
Membrane Systems and Their Relation to

the Chemical Programming Paradigm

Péter Battyányi and György Vaszil

Department of Computer Science, Faculty of Informatics

University of Debrecen

2015 February

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Outline

1 Membrane computing
2 Chemical programming
3 Results: transformation of a P-system into the chemical

calculus

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Outline

Former results: a transformation of cooperative P systems with
targetted rules without dissolution into the chemical calculus
(in: Describing Membrane Computations with a Chemical
Calculus, Fundamenta Informaticae (134), pp. 39-50)

Novelty: extension of the transformation to the case of
membrane dissolution, priority rules, catalisators, and
promoter/inhibitor sets for rules

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Membrane systems

Membrane computing is a biologically inspired distributed parallel
type model of computation.

Unconventional model:

Its operation is based on manipulation of multisets of objects
in compartments de�ned by the membrane structure.

Nature motivated model:

The unusual principle is inspired by some natural process or
phenomena occurring in nature.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The chemical calculus

A symbolic computation with terms, called molecules.

A multiset manipulation language: rewriting rules between
terms are called reactions.

Brownian motion justi�es the commutative, associative nature
of forming pairs of molecules. (Banâtre et al. 2005)

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example 1

Let S = {3, 5, 8, 10, 12}. Then

(replace (〈x〉, 〈y〉) by 〈y〉 if x ≤ y , 〈3〉, 〈5〉, 〈8〉, 〈10〉, 〈12〉)

�nds the maximum element of the set S .

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example 2

largestprime(6) =

let sieve = replace (〈x〉, 〈y〉) by 〈x〉 if x div y in

let max = replace (〈x〉, 〈y〉) by 〈y〉 if x ≤ y in

(〈〈2〉, 〈3〉, . . . , 〈6〉, sieve〉,
replace(〈x〉) by (x ,max) if true)

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example 2 contd.

〈〈2〉, 〈3〉, 〈4〉, 〈5〉, 〈6〉, replace (〈x〉, 〈y〉) by 〈x〉 if x div y)〉 →
〈〈2〉, 〈3〉, 〈5〉, 〈6〉, replace (〈x〉, 〈y〉) by 〈x〉 if x div y〉 →
〈〈2〉, 〈3〉, 〈5〉, replace (〈x〉, 〈y〉) by 〈x〉 if x div y〉

At this point the expression behind the last solution is inert, i.e.,
contains only solutions and abstractions (replace) in the outermost
places. Hence, it can be matched with 〈x〉 in
replace(〈x〉) by (x ,max) if true.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example 2 contd.

Finally,

(〈〈2〉, 〈3〉, 〈5〉, sieve〉, replace(〈x〉) by (x ,max) if true) →
(〈2〉, 〈3〉, 〈5〉, sieve,max) →∗

(〈5〉, sieve,max)

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Basic notions of the chemical calculus 1

More formally,

M := x

| γ(P)[C].M

| (M1,M2)

| 〈M〉
P := x

| (P1,P2)

| 〈P〉

M is called a molecule and P is called a pattern, C is a Boolean
expression. The term 〈M〉 is a solution.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Basic notions of the chemical calculus 2

A redex is a molecule of the form (γ(P)[C].M,N). The reduction
rule is

γ(P)[C].M,N → φM, (γ)

where match(P,N) = φ is the unifying substitution between P and
N and φ(C) evaluates to true. A variable uni�es with anything, a
pair is uni�ed with a pair, and a solution 〈P〉 is uni�ed with 〈N〉
provided N is inert, that is, a multiset of γ-abstractions and
solutions.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example

(γ(〈x〉, 〈y〉)[(x ≤ y)].〈y〉, 〈3〉, 〈4〉, 〈5〉)→ 〈4〉, 〈5〉,

or

(γ(〈x〉, 〈y〉)[(x ≤ y)].〈y〉, 〈3〉, 〈4〉, 〈5〉)→ 〈3〉, 〈5〉

depending on which pair in N we choose.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Basic notions of the chemical calculus 3

