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Quick recall

A deterministic finite automaton (in short, a DFA) D, is
defined by the 5-tuple D = (@, X, ¢1, 0, F'), where:
e Q={q,-..,qn} is a finite set of states,
¥ ={b1,...,bn} is the input alphabet,
d:Q x X — (@ is the transition function,

q1 € @ is the initial state,
F C Q is a set of final states.
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A deterministic finite state transducer (in short, a DFST) with
accepting states T, is defined by the 6-tuple
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Quick recall

A deterministic finite automaton with output (in short, a
DFAQO) M, is defined by the 6-tuple M = (Q, %, 8", q1, A, 7),
where:

e Q={q,-..,qn} is a finite set of states,
Y ={b1,...,bn} is the input alphabet,
e 0/ :(Q x X — Q is the transition function,

e g1 € ( is the initial state,
e A={cy,...,ct} is the output alphabet,
e 7: () — A is the output function.

A given DFAO M defines a function from X* to A, denoted as
fvu(w) =7(8"(q1,w)) for w € ¥*. If ¥ = {1, ..., k}, denoted as
Yk, then M is a k-DFAO.

A sequence, denoted as a = (an)n>0, is k-automatic if there
exists a k-DFAO, M, such that given w € ¥}, a, = 7(8"(¢q1, w)),
where [w]r = n, [w]x = n is the base-k representation of n.€ N.



Quick recall

A spiking neural P system (in short, an SNP system) of degree
m > 1, is a construct of the form
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A spiking neural P module (in short, an SNP module) of degree
m > 1, is a construct of the form II = ({a}, o1, ..., om,
syn, Nin, Noyt) where

{a} is the singleton alphabet (a is called spike);
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where:

e n; > 0 is the initial number of spikes inside o;;

e R; is a finite set of rules of the general form: F/a® — a?,
where F is a regular expression over {a}, ¢ > 1, and p > 0,
with ¢ > p; if p =0, then L(E) = {a°}

syn C{1,...,m} x {1,...,m}, with (¢,7) ¢ syn for

1 <i <m (synapses);

Nin, Nowt(C {1,2,...,m}) indicate the sets of input and
output neurons, respectively.
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Previous DFA and DFST simulations

Let D = (Q,%,0,q1, F) be a DFA, where ¥ = {b1,...,bn},
Q =1{q1,..-,9,}. An SNP Module IIp simulating D is as
follows:

IIp = ({a}, 01, 02,03, syn, {3}, {3}),
where
e 01 =09 = (n,{a"” — a"}),
o o3 = (n, {a® T [a?THETT 5 aT|6(gs, br) = g¢5}),
e syn ={(1,2),(2,1),(1,3)}.



Previous DFA and DFST simulations

Let T = (Q,%,A,d,q1, F) be a DFST, where X = {by,..., b},
A={cy,....,a}, Q=A{q1,...,q.}. We construct the following
SNP module simulating 7":

Hr = ({a}, 01, 02,03, syn, {3}, {3}),

where:
e g =09 = (n, {a” — a"}),
o g5 = (n7 {a2n+i+k+t/a2n+i+k+tfj — an+s’5/(qi7 bk) _
(gj,¢s)}),
® SYyn = {(17 2)7 (2’ 1)’ (17 3)}



An example

Using the previous construction for simulating DFA®
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e Some results:

SNP module IT/.

e Any regular language L can be expressed as L = L(Il’,) for
some l-neuron SNP module IT/,.
e Any finite transducer 7' can be simulated by some 1-neuron

DA
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In this work

Given a DFA D, we construct an SNP module IT’, simulating D
as follows:

p = ({a}, 01, syn, {1}, {1}),
where
o o1 = (1, {aFCrHDF g = 616 (i, bi) = g5)),
o syn = ().
For a given DFST T', we construct an SNP module IT/,
simulating T as follows:

Iy = ({a}, 01, syn, {1}, {1}),

where
o oy = (1’ {ak(2n+1)+i+t/ak(2n+l)+i+t—j N an—i—s‘(s/(qi’ bkz) _

(Qj,Cs)}),
o syn = ().
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In this work

e For some finite string w = ajas ... ay, let

w? = apan_1...aza; (we read w in reverse)

e Some additional results:

e Any k-DFAO M can be simulated by some 2-neuron SNP
module II;.

e Any k-automatic sequence a = (a,)n>0 can be generated by
some 2-neuron SNP module II.

e Let a = (an)n>0 be a k-automatic sequence. Then, there is
some 2-neuron SNP module II where II(w$) = a,, w € 3},
[w]r = n, and n > 0.



In this work

For a given k-DFAO M = (Q, >, A, 6", q1,7), we have
1<i,j<n,1<s<t, and 1 <k <m. Construction of an SNP
module IT,; simulating M, is as follows:

II= ({a}v 01,02, SYn, {1}7 {2})7
where
® 01 = (17R1)7U2 = (OaRQ)a
e Ry = {ak(2n+1)+i+t/ak(2n+1)+i+t—j N a”+s|5”(q¢,bk) —

5, 7(q5) = cs}
Uf{am@nt)tnttti _y gm@nt)tnti+i|] < j < p},

o Ry ={a""® = \7(q;) = ¢s} U {amCntDintt+i
anJrS’T(Qi) = Cs}a
e syn ={(1,2)}.
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An example.

start —

1 a
7 as/a7 —adry: a14/a13 — a®

ra s a/alt 5 at pg: al® - glb
r3:a’/a” — a* rg:a'® —a
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Thank you for your attention!
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