration of Π, a new configuration can be produced by applying the rules in
a non-deterministic maximally parallel way: all the rules that can be applied to
the objects currently present inside the cells and the environment must be applied
in parallel at the same time; the only restriction is that an occurrence of an object
has to be used by at most one rule. One such application of the rules represents
a transition step (in Π). A computation in Π is any sequence of transition steps
in Π which starts from its initial configuration. A successful computation in Π
is any computation which produces a configuration where no more rules can be
applied to the objects left inside the cells and in the environment. The result of
a successful computation is the non-negative integer corresponding to the size of
the multiset of objects inside the output cell io in the final configuration. The set
of non-negative integers computed in this way by GCPS Π is denoted by N(Π).

We may impose several restrictions on the interaction rules, some of these
restrictions directly correspond to antiport or symport rules of size 2.

550 E. Csuhaj-Varjú, S. Verlan

Below we define all possible restrictions (modulo symmetry): let O be an al-
phabet and consider an interaction rule (a, i)(b, j)→ (a, k)(b, l) with a, b ∈ O,
i, j, k, l ≥ 0. Then we distinguish the following cases:

1. i = j = k 6= l: the conditional-uniport-out rule sends b to membrane l provided
that a and b are in membrane i.

2. i = k = l 6= j: the conditional-uniport-in rule brings b to membrane i provided
that a is in that membrane.

3. i = j 6= k = l: the symport2 rule corresponds to the minimal symport rule,
i.e., a and b move together from membrane i to k.

4. i = l 6= j = k: the antiport1 rule corresponds to the minimal antiport rule,
i.e., a and b are exchanged in membranes i and k.

5. i = k 6= j 6= l: the presence-move rule moves the symbol b from membrane j
to l, provided that there is a symbol a in membrane i.

6. i = j 6= k 6= l: the split rule sends a and b from membrane i to membranes k
and l, respectively.

7. k = l 6= i 6= j: the joining rule brings a and b together to membrane i.
8. i = l 6= j 6= k or i 6= j = k 6= l: the chain rule moves a from membrane i to

membrane k while b is moved from membrane j to membrane i, i.e., where a
previously has been.

9. i 6= j 6= k 6= l: the parallel-shift rule moves a and b in independent membranes.

A generalized communicating P system may have rules of several types as
defined above. Moreover, we may allow uniport rules (i.e., rules of the form (a, i)→
(a, k) specifying that, whenever an object a is present in cell i, this may be moved
to cell k). In this case, GCPS with symport2 and uniport rules or with antiport1
and uniport rules become tissue P systems with minimal symport or minimal
symport and antiport, respectively.

When only one type of rules is considered, we call the corresponding GCPS a
minimal interaction P system, or a GCPSMI for short. We denote by NOtPk(x)
the set of numbers generated by a minimal interaction P system of degree k having
rules of type x, x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}.

3 Power and Size of Minimal Interaction P Systems

Minimal interaction P systems with any types of rules defined above, except an-
tiport1, are computationally complete devices, i.e. they are able to compute any
recursively enumerable set of non-negative integers. Moreover, the systems which
are computational complete are able to reach this computational power with a
number of cells limited by a small constant. In the case of split rules, 9 cells
suffice.

Theorem 1. NOtP9(split) = NRE.

Systems having symport 2 rules cannot generate NRE, however they can ac-
cept any recursively enumerable set of numbers. The proof of the result is based

Power and Size of Generalized Communicating P Systems 551

on a simulation of a split rule by symport2 rules. Then the result follows from
Theorem 1.

Theorem 2. For any S ∈ NRE there is Π ∈ NOtP8(sym2) that accepts S.

Theorem 3. NOtP∗(anti1) ⊂ NFIN .

The proof follows from the fact that the number of symbols in a cell cannot be
changed by using only antiport1 rules. Hence, only finite singletons of non-negative
integers can be generated.

The first equality below is proved by a direct simulation of the register machine,
and the second one is based on a simulation of a join rule by by a sequence of chain
rules.

Theorem 4. NOtP7(join) = NOtP∗(chain) = NRE.

Theorem 5. NOtP30(uin) = NRE.

This statement is proved by simulating the increment and the decrement in-
structions of a register machine. Instead of direct simulations of the instructions,
we define sets of conditional-uniport-in rules, so-called (primitive) blocks, as it was
done in [3] and [2], and then we show how a set of rules simulating an increment
instruction or a decrement instruction can be composed from these blocks. For
this purpose, we use three blocks: the so-called uniport block, the basic block or
main block, and the zero block.