Instead of γ-abstractions, we use the replace operator with the rule

replace P with M if C ,

where

P is a pattern which matches the required terms

C is the reaction condition

M is the reaction result

replace is a shorthand, it can be expressed in the original calculus.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Basic notions of the chemical calculus 4

The derived reduction rule for replace is

replace P by M if C ,N → replace P by M if C , φ(M), (replace)

where the substitution φ is a matching between P and N and φ(C)
evaluates to true.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Conclusion

Both models are

parallel, distributed,

nondeterministic

self-organizing systems.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The Gamma formalism

The Gamma formalism (Banâtre and Métayer, 1993.) is a chemical
model of computation.

The untyped version deals only with multisets as underlying
data structures.

A program is a set of pairs consisting of reactions and actions.

It is parallel and nondeterministic: designed to be free from
arti�cial sequentiality.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The Gamma formalism 2

A Gamma-program is an operator transforming multisets into
multisets. Let M be a multiset of elements, R1, . . . , Rk be
conditions, A1, . . . , Ak be actions. Then

Γ((R1,A1), . . . , (Rk ,Ak))(M) =


Γ(R1,A1), . . . , (Rk ,Ak))((M\(x1, . . .

. . . , xn)) ∪ Ai (x1, . . . , xn)),
if x1, . . . , xn ∈ M and Ri (x1, . . . , xn)
for some 1 ≤ i ≤ k ,
M otherwise.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The Gamma formalism 3

Example

The function computing the maximal element of a multiset of
elements looks like as follows:

maxset(M) = Γ(R,A)(M) where
R(x , y) = (x ≤ y)
A(x , y) = (y)

Or

Example

primes(N) = Γ(R,A)({2, . . . ,N}) where
R(x , y) = (y divides x)
A(x , y) = (y)

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The Gamma formalism 4

We can grab examples of Gamma-programs from various �elds of
mathematics: let the predicate vertices(v) be true i� v is a set of
vertices, moreover, let singleton(w) check whether w is a singleton.
Then

Example

connected(G) = singleton(Γ((R1,A1), (R2,A2))(G)) where
R1(w , v , (m, n)) = vertices(v) and vertices(w)
and m ∈ w and n ∈ v
A1(w , v , (m, n)) = {v + w}
R2(v , (m, n)) = vertices(v) and
m ∈ v and n ∈ v
A2(v , (m, n)) = {v},

where v + w is the operation of multiset union. The program
connected takes at most |E | steps, where E is the set of edges of
the graph.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The Gamma formalism 5

Example

The dining philosophers problem:

philosopher(P) = Γ((R1,A1), (R2,A2))(P) where
R1(fi , fj) = (fj = fi + 1 mod n)
A1(fi , fj) = phili
R2(phili) = true
A2(phili) = (fi , fi+1).

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming

Let Π = (O, µ,w1, . . . ,wn,R1, . . . ,Rn) be a P system,
possibly with promoter/inhibitor sets for rules and priority
relations (ρ1, . . . , ρn) (ρi ⊂ Ri × Ri). Assume

O = {a1, . . . , ak}

and
O = {a1, . . . , ak}

are co-objects for O.
A con�guration of Π is (µ, (w1, . . . ,wn), (d1, . . . , dn)), where
wi : O → N and di : {1, . . . , n} → {0, 1}. If we set
wi : O ∪O × {here, inj , out} → N, then we get an
intermediate con�guration.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Notation
1 [x , y] = (〈x〉, y)

2 [x1, . . . , xn, xn+1] = [[x1, . . . , xn], xn+1]

A description is a molecule of the form

Descr = [c11, . . . , c1k , . . . , cm1, . . . , cmk ,

c11, . . . , c1k , . . . , cn1, . . . , cnk ,

d1, . . . , dn],

where cij and c ij are natural numbers (1 ≤ i ≤ n, 1 ≤ j ≤ k) and
di ∈ {0, 1} (1 ≤ i ≤ n).

