Notes on Spiking Neural P Systems and Finite
Automata

Francis George Carreon-Cabarle!, Henry N. Adornal,

Mario J. Pérez-Jiménez?2

!Department of Computer Science,
University of the Philippines Diliman
Quezon city, 1101, Philippines;
2Department of Computer Science and Al
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
fccabarle@Qup.edu.ph, hnadorna@dcs.upd.edu.ph, marperQus.es

02 to 06 Feb 2015

13th Brainstorming Week on Membrane Computing
Seville, Spain

mailto:fccabarle@up.edu.ph
mailto:hnadorna@dcs.upd.edu.ph
mailto:marper@us.es

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;
e Generators have output neuron only;

SNP systems preliminaries

Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

Ezxtended rules: neuron can emit more than one spike each
step;

Generators have output neuron only;

Acceptors have input neuron only;

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;

e Generators have output neuron only;

e Acceptors have input neuron only;

e SNP transducers: standard and forgetting rules, one input
and one output neuron’

'Piun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;

e Generators have output neuron only;

e Acceptors have input neuron only;

e SNP transducers: standard and forgetting rules, one input
and one output neuron’

e At most one spike can enter or leave the system

'Piun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;

e Generators have output neuron only;

e Acceptors have input neuron only;

e SNP transducers: standard and forgetting rules, one input
and one output neuron’

e At most one spike can enter or leave the system

o SNP modules: extended rules, one or more input neurons
and output neurons>

Piun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

SNP systems preliminaries

e Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

e Fzxtended rules: neuron can emit more than one spike each
step;

e Generators have output neuron only;

e Acceptors have input neuron only;

e SNP transducers: standard and forgetting rules, one input
and one output neuron’

e At most one spike can enter or leave the system

o SNP modules: extended rules, one or more input neurons
and output neurons>

e More than one spike can enter or leave the system

Piun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In this work

e Continue SNP modules investigation:

In this work

e Continue SNP modules investigation:

e Amend construction problem in simulating deterministic
finite automata and deterministic finite transducer;3

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In this work

e Continue SNP modules investigation:
e Amend construction problem in simulating deterministic
finite automata and deterministic finite transducer;3
e Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In this work

e Continue SNP modules investigation:
e Amend construction problem in simulating deterministic
finite automata and deterministic finite transducer;3
e Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;
e Extend our construction to simulate DFA with output;

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In this work

e Continue SNP modules investigation:
e Amend construction problem in simulating deterministic
finite automata and deterministic finite transducer;3
e Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;
e Extend our construction to simulate DFA with output;
e Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Quick recall

A deterministic finite automaton (in short, a DFA) D, is
defined by the 5-tuple D = (@, X, ¢1, 0, F'), where:
e Q={q,-..,qn} is a finite set of states,
¥ ={b1,...,bn} is the input alphabet,
d:Q x X — (@ is the transition function,

q1 € @ is the initial state,
F C Q is a set of final states.

Quick recall

A deterministic finite state transducer (in short, a DFST) with
accepting states T, is defined by the 6-tuple
T=(Q,%,A,q,d,F), where:
e Q@ =1{q1,-..,qn} is a finite set of states,
Y ={b1,...,by} is the input alphabet,
A ={c1,...,¢} is the output alphabet,
0 Q x ¥ — @ x A is the transition function,
q1 € Q is the initial state,
F C Q is a set of final states.

Quick recall

A deterministic finite automaton with output (in short, a
DFAQO) M, is defined by the 6-tuple M = (Q, %, 8", q1, A, 7),
where:

e Q={q,-..,qn} is a finite set of states,
Y ={b1,...,bn} is the input alphabet,
e 0/ :(Q x X — Q is the transition function,

e g1 € (is the initial state,
e A={cy,...,ct} is the output alphabet,
e 7: () — A is the output function.

A given DFAO M defines a function from X* to A, denoted as
fvu(w) =7(8"(q1,w)) for w € ¥*. If ¥ = {1, ..., k}, denoted as
Yk, then M is a k-DFAO.

A sequence, denoted as a = (an)n>0, is k-automatic if there
exists a k-DFAO, M, such that given w € ¥}, a, = 7(8"(¢q1, w)),
where [w]r = n, [w]x = n is the base-k representation of n.€ N.