The uniport block corresponds to an uniport rule. The basic or main block is a
variant of a minimal interaction rule that permits to move synchronously symbols
a from cell i to cell k and b from cell j to cell l. If b is not present, then an infinite
loop occurs. The zero block is a variant of a minimal interaction rule that moves
symbol a from cell i to k providing that there are no symbols b in cell j. If there
are symbols b in cell j then the computation enters into an infinite loop.

Next two equalities are proved in a similar way.

Theorem 6. NOtP30(uout) = NOtP36(presence) = NRE.

References

1. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing 20 (2002), 295–305.

2. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: On communication in tissue
P systems: conditional uniport. In Membrane Computing, 7th International Workshop,
WMC 2006, Leiden, The Netherlands, Revised, Selected, and Invited Papers. LNCS
4361, Springer, 521-535.

3. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: Generalized communicating
P systems. Theoretical Computer Science 404 (1-2) (2008), 170–184.

Accepting Evolutionary P Systems

Victor Mitrana1,2 and José M. Sempere2?

1 Faculty of Mathematics and Computer Science
University of Bucharest

2 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia,
mitrana@fmi.unibuc.ro, jsempere@dsic.upv.es

P systems were introduced as a computational model inspired by the information
and biochemical entities processed in the living cells by means of membrane com-
munication. In most of the works about P systems, information is represented as
multisets of symbol/objects which can interact and evolve according to predefined
rules. Nevertheless, the use of strings to represent the information and the use
of rules to transform strings instead of multiset objects has been present in the
literature of this scientific area from the very beginning. For an early survey of
different string-based P systems the reader is referred to [3].

In this work, we propose the use of evolutionary transformations from strings
to strings as the definition of P rules. The evolutionary rules that we address
have been widely used in the definition of networks of evolutionary processors,
an intensive study started in [1] and continued in a series of papers. Accepting
networks of evolutionary processors with filtered connections (ANEPFC for short)
have been introduced in [2] as a computationally complete model of computation.
It is known that many string-based P systems are computationally complete. Our
goal is to establish a direct simulation of ANEPFCs by string-based P systems. To
this aim, we are going to consider regions with evolutionary rules. Two aspects are
important in our view: (1) the permitting conditions of the filters of ANEPFCs
are simulated by inner membrane structures, (2) the forbidding conditions of these
filters are simulated by rule priorities. In many works devoted to P systems, the
membrane structure does not play a very important role as it is reduce to only
one membrane. In our approach the membrane structure plays a crucial role.
? Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769

Accepting Evolutionary P Systems 553

Accepting Networks of Evolutionary Processors with
Filtered Connections

Here, we will informally describe an ANEPFC as it was defined in [2]. An evolu-
tionary processor can be viewed as a very simple string-processing unit. It holds
a finite set of strings with arbitrary many copies of each of them, and a finite set
of evolutionary rules. These rules can be formally defined by (here a and b ranges
over a finite alphabet):

- Insertion rules: λ→ a
- Deletion rules: a→ λ
- Substitution rules: a→ b
Every rule can be applied to a string in three different ways: in any position in

the string, in the rightmost position, or in the leftmost position. Observe that, due
to the multiplicity of copies of every string, a single rule applied in an arbitrary
position could eventually produce more than one string. The processor will apply
the rules to the existing strings in an evolutionary step. Basically, an ANEPFC
consists of a finite set of evolutionary processors which are connected following
a predefined underlying topology (complete, ring, star, etc.) Every connection
between two processors is filtered by a pair of disjoint sets of symbols (P, F).
There are two types of filters: (1) the weak filter (a string passes it if at least one
symbol from P and none symbol from F is present in the string), (2) the strong
filter (a string passes it if every symbol from P and none symbol from F is present
in the string). The process of communicating strings between connected processors
regulated by the filters associated with connections is called a communication step.

A configuration of an ANEPFC may be understood as the sets of words which
are present in any node at a given moment. A configuration can change either by
an evolutionary step or by a communication step which alternate with each other.
When changing by an evolutionary step each component of the configuration is
changed in accordance with the set of evolutionary rules associated with every
processor and the way of applying these rules. When changing by a communication
step, each node processor of an ANEPFC sends one copy of each word it has to
every node processor connected to it, provided they can pass the filter of the edge
the processors. It keeps no copy of these words but receives all the words sent by
any node processor connected with it providing that they can pass the filter of the
connection.

