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Abstract

Although P systems are distributed parallel computing devices, no explicit way of solving
a problem in a distributed way in this framework was considered so far. This note proposes a
distributed architecture (based on cell-like P systems, with their skin membranes communi-
cating through channels as in tissue-like P systems, according to specified rules of the antiport
type), where parts of a problem can be introduced as inputs in various components and then
processed in parallel, in the aim of solving the initial problem in a faster way than on a single
“processor”. The respective devices are called dP systems, with the case of accepting strings
called dP automata. The communication complexity can be evaluated in various ways: stat-
ically (counting the communication rules in a dP system which solves a given problem), or
dynamically (counting the number of communication steps, of communication rules used in
a computation, or the number of objects communicated). For each measure, two notions
of “parallelizability” can be introduced. Besides (informal) definitions, some illustrations of
these idea are provided for dP automata: each regular language is “weakly parallelizable”
(i.e., it can be recognized in this framework, using a constant number of communication
steps), and there are languages of various types with respect to Chomsky hierarchy which
are “efficiently parallelizable” (they are parallelizable and, moreover, are accepted in a faster
way by a dP automaton than by a single P automaton). Several suggestions for further
research are made.

Keywords: Membrane computing, P system, distributed computing, communication
complexity, Chomsky hierarchy.

1 Introduction

P systems are by definition distributed parallel computing devices, [11], [12], [17], and they can
solve computationally hard problems in a feasible time, [13], but this efficiency is achieved by a
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trade-off between space and time, based on the possibility of generating an exponential workspace
in a linear time, by means of biologically inspired operations, such as membrane division and
membrane creation. However, no class of P systems was proposed where a hard problem can be
solved in a distributed parallel way after splitting the problem in parts and introducing these
subproblems in components of a P system which can work on these subproblems in parallel and
produce the solution to the initial problem by interacting/communicating among each other (like
in standard distributed computer science). In particular, no communication complexity, in the
sense of [2], [9], [16], was considered for P systems, in spite of the fact that computation (time)
complexity is very well developed, [13], and also space complexity was recently investigated,
[14]. Some proposals towards a communication complexity of P systems were made in [1], but
mainly related to the communication effort in terms of symport/antiport rules used in so-called
evolution-communication P systems of [5].

This note tries to fill in this gap, proposing a rather natural framework for solving problems
in a distributed way, using a class of P systems which mixes ingredients already existing in
various much investigated types of P systems. Namely, we consider P systems with inputs, in
two variants: (i) like in P automata, [6], [10], where a string of symbols is recognized if those
symbols are brought into the system from the environment and the computation eventually halts
(it is important to note that the string is “read” during the computation, not before it), and (ii)
in the usual manner of complexity investigations, [13], where an instance of a decision problem
is introduced in a P system in the form of a multiset of symbols (this operation takes no time,
the computation starts after having the code of the problem inside), and the system decides that
instance in the end of a computation which sends to the environment one of the special objects
yes or no. Several such systems, no matter of what type, are put together in a complex system
which we call dP system (from “distributed P system”); the component systems communicate
through channels linking their skin membranes, by antiport rules as in tissue-like P systems.
When accepting strings by dP systems with P automata as components, the device is called a
dP automaton.

Such an architecture was already used, with specific ingredients, for instance, in the inves-
tigations related to eco-systems, where “local environments” are necessary to be delimited and
communication possibilities exist, linking them; details can be found in the recent paper [4].

The way to use a dP system is obvious: a problem Q is split into parts q1, q2, . . . , qn, which
are introduced in the n components of the dP system (as in P automata or as in decision P
systems), these n systems work separately on their problems, and communicate to each other
according to the skin-to-skin rules. The solution to the problem Q is provided by the whole
system (by halting – in the case of accepting strings, by sending out one of the objects yes or
no, etc.). Like in communication complexity, [9], we request the problem to be distributed in
a balanced way among the components of the dP system, i.e., in “as equal as possible” parts
(also an almost balanced way to distribute the input among two processors is considered in [9]
– no partner takes more than two thirds of the input – which does not seem very natural to be
extended to the general case, of n processors).

