
MABICAP PROJECT

Computer Architecture and Technology Department

participation

MABICAP Project, January 2020

José Luis Guisado Lizar

Web: http://personal.us.es/jlguisado

E-mail: jlguisado@us.es

MABICAP Project

 Bio-inspired machines on High Performance Computing platforms: a

multidisciplinary approach

 TIN2017-89842-P Universidad de Sevilla

 2018-2020

 Multidisciplinary team

 Computer Science & Artificial Intelligence Dept.

 Computer Architecture & Technology Dept. (CATD)

 Condensed Matter Physics Dpt.

 Electronical Engineering Dpt.

 External collaborators

2

MABICAP: CATD members

Computer Architecture & Technology Dept. (CATD) members:

 Researchers:

 Daniel Cagigas Muñiz

 José Luis Guisado Lizar

 Working Group Members:

 Juan Pedro Domínguez Morales

 Antonio Ríos Navarro

 Ricardo Tapiador Morales

 Daniel Gutiérrez Galán

 Amaro García Suárez

 Collaborators:

 Fernando Díaz del Río

 Daniel Cascado Caballero

3

MABICAP: general goals

 Design and implementation of parallel algorithms and hardware

architectures…

 Based on bio-inspired computing paradigms:

 Membrane Computing (P-Systems)

 Cellular Automata

 For Complex Systems modeling: Application to real and relevant case

studies:

 Zebra mussel

 Laser dynamics

 Fault diagnosis...

 Oriented towards efficient HPC simulation:

 Multi-core

 GPU

 FPGA

 Cluster

 Cloud…
4

MABICAP: research lines of CATD members

1. Simulation of evolution of Gene Regulatory Networks on GPU

2. Methodology to design efficient CA models of complex systems

3. Parallel Cellular Automata (CA) simulation of laser dynamics on

Multicore and GPU using Cloud

4. Cellular Automata – Agent based model of Electric Vehicles urban

traffic

5. P-System simulation using pthreads

6. Simulation of a membrane processor to be implemented in FPGA

5

1 - Simulation of evolution of Gene Regulatory Networks

on GPU

 Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of

Gene Regulatory Networks.

Raúl García-Calvo, J.L. Guisado, Fernando Diaz-del-Rio, Antonio Córdoba and Francisco Jiménez-

Morales.

Evolutionary Bioinformatics, 14 (2018): 1176934318767889. JCR Q2.

 Boolean network model

 Evolution with parallel genetic algorithm

6

2 - Methodology to design efficient CA models of

complex systems

Building efficient computational cellular automata models of complex

systems: background, applications, results, software and pathologies.

Jiri Kroc, Francisco Jiménez-Morales, J.L. Guisado, María Carmen Lemos, Jakub

Tkac.

Advances in Complex Systems, 22, No. 5, 1950013. 2019. JCR Q3.

7

8

(2) - Cellular automata: history and applications

 Introduced by J. von Neumann and S. Ulam by the end of the 1940s

 Study the process of self-reproduction

 Inspired by the brain as a system of interconnected cells (neurons)

 Applications:

 Mathematics

 Theoretical computer science

 Natural sciences

 Engineering

9

(2) - CA models of natural and artificial systems

 CA are the simplest possible model of “complex systems”:

 Composed of many simple, locally interacting components

 Can generate emergent global behaviours resulting from the actions of its
parts rather than being imposed by a central controller

 CA retain the main features of complex systems but are
computationally advantageous

 Applied to build models in:

 Physics: fluid dynamics, reaction diffusion processes, magnetization in
solids, growth processes...

 Chemistry: chemical reactions

 Biology: inmune system, viral deseases, epidemic propagation, ecological
population dynamics...

 Geology: lava flow, landslides

 Sociology, economics...

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications:

 Laser dynamics:

 Simulates the creation of a laser beam from interaction of molecules inside the

laser device material and laser photons

 Dynamic Recrystallization:

 Simulates the formation of crystals during deformation in metallurgy and geology.