Quick recall

A spiking neural P system (in short, an SNP system) of degree
m > 1, is a construct of the form

Il = ({a},o1,...,0m,syn,in,out) where:
e {a} is the singleton alphabet (a is called spike);
® 01,...,0, are neurons of the form o; = (n;, R;),1 <i <m,
where:

e n; > 0 is the initial number of spikes inside o;;
e R; is a finite set of rules of the general form: E/a® — a?;d,
where FE is a regular expression over {a}, ¢ > 1, with
p,d >0, and ¢ > p; if p=0, then d = 0 and L(F) = {a};
e syn C{1,...,m} x{1,...,m}, with (i,7) ¢ syn for
1 <i <m (synapses);
e in,out € {1,...,m} indicate the input and output neurons,
respectively.

Quick recall

A spiking neural P module (in short, an SNP module) of degree
m > 1, is a construct of the form II = ({a}, o1, ..., om,
syn, Nin, Noyt) where

{a} is the singleton alphabet (a is called spike);
O1,...,0m are neurons of the form o; = (n;, R;), 1 <1i < m,
where:

e n; > 0 is the initial number of spikes inside o;;

e R; is a finite set of rules of the general form: F/a® — a?,
where F is a regular expression over {a}, ¢ > 1, and p > 0,
with ¢ > p; if p =0, then L(E) = {a°}

syn C{1,...,m} x {1,...,m}, with (¢,7) ¢ syn for

1 <i <m (synapses);

Nin, Nowt(C {1,2,...,m}) indicate the sets of input and
output neurons, respectively.

Previous DFA and DFST simulations

e For some SNP module IIp simulating finite automata D,
L(HD) = {w S E*|HD(U)) S Q*F},

Previous DFA and DFST simulations

e For some SNP module IIp simulating finite automata D,
L(HD) = {w S E*|HD(U)) S Q*F}7

e Some previous results:*

“Tbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Previous DFA and DFST simulations

e For some SNP module IIp simulating finite automata D,
L(Ilp) =A{w € ¥*[lIp(w) € Q" F};
e Some previous results:*

e Any regular language L can be expressed as L = L(Ilp) for
some SNP module IIp.

“Tbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Previous DFA and DFST simulations

e For some SNP module IIp simulating finite automata D,
L(Ilp) =A{w € ¥*[lIp(w) € Q" F};
e Some previous results:*

e Any regular language L can be expressed as L = L(Ilp) for
some SNP module IIp.

e Any finite transducer T' can be simulated by some SNP
module IIp.

“Tbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Previous DFA and DFST simulations

Let D = (Q,%,0,q1, F) be a DFA, where ¥ = {b1,...,bn},
Q =1{q1,..-,9,}. An SNP Module IIp simulating D is as
follows:

IIp = ({a}, 01, 02,03, syn, {3}, {3}),
where
e 01 =09 = (n,{a"” — a"}),
o o3 = (n, {a® T [a?THETT 5 aT|6(gs, br) = g¢5}),
e syn ={(1,2),(2,1),(1,3)}.

Previous DFA and DFST simulations

Let T = (Q,%,A,d,q1, F) be a DFST, where X = {by,..., b},
A={cy,....,a}, Q=A{q1,...,q.}. We construct the following
SNP module simulating 7":

Hr = ({a}, 01, 02,03, syn, {3}, {3}),

where:
e g =09 = (n, {a” — a"}),
o g5 = (n7 {a2n+i+k+t/a2n+i+k+tfj — an+s’5/(qi7 bk) _
(gj,¢s)}),
® SYyn = {(17 2)7 (2’ 1)’ (17 3)}

An example

Using the previous construction for simulating DFA®

STbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

e Some results:

SNP module IT/.

e Any regular language L can be expressed as L = L(Il’,) for
some l-neuron SNP module IT/,.
e Any finite transducer 7' can be simulated by some 1-neuron

DA

In this work

e Some results:

e Any regular language L can be expressed as L = L(II}) for
some 1-neuron SNP module IT/,.

In this work

e Some results:
e Any regular language L can be expressed as L = L(II}) for
some 1-neuron SNP module IT/,.

e Any finite transducer T can be simulated by some 1-neuron
SNP module IT7..

In this work

Given a DFA D, we construct an SNP module IT’, simulating D
as follows:

p = ({a}, 01, syn, {1}, {1}),
where
o o1 = (1, {aFCrHDF g = 616 (i, bi) = g5)),
o syn = ().
For a given DFST T', we construct an SNP module IT/,
simulating T as follows:

Iy = ({a}, 01, syn, {1}, {1}),

where
o oy = (1’ {ak(2n+1)+i+t/ak(2n+l)+i+t—j N an—i—s‘(s/(qi’ bkz) _

(Qj,Cs)}),
o syn = ().