Several possibilities exist for defining the communication complexity of a computation. We
follow here the ideas of [1], and introduce three measures: the number of steps of the computation
when a communication rule is used (such a step is called communication step), the number of
communication rules used during a computation, and the number of objects transferred among
components (by communication rules) during a computation. All these three measures are
dynamically defined; we can also consider a static parameter, like in descriptional complexity
of Chomsky languages (see a survey in [8]), i.e., the number of communication rules in a dP
system.

A problem is said to be “weakly parallelizable” with respect to a given (dynamical) commu-



nication complexity measure if it can be split in a balanced way, introduced in the dP system,
and solved using a number of communication steps bounded by a constant given in advance;
a problem is “efficiently parallelizable” if it is weakly parallelizable and can be solved by a dP
system in a more efficient way than by a single P system; more precise definitions are given in
the next sections of the paper.

Various possibilities exist, depending on the type of systems (communicating systems, e.g.,
based on symport/antiport rules, systems with active membranes, catalytic systems, etc.) and
the type of problem we consider (accepting strings, decision problems, numerical problems, etc.).

In this note we only sketch the general formal framework and give an illustration, for the case
of accepting strings as in P automata. We only show here that all regular languages are weakly
parallelizable (only one communication step suffices, hence the weak parallizability holds with
respect to all three dynamical measures), and that there are regular, context-free non-regular,
context-sensitive non-context-free languages which are efficiently parallelizable with respect to
the first two dynamical measures mentioned above (in view of the results in [9], there are linear
languages which are not efficiently parallelizable with respect to the number of communicated
objects/bits among components).

If the communication channels among the components of a dP automaton are controlled,
e.g., by states, as in [7], or created during the computation, as in [3], then the power of our
devices increases considerably: all recursively enumerable languages are weakly parallelizable in
this framework.

Many research problems remain to be explored, starting with precise definitions for given
classes of P systems, continuing with the study of usefulness of this strategy for solving com-
putationally hard problems (which problems are weakly/efficiently parallelizable and which is
the obtained speed-up for them?), and ending with a communication complexity theory of dP
systems, taking into account all measures of complexity mentioned above (for the number of
objects communicated among components, which corresponds to the number of bits considered
in [9], we can transfer here the general results from communication complexity – note however
that in many papers in this area one deals with 2-party protocols, while in our framework we
want to have an n-party set-up, and that we are also interested in the time efficiency of the
distributed and parallel way of solving a problem).

2 dP Systems – A Preliminary Formalization

The reader is assumed familiar with basics of membrane computing, e.g., from [11], [12], and of
formal language theory, e.g., from [15], hence we pass directly to introducing our proposal of a
distributed P system. The general idea is captured in the following notion.

A dP scheme (of degree n ≥ 1) is a construct

∆ = (O, Π1, . . . ,Πn, R),

where:

1. O is an alphabet of objects;

2. Π1, . . . ,Πn are cell-like P systems with O as the alphabet of objects and the skin mem-
branes labeled with s1, . . . , sn, respectively;

3. R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i 6= j, and u, v ∈ O∗,
with uv 6= λ; |uv| is called the weight of the rule (si, u/v, sj).
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The systems Π1, . . . , Πn are called components of the scheme ∆ and the rules in R are
called inter-components communication rules. Each component can take an input, work on
it, communicate with other components (by means of rules in R), and provide the answer to
the problem in the end of a halting computation. (A delicate issue can appear in the case of
components which can send objects to the environment and bring objects from the environment
– this happens, for instance, for symport/antiport P systems; in this case we have to decide
whether or not the components can exchange objects by means of the environment, or the
only permitted communication is done by means of the rules in R. For instance, a “local
environment” for each component can be considered, disjoint from the “local environments”
of other components, thus preventing the interaction of components by means of other rules
than those in R. Actually, the rules in R themselves can be defined between these “local
environments” – which is a variant worth to explore. We point out here that also the need of
a “local environment” has appeared in the applications of membrane computing to eco-systems
investigations, see [4] and its references.)