 Chemical reaction:

 Simulates the catalytic oxidation of CO on a metal surface

 Similarities and differences:

 Generic methodology to design CA models and characterise emergent

properties

10

11

(2) - Cellular automata (CA)

 A class of spatially and temporally discrete mathematical systems:

 Space is represented by a discrete lattice of cells (1D, 2D or 3D)

 Homogeneity: all the cells are equivalent

 Discrete states: each cell is characterized by a state taken from a finite set of

discrete values

 Local interactions: each cell interacts only with a number of cells that are in

its local neighbourhood

 Discrete dynamics: At each discrete time step, all the cells update their states

synchronously:

 Evolution rules: Determine the state of each cell in time t in function of

the state of the cells included in its neighbourhood in time t-1

(2) - CA algorithm

 General structure of a CA algorithm:

12

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications Similarities and differences:

13

(2) - Example 1: laser dynamics

14

15

(2) - Laser: physical processes

 Laser: Device that generates electromagnetic radiation based on the

stimulated emission process:

 This process competes with absorption

 Normally: lower level more populated absorption has greater probability

than emission

 Laser mechanism: energy pumping process population inversion

 An incoming photon with h=E12 can give rise to a cascade of stimulated

coherent photons

E12

E1

E2

h = E12 h

h

E1

E2

2D, multivariable and partially probabilistic CA:

 Cellular space: 2-dims. square lattice with periodic boundary conditions

 States of the cells:

each cell has four

variables associated:

 Neighbourhood:

“Moore neighbourhood”:

Each cell has

nine neighbours:

16

(in cell 𝒓 = (𝒊, 𝒋) at time t)

(2) - CA model for laser dynamics (1)

𝚪𝒓(𝒕) =

𝒓´≡𝒏𝒆𝒊𝒈𝒉𝒃.(𝒓)

𝒄𝒓´(𝒕)

𝒂𝒓 𝒕 ∈ 𝟎, 𝟏 → State of the electron

𝒄𝒓 𝒕 ∈ 𝟎, 𝟏, 𝟐,… ,𝑴 → Number of photons

෦𝒂𝒓 𝒕 ∈ 𝟎, 𝟏, 𝟐,… , 𝝉𝒂 → Time since electron in upper laser state

෪𝒄𝒓
𝒌 𝒕 ∈ 𝟎, 𝟏, 𝟐, … , 𝝉𝒄 → Time since photon k was created

17

n(t) → number of laser photons

N(t) → population inversion

c → decay time of photons in the cavity

a → decay time of the upper laser level (E2)

R → Pumping rate

K → Coupling constant

(2) - Laser dynamics: rate equations

)()(
)()(

)(
)()(

)(

tntKN
tN

R
dt

tdN

tn
tntKN

dt

tdn

a

c

 Simple model of a laser:

4-level laser system

 Standard description:

laser rate equations

18

(2) - CA model for laser dynamics (2)

 Transition function:

 R1- Pumping: If 𝒂𝒓 𝒕 = 0 ⟶ 𝒂𝒓 𝒕 + 𝟏 = 1 with a probability 𝝀

 R2- Stimulated emission: If 𝒂𝒓 𝒕 = 𝟏, 𝜞𝒓 > 𝜹 ⟶ ቊ
𝒄𝒓 𝒕 + 𝟏 = 𝒄𝒓 𝒕 +1

𝒂𝒓 𝒕 + 𝟏 = 0

 R3- Photon decay: Photon is destroyed 𝝉𝒄 time steps after it was created

 R4- Electron decay: Electron decays 𝝉𝒂 time steps after it was promoted

 R5- Evolution of temporal variable ෦𝒂𝒓 𝒕 : counts number of time steps since an
electron is promoted to upper state.

 R6- Evolution of temporal variable ෪𝒄𝒓
𝒌 𝒕 : counts number of time steps since a

photon is created.

