Notes on Spiking Neural P Systems and Finite Automata

Francis George Carreon-Cabarle¹, Henry N. Adorna¹, Mario J. Pérez-Jiménez²

¹Department of Computer Science, University of the Philippines Diliman Quezon city, 1101, Philippines; ²Department of Computer Science and AI University of Sevilla Avda. Reina Mercedes s/n, 41012, Sevilla, Spain fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es

02 to 06 Feb 2015

13th Brainstorming Week on Membrane Computing Seville, Spain

ション ふゆ マ キャット マックシン

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron¹
 - At most one spike can enter or leave the system.
- *SNP modules:* extended rules, one or more input neurons and output neurons²

More than one spike can enter or leave the system.

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron¹
 - At most one spike can enter or leave the system.
- SNP modules: extended rules, one or more input neurons and output neurons²

More than one spike can enter or leave the system

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron¹

At most one spike can enter or leave the system

• *SNP modules:* extended rules, one or more input neurons and output neurons²

More than one spike can enter or leave the system.

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron¹
 - At most one spike can enter or leave the system
- *SNP modules:* extended rules, one or more input neurons and output neurons²

More than one spike can enter or leave the system

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron 1
 - At most one spike can enter or leave the system
- *SNP modules:* extended rules, one or more input neurons and output neurons²

¹Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron 1
 - At most one spike can enter or leave the system
- *SNP modules:* extended rules, one or more input neurons and output neurons²

More than one spike can enter or leave the system

¹Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

²Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010) **B** · · · · · · · · · · ·

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron 1
 - At most one spike can enter or leave the system
- SNP modules: extended rules, one or more input neurons and output neurons²
 - More than one spike can enter or leave the system

 ¹Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)
 ²Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- *Standard rules:* neuron emits at most one pulse (the *spike*, represented by symbol *a*) each step;
- *Extended rules:* neuron can emit more than one spike each step;
- Generators have output neuron only;
- Acceptors have input neuron only;
- SNP transducers: standard and forgetting rules, one input and one output neuron 1
 - At most one spike can enter or leave the system
- SNP modules: extended rules, one or more input neurons and output neurons 2
 - More than one spike can enter or leave the system

 ¹Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)
 ²Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

• Continue SNP modules investigation:

- Amend construction problem in simulating deterministic finite automata and deterministic finite transducer;³
- Reduce number of neurons in simulation: from 3 neurons down to 1 neuron;
- Extend our construction to simulate DFA with output;
- Generating automatic sequences

³Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2610) **B** + **4 E** + **4 E** + **5**

• Continue SNP modules investigation:

- Amend construction problem in simulating deterministic finite automata and deterministic finite transducer;³
- Reduce number of neurons in simulation: from 3 neurons down to 1 neuron;
- Extend our construction to simulate DFA with output;
- Generating automatic sequences

³Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- Continue SNP modules investigation:
 - Amend construction problem in simulating deterministic finite automata and deterministic finite transducer;³
 - Reduce number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extend our construction to simulate DFA with output;
 - Generating automatic sequences

³Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- Continue SNP modules investigation:
 - Amend construction problem in simulating deterministic finite automata and deterministic finite transducer;³
 - Reduce number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extend our construction to simulate DFA with output;
 - Generating automatic sequences

³Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- Continue SNP modules investigation:
 - Amend construction problem in simulating deterministic finite automata and deterministic finite transducer;³
 - Reduce number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extend our construction to simulate DFA with output;
 - Generating automatic sequences

³Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

うして ふゆう ふほう ふほう ふしつ

A deterministic finite automaton (in short, a DFA) D, is defined by the 5-tuple $D = (Q, \Sigma, q_1, \delta, F)$, where:

- $Q = \{q_1, \ldots, q_n\}$ is a finite set of states,
- $\Sigma = \{b_1, \ldots, b_m\}$ is the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $q_1 \in Q$ is the initial state,
- $F \subseteq Q$ is a set of final states.

A deterministic finite state transducer (in short, a DFST) with accepting states T, is defined by the 6-tuple $T = (Q, \Sigma, \Delta, q_1, \delta', F)$, where:

うして ふゆう ふほう ふほう ふしつ

•
$$Q = \{q_1, \ldots, q_n\}$$
 is a finite set of states,

- $\Sigma = \{b_1, \ldots, b_m\}$ is the input alphabet,
- $\Delta = \{c_1, \ldots, c_t\}$ is the output alphabet,
- $\delta': Q \times \Sigma \to Q \times \Delta$ is the transition function,
- $q_1 \in Q$ is the initial state,
- $F \subseteq Q$ is a set of final states.