Now, we can particularize this notion in various ways, depending on the type of systems
Πi, 1 ≤ i ≤ n, and the type of problems we want to solve.

For instance, we can define dP systems with active membranes, as dP schemes as above,
with the components being P systems with active membranes, each of them having a membrane
designated as the input membrane. Having a decision problem – consider, e.g., SAT for n variables
and m clauses – we can split a given instance of it in parts which are encoded in multisets which
are introduced in the components of the dP system. For example, we can introduce the code
of each separate clause in a separate component of the dP system. The components start to
work, each one deciding its clause, and in the end they communicate to each other the result; if
one of the components will find that all m clauses are satisfied, then the whole SAT formula is
satisfied. Intuitively, this is a faster way than deciding the formula by means of a single P system
with active membranes – but a crucial aspect has been neglected above: in order to say that
the formula is satisfied, all the m clauses should be satisfied by the same truth-assignment, and
this supposes that the m components communicate to each other also which is the assignment
which turns true the clauses. That is, besides the usual time complexity of solving the problem
we have now to consider the cost of communication among the components and the trade-off
between these two parameters should be estimated.

Another interesting case, which will be briefly investigated in the subsequent section, is that
of accepting strings in the sense of P automata, [6], [10]; we will come back immediately to this
case.

On the other hand, we have several possibilities for estimating “the cost of communication”,
and we adapt here the ideas from [1].

Let us consider a dP system ∆, and let δ : w0 =⇒ w1 =⇒ . . . =⇒ wh be a halting computation
in ∆, with w0 being the initial configuration. Then, for each i = 0, 1, . . . , h− 1 we can write:

ComN(wi =⇒ wi+1) = 1 if a communication rule is used in this transition, and 0 otherwise,

ComR(wi =⇒ wi+1) = the number of communication rules used in this transition,

ComW (wi =⇒ wi+1) = the total weight of the communication rules used in this transition.

These parameters can then be extended in the natural way to computations, results of compu-
tations, systems, problems/languages. We consider below the case of accepting strings (by L(∆)
we denote the language of strings accepted by ∆): for ComX ∈ {ComN, ComR, ComW} we
define

ComX(δ) =
∑h−1

i=0 ComX(wi =⇒ wi+1), for δ : w0 =⇒ w1 =⇒ . . . =⇒ wh a halting
computation,



ComX(w,∆) = min{ComX(δ) | δ : w0 =⇒ w1 =⇒ . . . =⇒ wh is a computation in ∆
which accepts the string w},

ComX(∆) = max{ComX(w,∆) | w ∈ L(∆)},

ComX(L) = min{ComX(∆) | L = L(∆)}.

Similar definitions can be considered for more general decidability problem than accepting
strings, then complexity classes can be defined. We do not enter here into details for this
general case; in the next section we will briefly consider the specific case of dP automata and of
languages.

The previously sketched approach should be investigated in more details. Which is the speed-
up for a given problem or class of problems? Clearly, ComN(α) ≤ ComR(α) ≤ ComW (α), for
all valid α. Moreover, in one communication step one can use arbitrarily many communication
rules, which therefore move from a components to another one arbitrarily many objects. Anyway,
independently of the communication cost, presumably, only a linear speed-up can be obtained by
splitting the problem in a given number of parts. Are there problems which however cannot be
solved in this framework in a faster way than by using a single P system (with active membranes)
provided that the communication cost is bounded (e.g., using communication rules in R only for
a constant number of times)? Which is the communication complexity for a given problem or
class of problems? Finding suggestive examples can be a first step in approaching such issues.

A case study will be considered in the next section, not for dP systems with active membranes
(which, we believe, deserve a separate and detailed examination), but for a distributed version
of P automata.

