Asynchronous Spiking Neural P Systems with Structural Plasticity

Francis George Carreon-Cabarle¹, Henry N. Adorna¹, Mario J. Pérez-Jiménez²

¹Department of Computer Science, University of the Philippines Diliman Quezon city, 1101, Philippines; ²Department of Computer Science and AI University of Sevilla Avda. Reina Mercedes s/n, 41012, Sevilla, Spain fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es

 $02 \mbox{ to } 06 \mbox{ Feb } 2015$

13th Brainstorming Week on Membrane Computing Seville, Spain

ション ふゆ マ キャット マックシン

• In short, SNPSP systems;

- Dynamism is only applied for synapses: can create and delete synapses;
- \bullet Introduced in Asian CMC 2013 (Chengdu, China), then improved and extended; ^1
- Sequential SNPSP systems;²

¹Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P systems with structural plasticity (in press). Neural Computing and Applications (2015)

²Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential Spiking neural P systems with structural plasticity (submitted). Neural Computing and Applications (2015)

- In short, SNPSP systems;
- Dynamism is only applied for synapses: can create and delete synapses;
- \bullet Introduced in Asian CMC 2013 (Chengdu, China), then improved and extended; ^1
- Sequential SNPSP systems;²

¹Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P systems with structural plasticity (in press). Neural Computing and Applications (2015)

²Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential Spiking neural P systems with structural plasticity (submitted). Neural Computing and Applications (2015)

- In short, SNPSP systems;
- Dynamism is only applied for synapses: can create and delete synapses;
- Introduced in Asian CMC 2013 (Chengdu, China), then improved and extended; 1
- Sequential SNPSP systems;²

¹Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P systems with structural plasticity (in press). Neural Computing and Applications (2015)

²Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential Spiking neural P systems with structural plasticity (submitted). Neural Computing and Applications (2015)

- In short, SNPSP systems;
- Dynamism is only applied for synapses: can create and delete synapses;
- Introduced in Asian CMC 2013 (Chengdu, China), then improved and extended;¹
- Sequential SNPSP systems;²

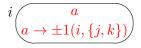
¹Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P systems with structural plasticity (in press). Neural Computing and Applications (2015)

²Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential Spiking neural P systems with structural plasticity (submitted). Neural Computing and Applications (2015)

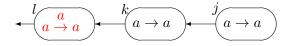
A spiking neural P system with structural plasticity (SNPSP system) of degree $m \ge 1$ is a construct of the form $\Pi = (O, \sigma_1, \ldots, \sigma_m, syn, out)$, where:

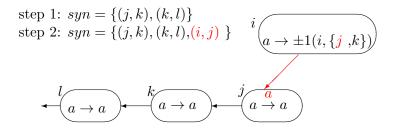
- $O = \{a\}$ is the singleton alphabet (a is called spike);
- $\sigma_1, \ldots, \sigma_m$ are neurons of the form $(n_i, R_i), 1 \le i \le m;$ $n_i \ge 0$ indicates the initial number of spikes in $\sigma_i; R_i$ is a finite rule set of σ_i with two forms:
 - 1. Spiking rule: $E/a^c \rightarrow a$, where E is a regular expression over $O, c \ge 1$;
 - 2. Plasticity rule: $E/a^c \to \alpha k(i, N)$, where E is a regular expression over $O, c \ge 1, \alpha \in \{+, -, \pm, \pm\}, k \ge 1$, and $N \subseteq \{1, \ldots, m\} \{i\};$
- $syn \subseteq \{1, \ldots, m\} \times \{1, \ldots, m\}$, with $(i, i) \notin syn$ for $1 \leq i \leq m$ (synapses between neurons);
- $out \in \{1, \ldots, m\}$ indicate the output neuron.

