
Notes on Spiking Neural P Systems and Finite
Automata

Francis George Carreon-Cabarle1, Henry N. Adorna1,
Mario J. Pérez-Jiménez2

1Department of Computer Science,
University of the Philippines Diliman

Quezon city, 1101, Philippines;
2Department of Computer Science and AI

University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es

02 to 06 Feb 2015

13th Brainstorming Week on Membrane Computing
Seville, Spain

mailto:fccabarle@up.edu.ph
mailto:hnadorna@dcs.upd.edu.ph
mailto:marper@us.es


SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



SNP systems preliminaries

• Standard rules: neuron emits at most one pulse (the spike,
represented by symbol a) each step;

• Extended rules: neuron can emit more than one spike each
step;

• Generators have output neuron only;

• Acceptors have input neuron only;

• SNP transducers: standard and forgetting rules, one input
and one output neuron1

• At most one spike can enter or leave the system

• SNP modules: extended rules, one or more input neurons
and output neurons2

• More than one spike can enter or leave the system

1Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms
by Spiking Neural P Systems. IJCFS. vol. 8(6) pp. 1371-1382 (2007)

2Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Continue SNP modules investigation:
• Amend construction problem in simulating deterministic

finite automata and deterministic finite transducer;3

• Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extend our construction to simulate DFA with output;
• Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Continue SNP modules investigation:
• Amend construction problem in simulating deterministic

finite automata and deterministic finite transducer;3

• Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extend our construction to simulate DFA with output;
• Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Continue SNP modules investigation:
• Amend construction problem in simulating deterministic

finite automata and deterministic finite transducer;3

• Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extend our construction to simulate DFA with output;
• Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Continue SNP modules investigation:
• Amend construction problem in simulating deterministic

finite automata and deterministic finite transducer;3

• Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extend our construction to simulate DFA with output;
• Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Continue SNP modules investigation:
• Amend construction problem in simulating deterministic

finite automata and deterministic finite transducer;3

• Reduce number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extend our construction to simulate DFA with output;
• Generating automatic sequences

3Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Quick recall

A deterministic finite automaton (in short, a DFA) D, is
defined by the 5-tuple D = (Q,Σ, q1, δ, F ), where:

• Q = {q1, . . . , qn} is a finite set of states,

• Σ = {b1, . . . , bm} is the input alphabet,

• δ : Q× Σ→ Q is the transition function,

• q1 ∈ Q is the initial state,

• F ⊆ Q is a set of final states.



Quick recall

A deterministic finite state transducer (in short, a DFST) with
accepting states T , is defined by the 6-tuple
T = (Q,Σ,∆, q1, δ

′, F ), where:

• Q = {q1, . . . , qn} is a finite set of states,

• Σ = {b1, . . . , bm} is the input alphabet,

• ∆ = {c1, . . . , ct} is the output alphabet,

• δ′ : Q× Σ→ Q×∆ is the transition function,

• q1 ∈ Q is the initial state,

• F ⊆ Q is a set of final states.



Quick recall
A deterministic finite automaton with output (in short, a
DFAO) M , is defined by the 6-tuple M = (Q,Σ, δ′′, q1,∆, τ),
where:

• Q = {q1, . . . , qn} is a finite set of states,

• Σ = {b1, . . . , bm} is the input alphabet,

• δ′′ : Q× Σ→ Q is the transition function,

• q1 ∈ Q is the initial state,

• ∆ = {c1, . . . , ct} is the output alphabet,

• τ : Q→ ∆ is the output function.

A given DFAO M defines a function from Σ∗ to ∆, denoted as
fM (w) = τ(δ′′(q1, w)) for w ∈ Σ∗. If Σ = {1, ..., k}, denoted as
Σk, then M is a k-DFAO.
A sequence, denoted as a = (an)n≥0, is k-automatic if there
exists a k-DFAO, M , such that given w ∈ Σ∗k, an = τ(δ′′(q1, w)),
where [w]k = n, [w]k = n is the base-k representation of n ∈ N.



Quick recall

A spiking neural P system (in short, an SNP system) of degree
m ≥ 1, is a construct of the form
Π = ({a}, σ1, . . . , σm, syn, in, out) where:

• {a} is the singleton alphabet (a is called spike);

• σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m,
where:

• ni ≥ 0 is the initial number of spikes inside σi;
• Ri is a finite set of rules of the general form: E/ac → ap; d,

where E is a regular expression over {a}, c ≥ 1, with
p, d ≥ 0, and c ≥ p; if p = 0, then d = 0 and L(E) = {ac};

• syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for
1 ≤ i ≤ m (synapses);

• in, out ∈ {1, . . . ,m} indicate the input and output neurons,
respectively.