3 dP Automata

We consider now the distributed version of P automata, [6], [10], which are symport/antiport P
systems which accept strings: the sequence of objects (because we work with strings and symbol
objects, we use interchangeably the terms “object” and “symbol”) imported by the system from
the environment during a halting computation is the string accepted by that computation (if
several objects are brought in the system at the same time, then any permutation of them is
considered as a substring of the accepted string; a variant, considered in [6], is to associate
a symbol to each multiset and to build a string by such “marks” attached to the imported
multisets). The accepted string can be introduced in the system symbol by symbol, in the first
steps of the computation (if the string is of length k, then it is introduced in the system in the
first k steps of the computation – the P automaton is then called initial), or in arbitrary steps.
Of course, the initial mode is more restrictive – but we do not enter here into details.

As a kind of mixture of the ideas in [6] and [10] for defining the accepted language, we
can consider extended P automata, that is, with a distinguished alphabet of objects, T , whose
elements are taken into account when building the accepted string (the other objects taken by
the system from the environment are ignored). Here, however, we work with non-extended P
automata.

A dP automaton is a construct

∆ = (O,E,Π1, . . . , Πn, R),

where (O, Π1, . . . , Πn, R) is a dP scheme, E ⊆ O (the objects available in arbitrarily many
copies in the environment), Πi = (O,µi, wi,1, . . . , wi,ki , E,Ri,1, . . . , Ri,ki) is a symport/antiport
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P system of degree ki (without an output membrane), with the skin membrane labeled with
(i, 1) = si, for all i = 1, 2, . . . , n.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn over O if the com-
ponents Π1, . . . , Πn, starting from their initial configurations, using the symport/antiport rules
as well as the inter-components communication rules, in the non-deterministically maximally
parallel way, bring from the environment the substrings x1, . . . , xn, respectively, and eventually
halts.

The dP automaton is synchronized, a universal clock exists for all components, marking the
time in the same way for the whole dP automaton.

The three complexity measures ComN, ComR, ComW defined in the previous section can
be directly introduced for dP automata (and they were formulated above for this case). With
respect to them, we can consider two levels of parallelizability.

A language L ⊆ V ∗ is said to be (n,m)-weakly ComX parallelizable, for some n ≥ 2,m ≥ 1,
and X ∈ {N,R, W}, if there is a dP automaton ∆ with n components and there is a finite subset
F∆ of L such that each string x ∈ L−F∆ can be written as x = x1x2 . . . xn, with ||xi|− |xj || ≤ 1
for all 1 ≤ i, j ≤ n, each component Πi of ∆ takes as input the string xi, 1 ≤ i ≤ n, and the
string x is accepted by ∆ by a halting computation δ such that ComX(δ) ≤ m. A language
L is said to be weakly ComX parallelizable if it is (n,m)-weakly ComX parallelizable for some
n ≥ 2,m ≥ 1.

Two conditions are here important: (i) the string is distributed in equal parts, modulo one
symbol, to the components of the dP automaton, and (ii) the communication complexity, in the
sense of measure ComX, is bounded by the constant m.

We have said nothing before about the length of the computation. That is why we also
introduce a stronger version of parallelizability.

A language L ⊆ V ∗ is said to be (n, m, k)-efficiently ComX parallelizable, for some n ≥
2,m ≥ 1, k ≥ 2, and X ∈ {N, R,W}, if it is (n,m) weakly ComX parallelizable, and there is a
dP automaton ∆ such that

lim
x∈L,|x|→∞

timeΠ(x)
time∆(x)

≥ k,

for all P automata Π such that L = L(Π) (timeΓ(x) denotes here the smallest number of steps
needed for the device Γ to accept the string x). A language L is said to be efficiently ComX
parallelizable if it is (n,m, k)-efficiently ComX parallelizable for some n ≥ 2,m ≥ 1, k ≥ 2.

Note that in the case of dP automata, the duration of a computation may also depend on
the way the string is split in substrings and introduced in the components of the system; in a
natural way, one of the most efficient distribution of the string and shortest computation are
chosen. Of course, as larger the constant k as better.

Moreover, while time∆(x) is just given by means of a construction of a suitable dP automaton
∆, timeΠ(x) should be estimated with respect to all P automata Π.

