P Colony Automata

An overview of recent and not-so-recent results, and some open problems

University of Debrecen

Multisets: collection of objects/symbols, multiplicities

- Complex behavior: computational completeness, universality
- Simple building blocks: simple symbol processing agents in a shared environment (multiset) which they modify

Emergent behavior

The "whole" is more than the sum of its "parts".

Outline

- P colonies
 - structure, functioning, computational power, multiset languages
- P colony automata
 - languages of strings of symbols
- Generalized P colony automata
 - languages of strings/sequences of multisets

P colonies

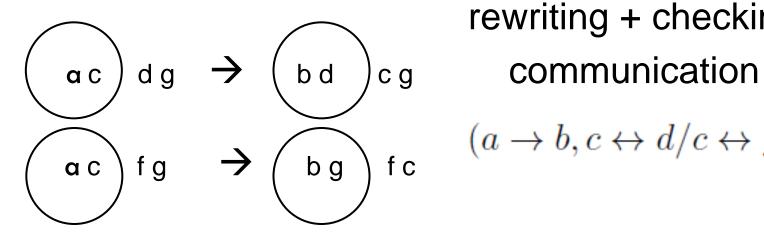
- A population of very simple cells in a shared environment:
 - Fixed number of objects (1, 2, 3) inside each cell
 - Simple rules (programs) for moving and changing the objects
- The objects are exchanged directly only between the cells and the environment

[Kelemen, Kelemenova, Paun 2004]

P colonies

$$(a c) d \rightarrow (b c)$$

rewriting + communication $\mathsf{c} \qquad (a \to b, c \leftrightarrow d)$



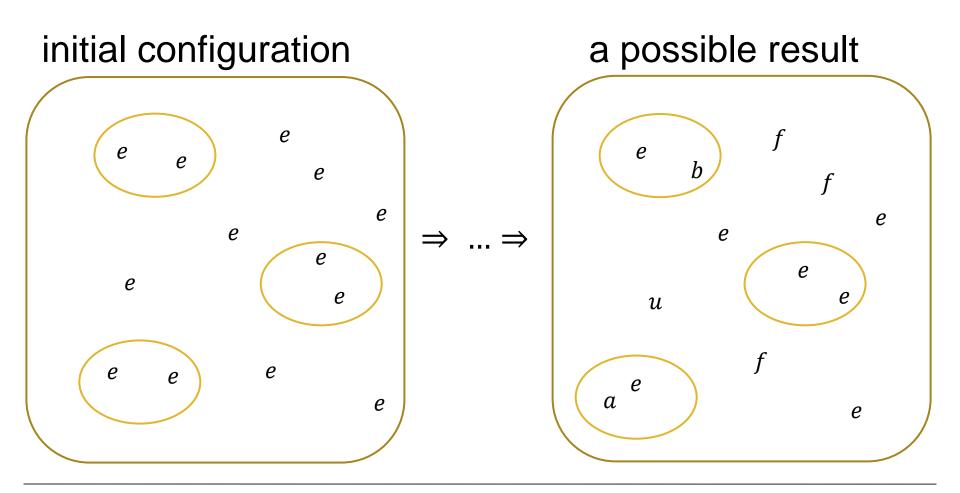
rewriting + checking

$$(a \to b, c \leftrightarrow d/c \leftrightarrow g)$$

The computation

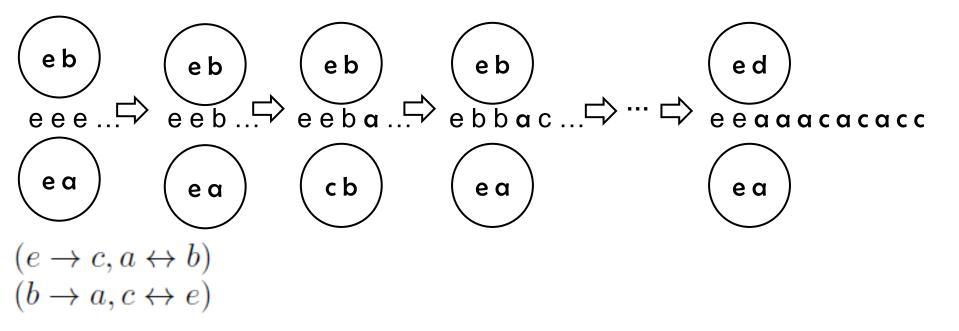
- Start in an initial configuration
- Apply the programs in parallel in the cells, halt if no program is applicable
- The result is the number of the multiplicities of certain objects found in the environment

The computation



The computation

 $\begin{array}{l} (e \rightarrow b, b \leftrightarrow e) \\ (e \rightarrow d, b \leftrightarrow e) \end{array}$



We obtain $a^n c^n, n \ge 1$ in the environment.

