
Search Based Software Engineering in

Membrane Computing

work in progress

Marian Gheorghe1, Florentin Ipate2, Ana Ţurlea2

1 University of Bradford, UK

2 University of Bucharest, Romania

ana.turlea@fmi.unibuc.ro



Table of contents

1. Motivation

2. Search-Based Software Engineering

3. SBST approaches

4. Genetic Algorithms

5. Identifiable Kernel P-Systems

6. KPWorkbench

7. Proposed Approach

8. Conclusion and future work
1



Motivation



Motivation

Considering the following context:

• an Identifiable kP-system with one compartment;

• a set of N evolution steps: each step i contains a list of rules that

can be applied on the configuration obtained after step i − 1, using

some inputs.

XWe want to automatically generate the inputs nedeed
to trigger the given evolution steps.

2



Motivation

A common testing methodology

• automatic generation of inputs used to create given scenarios.

Software systems testing

• very important stage from the development process.

• high percent of the overall software development cost.

Manual testing

• expensive,

• time consuming,

• more likely to produce errors.

3



Motivation - P Systems Testing

Why Testing?

• Testing is finding out how well something works.

• Under certain conditions, one needs to ensure that the

implementation of a system conforms to its specification.

Why P system testing?

• Membrane computing: very fast growing field

• Rapid development of many tools and P system simulators

• This issue raises the problem of testing all these implementations of

P systems.

• The models are complex: non-deterministic, parallel, can have

polarizations (charges), transformation - communication rules,

membrane creation/division etc.

4



Motivation

X Automated testing applied to P-systems.

How we do this:

• genetic algorithms → generate the inputs.

• kPWorkbench tool → simulate the evolution of the kP-system.

Outcomes of the testing method

For a given kP-system and an evolution scenario → generate the

multisets that trigger the scenario.

5



Search-Based Software

Engineering



Search-Based Software Engineering (SBSE)

Software engineering problems → optimization problems + metaheuristic

search techniques (GAs, PSO, SA)

Applications: software testing, requirements engineering, quality

assessment, project planning, cost estimation and many others.

Search-Based Software Testing (SBST) Methodology

- is an automated search of a potentially large input space, guided by a

problem-specific fitness function

• Search space = ?

• Depending on the problem, the input parameters of the program.

Codification?

• Fitness function = ?

• The fitness function guides the search to the test goal

• It scores different inputs to the system according to the test goal

• Which search algorithms to use? Global, local, hybrid?

6



SBST approaches



SBST approaches

SBST 

Functional Testing

Structural Testing

SBST

Test cases generation

Test suite generation

SBST

Local Search

Global Search

Hybrid Search

SBST

Single-Objective

Multi-Objective

7



Genetic Algorithms



Genetic Algorithms

• class of evolutionary algorithms;

• use selection, recombination

(crossover) and mutation,

applied on a population of

potential solutions, called

chromosomes (or individuals) .

Initial population 
generation

Selection

Crossover

Mutation

Evaluation

OVER

DONE

8



Identifiable Kernel P-Systems



Kernel P Systems

Definition (Kernel P systems)

A kP system of degree n is a tuple kΠ = (A, µ,C1, . . . ,Cn, i0), where

• A is a finite set of elements called objects;

• µ = the membrane structure (a graph (V ,E ): V is a set of vertices

representing compartments and E is a set of edges - links between

compartments);

• Ci = (ti ,wi,0) = compartment: consisting of a compartment type,

ti ∈ T and an initial multiset, wi,0 over A; the type ti = (Ri , ρi )

consists of a set of evolution rules, Ri , and an execution strategy, ρi ;

• i0 is the output compartment where the result is obtained.

Definition

Two rules r1 : x1 → y1{g1} and r2 : x2 → y2{g2} from R1, are said to be

identifiable if there is a configuration c where they are applicable and if

c ⇒r1 c ′ and c ⇒r2 c ′ then b(r1) = b(r2).
9



KPWorkbench



KPWorkbench - A software framework for Kernel P systems

• Integrated software suite aimed

to provide tool support for

kP-systems.

• Provides tool for modelling,

simulating and verifying

kP-systems.

• Simulation traces → the

evolution of the system over

time

kP-Lingua model

kPWorkbench

Simulation Traces

10



Proposed Approach



Proposed Approach

The idea:

Input: an identifiable kP-system with one compartment and a set of

evolution steps (with list of rules)

Output: a list of multisets corresponding to each step, that will be

passed as input to trigger the scenario.

We need to automatically generate the multisets and to simulate the

system.

11



Proposed Approach - How to simulate the system?

Manually?

We can evolve step by step the system: At each step, having the previous

obtained configuration and adding a new multiset as input → apply rules

and obtain new configuration.

Automatically?

We can simulate the whole evolution of the system using kPWorkbench,

passing all inputs from the begining. The only problem remains how to

pass during the simulation the corresponding inputs to each step.

X Automatically

• create a new compartment type with rules that passes each input

multiset to the first compartment type;

12



Proposed Approach

Algorithm Steps:

• Preprocessing the kP-system (kpl file and other configuration files).

• Run the Genetic Algorithm using the following steps:

1. Initialize the population (Size N).

2. Evaluate objective functions.

3. Apply Crossover on pairs of parent chromosomes to create new

individuals.

4. Apply Mutation.

5. Evaluate objective functions simulating the system.

6. Combine parent and child populations.

7. Apply Selection.

8. If the stopping criteria is met, print the best individual and stop,

otherwise go to step 3 and repeat.

13



Preprocessing the kP-system

• kP-Lingua file;

• XML file:

• the list of Ns steps and for each step the list of rules;

• the input multisets domain: the symbols and a range for the number

of occurences for each symbol;

• the initial configuration of the system;

• Restrictions:

• one compartment

• only rewriting and communication rules

• identifiable transitions

• maximal parallelism strategy

14



Genetic Algorithm Configuration

• Input Symbols: Ns letters from {′a′..′z ′}
• Population: N = 50 chromosomes/individuals;

• Chromosome: a list of multisets c = (g1, g2, ..., gNs), gi , 1 ≤ i ≤ Ns

is the input corresponding to step i .

• Genes are represented as List of Strings gi = [n1a1, n2a2, . . . nNsaNs ].

• Genetic Operators:

• Selection - Best Solution Selector

• Mutation - replace random gi , replace random ni from random gj ,

switch values between random gi and gj .

• Crossover - one point crossover

15



The Objective Function

• generate the input type compartment;

• create the kpl file containing the input system, the new

compartment type and the link between them;

• run kPWorkbench;

• parse the output file: evolution traces;

• check if it contains the same steps as we needed and adapt the

formula: approach level + normalised branch level.

• approach level : records the number of steps that are not ok;

• branch distance: uses Tracey’s objective functions for relational

predicates (using the rules’ guards) - normalised in [0, 1)

16



Experiments

Steps executed:

1. rule 0

2. rule 0

3. rule 2

4. rule 3

5. rules 6, 6, 6

6. rule 9

17



Conclusion and future work



Conclusion and future work

Preliminary Results

• the algorithm finds very quickly a value very close to the solution;

• still working at the algorithm;

Conclusion

We extend the SBST methodologies to kP-Systems.

Future work:

• Finish the implementation → find the solution.

• Generalise the algorithm - remove the restrictions on the kP-system.

18



Thank you!

18


	Motivation
	Search-Based Software Engineering 
	SBST approaches
	Genetic Algorithms
	Identifiable Kernel P-Systems
	KPWorkbench
	Proposed Approach
	Conclusion and future work