An example is worth considering in order to illustrate this definition. Let us examine the dP
system from Figure 1 – the alphabet of objects is O = {a, b, c, d, c1, c2, #}, and E = {a, b}.

Clearly, component Π1 (in the left hand side of the figure) can only bring objects a, c inside,
and component Π2 (in the right hand side of the figure) can only bring objects b, d inside. In
each step, only one of a, c, alternately, enters Π1 and only one of b, d, alternately, enters Π2 (note
that we do not need objects c, d to be present initially in the environment, while one copy of
each a and b is sufficient). The computation of each component can stop only by “hiding” the
“carrier objects” c, d inside an inner membrane, and this means releasing c1 in Π1 and c2 in Π2.
If these objects are not released at the same time in the two components, so that the exchange
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Figure 1: An example of a dP automaton

rule (s1, c1/c2, s2) can be used, then, because of the maximal parallelism, the object c1 should
enter membrane (1,3), and object c2 should enter membrane (2,3); in each case, the trap-object
# is released, and the computation never stops: the object # oscillates forever across membrane
(1,2) in Π1 and across membrane (2,2) in Π2.

Consequently, the two strings accepted by the two components of ∆ should have the same
length, that is the language accepted by the system is

L(∆) = {(ac)s(bd)s | s ≥ 0}.

Note the crucial role played here by the fact that the system is synchronized, and that a
computation which accepts a string xs = (ac)s(bd)s, hence of length 4s, lasts 2s + 2 steps (2s
steps for bringing objects inside, one step when objects c, d are introduced in an inner membrane,
and one inter-components communication step), with one of these steps being a communication
between components.

Obviously, if we recognize a string xs = (ac)s(bd)s as above by means of a usual sym-
port/antiport P system, then, because no two symbols of the string can be interchanged, no
two adjacent symbols can be introduced in the system at the same step, hence the computation
lasts at least as many steps as the length of the string, that is, 4s. This shows that our language
is not only (2, r)-weakly ComX parallelizable, but also (2, r, 2)-efficiently ComX parallelizable,
for (r,X) ∈ {(1, N), (1, R), (2, W )}.

This conclusion is worth formulating as a theorem.

Theorem 1. The language L = {(ac)s(bd)s | s ≥ 0} is efficiently ComX parallelizable, for all
X ∈ {N, R,W}.
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Note that this language is not regular (but it is linear, hence also context-free.
Of course, because P automata can recognize all recursively enumerable languages, a P

automaton exists which accepts the language L considered above. Such a system is presented
in Figure 2 (we will need it later).
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Figure 2: A P automaton accepting the language considered above

The reader is asked to check the functioning of this P automaton. (The computation halts
only after introducing the object d in membrane 2, thus releasing the object e, if and only if
we have brought inside the system the same number of pairs ac as pairs bd.) Of course, the
computation lasts a number of steps comparable with the length of the accepted string (precisely,
4s + 2 steps).

However, this P automaton can be used as a basis for components of a dP automaton as in
Figure 1, and this will lead to a dP automaton ∆ accepting the language L′ = {(ac)s(db)s(ac)s(bd)s |
s ≥ 0}, which is thus proved to be efficiently ComX parallelizable, for all X ∈ {N,R, W}. This
language is not context-free, hence we have:

Theorem 2. There are context-sensitive non-context-free languages which are efficiently ComX
parallelizable, for all X ∈ {N,R, W}.

The previous two theorems show that the distribution, in the form of dP systems, is useful
from the time complexity point of view, although only one communication step is performed
and only one communication rule is used at that step. Moreover, the proofs of the two theorems
shows that, in general, languages consisting of strings with two well related halves (but not
containing “too much” information in each half of the string, besides the length), are weakly
parallelizable, and, if no two adjacent symbols of the strings can be interchanged, then these
languages are efficiently parallelizable.

We have said nothing above about regular languages – this is the subject of the next section.