In this work

e For some finite string w = ajas ... ay, let

w? = apan_1...aza; (we read w in reverse)

In this work

e For some finite string w = ajas ... ay, let

w? = apan_1...aza; (we read w in reverse)

e Some additional results:

In this work

e For some finite string w = ajas ... ay, let
w? = apan_1...aza; (we read w in reverse)
e Some additional results:
e Any k-DFAO M can be simulated by some 2-neuron SNP

module II;.

In this work

e For some finite string w = ajas ... ay, let

w? = apan_1...aza; (we read w in reverse)

e Some additional results:
e Any k-DFAO M can be simulated by some 2-neuron SNP
module II;.
e Any k-automatic sequence a = (a,)n>0 can be generated by
some 2-neuron SNP module II.

In this work

e For some finite string w = ajas ... ay, let

w? = apan_1...aza; (we read w in reverse)

e Some additional results:

e Any k-DFAO M can be simulated by some 2-neuron SNP
module II;.

e Any k-automatic sequence a = (a,)n>0 can be generated by
some 2-neuron SNP module II.

e Let a = (an)n>0 be a k-automatic sequence. Then, there is
some 2-neuron SNP module II where II(w$) = a,, w € 3},
[w]r = n, and n > 0.

In this work

For a given k-DFAO M = (Q, >, A, 6", q1,7), we have
1<i,j<n,1<s<t, and 1 <k <m. Construction of an SNP
module IT,; simulating M, is as follows:

II= ({a}v 01,02, SYn, {1}7 {2})7
where
® 01 = (17R1)7U2 = (OaRQ)a
e Ry = {ak(2n+1)+i+t/ak(2n+1)+i+t—j N a”+s|5”(q¢,bk) —

5, 7(q5) = cs}
Uf{am@nt)tnttti _y gm@nt)tnti+i|] < j < p},

o Ry ={a""® = \7(q;) = ¢s} U {amCntDintt+i
anJrS’T(Qi) = Cs}a
e syn ={(1,2)}.

In this work

An example.

start —

1 a
7 as/a7 —adry: a14/a13 — a®

ra s a/alt 5 at pg: al® - glb
r3:a’/a” — a* rg:a'® —a

In summary

e We continued SNP modules investigation:

In summary

e We continued SNP modules investigation:

e Amend construction problem in simulating DFA and
DFST:;6

STbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In summary

e We continued SNP modules investigation:
e Amend construction problem in simulating DFA and
DFST:;6
e Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

STbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In summary

e We continued SNP modules investigation:
e Amend construction problem in simulating DFA and
DFST:;6
e Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;
e Extended our construction to simulate DFAO;

STbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

In summary

e We continued SNP modules investigation:
e Amend construction problem in simulating DFA and
DFST:;6
e Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;
e Extended our construction to simulate DFAO;
e Generating automatic sequences

STbarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)

Final remarks

e More research on SNP modules:

Final remarks

e More research on SNP modules:
e Other finite and infinite automata’

"Freund, R., Oswald, M.: Regular w-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

Final remarks

e More research on SNP modules:

e Other finite and infinite automata’
o A possibility for “going beyond Turing”?

"Freund, R., Oswald, M.: Regular w-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

Final remarks

e More research on SNP modules:
e Other finite and infinite automata’
o A possibility for “going beyond Turing”?
e Interactive computations: Persistent Turing Machines®,
interactive components®

"Freund, R., Oswald, M.: Regular w-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIlKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

Final remarks

e More research on SNP modules:
e Other finite and infinite automata’
o A possibility for “going beyond Turing”?
e Interactive computations: Persistent Turing Machines®,
interactive components®
o Applications?

"Freund, R., Oswald, M.: Regular w-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIlKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

Final remarks

e More research on SNP modules:
e Other finite and infinite automata’
o A possibility for “going beyond Turing”?
e Interactive computations: Persistent Turing Machines®,
interactive components®
o Applications?
e Human Brain Project'® (EU), The Brain Initiative'! (USA)

"Freund, R., Oswald, M.: Regular w-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIlKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

Ohttps: //www.humanbrainproject.eu/
"http://braininitiative.nih.gov/

Thank you for your attention!

«O>» «Fr «=>»

4

nae