 R7- Random noise photons: 𝒄𝒓 𝒕 + 𝟏 = 𝒄𝒓 𝒕 +1 for ~ 0.01% of total cells

19

(2) - Simulations

 Initial state: 𝒂𝒓 𝟎 = 0, 𝒄𝒓 𝟎 = 0, ∀𝒓 except small fraction of noise photons

 The system evolves by the application of the transition rules

 In each time step, we measure:

 n(t): Total number of laser photons

 N(t): Total number of electrons in upper laser state ≡ population inversion

 System → 3 parameters: { , c , a }:

 → Pumping probability

 c → Life time of laser photons

 a → Life time of excited electrons

 System size used: normally 400×400 cells

20

(2) - Simulation results:

Lasers behaviours
(b): Relaxation oscillations (laser spiking)(a): Constant regime

21

 Laser rate equations → depending on parameters values, 2 main behaviours:

 Oscillatory

 Constant regime

(2) - Simulation results:

Dependence of behaviour on laser parameters

Theoretical stability curve

14

2

t

t

c

a

R

R

R

R

R → Pumping rate

a → Life time of excited electrons

c → Life time of laser photons

Oscillatory behaviour

Constant behaviour

22

 Laser rate equations → depending on parameters values, 2 main behaviours:

 Oscillatory

 Constant regime

 Simulations → Shannon's entropy of temporal distribution of n(t) and N(t): fingerprint of oscillations

(2) - Simulation results:

Dependence of behaviour on laser parameters

Theoretical stability curve

14

2

t

t

c

a

R

R

R

R

ttR

R

(with)

R → Pumping rate

 → Pumping probability

a → Life time of excited electrons

c → Life time of laser photons

i

ii ffS 2log

23

(2) - Simulations results:

Spatio-temporal patterns

Oscillatory behaviour

Constant regime

(2) - Example 2: Dynamic Recrystallization

 Formation of crystals during deformation in metallurgy and geology:

grain domains depend on deformation (strain):

24

(2) - Example 2: Dynamic Recrystallization

 Mean Grain Size curves (dependence on deformation or strain) and

Stress-strain curves (curvas tensión-deformación):

25

(2) - Example 3: chemical reaction

 Catalytic oxidation of CO on a metal Surface:

26

(2) - Example 3: chemical reaction

 Spatio-temporal patterns:

27

(2) - Example 3: chemical reaction

 Different values of Shannon’s entropy are associated with different

behaviors:

28

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications Similarities and differences:

29

30

3 - Parallel Cellular Automata (CA) simulation of laser

dynamics on Multicore and GPU using Cloud (1)

Developing Efficient Discrete Simulations on Multicore and GPU Architectures.

Cagigas-Muñiz, D.; Diaz-del-Rio, F.; López-Torres, M.R.; Jiménez-Morales, F.;

Guisado, J.L.

Electronics, 9, 189. 2020. JCR Q3.

4 - Cellular Automata – Agent based model

of Electric Vehicles urban traffic

 Goal: Optimizing the deployment of electric vehicles charging stations through

simulation

 Hybrid Cellular Automata – Agent based model

31

5 - P-System simulation using pthreads

• Synchronous P-System simulation: in each step of the simulation of

a P-System, every possible rule is executed in every membrane.

• There are both sequential and CUDA (for GPUs) implementations

of P-Systems. Some in OpenMP not very tunned --» Not easy to

parallelize a sequential P-System using OpenMP.

• In the case of CUDA each rule is executed by a HW thread. Objects are

distributed pseudo-randomly among rules.

• Problems:

1) This approach is not close to the real behavior of a membrane system.

2) Ad-hoc CUDA implementations (hand coded). The conversion of a P-

Lingua specification to CUDA code is not available --» This is not practical

and is not scalable.

32

5 - P-System simulation using pthreads (2)

 CAT Department: new approach to parallelize a P-System

simulation on a multiprocessor. Two possible alternatives have

been attempted that try to get closer to a membrane system.

A) Each individual object on each membrane is a software

thread (pthread) that tries to apply as many rules as it can.

B) Each type/class of object on each membrane is a software

thread (pthread).

 Solution A is closer to a membrane system but the number of

threads is dependent on the number of objects. This number is

easily reached (the OS only supports 4096 software threads per

process maximum).