Every ANEPFC has two distinguished processors, namely the input and the
output ones. Initially the input string is located in the input node and the network
performs an accepting computation; if there exists a configuration in which the set
of words existing in the output node is non-empty, then the network halts. The
language accepted by an ANEPFC is the set of input strings that lead the network
to a halting configuration.

554 V. Mitrana, J.M. Sempere

Accepting Evolutionary P Systems

We now informally describe the P system we are going to investigate. An Accepting
evolutionary P system of degree m (AEvoP in short) is a construct

Π = (V,U, µ, (R1, ρ1), · · · , (Rm, ρm)),

where:
- V is the input alphabet, U ⊇ V is the working alphabet,
- µ is a membrane structure consisting of m membranes,
- Ri, 1 ≤ i ≤ m is a finite set of evolutionary and/or dissolving rules over U

associated with the ith region and ρi is a partial order relation over Ri specifying
the priority among the rules. An evolutionary rule is a 4-tuple (a, b, α, β) (or a→
bβα) where a, b ∈ U ∪ {λ}, α ∈ {here, out, in} and β ∈ {∗, l, r}. A dissolving rule is
5-tuple (a, b, α, β, δ) (or a → bβαδ), where a, b, α, β have the same meaning as for
evolutionary rules and δ ∈ U is the dissolving symbol.

The application of a rule a → bβα in an arbitrary region of the system works
as follows: if there exists a string w in that region, such that w = u1au2, then
w is transformed into u1bu2 (observe that β establishes the way of applying the
evolutionary rule). Parameter α establishes where to send the new strings, namely
they are sent to the outer region, to all immediate inner regions (a copy of each
string is sent to all these regions), or remain in the same region, provided that β
is out, in, or here. If a string is to be sent to an inner region that does not exist,
then it remains where it is.

If the rule is a dissolving one (a→ bβαδ, the membrane of the region is dissolved
after the rule application, provided that the membrane is different from the skin
one.

The input string is initially stored in the outmost region. Then, in a fully
parallel manner all the rules are applied to the strings existing in every region
according to their priorities. The system halts whenever: (1) No rule can be applied,
or (2) The system is reduced to only one region, namely the outmost one.

The language accepted by Π is denoted by L(Π). A string is in L(Π) if and
only if it being initially stored in the outmost region reduces the system to only
one region.

A simulation of ANEPFCs by EvoPs

In this section we give just a very brief idea how an AEvoP can simulate an
ANEPFC. The membrane structure for the proposed AEvoP system will have
the skin region and as many regions as connections between processors inside it.
For every connection between processor i and j we will have the regions Rij and
Rji. Inside every Rij region we will have different structures depending on the
filter type. Let us suppose that the set of permitting symbols for the filter on the
connection between processor i and j is defined by Pij = {b1, b2, · · · , bk}. Then, if

Accepting Evolutionary P Systems 555

the filter acts in the weak mode, the structure is showed in the next figure to the
left, while if the filter acts in a strong mode the structure is showed to the right.

'

&

$

%

'

&

$

%

�
�
�
�
�
�
�
�
'
&

$
%

�
�
�
�Rb1

Rij

. . . Rbk

Rij

Rb1

. . . Rbk

Fig. 1. Membrane structures for the filters

Inside the inner regions in illustrated membrane structures we apply the evo-
lutionary rules similarly to those associated with the node i. In addition, the new
strings are moved through the region in order to check the filter conditions. Thus
evolutionary rules having the highest priority check the presence of forbidden sym-
bols. If such a symbol is present, then the string remains blocked in an inner region.
If these rules cannot be applied, then other evolutionary rules check the presence
of permitting symbols. As soon as one permitting symbol is present, the string is
sent to the outer region. Clearly, some special symbols are used in order to manage
the string movements. When a string is going to enter a region of the form Rij
where i is the output node of the ANEPFC, then a new symbol is inserted; this
symbol will dissolve in turn all the membranes.

References

1. J. Castellanos, C. Mart́ın-Vide, V. Mitrana and J. M. Sempere. Networks of evolu-
tionary processors. Acta Informatica Vol.39 No. 6-7, pp 517-529. 2003

2. C. Drăgoi, F. Manea, V. Mitrana, Accepting networks of evolutionary processors with
filtered connections, Journal of Universal Computer Science, 13 pp 1598–1614 (2007).