Quick recall

A spiking neural P module (in short, an SNP module) of degree
m ≥ 1, is a construct of the form Π = ({a}, σ1, . . . , σm,
syn,Nin, Nout) where

• {a} is the singleton alphabet (a is called spike);

• σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m,
where:

• ni ≥ 0 is the initial number of spikes inside σi;
• Ri is a finite set of rules of the general form: E/ac → ap,

where E is a regular expression over {a}, c ≥ 1, and p ≥ 0,
with c ≥ p; if p = 0, then L(E) = {ac}

• syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for
1 ≤ i ≤ m (synapses);

• Nin, Nout(⊆ {1, 2, . . . ,m}) indicate the sets of input and
output neurons, respectively.



Previous DFA and DFST simulations

• For some SNP module ΠD simulating finite automata D,
L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F};

• Some previous results:4

• Any regular language L can be expressed as L = L(ΠD) for
some SNP module ΠD.

• Any finite transducer T can be simulated by some SNP
module ΠT .

4Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Previous DFA and DFST simulations

• For some SNP module ΠD simulating finite automata D,
L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F};

• Some previous results:4

• Any regular language L can be expressed as L = L(ΠD) for
some SNP module ΠD.

• Any finite transducer T can be simulated by some SNP
module ΠT .

4Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Previous DFA and DFST simulations

• For some SNP module ΠD simulating finite automata D,
L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F};

• Some previous results:4

• Any regular language L can be expressed as L = L(ΠD) for
some SNP module ΠD.

• Any finite transducer T can be simulated by some SNP
module ΠT .

4Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Previous DFA and DFST simulations

• For some SNP module ΠD simulating finite automata D,
L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F};

• Some previous results:4

• Any regular language L can be expressed as L = L(ΠD) for
some SNP module ΠD.

• Any finite transducer T can be simulated by some SNP
module ΠT .

4Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Previous DFA and DFST simulations

Let D = (Q,Σ, δ, q1, F ) be a DFA, where Σ = {b1, . . . , bm},
Q = {q1, . . . , qn}. An SNP Module ΠD simulating D is as
follows:

ΠD = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where

• σ1 = σ2 = (n, {an → an}),
• σ3 = (n, {a2n+i+k/a2n+i+k−j → aj |δ(qi, bk) = qj}),
• syn = {(1, 2), (2, 1), (1, 3)}.



Previous DFA and DFST simulations

Let T = (Q,Σ,∆, δ′, q1, F ) be a DFST, where Σ = {b1, . . . , bk},
∆ = {c1, . . . , ct}, Q = {q1, . . . , qn}. We construct the following
SNP module simulating T :

ΠT = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where:

• σ1 = σ2 = (n, {an → an}),
• σ3 = (n, {a2n+i+k+t/a2n+i+k+t−j → an+s|δ′(qi, bk) =

(qj , cs)}),
• syn = {(1, 2), (2, 1), (1, 3)}.



An example

Using the previous construction for simulating DFA5

q1start q2

1

2

1

2

�
�
�
�

�
�
�
�� -

?

1
a2

a2 → a2

2
a2

a2 → a2 '

&

$

%
��

3
a2

a6/a5 → a

a7/a5 → a2

a7/a6 → a

a8/a7 → a2

5Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In this work

• Some results:
• Any regular language L can be expressed as L = L(Π′D) for

some 1-neuron SNP module Π′D.
• Any finite transducer T can be simulated by some 1-neuron

SNP module Π′T .



In this work

• Some results:
• Any regular language L can be expressed as L = L(Π′D) for

some 1-neuron SNP module Π′D.
• Any finite transducer T can be simulated by some 1-neuron

SNP module Π′T .



In this work

• Some results:
• Any regular language L can be expressed as L = L(Π′D) for

some 1-neuron SNP module Π′D.
• Any finite transducer T can be simulated by some 1-neuron

SNP module Π′T .



In this work

Given a DFA D, we construct an SNP module Π′D simulating D
as follows:

Π′D = ({a}, σ1, syn, {1}, {1}),

where

• σ1 = (1, {ak(2n+1)+i/ak(2n+1)+i−j → aj |δ(qi, bk) = qj}),
• syn = ∅.

For a given DFST T , we construct an SNP module Π′T
simulating T as follows:

Π′T = ({a}, σ1, syn, {1}, {1}),

where

• σ1 = (1, {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′(qi, bk) =
(qj , cs)}),

• syn = ∅.



In this work

• For some finite string w = a1a2 . . . an, let
wR = anan−1 . . . a2a1 (we read w in reverse)

• Some additional results:
• Any k-DFAO M can be simulated by some 2-neuron SNP

module ΠM .
• Any k-automatic sequence a = (an)n≥0 can be generated by

some 2-neuron SNP module Π.
• Let a = (an)n≥0 be a k-automatic sequence. Then, there is

some 2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k,
[w]k = n, and n ≥ 0.