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Let C = (µ, (w1, . . . ,wn), (d1, . . . , dn)) be an (intermediate)
con�guration. The description corresponding to C is de�ned as
follows

Descr((w1, . . . ,wn), (d1, . . . , dn)) = [c11, . . . , c1k , . . . , cn1, . . . , cnk ,

c11, . . . , c1k , . . . , cn1, . . . , cnk ,

d1, . . . , dn],

where cij = wi (aj) and
c ij = wi (aj , here) +

∑
p 6=i wp(aj , ini) +

∑
µ(p)=i wp(aj , out) with

(1 ≤ i , p ≤ n) and (1 ≤ j ≤ k). Here µ(p) denotes the parent
membrane of mp. Intuitively, cij stands for the number of
occurrences of aj in mi , c ij denotes the number of aj in mi , while
di is 1 i� mi is dissolved or under dissolution.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example

An example P system:

Descr([[]2]1, (w1,w2), (d1, d2)) = [2, 0, 0, 0, 0, 0, 0, 0],

where only the value for c11, the number of occurrences of a in m1,
is non-zero.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

The state corresponding to an (intermediate) con�guration is a
molecule of the following form

State((w1, . . . ,wn), (d1, . . . , dn), (p11, . . . , pnkn)) =

Descr((w1, . . . ,wn), (d1, . . . , dn)) +

[p11, . . . , p1k1 , . . . , pn1, . . . , pnkn],

where pikj ∈ {0, 1} (1 ≤ i , j ≤ n) and + denotes the concatenation
of two ordered tuples. Intuitively, pikj describes the validity of rules:
rule rikj is valid i� pikj = 1.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Steps for the simulation

Checking rule validity.

Simulating a maximal parallel step by simulating rule
applications one by one.

Simulating membrane dissolving.

Removing co-objects and restoring the indicators for rule
validity.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

A pattern for a state is a tuple of the form

S = [xm1a1 , . . . , xm1ak , . . . , xmna1 , . . . , xmnak ,

xm1a1 , . . . , xm1ak , . . . , xmna1 , . . . , xmnak ,

xd1 , . . . , xdn , xr1k1 , . . . , xrnkn].

We simulate the intermediate computational steps in the P system
by transitions from one state to another in the chemical calculus.
The transition is governed by replace operators checking for the
actual states by matching them with patterns.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Firstly, we check rule applicability. Let r = u → v ∈ Ri . Then we
say that r is valid with respect to the con�guration
((w1, . . . ,wn), (d1, . . . , dn)) if the following conditions hold:

1 di = 0
2 (∀a ∈ O)(u(a) ≤ wi (a))

3 (∀a ∈ promr)(wi (a) ≥ 1)

4 (∀a ∈ inhibr)(wi (a) = 0)

5 (∀a ∈ O)(∀1 ≤ j ≤ n)(v(a, inj) ≥ 1 ⊃ dj = 0)

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Let r = u → v ∈ Ri , S be a state pattern. Then

Val(r) = replace [S , 0] by [S [xr/1], 0] if

(xdi = 0 ∧∧
1≤j≤k

(u(aj) ≤ xmi ,aj) ∧∧
1≤j≤k

(aj ∈ promr ⊃ xmiaj ≥ 1) ∧

∧
1≤j≤k

(aj ∈ inhibr ⊃ xmiaj = 0)
)
,

∧
1≤l≤k

∧
1≤j≤n

(v(al , inj) ≥ 1 ⊃ xdj = 0)),

where 0 is a value for synchronization, the role of which to be
speci�ed later. We say that rule rj ∈ Ri is applicable, if rij = 1.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example

In the previous example both rules in m1 are applicable, the pair
[1, 1] is appended to the description. From now on, the values for
rule validity do not change in the course of the simulation of a
maximal parallel step.
If in the example the �rst rule is applied, then the new
con�guration is

([[]2]1, ((a, (a, here), (b, in2), (c , in2), (c , in2)), ()), (0, 0)),

to which the following description is assigned:

[1, 0, 0, 1, 1, 2, 0, 0].