4 All Regular Languages are Weakly Parallelizable

The assertion in the title of this section corresponds to Theorem 2.3.5.1 in [9], which states
that for each regular language there is a constant k which bounds its (2-party) communication
complexity. The version of this result in terms of weak ComX parallelizability is shown by the
following construction. Consider a non-deterministic finite automaton A = (Q, T, q0, F, P ) (set
of states, alphabet, initial state, final states, set of transition rules, written in the form qa → q′,
for q, q′ ∈ Q, a ∈ T ). Without any loss of generality, we may assume that all states of Q are
reachable from the initial state (for each q ∈ Q there is x ∈ T ∗ such that q0x =⇒∗ q with respect
to transition rules in P ). We construct the following dP automaton:

∆ = (O,E,Π1, Π2, R), where :
O = Q ∪ T ∪ {d}

∪ {(q, q′) | q, q′ ∈ Q}
∪ {〈q, qf 〉 | q ∈ Q, qf ∈ F}
∪ {〈q〉 | q ∈ Q},

E = O − {d},
Π1 = (O, [s1

[1,2 ]1,2 ]s1
, q0, λ, E,Rs1 , R1,2),

Rs1 = {(q, out; q′a, in) | qa → q′ ∈ P}
∪ {(q, out; 〈q′〉a, in) | qa → q′ ∈ P},

R1,2 = {(〈q〉, in), (〈q〉, out) | q ∈ Q},
Π2 = (O, [s2

]s2
, d, E, Rs2),

Rs2 = {(d, out; (q, q′)a, in) | qa → q′ ∈ P, q ∈ Q}
∪ {((q, q′), out; (q, q′′)a, in) | q′a → q′′ ∈ P, q ∈ Q}
∪ {((q, q′), out; 〈q, qf 〉a, in) | q′a → qf ∈ P, q ∈ Q, qf ∈ F},

R = {(s1, 〈q〉/〈q, qf 〉, s2) | q ∈ Q, qf ∈ F}.
The first component analyzes a prefix of a string in L(A), the second component analyzes

a suffix of a string in L(A), first guessing a state q ∈ Q from which the automaton starts its
work. At some moment, the first component stops bringing objects inside by taking from the
environment a symbol 〈q′〉 for some q′ ∈ Q, reached after parsing the prefix of the string in L(A).
This object will pass repeatedly across the inner membrane of Π1. The second component can
stop if a state q′ is reached in the automaton A for which no rule q′a → q′′ exists in P (and
then ∆ never stops, because its first component never stops), or after reaching a state in F ,
hence introducing an object of the form 〈q, qf 〉 for some qf ∈ F . Note that q is the state chosen
initially and always stored in the first position of objects (q1, q2) used by Π2. The computation
can halt only by using a communication rule from R, and this is possible only if q = q′ – the first
component has reached the state of A which was the state from which the second component
started its work. Consequently, the concatenation of the two strings introduced in the system
by the two components is a string from L(A). Thus, the language L(A) is weakly parallelizable.

Now, consider a regular language such that no two adjacent symbols in a string can be
permuted (take an arbitrary regular language L over an alphabet V and a morphism h : V ∗ −→
(V ∪ {c})∗, where c is a symbol not in V , such that h(a) = ac for each a ∈ V ). Then, clearly,
if the two strings accepted by the two components of the dP automaton ∆ are of equal length
(note that the strings of h(L) are of an even length), then the time needed to ∆ to accept the
whole string is (about) half of the time needed to any P automaton Π which accepts the same
language. This proves that the language h(L) is efficiently parallelizable, hence we can state:
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Theorem 3. Each regular language is weakly ComX parallelizable, and there are efficiently
ComX parallelizable regular languages, for all X ∈ {N,R, W}.

Of course, faster dP automata can be constructed, if we use more than two components.
However, it is not clear whether dP automata with n + 1 components are always faster than dP
automata with n components – this might depend on the structure of the considered language
(remember that the distribution of the input string to the components of the dP automaton must
be balanced). More specifically, we expect that there are (n,m) weakly parallelizable languages
which are not, e.g., (n + 1,m) weakly parallelizable; similar results are expected for efficiently
parallelizable languages.