Computational power

- P colonies with two object cells and checking rules generate any computable set of numbers with
 - at most 4 programs in one cell, the number of cells unbounded
 - one cell, the number of programs unbounded
- P colonies with two object cells and no checking rules need 8 components
- P colonies with 3 object cells need
 - at most **3 programs** in one cell with **checking** rules
 - 7 programs with no checking rules
 [Csuhaj-Varju, Kelemen, Kelemenova, Paun, Vaszil 2006a]

Simplifying the cells even more

P colonies with **one object cells**, programs of the form $(a \rightarrow b)$, $(a \leftrightarrow b)$ or $(a \leftrightarrow b/a \leftrightarrow c)$.

 One object P colonies with checking rules generate any set of numbers with 4 cells.

[Cienciala, Ciencialova, Kelemenova 2007]

 With no checking rules one object P colonies generate any set of numbers with 6 cells.
 [Ciencielova, Csuhaj Varju, Kelemenova, Vaszil 2009]

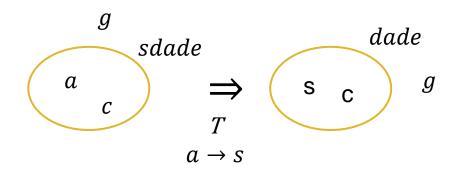
P colony automata

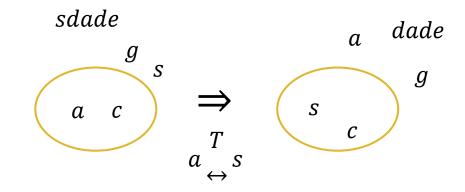
- Response to the changes in the environment
- Automata-like behavior an input string is given
- Tape rules and non-tape rules: the application of programs with tape rules reads a symbol of the input

[Ciencialova, Cienciala, Csuhaj-Varju, Kelemenova, Vaszil 2010]

P colony automata

The effect of tape rules:





Power of the different modes

- nt, ntmax, ntmin: any recursively enumerable language can be accepted/characterized
 [Ciencialova, Cienciala, Csuhaj-Varju, Kelemenova, Vaszil 2010]
- t, one cell: only CS languages can be generated
 [Cienciala, Ciencialova 2011a]
- initial: any recursively enumerable language can be characterized

[Cienciala, Ciencialova 2011b]

Different computational modes...

...with different uses of the tape rules:

- *t*-transition, denoted by \Rightarrow_t , if u' = u and P_c is maximal set of programs with respect to the property that every $p \in P_c$ is a tape program with read(p) = a;
- tmin-transition, denoted by \Rightarrow_{tmin} , if u' = u and P_c is maximal set of programs with at least one $p \in P_c$, such that p is a tape program with read(p) = a;
- tmax-transition, denoted as \Rightarrow_{tmax} , if u' = u and $P_c = P_T \cup P_N$ where P_T is a maximal set of applicable tape programs with read(p) = a for all $p \in P_T$, the set P_N is a set of nontape programs, and $P_c = P_T \cup P_N$ is maximal;
- *n*-transition, denoted by \Rightarrow_n , if u' = au and P_c is maximal set of nontape programs.

Common in all modes...

 ...that the tape rules must read the same symbol, even when more than one tape rules are applied in one computational step.

Generalized P colony automata

- A maximal parallel set of programs is chosen, tape rules and non-tape rules together
- The chosen tape rules might "read" several different symbols in one step, a permutation of these have to be the prefix of the input

• Three modes:

- all-tape: all programs contain at least one tape rule
- com-tape: all communication rules are tape rules
- no restriction

[Kántor, Vaszil 2014]

Computational power

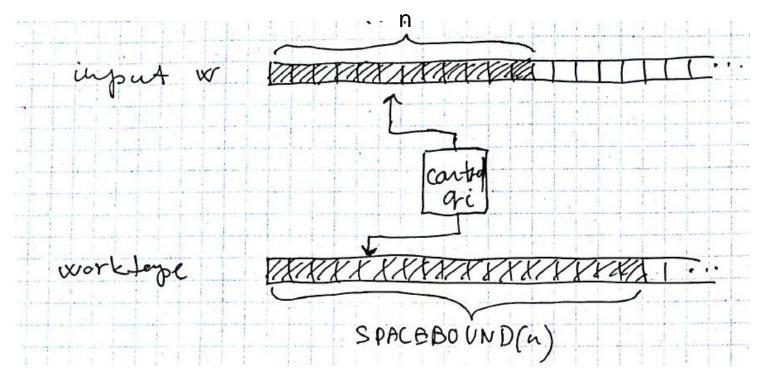
- $\mathcal{L}(GenPCol, com tape) \cup \mathcal{L}(GenPCol, all tape) \subseteq \mathcal{L}(GenPCol, *)$
- $\mathcal{L}(GenPCol, com tape) \cap \mathcal{L}(GenPCol, all tape) \mathcal{L}(CF) \neq \emptyset$
- $\mathcal{L}(GenPCol, all tape) \cup \mathcal{L}(GenPCol, com tape) \subseteq r-1LOGSPACE$
- $\mathcal{L}(GenPCol,*) = RE$.