3. Gh. Păun. Membrane Computing. An Introduction. Springer. 2002.

Uniformity: Uncovering the Frontier of
Parallelism

Niall Murphy?1 and Damien Woods??2

1 Dept. of Computer Science, National University of Ireland Maynooth
Ireland
nmurphy@cs.nuim.ie

2 Dept. of Computer Science & Artificial Intelligence, University of Seville
Spain
dwoods@us.es

Summary. We summarise some current results for active membrane systems using uni-
formity below P. Many of the systems we consider are easily to simulate on parallel
hardware and provide interesting new directions for the complexity theory of membrane
systems as well as those seeking to simulate membrane systems.

1 Familiar frontiers

The majority of complexity results to date in membrane systems (also known as
P-systems) have been focused on the frontier of tractability. This frontier is also
known as the P

?= NP conjecture. This boundary has been fruitfully explored using
polynomial time (semi-)uniform families of membrane systems. However, when the
uniformity condition is restricted to being computed in classes below P many new
and interesting things about families of active membrane systems without charges
(AM0) become clear.

One result [6] is that logspace semi-uniform families (when dissolution rules
are excluded, denoted AM0

−d) solve all problems in NL. (When using P semi-
uniformity, families of AM0

−d were shown to solve all of P. [4]) The problems in
NL are solvable using very little memory (O(log2 n)) on a deterministic polynomial
time Turing machine [11]. Furthermore since NL ⊆ NC, this places us on the far
side of another frontier: the parallelisable frontier. The parallelisable frontier is also
known as the NC

?= P conjecture and is almost as significant in its implications
as the P

?= NP conjecture [2]. Problems in NC (∪i≥0NCi) are those which are
decided in poly-logarithmic (O(logi n)) time when using a polynomial number of

? Funded by the Irish Research Council for Science, Engineering & Technology
?? Supported by a Project of Excellence from the Junta de Andalućıa, grant number

TIC-581.

Uniformity: Uncovering the Frontier of Parallelism 557

processors, that is they are efficiently parallelisable. However P-complete problems
are thought to be intrinsically sequential and no significant speed-up is achieved
when the number of processors working on the problem is increased[2].

We have also shown[5, 6] the first P characterisation for AM0 systems with
dissolution rules where the lowerbound is not dependant on P uniformity.

Another result is that for AM0
−d the notions of uniformity and semi-uniformity

are formally different. This result may be applicable to other types of membrane
systems and models of computation.

2 First Results

We now summarise the first results from beyond the P frontier. The key to these
results has been to use uniformity conditions weaker than P (note Obtu lowicz [9]
was the first to explicitly use logspace).

Theorem 1 ([6]). The set of problems solved by semi-uniform families of recog-
niser active membrane systems without charges and without dissolution rules equals
NL, formally (AC0)–PMC∗AM0−d

= NL. This result holds if the semi-uniformity
function is AC0, NC1, L, or NL computable.

With a slight restriction on the way rules are allowed to interact in the system,
the set of problems solvable shrinks to L [8]. The proofs of these results show
that it is possible to simulate a AM0

−d system with a membrane structure by
using a system with a single membrane and only evolution rules. Also clarified
is the power of dissolution, with dissolution a semi-uniform AM0 system with
strong non-elementary division rules solves PSPACE, however without dissolution
rules, the system solves only NL [1]. Similarly dissolution rules provide the first P
characterisation that is robust to uniformity conditions below P.

Theorem 2 ([5]). The set of problems solved by semi-uniform families of recog-
niser active membrane systems without charges and using dissolution and symmet-
ric division rules equals P, formally (AC0)–PMC∗AM0

+d,−a
= P. This result holds if

the semi-uniformity function is AC0, NC1, L, NL, or P computable.

Theorem 1 highlights the importance of choosing an appropriate uniformity
condition. If the uniformity function is computed in polynomial time then the
AM0

−d system is found to solve all of the problems in P [4]. Families of membrane
systems are sensitive (more than circuits for example) to the strength of their
uniformity conditions as the (semi-)uniformity function accesses the input word.
Thus an active membrane system with just 2 rules, [a → yes] and [b → no]
solves a P-complete problem if its uniformity function is polynomial time com-
putable, the input encoder simply solves the problem using the input word! In
Figure 2 we see how the power of a system increases in step with its uniformity
until a certain threshold is crossed, intuitively this threshold represents the actual
computing power of the system.

