

Identifiable Transitions in

P Systems

Marian Gheorghe¹, Florentin Ipate²

¹University of Bradford, UK ² University of Bucharest, Romania

Problem & Context

Identifiable transitions (informal): any two distinct transitions emerging from the same state should produce distinct results;

- **Context:** In testing based on Mealy machines or X-machines a similar concept is utilised.
- **Rationale:** need to identify 'good' properties of a model (P system) similar to causality (N Busi, G Ciobanu), reverse computation (G Ciobanu) or formal verification of kP systems or stochastic systems.

Membrane Computing with One Compartment

A membrane system (or P system) is

 $P = (V, T, \mu, w_1, R_1, 1)$

Identifiable rules: $r_1: x_1 \to y_1$ and $r_2: x_1 \to y_2$ identifiable iff whenever applied to a configuration they lead to distinct results.

Example: $r_1: ab \to a'$ and $r_2: bc \to b'$ applied to abc produces a'c and ab', respectively. Hence, identifiable rules.

Why are these 'good' properties ?

New properties for P systems.

Provides suitable features for P systems when these are used as testing models – direct links with X-machines.

Some Results

- **Theorem 1.** Any $r_1: x_1 \to y_1$ and $r_2: x_2 \to y_2$ are not identifiable iff $r_1: uv_1 \to w_1$ and $r_2: uv_2 \to wv_2$ and v_1, v_2 are disjoint.
- **Theorem 2.** The multisets of rules $M_1 = M'_1 \cup M, M_2 = M'_2 \cup M$, such that $M'_1 \cap M'_2 = \emptyset$, are identifiable iff $r_{M'_1} : uv_1 \to wy_1$ and $r_{M'_2} : uv_2 \to wy_2$ such that $v_1 \neq y_1$ or $v_2 \neq y_2$.
- **Theorem 3.** If $r_1 : x_1 \to y_1$ and $r_2 : x_2 \to y_2$ are identifiable then $r_1^n, r_2^n, n \ge 1$ are identifiable.
- **Theorem 4.** For any P system working in maximal parallel or sequential modes there is a P system working in the same mode with any two multisets of rules identifiable.

Multi-compartment P systems + new features.

Power of these systems.

New and better properties.

Thanks!

Questions?