 Solution B is more scalable as it is dependent on the number of

existing membranes and the alphabet (object types/classes)

33

5 - P-System simulation using pthreads (3)

 A simple example has been prototyped using Posix pthreads and events

in Windows.

ab -» c

ac -» b

d -» & (disolution)

 Good performance, complicated code.

 Objective: to create a P-Lingua back-end that automatically generates

C/C++ code of a P-System and based on software threads (pthreads).

That code will work on any multiprocessor of any architecture.

 There is some evidence/suspicion that performance results may be similar

or even better than using CUDA (see CATD article in MABICAP)

 Complicated work (definition of data structures, and development with

pthreads) and coordinated with CCCIA by P-Lingua

 An attempt will be made to develop a first version for transitional P-Systems

and then to try to extend it to P-Systems with active membranes.

34

6 - Simulation of a membrane processor

to be implemented in FPGA: Initial objetives

 Create a design for a membrane rule processor with logic gates, ALUs,

registers …

 Fixed number of members in right and left part of the rule

 Dissolution rules included

 Assess the viability of a chained set of rule processors and elements.

Paso de Computación

 Evaluation of the end of computation of the system

 Maximal paralelisim contempled

 Design system for being scalable to a multi-membrane system

6 - Simulation of a membrane processor

to be implemented in FPGA: Basic architecture

 Elements store

 Stores actual quantity and queued
quantity of every element

 Elements bus

 Pass elements by all rule processors

 Chained (n) rule processors (i x d)

 Get in or get out elements (purgado) when
they pass beside the rule processor

 Execute rules in parallel

 Control Unit

 Controls element store’s IN/OUT

 Push elements in the bus …, Ω is the
last one

 Assess the computation step (CS) when Ω
arrives to the strore

 The content of the stores is not
modified between two passes of Ω

 Executes dissolution if δ arrives (queued)
and CS

 Not solved:

 Initial load of store and processors

…

TMP x i TE x d

TMP x i TE x d

TMP x i TE x d

e1
e2
E3
…
δ
Ω

CU

6 - Simulation of a membrane processor

to be implemented in FPGA: Results of basic architecture

 Creation of a membrane simulation in C#

 Running principle verified

 Maximal paralelism, Computation step, disolution, End of processing

 Rule priorities (depends of rule’s location in the bus)

 Chained (pipeline) processing successfully executed

 Added features

 Random rule execution

 Limitations

 Only one membrane

 Fixed number of elements at both sides of the rule

 Fixed number of rules

6 - Simulation of a membrane processor

to be implemented in FPGA: Single-membrane simulator

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture I

 Se añaden buses y un controlador de buses

 Bus para hermanos / padre

 Bus para hijos

 Alterna entre los buses de padres e hijos

 Conexión en margarita

 Se añaden señales de control entre procesadores

 Out RDY_BUS_SUP, ENABLE_HIJOS

 Out RQ_PC, RQ_FN, RQ_DI, EXC_OUT

 In ENABLE

 Se añade un controlador del sistema de membranas

 Evalúa el PC, el Fn y la disolución de membranas (movimiento de

elementos)

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture II

40

…

TMP x i TE x d

TMP x i TE x d

TMP x i TE x d

e1
e2
E3
…
δ
Ω

UC

InOut
Bus Out Bus In

Bus Out Bus In

Control de buses

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture III

41

M1

M4

M3M2

M1

M2 M3

M4

Sys Ctrl

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane simulator

42

6 - Simulation of a membrane processor

to be implemented in FPGA: Final Results

 Running principle assessed successfully

 CS, DI, MaxP, Random execution of rules

 Limitations:

 Membrane: M element => M rules in the processor

 Rules only produce elements within its proper membrane, but they can come from others

 Not solved

 In dissolutions there is not a Hw sollution for elements movements between membranes

 Membrane disolving is not fully implemented (bus bypassing)

 Not implemented bus connection in execution time

 Mitosis

 Advantages

 Rule and membrane paralelism

 Scalability

 Problems

 Massive need of hw resources in massive membrane systems

 Possible problems in clock signal propagation (very big systems) => slower clock frequency

