kPWorkbench: A software framework for
Kernel P systems

Laurentiu Marian Mierla 13th BWMC

QOutline

Kernel P systems
kPWorkbench
Case studies
Demo

Q&A

oA W

QOutline

Kernel P systems

1.
2.
3.
4
5

Kernel P systems

1. Membrane structure

™

2. Guarded rule execution

rl...-> ... {<al® = b?}
r2:..-> .. {=p°% =q}
(3. > .. {# a® < b)

3. Rewriting and
communication rules

rl: al® - b, ¢?, (d,t;)

r2: qu — (kr tl)l (aS’ tZ)
r3: x1% - 2

? rl
z r2
£ r3

4. Structural rules

— pl = p2 —> p3

QOutline

kPWorkbench

oA W

What is kPWorkbench?

Integrated software suite aimed to provide tool support for Kernel P systems
= Provides tool for modelling, simulating and verifying Kernel P systems

= Written in C#, using the .NET platform

= CLIfor easier integration with other tools or scripts

= GUI for easier end-user interaction in modelling, simulation and verification

KPWorkbench tool stack

Graphical User Interface

kP-Lingua Simulation Verification

Data Model Builder
_ FLAME- SPIN NuSMV
Syntactic Analyser Native based
Simulator Simulator
Core Infrastructure kP-Lingua Data Model kP-Queries Data Model D

Modeling in kPWorkbench

Intuitive and coherent modelling language — kP-Lingua

Uses ANTLR as a parser generator, providing the EBNF
grammar of the kP-Lingua DSL

AST traversal implemented using the Visitor design pattern

An internal model representation is generated and passed to
the different modules for analysis

} kP-Lingua model

]

]
Lexical and syntactic
analysis

NTLR

>
C

N

X BN AST
b >= 2b d

C

IV RiET } Internal model

POCOs representation

KP-Lingua constructs

type C1 {
2a, 3b -> c .
arbitrary {
>> 2c & > 2b : b, c -> a .
}
choice {
b -> 2b .
<3 : b ->3b.
}
max {
a -> a, a(c2), {a, 2b}(C3) .
}
2c -> - (C2) .
2b -> \- (C2) .
= 5a : a -> [3a, 3b](C1) [3b](C2) .

ml {2x, b} (C1) .
m2 {x} (C2) .

ml - m2 .

Compartment type definitions
Rewriting and communication rules
Rule guards

Membrane division

Link creation and destruction

Sequential, arbitrary, choice and maximal
parallelism execution strategies

Membrane instantiations

Link between compartments

Simulation

— kP-Lingua model
= Simulation traces permit explores the dynamics of the system B
and its evolution over time @
= Two simulation approaches: the Native Simulator and a kPWorkbench ¢ — % Settings
FLAME-based Simulator T o

I

= Native Simulator - implemented is C#, most suitable for small

to medium-size models
Simulation traces

FLAME-based simulator

= FLAME - A platform for agent-based modeling on parallel } kP-Lingua model

architectures

<l

= Big scalability degree and efficiency in simulating large scale kPWorkbmnggh - gﬁ } Settings
models

= Automated FLAME model generation from a kP-Lingua | = .
specification <f> i FLAME model files

SF FLAME

o7t Moceling braronmer

{

Simulation traces < | i. li {3 Agents init

kKP-lingua to FLAME mapping

kP-Lingua constructs FLAME constructs

Compartment type Agent definition, Communicating Stream X-Machine

kP system membrane Agent instance

Membrane multi-set Agent data

Membrane rules Agent data

Execution strategy States and transitions into the X-Machine, associated C functions
Communication rule Message passing

P system steps Synchronisation with message passing

Verification

} kP-Lingua model
Integrates two state of the art model checkers — SPIN and NuSMV

<

Automated translations from kP-Lingua models to the target b .
representations: Promela and SMV orkbench (1 } kP Queries

kP-Queries — property specification language based on natural

language statements / } Model translation

kP-Queries follow a certain set of property patterns @

kP-Queries permits the specification of the target logic (LTL and O/ *5
CTL) for each property pattern @
} Verification results