A natural question is how much the result in Theorem 3 can be extended. For instance,
is a similar result true for the linear languages, or for bigger families of languages? According
to Theorem 2.3.5.4 in [9], this is not true for measures ComR and ComW , the recognition
of context-free languages (actually, the language LR at page 78 of [9] is linear) have already
the highest communication complexity (in 2-party protocols), a linear one with respect to the
length of the string. Thus, the number of communication rules used by a dP automaton during
a computation cannot be bounded by a constant. The case of measure ComN remains to be
settled: is it possible to have computations with a bounded number of communication steps,
but with these steps using an unbounded number of rules? We conjecture that even in this
case, languages of the form {x mi(x) | x ∈ {a, b}∗}, where mi(x) is the mirror image of x
(such a language is minimally linear, i.e., can be generated by a linear grammar with only one
nonterminal), are not weakly ComN parallelizable.

Many other questions can be raised in this framework. For instance, we can consider fam-
ilies of languages: (n,m)-weakly ComX parallelizable, weakly ComX parallelizable, (n, m, k)-
efficiently ComX parallelizable, and efficiently ComX parallelizable. Which are their properties:
interrelationships and relationships with families in Chomsky hierarchy, closure and decidability
properties, hierarchies on various parameters, characterizations and representations, etc.

Then, there is another possibility of interest, suggested already above: the static complexity
measure defined as the cardinality of R, the set of communication rules. There is a substantial
theory of descriptional complexity of (mainly context-free) grammars and languages, see [8],
which suggests a lot of research questions starting from ComS(∆) = card(R) (with “S” coming
from “static”) and extended to languages in the natural way (ComS(L) = min{ComS(∆) | L =
L(∆)}): hierarchies, decidability of various problems, the effect of operations with languages on
their complexity, etc.

5 The Power of Controlling the Communication

In the previous sections the communication rules were used as any rule of the system, non-
deterministically choosing the rules to be applied, and observing the restriction of maximal
parallelism. However, we can distinguish the two types of rules, “internal evolution rules”
(transition rules, symport/antiport rules, rules with active membranes, etc.) and communication
rules. Then, as in [1], we can apply the rules according to a priority relation, with priority for
evolution rules, or with priority for communication rules. Moreover, we can place various types
of controls on the communication channel itself. For instance, because the communication rules
are antiport rules, we can associate with them promoters or inhibitors, as used in many places
in membrane computing.

A still more natural regulation mechanism is to associate states with the channels, like in
[7]. In this case, the communication rules associated with a pair (i, j) of components Πi,Πj are
of the form (q, u/v, q′), where q, q′ are elements of a given finite set Q of states. Initially, the



channel is assumed in a given state q0. A rule as above is applied only if the cannel is in state q
– and the antiport rule (i, u/v, j) can be applied; after exchanging the multisets u, v among the
two components Πi, Πj , the state of the channel is changed to q′.

An important decision concerns the parallelism. In [7], the channel rules are used in the
sequential mode, but we can also consider two types of parallelism: (i) choose a rule and use
it as many times as made possible by the objects in the two components, or (ii) apply at the
same time all rules of the form (q, u/v, q′) for various u and v (but with the same q and q′), in
the non-deterministic maximally parallel way. In the result discussed below, any of these two
possibilities works – and the result is somewhat surprising:

Theorem 4. Any recursively enumerable language L is (2, 2)-weakly ComN and ComR paral-
lelizable and has ComS(L) ≤ 2, with respect to dP automata with channel states.

We do not formally prove this assertion, but we only describe the (rather complex, if we
cover all details) construction of the suitable dP automaton.

Take a recursively enumerable language L ⊆ T+, for some T = {a1, a2, . . . , an}. For each
string w ∈ T+, let valn+1(w) be the value of w when considered as a number in base n+1, using
the digits a1, a2, . . . , an interpreted as 1, 2, . . . , n, without also using the digit zero. We extend
the notation to languages, in the natural way: valn+1(L) = {valn+1(w) | w ∈ L}. Clearly, L
is recursively enumerable if and only if valn+1(L) is recursively enumerable, and the passage
from strings w to numbers valn+1(w) can be done in terms of P automata (symport/antiport P
systems are universal, hence they can simulate any Turing machine).