step 1:
$$syn = \{(j,k), (k,l)\}$$



・ロト ・ 日 ・ モー・ モー・ うへぐ



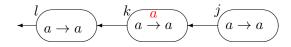


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

step 1:
$$syn = \{(j,k), (k,l)\}$$

step 2: $syn = \{(j,k), (k,l), (i,j)\}$
step 3: $syn = \{(j,k), (k,l)\}$
 $i \xrightarrow{a \to \pm 1(i, \{j,k\})}$



step 1:
$$syn = \{(j,k), (k,l)\}$$

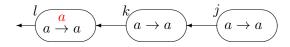
step 2': $syn = \{(j,k), (k,l), (i,k)\}$
 $i \xrightarrow{a \to \pm 1(i, \{j,k\})}$
 $i \xrightarrow{a \to \pm 1(i, \{j,k\})}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

step 1:
$$syn = \{(j,k), (k,l)\}$$

step 2': $syn = \{(j,k), (k,l), (i,j)\}$
step 3: $syn = \{(j,k), (k,l)\}$
 $i \xrightarrow{a \to \pm 1(i, \{j,k\})}$



• Asynchronous SNPSP systems:

• Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by: • $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1$.

<ロ> (四) (四) (三) (三) (三) (三)

- $= SLUN \subseteq N_{int}SUPSPEE(bound_p), p \geq 0$
- $NRE = N_{tot}WSNPSP^{asy}$
 - Under a normal form.

• Asynchronous SNPSP systems:

• Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asy}$
 - Under a normal form

- Asynchronous SNPSP systems:
 - Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

うして ふゆう ふほう ふほう ふしつ

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asy}$

Under a normal form

- Asynchronous SNPSP systems:
 - Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asys}$
 - Under a normal form

- Asynchronous SNPSP systems:
 - Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asyn}$
 - Under a normal form.

- Asynchronous SNPSP systems:
 - Show $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asyn}$
 - Under a normal form.

$SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$

$N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$

Construct a right-linear grammar G, such that Π generates the length set of the regular language L(G). Let us denote by \mathcal{C} the set of all possible configurations of Π , with C_0 being the initial configuration. The right-linear grammar $G = (\mathcal{C}, \{a\}, C_0, P)$, where the production rules in P are as follows:

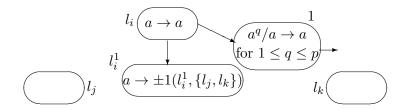
- (1) $C \to C'$, for $C, C' \in \mathcal{C}$ where Π has a transition $C \Rightarrow C'$ in which the output neuron does not spike;
- (2) $C \to aC'$, for $C, C' \in \mathcal{C}$ where Π has a transition $C \Rightarrow C'$ in which the output neuron spikes;

(3) $C \to \lambda$, for any $C \in \mathcal{C}$ in which Π halts.

$SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$

$SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$

ADD module simulating $l_i : (ADD(1) : l_j, l_k)$ of a strongly monotonic register machine.



・ロン ・雪と ・ヨン

• Additional ingredient: weighted synapses³

- Synapse set is now of the form $syn \subseteq \{1, 2, \dots, m\} \times \{1, 2, \dots, m\} \times \mathbb{N}.$
- If σ_i applies a rule $E/a^c \to a^p$, and the synapse (i, j, r) exists (i.e. the weight of synapse (i, j) is r) then σ_j receives $p \times r$ spikes.
- Normal form: if σ_i has standard rule, then σ_i is simple, i.e. $|R_i| = 1;$

³Pan, L., Zeng, X., Zhang, X.: Spiking Neural P Systems with Weighted Synapses. Neural Processing Letters vol. 35, pp. 13–27 (2012)

- Additional ingredient: weighted synapses³
- Synapse set is now of the form $syn \subseteq \{1, 2, \dots, m\} \times \{1, 2, \dots, m\} \times \mathbb{N}.$
- If σ_i applies a rule $E/a^c \to a^p$, and the synapse (i, j, r) exists (i.e. the weight of synapse (i, j) is r) then σ_j receives $p \times r$ spikes.
- Normal form: if σ_i has standard rule, then σ_i is simple, i.e. $|R_i| = 1;$

³Pan, L., Zeng, X., Zhang, X.: Spiking Neural P Systems with Weighted Synapses. Neural Processing Letters vol. 35, pp. 13–27 (2012)

- Additional ingredient: weighted synapses³
- Synapse set is now of the form $syn \subseteq \{1, 2, \dots, m\} \times \{1, 2, \dots, m\} \times \mathbb{N}.$
- If σ_i applies a rule $E/a^c \to a^p$, and the synapse (i, j, r) exists (i.e. the weight of synapse (i, j) is r) then σ_j receives $p \times r$ spikes.
- Normal form: if σ_i has standard rule, then σ_i is simple, i.e. $|R_i| = 1;$

