
13th BWMCLaurențiu Marian Mierlă

1.

2.

3.

4.

5.

Outline

1.

2. kPWorkbench

3. Case studies

4. Demo

5. Q&A

Outline

Kernel P systems

1. Membrane structure

… -> …

… -> …

… -> …

2. Guarded rule execution 3. Rewriting and

communication rules

4. Structural rules

r1: … -> … {≤ 𝑎10 = 𝑏2}
r2: … -> … {≥ 𝑝10 = 𝑞}
r3: … -> … {≠ 𝑎2 ≤ 𝑏}

r1: 𝑎10 → 𝑏, 𝑐2, (𝑑, 𝑡1)

r2: 𝑝𝑞2 → 𝑘, 𝑡1 , (𝑎5, 𝑡2)

r3: 𝑥10 → 𝜆

r1: 𝑡1
→ 𝑡1

 𝑡2
 𝑡3

r2: 𝑎, 𝑏 𝑡1
→ 𝑎 𝑡1

𝑏 𝑡2

r3: 𝑡1
→ 𝜆

… -> …

4. Execution strategies

p1 p2 p3

r1

r2

r3

r1

r2

r3

r1

r2

r3

1. Kernel P systems

2. kPWorkbench

3. Case studies

4. Demo

5. Q&A

Outline

What is kPWorkbench?

 tool support

 modelling simulating verifying

 C# .NET

 CLI

 GUI

KPWorkbench tool stack

Modeling in kPWorkbench

 kP-Lingua

 ANTLR

 internal model representation

type

->

arbitrary

->

choice

->

->

max

->

->

->

->

2

-

kP-Lingua constructs

Simulation

 traces

 Native Simulator
FLAME Simulator

 C# small
medium models

FLAME-based simulator

 FLAME

 scalability efficiency large
models

 Automated

kP-lingua to FLAME mapping

kP-Lingua constructs FLAME constructs

Compartment type Agent definition, Communicating Stream X-Machine

kP system membrane Agent instance

Membrane multi-set Agent data

Membrane rules Agent data

Execution strategy States and transitions into the X-Machine, associated C functions

Communication rule Message passing

P system steps Synchronisation with message passing

Verification

 SPIN NuSMV

Promela SMV

 kP-Queries

 property patterns

 LTL
CTL

kP-lingua to SMV mapping

kP-Lingua constructs SMV constructs

Compartment types Module definitions

kP system membranes Module instances

Membrane multi-sets Module variables

Rewriting rules next statements, transition relation of the FSM

Guards case branches associated to the next statements

Execution strategies Certain conditions associated to case branches

Communication rules next statements into the main module

P system steps Implicitly handled

kP-lingua to Promela mapping

kP-Lingua constructs Promela constructs

Compartment types Data type definitions

kP system membranes Instances of data type definitions

Membrane multi-sets Values of an integer array, indexed by object IDs

Rewriting and communication rules Subtraction/addition instruction sets

Execution strategies Multi-branch do – od and if – fi non-deterministic statements

P system steps A dedicated scheduler process

kP-Queries

Pattern kP-Query LTL CTL

Next next p X p EX p

Existence eventually p F p EF p

Absence never p ¬(F p) ¬(EF p)

Universality always p G p AG p

Recurrence infinitely-often p G F p AG EF p

Steady-state steady-state p F G p AF AG p

Until p until q p U q A (p U q)

Response p followed-by q G (p → F q) AG (p → EF q)

Precedence p preceded-by q ¬(¬p U (¬p ∧ q)) ¬(E (¬p U (¬p ∧ q)))

ltl eventually

ctl followed-by

1. Kernel P systems

2. kPWorkbench

3. Case studies

4. Demo

5. Q&A

Outline

Case studies

 systems and synthetic biology

 non-deterministic models
qualitative analysis

 Square numbers generation Broadcasting with acknowledgement

Square numbers generation

type

max

->

->

->

->

ltl always

ltl steady-state implies

ltl never

ctl eventually

ctl eventually

ctl preceded-by

ctl followed-by

ctl followed-by

ctl always

ctl never

Broadcasting with acknowledgement

type

max

->

type

max

->

type

max

->

->

ltl eventually

ltl followed-by

ltl never and

ctl eventually

ctl eventually and

ctl followed-by

ctl steady-state implies

ctl steady-state implies

and

ctl never and

type L3 {
 max {
 a, c -> c (L2) .
 }
}

m0 {a} (L0) .
m1 {c} (L1) - m0 .
m2 {} (L2) - m0 .
m3 {c} (L3) - m2 .

m0

m1 m2

m3

a

c

c

Demo

Q&A

http://kpworkbench.org/

http://kpworkbench.org/