A deterministic finite automaton with output (in short, a DFAO) M, is defined by the 6-tuple $M = (Q, \Sigma, \delta'', q_1, \Delta, \tau)$, where:

- $Q = \{q_1, \ldots, q_n\}$ is a finite set of states,
- $\Sigma = \{b_1, \ldots, b_m\}$ is the input alphabet,
- $\delta'': Q \times \Sigma \to Q$ is the transition function,
- $q_1 \in Q$ is the initial state,
- $\Delta = \{c_1, \ldots, c_t\}$ is the output alphabet,
- $\tau: Q \to \Delta$ is the output function.

A given DFAO M defines a function from Σ^* to Δ , denoted as $f_M(w) = \tau(\delta''(q_1, w))$ for $w \in \Sigma^*$. If $\Sigma = \{1, ..., k\}$, denoted as Σ_k , then M is a k-DFAO.

A sequence, denoted as $\mathbf{a} = (a_n)_{n \geq 0}$, is *k*-automatic if there exists a *k*-DFAO, *M*, such that given $w \in \Sigma_k^*$, $a_n = \tau(\delta''(q_1, w))$, where $[w]_k = n$, $[w]_k = n$ is the base-*k* representation of $n \in \mathbb{N}$.

A spiking neural P system (in short, an SNP system) of degree $m\geq 1,$ is a construct of the form

 $\Pi = (\{a\}, \sigma_1, \dots, \sigma_m, syn, in, out)$ where:

- $\{a\}$ is the singleton alphabet (a is called *spike*);
- $\sigma_1, \ldots, \sigma_m$ are *neurons* of the form $\sigma_i = (n_i, R_i), 1 \le i \le m$, where:
 - $n_i \ge 0$ is the *initial number of spikes* inside σ_i ;
 - R_i is a finite set of rules of the general form: $E/a^c \to a^p; d$, where E is a regular expression over $\{a\}, c \ge 1$, with $p, d \ge 0$, and $c \ge p$; if p = 0, then d = 0 and $L(E) = \{a^c\}$;
- $syn \subseteq \{1, \ldots, m\} \times \{1, \ldots, m\}$, with $(i, i) \notin syn$ for $1 \leq i \leq m$ (synapses);
- $in, out \in \{1, ..., m\}$ indicate the *input* and *output* neurons, respectively.

A spiking neural P module (in short, an SNP module) of degree $m \ge 1$, is a construct of the form $\Pi = (\{a\}, \sigma_1, \ldots, \sigma_m, syn, N_{in}, N_{out})$ where

- $\{a\}$ is the singleton alphabet (a is called *spike*);
- $\sigma_1, \ldots, \sigma_m$ are *neurons* of the form $\sigma_i = (n_i, R_i), 1 \le i \le m$, where:
 - $n_i \ge 0$ is the *initial number of spikes* inside σ_i ;
 - R_i is a finite set of rules of the general form: $E/a^c \to a^p$, where E is a regular expression over $\{a\}, c \ge 1$, and $p \ge 0$, with $c \ge p$; if p = 0, then $L(E) = \{a^c\}$

- $syn \subseteq \{1, \ldots, m\} \times \{1, \ldots, m\}$, with $(i, i) \notin syn$ for $1 \leq i \leq m$ (synapses);
- $N_{in}, N_{out} \subseteq \{1, 2, \dots, m\}$ indicate the sets of input and output neurons, respectively.

• For some SNP module Π_D simulating finite automata D, $L(\Pi_D) = \{ w \in \Sigma^* | \Pi_D(w) \in Q^*F \};$

• Some previous results:

- Any regular language L can be expressed as $L = L(\Pi_D)$ for some SNP module Π_D .
- Sili? module Up-

⁴Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2610) @ + 4 ≥ + 4 ≥ + 4 ≥ + 5 ≤ -5 α(

- For some SNP module Π_D simulating finite automata D, $L(\Pi_D) = \{ w \in \Sigma^* | \Pi_D(w) \in Q^*F \};$
- Some previous results:⁴
 - Any regular language L can be expressed as $L = L(\Pi_D)$ for some SNP module Π_D .
 - Any finite transducer T can be simulated by some SNP module Π_T .

⁴Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- For some SNP module Π_D simulating finite automata D, $L(\Pi_D) = \{ w \in \Sigma^* | \Pi_D(w) \in Q^*F \};$
- Some previous results:⁴
 - Any regular language L can be expressed as $L = L(\Pi_D)$ for some SNP module Π_D .
 - Any finite transducer T can be simulated by some SNP module Π_T .