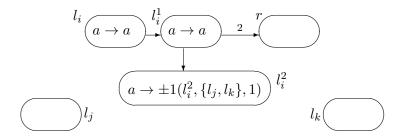
³Pan, L., Zeng, X., Zhang, X.: Spiking Neural P Systems with Weighted Synapses. Neural Processing Letters vol. 35, pp. 13-27 (2012)

- Additional ingredient: weighted synapses³
- Synapse set is now of the form $syn \subseteq \{1, 2, \dots, m\} \times \{1, 2, \dots, m\} \times \mathbb{N}.$
- If σ_i applies a rule $E/a^c \to a^p$, and the synapse (i, j, r) exists (i.e. the weight of synapse (i, j) is r) then σ_j receives $p \times r$ spikes.
- Normal form: if σ_i has standard rule, then σ_i is simple, i.e. $|R_i| = 1;$

³Pan, L., Zeng, X., Zhang, X.: Spiking Neural P Systems with Weighted Synapses. Neural Processing Letters vol. 35, pp. 13-27 (2012)

$NRE = N_{tot}WSNPSP^{asyn}$

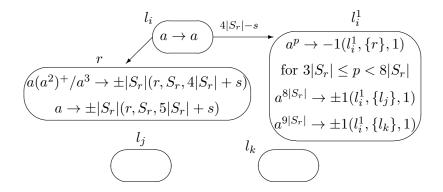
ADD module simulating $l_i : (ADD(r) : l_j, l_k)$ of register machine.



・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$NRE = N_{tot}WSNPSP^{asyn}$

SUB module simulating $l_i : (SUB(r) : l_j, l_k)$ of register machine.



$NRE = N_{tot}WSNPSP^{asyn}$

FIN module.

$$\underbrace{a(a^2)^+/a^2 \to a}_{l_h} \underbrace{a \to a}_{l_h}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Asynchronous SNPSP systems:

• Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

(=) (

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asyr}$
 - Under a normal form.

• Asynchronous SNPSP systems:

• Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asy}$
 - Under a normal form.

- Asynchronous SNPSP systems:
 - Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

うして ふゆう ふほう ふほう ふしつ

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asy}$

Under a normal form.

- Asynchronous SNPSP systems:
 - Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

ション ふゆ マ キャット マックシン

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asys}$
 - Under a normal form

- Asynchronous SNPSP systems:
 - Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asyn}$
 - Under a normal form.

- Asynchronous SNPSP systems:
 - Shown $SLIN = N_{tot}SNPSP^{asyn}(bound_p), p \ge 1$, by:

- $N_{tot}SNPSP^{asyn}(bound_p) \subseteq SLIN, p \ge 1.$
- $SLIN \subseteq N_{tot}SNPSP^{asyn}(bound_p), p \ge 1.$
- $NRE = N_{tot}WSNPSP^{asyn}$
 - Under a normal form.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given M.

⁴Cavaliere, M., Egecioglu, O., Woodworth, S., Ionescu, I., Păun, G.: Asynchronous spiking neural P systems: Decidability and undecidability. DNA 2008, LNCS vol. 4848, pp. 246 - 255 (2008) < **D** > **(D** > **(D > (D** > **(D** > **(D > (D** > **(D > (D** > **(D > (D >**

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- α ∈ {±, ∓} can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given M.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

- Asynchronous SNP systems using extended rules are universal;
- Open question:⁴ Asynchronous SNP systems using standard rules only are universal?
 - Their conjecture: No.
- Plasticity rules can produce at most one spike each step;
- Plasticity rules with weighted synapses can produce more than one spike each step;
- Our (non)universality results provide some hint to support their conjecture
- $\alpha \in \{\pm, \mp\}$ can be another form of synchronization: what if we remove this?
- A uniform construction? i.e. SUB module construction is independent on a given *M*.

⁴Cavaliere, M., Egecioglu, O., Woodworth, S., Ionescu, I., Păun, G.: Asynchronous spiking neural P systems: Decidability and undecidability. DNA 2008, LNCS vol. 4848, pp. 246 - 255 (2008) < □ > <∂ > < ≥ > <≥ > <≥ > <<

End!

Thank you for your attention!