558 N. Murphy, D. Woods

C
h

a
ra

ct
er

is
a
ti

o
n

Power of (semi-)uniformity condition

A
C 0

AC0

N
C 1

NC1

L

L

N
L

NL

N
C 2

NC2

P

P

N
P

NP

P
S
P
A
C
E

PSPACE

Fig. 1. Complexity classes characterised by membrane systems. Characterisations by
uniform families of AM0

−d systems are denoted by , and semi-uniform by . Theorem 2
is indicated by and a PSPACE-characterisation [1, 13] with various (semi-)uniformity
conditions indicated by , for these, semi-uniform and uniform classes have the same
power.

Now we consider the power of uniform families of active membranes without
dissolution. It has been shown in a number of models that whether one chooses to
use uniformity or semi-uniformity does not affect the power of the model. However,
we have shown [7] that these notions are not equivalent, resolving Open Problem
C in [10]. Our result proves that choosing one notion over another gives char-
acterisations of completely different complexity classes, including known distinct
classes. This is surprising because in all membrane system models studied to date,
the classes of problems solved by semi-uniform and uniform families turned out
to be equal [1, 5, 12]. Uniform families of AM0

−d are so weak that the complexity
of their encoding functions (down as far as AC0) gives the upperbound of solvable
problems.

Theorem 3 ([7]). AC0 uniform families of active membrane systems without
charges and without dissolution rules characterise a strict subset of their semi-
uniform equivalent. AC0 = (AC0)–PMCAM0−d

((AC0, AC0)–PMC∗AM0−d
= NL.

3 Applications

We have mentioned that problems in NL (such as AM0
−d prediction [8]) are those

solvable using very little memory on a sequential computer, but we can also exploit
the parallelisable aspects of these systems. Recall that NL ⊆ NC2, this implies
that with a polynomial number of processors the system can be simulated in

Uniformity: Uncovering the Frontier of Parallelism 559

O(log2 n) time. To simulate recogniser AM0
−d systems on a parallel processing

system (such as CUDA) we use a technique known as transitive closure [14]. Given
the dependency graph [4] of a recogniser AM0

−d system, we construct a square
binary matrix M (whose size is the square of the number of objects and labels)
where the rows and columns both represent all object-membrane combinations.
Coordinates M〈o,h〉,〈u,g〉 = 1 where there is an edge linking (o, h) and (u, g) in the
graph, all other coordinates in the matrix are 0. By squaring this matrix log times
we calculate the transitive closure of the dependency graph. If this yields a 1 in
the matrix at coordinate M〈x,in〉,〈yes,out〉, where x is an input object and yes is
an output object, then the system is an accepting one. This efficient simulation
technique indicates thatAM0

−d systems naively make good choice to model cellular
systems.

4 Conclusions and open problems

In membrane systems it is vital to choose the correct uniformity condition. If
the uniformity is too strong you may miss the true power of the system you are
trying to analyse. For example, a P upper bound result for Tissue systems using
a dependency graph such as [3] can be trivially tightened to NL if a more suitable
uniformity is used. Since AC0 has a strong separation from other classes it makes
an excellent choice for a uniformity condition.

The problems in NP are intractable, any attempt to use brute force paral-
lelism to solve them will run short of processors. However problems in NC (e.g.
AM0

−d simulation) are easy to solve in parallel. The transitive closure technique
is applicable for any system that can be modeled using a dependency graph.

Some open problems that this work has raised.

1. Can all recogniser active membrane systems without charges be simulated by
a system with at most one copy of each object?

2. Can we characterise the levels of the NC hierarchy (or polynomial hierarchy)
using active membrane systems?

3. What happens if we adjust the membrane uniformity definition to remove the
encoding of the input, making it similar to circuit uniformity?

4. For which systems do the semi-uniform and uniform versions have different
computing power?

References

1. A. Alhazov and M. J. Pérez-Jiménez. Uniform solution to QSAT using polarization-
less active membranes. In MCU, volume 4664 of LNCS, pages 122–133. Springer,
2007.

2. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:P-
completeness Theory. Oxford University Press, Oxford, 1995.

560 N. Murphy, D. Woods

3. R. Gutiérrez-Escudero, M. J. Pérez-Jiménez, and M. Rius-Font. Characterizing
tractability by tissue-like P systems. In BWMC7, volume 2, pages 169–180, 2009.

4. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jimńez, A. Riscos-Núñez, and F. J. Romero-
Campero. Computational efficiency of dissolution rules in membrane systems. In-
ternational Journal of Computer Mathematics, 83(7):593–611, 2006.

5. N. Murphy and D. Woods. Active membrane systems without charges and using
only symmetric elementary division characterise P. In Invited Papers from WMC8,
volume 4860 of LNCS, pages 367–384. Springer, 2007.

6. N. Murphy and D. Woods. A characterisation of NL using membrane systems without
charges and dissolution. UC7 2008, LNCS, 5204:164–176, 2008.

7. N. Murphy and D. Woods. The computational complexity of uniformity and semi-
uniformity in membrane systems. In BWMC7, volume 2, pages 73–84, 2009.

8. N. Murphy and D. Woods. On acceptance conditions for membrane systems: char-
acterisations of L & NL. In EPTCS vol 1: CSP2008, pages 172–184, 2009.

9. A. Obtu lowicz. Note on some recursive family of P systems with active membranes.
http://ppage.psystems.eu/index.php/Papers, 2001.

10. G. Păun. Further twenty six open problems in membrane computing. In BWMC3,
pages 249–262. Fnix Editoria, 2005.

11. W. J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and Systems Sciences, 4(2):177–192, 1970.

12. P. Sośık. The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing, 2(3):287–298, Aug. 2003.

13. P. Sośık and A. Rodŕıguez-Patón. Membrane computing and complexity theory: A
characterization of PSPACE. J. Comput. System Sci., 73(1):137–152, 2007.

14. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,
Handbook of TCS, volume A, pages 1–66. Elsevier Science/MIT Press, 1990.

P Systems with Control Nuclei

Gheorghe Ştefănescu1, Traian Şerbănuţă2, Camelia Chira3, and Grigore Roşu2

1 University of Bucharest
gheorghe@funinf.cs.unibuc.ro

2 University of Illinois at Urbana-Champaign
{tserban2,grosu}@cs.uiuc.edu

3 Babes-Bolyai University Cluj-Napoca
cchira@cs.ubbcluj.ro

Summary. We describe an extension of P-systems where each membrane has an asso-
ciated control nucleus responsible with the generation of the rules to be applied in that
membrane. The nucleus exports a set of rules which are applied in the membrane region
(only for one step, but in the usual maximal-parallel way), then the rules are removed
and a new iteration of this process takes place. This way, powerful control mechanisms
may be included in P-systems themselves, as opposed to using the level of “strategies”
previously exploited for simulating P-systems. The nuclei may contain general programs
for generating rules, ranging from those using information on the full system, to more
restricted programs where only local information in the nuclei themselves is used. The
latter approach mixed with a particular mechanism for the representation of the control
programs, the rules, and the export procedure is engaged to develop a model for cell
growth and division in normal and abnormal (tumoral) evolution of biological systems.

1 Control nuclei

The relation between P-systems and the K rewrite-based framework is thoroughly
exploited in [4] where an extension of P-systems with structural data has been
introduced, accompanied by an implementation using K and Maude rewriting en-
gine. In this paper, we describe a further extension of P-systems, briefly mentioned
in [4], obtained by integrating powerful mechanisms (called “control nuclei”) to
control the activity in P-systems. With these two extensions, we foreseen the devel-
opment of a high level modeling and programming language on top of P-systems,
powerful enough to simulate the behavior of complex, real biological systems.

A P-system with control nuclei (PCN for short) is a P-system [2] where each
membrane has an associated nucleus with a program for generating the rules to be
used within the membrane region. The semantics of a PCN is simple: repeatedly,
at each running step, a set of rules is generated by the nucleus program in each
membrane and the usual maximal-parallel rule for P-systems is applied (for one
step, only).

562 Gh. Ştefănescu et al.

Pa::

while(true){
export R1;

}

Pb::

while(true){
export prim(R1);
...

export prim(Rn);

export Unprim;

}

Pc::

(code of membrane i)

x = i mod n;

goto x;

while(true){
0: export R0;
...

n-1: export R(n-1);

}
Fig. 1. Examples of nucleus programs

Figure 1 presents a sample of nucleus programs, written in a conventional
programming language, but enriched with an export statement. A program is
executed from its current control point until it reaches an export statement. In
such a point, the program is stopped and the exported rules are applied in the
membrane region. When this transforming process is finished and the rules are
discarded from the membrane, the nucleus program in reactivated, starting from
its last control point, until a new export statement is reached and the process is
repeated.