Turing machines with restricted space bound

A nondetermininstic Turing machine with a **one-way** input tape is **restricted** S(n) **space bounded** if the number of **nonempty cells** on the worktape(s) is **bounded by** S(d), where d is the **distance of the reading head** from the left-end of the one-way input tape.

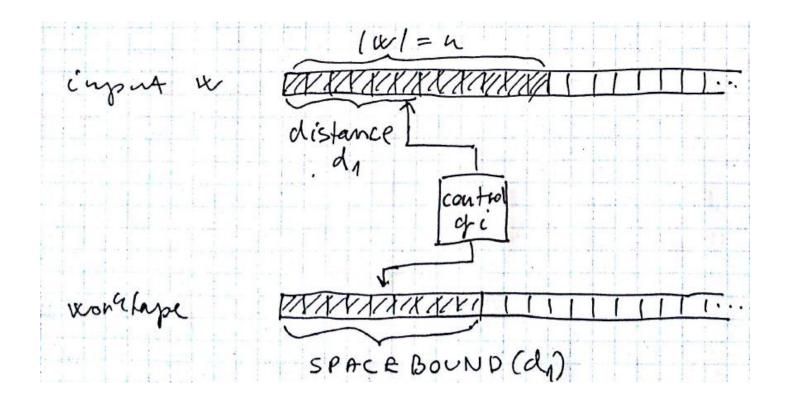
A Turing machine with SPACEBOUND(n)

The length of the available worktape is bounded by the length of the input:



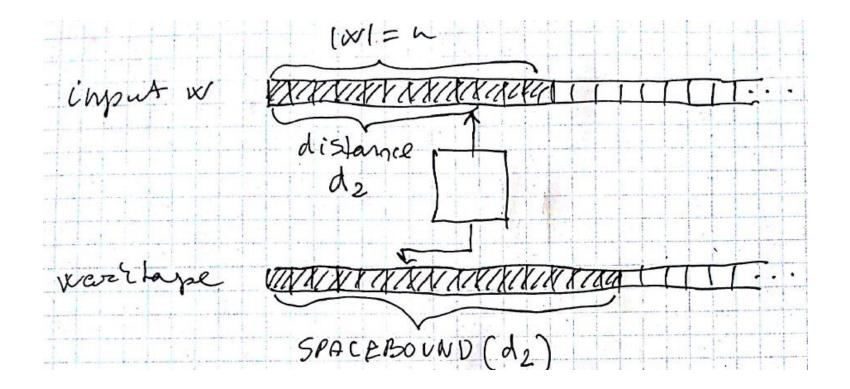
Turing machines with *restricted* **space bound**

1. After reading d₁ input cells:



Turing machines with *restricted* **space bound**

2. After reading d_2 input tape cells:



Turing machines with restricted space bound

The **restricted logarithmic space** bound:

• $r1LOGSPACE \subset 1LOGSPACE$

[Csuhaj-Varju, Ibarra, Vaszil 2004]

 In the deterministic case, it is equal to the strong logarithmic space bound.

[Kutrib, Provillard, Vaszil, Wendlandt, 2013]

The **restricted linear space** bound:

• r1LINSPACE = LINSPACE

[Csuhaj-Varju, Ibarra, Vaszil 2004]

Computational power

- $\mathcal{L}(GenPCol, com tape) \cup \mathcal{L}(GenPCol, all tape) \subseteq \mathcal{L}(GenPCol, *)$
- $\mathcal{L}(GenPCol, com tape) \cap \mathcal{L}(GenPCol, all tape) \mathcal{L}(CF) \neq \emptyset$
- $\mathcal{L}(GenPCol, all tape) \cup \mathcal{L}(GenPCol, com tape) \subseteq r-1LOGSPACE$
- $\mathcal{L}(GenPCol,*) = RE$.

genPCol automata and similar variants of P automata

	all-tape/com-tape	unrestricted
P automata with f_{perm}	$\mathcal{L}(\text{REG}) \subset \cdot \subset \text{r-1LOGSPACE}$	$\mathcal{L}(\text{RE})$
genPCol automata	$\mathcal{L}(\text{REG}) \subset \cdot \subseteq \text{r-1LOGSPACE}$	$\mathcal{L}(\text{RE})$

• Can we obtain more precise results?

Other problems

- The relationship of languages characterized by the all-tape and com-tape modes?
- Are there **other** "interesting" computation **modes**?
- Map the input multisets to strings in a more general way (like in "ordinary" P automata)?

Acknowledgments

- The Hungarian Scientific Research Fund "OTKA" grant no. K75952
- The TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project, cofinanced by the European Social Fund