⁴Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- For some SNP module Π_D simulating finite automata D, $L(\Pi_D) = \{ w \in \Sigma^* | \Pi_D(w) \in Q^*F \};$
- Some previous results:⁴
 - Any regular language L can be expressed as $L = L(\Pi_D)$ for some SNP module Π_D .
 - Any finite transducer T can be simulated by some SNP module Π_T .

⁴Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Let $D = (Q, \Sigma, \delta, q_1, F)$ be a DFA, where $\Sigma = \{b_1, \ldots, b_m\}$, $Q = \{q_1, \ldots, q_n\}$. An SNP Module Π_D simulating D is as follows:

$$\Pi_D = (\{a\}, \sigma_1, \sigma_2, \sigma_3, syn, \{3\}, \{3\}),\$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

where

•
$$\sigma_1 = \sigma_2 = (n, \{a^n \to a^n\}),$$

• $\sigma_3 = (n, \{a^{2n+i+k}/a^{2n+i+k-j} \to a^j | \delta(q_i, b_k) = q_j\}),$
• $syn = \{(1, 2), (2, 1), (1, 3)\}.$

Let $T = (Q, \Sigma, \Delta, \delta', q_1, F)$ be a DFST, where $\Sigma = \{b_1, \ldots, b_k\}, \Delta = \{c_1, \ldots, c_t\}, Q = \{q_1, \ldots, q_n\}$. We construct the following SNP module simulating T:

$$\Pi_T = (\{a\}, \sigma_1, \sigma_2, \sigma_3, syn, \{3\}, \{3\}),$$

うして ふゆう ふほう ふほう ふしつ

where:

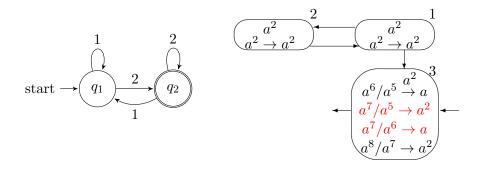
•
$$\sigma_1 = \sigma_2 = (n, \{a^n \to a^n\}),$$

• $\sigma_3 = (n, \{a^{2n+i+k+t}/a^{2n+i+k+t-j} \to a^{n+s} | \delta'(q_i, b_k) = (q_j, c_s)\}),$

•
$$syn = \{(1,2), (2,1), (1,3)\}.$$

An example

Using the previous construction for simulating DFA⁵



⁵Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010) ♂→ < ≧→ < ≧→ ≤ → へ ?

• Some results:

- Any regular language L can be expressed as L = L(Π'_D) for some 1-neuron SNP module Π'_D.
- Any finite transducer T can be simulated by some 1-neuron SNP module Π'_T .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Some results:
 - Any regular language L can be expressed as $L = L(\Pi'_D)$ for some 1-neuron SNP module Π'_D .
 - Any finite transducer T can be simulated by some 1-neuron SNP module Π'_T .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Some results:
 - Any regular language L can be expressed as $L = L(\Pi'_D)$ for some 1-neuron SNP module Π'_D .
 - Any finite transducer T can be simulated by some 1-neuron SNP module Π'_T .

ション ふゆ く は く は く む く む く し く

Given a DFA D, we construct an SNP module Π'_D simulating D as follows:

$$\Pi'_D = (\{a\}, \sigma_1, syn, \{1\}, \{1\}),$$

where

•
$$\sigma_1 = (1, \{a^{k(2n+1)+i}/a^{k(2n+1)+i-j} \rightarrow a^j | \delta(q_i, b_k) = q_j\}),$$

• $syn = \emptyset.$

For a given DFST T, we construct an SNP module Π'_T simulating T as follows:

$$\Pi'_T = (\{a\}, \sigma_1, syn, \{1\}, \{1\}),$$

where

•
$$\sigma_1 = (1, \{a^{k(2n+1)+i+t}/a^{k(2n+1)+i+t-j} \to a^{n+s} | \delta'(q_i, b_k) = (q_j, c_s)\}),$$

• $syn = \emptyset.$

- For some finite string $w = a_1 a_2 \dots a_n$, let $w^R = a_n a_{n-1} \dots a_2 a_1$ (we read w in reverse)
- Some additional results:
 - Any k-DFAO M can be simulated by some 2-neuron SNP module Π_M .
 - Any k-antomatic sequence a (a_n)_{n 2δ}, can be generated by some 2-neuron SNP module Π.
 - Let $u = (u_n)_{n\geq 0}$ be a k-automatic sequence. Then, there is some 2-neuron SNP module II where $\mathcal{U}(w^{0}S) = u_n$, $w \in \Sigma_{n,n}^{*}$ [w]_k = n_j and $n \ge 0$.