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example contd.

Now we can de�ne an operator which accounts for the transition of
states

[2, 0, 0, 0, 0, 0, 0, 0, 1, 1] → [1, 0, 0, 1, 1, 2, 0, 0, 1, 1]

Let S be a state pattern. Then

App(r11) = replace [S , 1] by

[S [x11/x11 − 1, x11/x11 + 1, x22/x22 + 1, x23/x23 + 2], 1] if(
xr11 = 1 ∧ (x11 ≥ 1)

)
.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

In general, let r = u → v ∈ Ri . Let S be a state pattern. The
molecule describing the e�ect of an execution of r can be de�ned
as follows:

App(r) = replace [S , 1] by [apply(S , r), 1] if(
xr = 1 ∧

∧
1≤j≤k

(u(aj) ≤ xmi ,aj).

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

apply(S , r)(xmsat) =

{
xmsat − u(at) if s = i ,
xmsat otherwise ,

apply(S , r)(xmsat) =


xmsat + v(at , here) if s = i ,
xmsat + v(at , inj) if s = j 6= i ,
xmsat + v(at , out) if s = µ(i),

apply(S , r)(xdj) =

{
1 if v(δ) = 1,
xdj otherwise ,

apply(S , r)(xr) = xr if r ∈ R.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

When the phase for the simulation of rule application halts, we can
turn to the translation of membrane dissolving. Membrane
dissolving, inj and out rules leave elements in membranes not
existing actually. We move these elements to the parent membranes
until an existing membrane is found.

Disi = replace [S , 2] by [disi (S), 2] if(
xdi = 1 ∧

(
∨

1≤j≤k
xmiaj ≥ 1 ∨

∨
1≤j≤k

xmiaj ≥ 1)
)
,

where

disi (S)(xmjal) =


xmjal + xmial if j = µ(i),
0 if j = i ,
xmjal otherwise.

Similarly for the expressions disi (S)(xmjal).
Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example

If we apply the rules c → bδ and a→ a �rst, then membrane 2
disappears. This is expressed in the following transition of states:

[03, (02, 1), (1, 02), 03, 03, 03, 0, 0, 0, 1, 1, 1]→
[03, 03, 03, 03, (0, 1, 0), (1, 0, 0), 0, 1, 0, 1, 1, 1]

Observe that xd2 = 1 in the last state, so we have to move b into
its parent membrane.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example contd.

After restoring the auxiliary tools for simulating a maximal parallel
step, we obtain the state

[(0, 1, 0), 03, (1, 0, 0), 03, 03, 03, 0, 1, 0, 0, 0, 0]

the last value 1 indicating that membrane 2 is missing. This
corresponds to the membrane system

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example contd.

Now rules a→ aδ and a→ a are applicable, the application of the
former followed by the dissolving steps leads to the following
reduction sequence:

[(0, 1, 0), 03, (1, 0, 0), 03, 03, 03, 0, 1, 0, 0, 1, 1]→
[(0, 1, 0), 03, 03, 03, 03, (1, 0, 0), 0, 1, 1, 0, 1, 1]→
[(0, 1, 0), 03, 03, 03, (1, 0, 0), 03, 0, 1, 1, 0, 1, 1]→
[(0, 1, 0), 03, 03, (1, 0, 0), 03, 03, 0, 1, 1, 0, 1, 1]

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Example contd.