In this work

• For some finite string w = a1a2 . . . an, let
wR = anan−1 . . . a2a1 (we read w in reverse)

• Some additional results:
• Any k-DFAO M can be simulated by some 2-neuron SNP

module ΠM .
• Any k-automatic sequence a = (an)n≥0 can be generated by

some 2-neuron SNP module Π.
• Let a = (an)n≥0 be a k-automatic sequence. Then, there is

some 2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k,
[w]k = n, and n ≥ 0.



In this work

• For some finite string w = a1a2 . . . an, let
wR = anan−1 . . . a2a1 (we read w in reverse)

• Some additional results:
• Any k-DFAO M can be simulated by some 2-neuron SNP

module ΠM .
• Any k-automatic sequence a = (an)n≥0 can be generated by

some 2-neuron SNP module Π.
• Let a = (an)n≥0 be a k-automatic sequence. Then, there is

some 2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k,
[w]k = n, and n ≥ 0.



In this work

• For some finite string w = a1a2 . . . an, let
wR = anan−1 . . . a2a1 (we read w in reverse)

• Some additional results:
• Any k-DFAO M can be simulated by some 2-neuron SNP

module ΠM .
• Any k-automatic sequence a = (an)n≥0 can be generated by

some 2-neuron SNP module Π.
• Let a = (an)n≥0 be a k-automatic sequence. Then, there is

some 2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k,
[w]k = n, and n ≥ 0.



In this work

• For some finite string w = a1a2 . . . an, let
wR = anan−1 . . . a2a1 (we read w in reverse)

• Some additional results:
• Any k-DFAO M can be simulated by some 2-neuron SNP

module ΠM .
• Any k-automatic sequence a = (an)n≥0 can be generated by

some 2-neuron SNP module Π.
• Let a = (an)n≥0 be a k-automatic sequence. Then, there is

some 2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k,
[w]k = n, and n ≥ 0.



In this work

For a given k-DFAO M = (Q,Σ,∆, δ′′, q1, τ), we have
1 ≤ i, j ≤ n, 1 ≤ s ≤ t, and 1 ≤ k ≤ m. Construction of an SNP
module ΠM simulating M , is as follows:

Π = ({a}, σ1, σ2, syn, {1}, {2}),

where

• σ1 = (1, R1), σ2 = (0, R2),

• R1 = {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′′(qi, bk) =
qj , τ(qj) = cs}
∪{am(2n+1)+n+t+i → am(2n+1)+n+t+i|1 ≤ i ≤ n},

• R2 = {an+s → λ|τ(qi) = cs} ∪ {am(2n+1)+n+t+i →
an+s|τ(qi) = cs},

• syn = {(1, 2)}.



In this work

An example.

q1/0start q2/1

0

1

1

0

'

&

$

%

'

&

$

%
- - -

1 a
r1 : a8/a7 → a3

r2 : a13/a11 → a4

r3 : a9/a7 → a4

r4 : a14/a13 → a3

r5 : a15 → a15

r6 : a16 → a16

2 r7 : a3 → λ
r8 : a4 → λ
r9 : a15 → a3

r10 : a16 → a4



In summary

• We continued SNP modules investigation:
• Amend construction problem in simulating DFA and

DFST;6

• Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extended our construction to simulate DFAO;
• Generating automatic sequences

6Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In summary

• We continued SNP modules investigation:
• Amend construction problem in simulating DFA and

DFST;6

• Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extended our construction to simulate DFAO;
• Generating automatic sequences

6Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In summary

• We continued SNP modules investigation:
• Amend construction problem in simulating DFA and

DFST;6

• Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extended our construction to simulate DFAO;
• Generating automatic sequences

6Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In summary

• We continued SNP modules investigation:
• Amend construction problem in simulating DFA and

DFST;6

• Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extended our construction to simulate DFAO;
• Generating automatic sequences

6Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



In summary

• We continued SNP modules investigation:
• Amend construction problem in simulating DFA and

DFST;6

• Reduced number of neurons in simulation: from 3 neurons
down to 1 neuron;

• Extended our construction to simulate DFAO;
• Generating automatic sequences

6Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P
systems. Natural Computing, vol. 9, pp. 475-491 (2010)



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



Final remarks

• More research on SNP modules:
• Other finite and infinite automata7

• A possibility for “going beyond Turing”?

• Interactive computations: Persistent Turing Machines8,
interactive components9

• Applications?

• Human Brain Project10 (EU), The Brain Initiative11 (USA)

7Freund, R., Oswald, M.: Regular ω-languages defined by finite
extended spiking neural P systems. Fundamenta Informaticae, vol. 81(1-2),
pp. 65-73 (2008)

8Goldin, D.: Persistent Turing Machines as a Model of Interactive
Computation. FoIKS 2000, LNCS 1762, pp. 116 - 135.

9van Leeuwen, J., Wiedermann, J.: A Theory of Interactive
Computation. in Goldin et al. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006).

10https://www.humanbrainproject.eu/
11http://braininitiative.nih.gov/



End!

Thank you for your attention!