- For some finite string $w = a_1 a_2 \dots a_n$, let $w^R = a_n a_{n-1} \dots a_2 a_1$ (we read w in reverse)
- Some additional results:
 - Any k-DFAO M can be simulated by some 2-neuron SNP module Π_M .
 - Any k-automatic sequence $\mathbf{a} = (a_n)_{n \ge 0}$ can be generated by some 2-neuron SNP module II.
 - Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a k-automatic sequence. Then, there is some 2-neuron SNP module II where $\Pi(w^R \$) = a_n, w \in \Sigma_k^*$, $[w]_k = n$, and $n \ge 0$.

うして ふゆう ふほう ふほう ふしつ

- For some finite string $w = a_1 a_2 \dots a_n$, let $w^R = a_n a_{n-1} \dots a_2 a_1$ (we read w in reverse)
- Some additional results:
 - Any k-DFAO M can be simulated by some 2-neuron SNP module Π_M .
 - Any k-automatic sequence $\mathbf{a} = (a_n)_{n \ge 0}$ can be generated by some 2-neuron SNP module II.
 - Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a k-automatic sequence. Then, there is some 2-neuron SNP module Π where $\Pi(w^R \$) = a_n, w \in \Sigma_k^*$, $[w]_k = n$, and $n \ge 0$.

うして ふゆう ふほう ふほう ふしつ

- For some finite string $w = a_1 a_2 \dots a_n$, let $w^R = a_n a_{n-1} \dots a_2 a_1$ (we read w in reverse)
- Some additional results:
 - Any k-DFAO M can be simulated by some 2-neuron SNP module Π_M .
 - Any k-automatic sequence $\mathbf{a} = (a_n)_{n \ge 0}$ can be generated by some 2-neuron SNP module Π .
 - Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a k-automatic sequence. Then, there is some 2-neuron SNP module Π where $\Pi(w^R \$) = a_n, w \in \Sigma_k^*$, $[w]_k = n$, and $n \ge 0$.

- For some finite string $w = a_1 a_2 \dots a_n$, let $w^R = a_n a_{n-1} \dots a_2 a_1$ (we read w in reverse)
- Some additional results:
 - Any k-DFAO M can be simulated by some 2-neuron SNP module Π_M .
 - Any k-automatic sequence $\mathbf{a} = (a_n)_{n \ge 0}$ can be generated by some 2-neuron SNP module Π .
 - Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a k-automatic sequence. Then, there is some 2-neuron SNP module Π where $\Pi(w^R \$) = a_n, w \in \Sigma_k^*$, $[w]_k = n$, and $n \ge 0$.

For a given k-DFAO $M = (Q, \Sigma, \Delta, \delta'', q_1, \tau)$, we have $1 \leq i, j \leq n, 1 \leq s \leq t$, and $1 \leq k \leq m$. Construction of an SNP module Π_M simulating M, is as follows:

$$\Pi = (\{a\}, \sigma_1, \sigma_2, syn, \{1\}, \{2\}),\$$

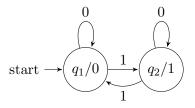
where

$$\begin{aligned} \bullet \ \sigma_1 &= (1, R_1), \sigma_2 &= (0, R_2), \\ \bullet \ R_1 &= \{a^{k(2n+1)+i+t}/a^{k(2n+1)+i+t-j} \rightarrow a^{n+s} | \delta''(q_i, b_k) = \\ q_j, \tau(q_j) &= c_s \} \\ \cup \{a^{m(2n+1)+n+t+i} \rightarrow a^{m(2n+1)+n+t+i} | 1 \leq i \leq n\}, \\ \bullet \ R_2 &= \{a^{n+s} \rightarrow \lambda | \tau(q_i) = c_s\} \cup \{a^{m(2n+1)+n+t+i} \rightarrow \\ a^{n+s} | \tau(q_i) = c_s\}, \\ \bullet \ syn &= \{(1, 2)\}. \end{aligned}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

In this work

An example.



$$\begin{array}{c} 1 \\ \hline r_1 : a^8/a^7 \to a^3 r_4 : a^{14}/a^{13} \to a^3 \\ r_2 : a^{13}/a^{11} \to a^4 r_5 : a^{15} \to a^{15} \\ r_3 : a^9/a^7 \to a^4 r_6 : a^{16} \to a^{16} \end{array} \begin{array}{c} 2 \\ \hline r_7 : a^3 \to \lambda \\ r_8 : a^4 \to \lambda \\ r_9 : a^{15} \to a^3 \\ r_{10} : a^{16} \to a^4 \end{array} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• We continued SNP modules investigation:

- Amend construction problem in simulating DFA and DFST;⁶
- Reduced number of neurons in simulation: from 3 neurons down to 1 neuron;
- Extended our construction to simulate DFAO;
- Generating automatic sequences

⁶Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010) ⊕, <≥, <≥, ≥ ∽,

• We continued SNP modules investigation:

- Amend construction problem in simulating DFA and $\rm DFST;^6$
- Reduced number of neurons in simulation: from 3 neurons down to 1 neuron;
- Extended our construction to simulate DFAO;
- Generating automatic sequences

⁶Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural Computing, vol. 9, pp. 475-491 (2010)

- We continued SNP modules investigation:
 - Amend construction problem in simulating DFA and $\rm DFST;^6$
 - Reduced number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extended our construction to simulate DFAO;
 - Generating automatic sequences

- We continued SNP modules investigation:
 - Amend construction problem in simulating DFA and $\rm DFST;^6$
 - Reduced number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extended our construction to simulate DFAO;
 - Generating automatic sequences

- We continued SNP modules investigation:
 - Amend construction problem in simulating DFA and $\rm DFST;^6$
 - Reduced number of neurons in simulation: from 3 neurons down to 1 neuron;
 - Extended our construction to simulate DFAO;
 - Generating automatic sequences

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: President Turing Machines' interactive components²
 - Applications?

* Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA)

⁷Freund, R., Oswald, M.: Regular ω -languages defined by finite extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

²Goldin, D.: Pereistent Turing Machines as a Model of Interactive Computation. PoINS 2000, LNCS 1762, pp. 116 – 135.

⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive

Computation. in Goldin et al. (Eds.): Interactive Computation: The NewYork Psychian - Springer-Yerlag (2006)

¹⁰https://www.humanbrainproject.eu/

¹¹http://braininitiative.nih.gov/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: Persistent Turing Machines⁸ interactive components⁹
 - Applications?

Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA).

-

 $^7 {\rm Freund, R., Oswald, M.: Regular}~\omega\mbox{-languages defined by finite}$ extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

⁶Goldin, D.: Persistent Turing Machines as a Model of Interactive Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135. ⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. in Goldin et al. (Eds.): Interactive Computation: The Nev Paradigm. Springer-Vering (2006). []]]

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: Persistent Turing Machines⁸, interactive components⁹
 - Applications?

Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA)

(日) (四) (日) (日) (日)

 $^7 {\rm Freund},$ R., Oswald, M.: Regular ω -languages defined by finite extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

⁸Goldin, D.: Persistent Turing Machines as a Model of Interactive Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. in Goldin et al. (Eds.): Interactive Computation: The New Paradigm. Springer-Verlag (2006).

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: Persistent Turing Machines⁸, interactive components⁹
 - Applications?

Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA)

うして ふゆう ふほう ふほう ふしつ

 $^7 {\rm Freund, R., Oswald, M.:}$ Regular $\omega{\rm -languages}$ defined by finite extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

⁸Goldin, D.: Persistent Turing Machines as a Model of Interactive Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. in Goldin et al. (Eds.): Interactive Computation: The New Paradigm. Springer-Verlag (2006).

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: Persistent Turing Machines⁸, interactive components⁹
 - Applications?
 - Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA)

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

 $^7 {\rm Freund},$ R., Oswald, M.: Regular ω -languages defined by finite extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

⁸Goldin, D.: Persistent Turing Machines as a Model of Interactive Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. in Goldin et al. (Eds.): Interactive Computation: The New Paradigm. Springer-Verlag (2006).

¹⁰https://www.humanbrainproject.eu ¹¹http://braininitiative.nih.gov/

- More research on SNP modules:
 - Other finite and infinite automata⁷
 - A possibility for "going beyond Turing"?
 - Interactive computations: Persistent Turing Machines⁸, interactive components⁹
 - Applications?
 - Human Brain Project¹⁰ (EU), The Brain Initiative¹¹ (USA)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

 $^7 {\rm Freund, R., Oswald, M.:}$ Regular $\omega{\rm -languages}$ defined by finite extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

⁸Goldin, D.: Persistent Turing Machines as a Model of Interactive Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

⁹van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. in Goldin et al. (Eds.): Interactive Computation: The New Paradigm. Springer-Verlag (2006).

¹⁰https://www.humanbrainproject.eu/ ¹¹http://braininitiative.nih.gov/

End!

Thank you for your attention!