The only task left is to remove the bars from top of the object
elements and to restore the indicators of rule applicabilities to their
initial values. Executing these steps we obtain

[(1, 1, 0), 03, 03, 03, 03, 03, 0, 1, 1, 0, 0, 0],

which yields the membrane system

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

We collect the operators necessary for accomplishing the
translation:

Val =
⋃
{Val(r) | r ∈ R},

App =
⋃
{App(r) | r ∈ R},

Dis =
⋃
{Disi | i ∈ {1, . . . , n}},

Rem =
⋃
{Remij | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}},

RemVal =
⋃
{RemVal(r) | r ∈ R},

Sync = replace 〈[S , xsync],Val ,App,Dis,Rem,RemVal〉 by
〈[S , xsync + 1 mod(5)],Val ,App,Dis,Rem,RemVal〉 if∨
1≤i≤n

xri = 1 ∨ xsync = 4,

where S is a state pattern.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Let nr be the number of elements of R. Then

M(C0) = (〈[State(C0, 0
nr), 0],Val ,App,Dis,Rem,RemVal〉,Sync)

is a molecule appropriate for the simulation of the computations in
the given P system in the following sense.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The main statement

1. Let Π0 = (O, µ,w1, . . . ,wn,R1, . . . ,Rn, (ρ1, . . . , ρn)) be a P
system of order n with membrane dissolving,
promoter/inhibitor sets for rules and priority relations. Assume

C0 = (w1, . . . ,wn)⇒∗ C1 = (w ′n1 , . . . ,w
′
ni

),

where 1 ≤ n1 ≤ . . . ≤ ni ≤ n. Let

w ′j =

{
wnl if j = nl for some 1 ≤ l ≤ i ,
0 otherwise.

Moreover, let d ′j = 1 i� j /∈ {n1, . . . , ni}. Set
C ′
1

= ((w ′
1
, . . . ,w ′n), (d ′

1
, . . . , d ′n)). Then

M(C0)→∗ M(C ′1).

If the computation starting from Π0 contains at least one step,
then reduction sequence starting from M(C0) is non-empty
either.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

The main statement contd.

2. Let Π0 and M(C0) be de�ned as above. Assume

M(C0)→∗ M1

such that M1 = M((w ′
1
, . . . ,w ′n), (d ′

1
, . . . , d ′n)), where d ′i = 1

implies w ′i = 0 and pjt = 0 1 ≤ t ≤ kj and 1 ≤ j ≤ n. Let
1 ≤ n1 ≤ . . . ≤ ni ≤ n be the indices of d ′j with d ′j = 0. Then
there exists a P system Π1 with membranes labelled
mn1 , . . . ,mni and con�guration (w ′n1 , . . . ,w

′
ni

) such that

C0 = (w1, . . . ,wn)⇒∗ C1 = (w ′n1 , . . . ,w
′
ni

).

Moreover, if the length of M(C0)→∗ M1 is at least one, then
the length of the computation starting from Π0 is non-zero.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Relating membrane systems to chemical programming contd.

Corollary

Let Π = (O, µ,w1, . . . ,wn,R1, . . . ,Rn, (ρ1, . . . , ρn)). Then Π is

strongly (resp. weakly) normalizing i� M(w1, . . . ,wn) is strongly

(resp. weakly) normalizing.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Open questions, future work

The reverse translation (from the Gamma formalism into the
membrane systems) is still under construction.

There are many formalism of chemical computation in the
literature. How they are related to each other?

How chemical computation is related to the original
λ-calculus? What kind of reduction strategies are obtained by
de�ning di�erent transformations?

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Bibliography

J.P. Banâtre, P. Fradet, Y. Radenac, Principles of chemical
computing. Electronic Notes in Theoretical Computer Science

124 (2005) 133�147.

J.P. Banâtre, D. Le Métayer, Programming by multiset
transformation. Communications of the ACM 36 (1993),
98�111.

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

Acknowledgements

The Hungarian Scienti�c Research Fund "OTKA" grant no.
K75952

The TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project,
co-�nanced by the European Social Fund

Péter Battyányi, György Vaszil Membrane Systems and Chemical Programming