Construct now a dP automaton ∆ with two components, Π1 and Π2, working as follows.
The component Π1 receives as input a string w1 ∈ T ∗ and Π2 receives as input a string w2 ∈ T ∗,
such that w1w2 should be checked whether or not it belongs to the language L. Without loss of
generality, we may assume that |w1| ∈ {|w2|, |w2| + 1} (we can choose a balanced distribution
of the two halves of the string). In the beginning, the state of the channel between the two
components is q0.

Both components start to receive the input symbols, one in each time unit; the component
Π1 transforms the strings w1 in valn+1(w1) copies of a symbol a, and Π2 transforms the string
w2 in valn+1(w2) copies of a symbol b. When this computation is completed in Π1, a special
symbol, t, is introduced. For this symbol, we provide the communication rule (q0, t/λ, q1), whose
role is to change the state of the channel. We also consider the rule (q1, a/λ, q2). Using it in the
maximally parallel way, all symbols a from Π1 are moved to Π2, in one communication step.

Because we have considered w1 at least of the length of w2 and we also need two steps for
“opening” the channel and for moving the symbols a across it, we are sure that in this moment
in Π2 we have, besides the valn+1(w1) copies of a, valn+1(w2) copies of b. The second component
takes now these copies of a and b and computes valn+1(w1w2). After that, Π2 checks whether
or not valn+1(w1w2) ∈ valn+1(L). If the computation halts, then the string w1w2 is accepted,
it belongs to the language L.

Note that the dP automaton ∆ contains two communication rules (hence ComS(L) ≤ 2)
and that each computation contains two communication steps (hence ComN(L) ≤ 2), in each
step only one rule being used (hence ComR(L) ≤ 2). These observations complete the proof of
the theorem.

Of course, ComW (∆) = ∞. (Similarly, if we define ComR taking into account the multi-
plicity of using the rules, then also ComR can be considered infinite – hence the assertion in
the theorem remains to be stated only for the measure ComN .)

Instead of changing channel states as above, we can assume that the channel itself switches
from “virtual” to “actual”, like in population P systems, [3]: the channel is created by object
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t produced by Π1, and then used for moving a from Π1 to Π2 by a usual communication rule
(which, by definition, is used in the maximally parallel way).

Anyway, the conclusion of this discussion is that the results we obtain crucially depend on
the ingredients we use when building our dP systems (as well as on the chosen definitions for
complexity measures and types of parallelizability).

6 Closing Remarks

The paper proposes a rather natural way (using existing ingredients in membrane computing,
bringing no new, on purpose invented, stuff into the stage) for solving problems in a “standard”
distributed manner (i.e., splitting problems in parts, introducing them in various component
“computers”, and constructing the solution through the cooperation of these components) in
the framework of membrane computing. So called dP schemes/systems were defined, and two
notions of paralelizability were proposed and briefly investigated for the case of dP automata
(accepting strings).

A lot of problems and research topics were suggested. The reader can imagine also further
problems, for instance, transferring in this area notions and questions from the communication
complexity theory, [9], considering other types of P systems (what about spiking neural P
systems, where we have only one type of objects and no antiport-like rules for communicating
among components?), maybe using unsynchronized P systems, non-linear balanced input, and
so on and so forth. We are convinced that dP systems are worth investigating.

Acknowledgements

This work is supported by Proyecto de Excelencia con Investigador de Reconocida Vaĺıa, de
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5957, Springer, 2010, 125–148.

[14] A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complexity measure
for P systems. Intern. J. Computers, Communications and Control, 4, 3 (2009), 301–310.

[15] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

[16] A.C. Yao: Some complexity questions related to distributed computing. ACM Symposium
on Theory of Computing, 1979, 209–213.

[17] The P Systems Website: www.ppage.psystems.eu.