In the first example in Figure 1 (labelled Pa), the nucleus constantly produces
the same set of rules R1, and therefore a PCN using such nucleus programs is
actually a standard P-system.

The second example Pb illustrates a program dealing with priority strategies for
applying the rules. Before going into details, some explanations on the notation are
necessary: by prim(R) we denote the set of rules obtained from R by a decoration
with ′ (prim) of its right-hand side terms; Unprim is the rule which strip out the
prim decoration of all terms. The program Pb acts as follows: it first generates and
applies the rules in R1; when no such rules may be applied, the rules in R2 are
applied, and so on; by using prim-unprim decorations we constrain the rules R1,
R2, ... to be applied to the original elements in the membrane region, prohibiting
the use of the newly produced values in subsequent rules.

The third program Pc illustrates a kind of pipelined synchronous execution in
a P-system. Let us suppose that the P-system has m membranes (denoted from
0 to m-1) and n sets of rules R0,...,R(n-1). Each membrane infinitely repeats
a cyclic execution of the rules R0,...,R(n-1), but starting with a different rule.
For instance, if m=4 and n=3, the system uses the following rules in its membranes
0,...,3: (R0,R1,R2,R0), (R1,R2,R0,R1), (R2,R0,R1,R2), ...

The sample programs in Figure 1 are simple examples used to illustrate the
concept of control nuclei. Actually, any kind of nucleus programs may be used in
PCNs. A particular benefit of the implementation of P-systems in K, described in
[4], is that it can be easily adapted to use such powerful nucleus programs - just
mix the P-systems implementation in [4] with the known representation of several
common programming languages in K.

P Systems with Control Nuclei 563

A particular technical problem, hidden by the informal presentation above, is
the way to handle the application of a rule which dissolves the membrane. The
unanswered question is the following: what happens with the nucleus program
of the dissolved membrane? A few options can be sketched here, grouped in two
classes: (1) a further extension of PCNs to have more nuclei (and nucleus programs)
associated to a membrane; (2) the application of certain rules to combine the
nucleus program of the dissolved membrane with the nucleus program of the parent
membrane. Subsequently, the latter option opens a full range of possibilities to
combine nucleus programs, which are not detailed here.

2 Modeling cell normal and abnormal development

In this section, we briefly describe how PCNs (P-systems with control nuclei) can
be used to model cell growth and division in biological systems, both in normal
and abnormal (tumoral) developments. The reader is directed to [1] for further
explanation and details about the terms, concepts, and phenomena used in this
section.

The abstract development of PCNs in the previous section, based on programs
written in conventional programming languages, is better suited for “in silico”
models. To tackle “in vivo” systems, we present a particular low-level DNA-based
biological representation of the nucleus programs and of the transformation rules.
The resulted systems are named biological P-systems with control nuclei (BPCNs
for short).

The transformation rules associated to membranes in BPCNs include rules
with the following format

a→ p(c) if c

Such a rule represents an abstract formulation of a part of the transcription pro-
cess where the DNA/RNA code c is used to transform the aminoacids in a into
p(c), the protein represented by c. Notice that, in each step, a single c can be
used for several transformations of a’s in p(c)’s. To be consistent with the PCN
semantics previously developed, the code c has to become inactive at the end of
the transformation step, either being degraded or moved in a trash/inactive area
(for instance in the nucleus). From a biological perspective, it is not clear why a
code c is to be lost at the end of a transformation step, and perhaps a variation
of the model where a code c is allowed to be active during several transformation
steps is more appropriate.

Like in ordinary P-systems, a rule result p(c) can migrate in another membrane.
Unlike ordinary P-systems, in BPCNs a protein p(c) can also migrate into control
nuclei and can be attached to specific spots of the DNA, with an activation or
inhibition result of the related gene.

The nucleus consists of a strand of DNA, a sequence of basic nucleotides sep-
arated in “genes,” each gene codifying a protein. On the DNA strand, several
proteins are attached at specific spots. In a current configuration, the DNA strand

564 Gh. Ştefănescu et al.

has one or more control points where active genes are copied and exported into
the membrane region for transcription. The specific program (or mechanism) used
to get the position of the control points for the active genes used in a next tran-
scription step is left unspecified at this moment. (A simple option could be that
each control point travels along the DNA strand and stops at the first active gene.
However, this is an oversimplification, as it does not take into account the dynam-
ics and the timing of the attachment of the proteins to the DNA strand, or the
insertion or deletion of new control points.)