KP-lingua to SMV mapping

Compartment types Module definitions

kP system membranes Module instances

Membrane multi-sets Module variables

Rewriting rules next statements, transition relation of the FSM
Guards case branches associated to the next statements
Execution strategies Certain conditions associated to case branches
Communication rules next statements into the main module

P system steps Implicitly handled

KP-lingua to Promela mapping

Compartment types Data type definitions
kP system membranes Instances of data type definitions
Membrane multi-sets Values of an integer array, indexed by object IDs

Rewriting and communication rules ~ Subtraction/addition instruction sets
Execution strategies Multi-branch do — od and if — fi non-deterministic statements

P system steps A dedicated scheduler process

kKP-Queries

E::::éig;:::;ﬁ> 1tl propl { <> (c[@].x[a_] > © && state == step complete) }
1tl: eventually ml.a > O;
TT———— LTLSPEC F (ml.a > @)

NuSmy

ctl: m2.a = 1 followed-by m3.a = 1; ———> SPEC AG (m2.a =1 -> EF m3.a = 1)

NuSMV

m——

Next next p EXp

Existence eventually p F p EF p

Absence never p -(F p) -(EF p)

Universality always p Gp AG p

Recurrence infinitely-often p GFp AG EF p

Steady-state steady-state p FGp AF AG p

Until p until g pUg A UDQqg)

Response p followed-by q G(p—-Fq) AG (p — EF g)

Precedence p preceded-by g =(=p U (=p A q)) =(E (=p U (=p A Q)

QOutline

Case studies

oA W

Case studies

= Successfully used the methodologies in modelling, analysis and verification of well-known and
unconventional case studies

= [llustrated also on case studies from systems and synthetic biology

= Studied phenomena in genetic regulatory networks, molecular interactions — non-deterministic models
and qualitative analysis

= New case studies: Square numbers generation, Broadcasting with acknowledgement

Square numbers generation

type main { /* LTL Properties */
max { 1tl: always m.t <= 1;
=t: a -> {} . 1tl: steady-state (m.a = @ implies m.t = 1);
< t: a ->a, 2b, s . 1tl: never m.s = 15;
< t: a->a, s, t.
< t: b -> b, s
} /* CTL Properties */
} ctl: eventually m.a = 0;
ctl: eventually m.t = 1;
m {a} (main) . ctl: m.a = @ preceded-by m.t = 1;
ctl: m.a > @ followed-by m.a = 0;
ctl: m.t = 1 followed-by m.a = 0;

ctl: always m.t <= 1;
ctl: never m.s = 15;

Broadcasting with acknowledgement

type LO { type L3 { /* LTL Properties */
max { max { 1tl: eventually (ml.a > @ and m3.a > 0);
a ->b, a (L1), a (L2) . a, ¢ ->c (L2) . 1tl: m2.a = 1 followed-by m3.a = 1;
} } 1tl: never me.a > @ and mo.c > 9;
} }
mo {a} (LO) . /* CTL Properties */
type L1 { ml {c} (L1) - mo . ctl: eventually ml.a > ©;
max { m2 {} (L2) - moO . ctl: eventually ml.a > @ and m3.a > 0;
a, ¢ ->c (Lo) . m3 {c} (L3) - m2 . ctl: m2.a = 1 followed-by m3.a = 1;
} ctl: steady-state (m@.c = 2 implies m@.a = 9);
} e ctl: steady-state (m@.c = 2 implies
m0 (ml.c = @ and m3.c = 9));
type L2 { 7 Y ctl: never md.a > @ and m@.c > O;
max {
a ->b, a (L3) . "ﬂ'!’ m2
b, ¢ -> c (LO) . 1I

} m3°

Demo

Hands-on kPWorkbench

KPWorkbench Platform Website

http://kpworkbench.org/