While in P-systems one could use an expensive abstract rule to duplicate a
membrane and its contents, in BPCNs one could develop a more detailed mech-
anism for cell growth and division, closer to the real processes seen in biological
systems. The payoff for this effort of having a detailed representation of the division
process is that one could also model and study abnormal (tumoral) development
of the cells.

According to [1], Chapter 27, the cell cycle consists of the following phases:
(G0) - a commitment is taken towards a division process; (G1) - this is a growth
stage where RNA and proteins are synthesized; (S) - this phase contains DNA
replication; (G2) - during this period, the cell gets two complete diploid sets of
chromosomes; (M-mitosis) - here the nucleus is dissolved and the daughter cells
are created.

Abstract versions of most of these processes can be modeled in BPCNs as fol-
lows: (G0) - a starting control point is inserted in a code at a point where the
division is codified; (G1) - a duplication rule x→ x x, where each membrane com-
ponent gets a copy, may be used for this growth stage; (S) - as transformation rules
take place in membrane regions only, the DNA duplication is slightly complicated:
the full DNA code is exported into the membrane region, duplicated there, and
finally moved back into the nucleus; (G2) - the abstract version of this stage is not
completely clear at this moment - it may have to deal with the need to have the
same “control points” in both copies of the DNA strands (as in Unix processes
obtained by the fork command); (M) - in this stage the nucleus is divided into two
(this is opposite to the previously mentioned process of joining two nuclei); finally,
use a rule to divide a membrane in two membranes, with an even separation of its
contents into the daughter membranes.

The described BPCNs for development of the cells and their division could be
easily adapted to take into account tumor attacks. The result of a DNA tumor
viral infection, roughly falls into two categories: (1) permissive cells allow for mul-
tiplication of the DNA virus, then the cell dies and the viral DNA is spread into
the neighboring cells; (2) nonpermissive cells may sometimes be infected by the
insertion of the viral DNA into the nucleus DNA, changing the cell phenotype (in
particular, after cell division, the daughter cells inherit an infected nucleus).

To conclude, P-systems with control nuclei, in both their abstract and more
biologically motivated forms, promise to be a good candidate for modeling and
understanding the evolution of complex (including biological) systems.

P Systems with Control Nuclei 565

References

1. Lewin, B.: Genes VIII. Oxford University Press (2004).
2. Paun, G.: Computing with membranes. Journal of Computer and System Sciences,

61, 108–143 (2000).
3. Rosu, G.: K: A Rewriting-Based Framework for Computations – Preliminary ver-

sion. Technical Report UIUCDCS-R-2007-2926, Department of Computer Science,
University of Illinois (2007). http://fsl.cs.uiuc.edu/k.

4. Serbanuta, T., Stefanescu, G., Rosu, G.: Defining and Executing P-systems with
Structured Data in K. In: Proc. Workshop on Membrane Computing 2008, LNCS
5391, pp374–393. Springer, Berlin (2009).

5. URL: The Web Page of Membrane Computing: http://ppage.psystems.eu/

	000a_frontpage1.pdf
	000b_preface
	000c_CONTENTS
	001erzsiIS
	017rozenberg
	019rudiIS
	031PFrisco
	033MarianIS
	035ibarra
	037manca
	058marcus
	060mauri
	082marioIS
	106CiobanuOana
	116inflexion-final
	129artiomMorita
	140amanCiobanu
	153Ecosystem
	169castelliniWmc10
	184cazzaniga
	201ciencialov
	210ExtAbstDTOAR
	218FrancoMancaPagliarini
	228rudiregular
	240p_lingua
	An Overview of P-Lingua 2.0
	Manuel García-Quismondo, Rosa Gutiérrez-Escudero, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez

	265notch
	269tract-tissue
	282MiguelMarioSBack
	298wmc2009-jena-rev
	317SNPbudding
	337broadcast_4
	355LiuZhangMarian
	369Nvidia
	385Nguyen_Kearney_Gioiosa
	426hp_topology_discovery
	452nishida2
	461adam
	464small extended
	476PS_prot_conf
	489porreca
	507sergeylookahead
	514weightSNP
	534sergeymini
	538ardelean
	543milazzomini
	547erzsiVerlan
	552Chema
	556nial
	561sscr

