
MABICAP PROJECT

Computer Architecture and Technology Department

participation

MABICAP Project, January 2020

José Luis Guisado Lizar

Web: http://personal.us.es/jlguisado

E-mail: jlguisado@us.es

MABICAP Project

 Bio-inspired machines on High Performance Computing platforms: a

multidisciplinary approach

 TIN2017-89842-P Universidad de Sevilla

 2018-2020

 Multidisciplinary team

 Computer Science & Artificial Intelligence Dept.

 Computer Architecture & Technology Dept. (CATD)

 Condensed Matter Physics Dpt.

 Electronical Engineering Dpt.

 External collaborators

2

MABICAP: CATD members

Computer Architecture & Technology Dept. (CATD) members:

 Researchers:

 Daniel Cagigas Muñiz

 José Luis Guisado Lizar

 Working Group Members:

 Juan Pedro Domínguez Morales

 Antonio Ríos Navarro

 Ricardo Tapiador Morales

 Daniel Gutiérrez Galán

 Amaro García Suárez

 Collaborators:

 Fernando Díaz del Río

 Daniel Cascado Caballero

3

MABICAP: general goals

 Design and implementation of parallel algorithms and hardware

architectures…

 Based on bio-inspired computing paradigms:

 Membrane Computing (P-Systems)

 Cellular Automata

 For Complex Systems modeling: Application to real and relevant case

studies:

 Zebra mussel

 Laser dynamics

 Fault diagnosis...

 Oriented towards efficient HPC simulation:

 Multi-core

 GPU

 FPGA

 Cluster

 Cloud…
4

MABICAP: research lines of CATD members

1. Simulation of evolution of Gene Regulatory Networks on GPU

2. Methodology to design efficient CA models of complex systems

3. Parallel Cellular Automata (CA) simulation of laser dynamics on

Multicore and GPU using Cloud

4. Cellular Automata – Agent based model of Electric Vehicles urban

traffic

5. P-System simulation using pthreads

6. Simulation of a membrane processor to be implemented in FPGA

5

1 - Simulation of evolution of Gene Regulatory Networks

on GPU

 Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of

Gene Regulatory Networks.

Raúl García-Calvo, J.L. Guisado, Fernando Diaz-del-Rio, Antonio Córdoba and Francisco Jiménez-

Morales.

Evolutionary Bioinformatics, 14 (2018): 1176934318767889. JCR Q2.

 Boolean network model

 Evolution with parallel genetic algorithm

6

2 - Methodology to design efficient CA models of

complex systems

Building efficient computational cellular automata models of complex

systems: background, applications, results, software and pathologies.

Jiri Kroc, Francisco Jiménez-Morales, J.L. Guisado, María Carmen Lemos, Jakub

Tkac.

Advances in Complex Systems, 22, No. 5, 1950013. 2019. JCR Q3.

7

8

(2) - Cellular automata: history and applications

 Introduced by J. von Neumann and S. Ulam by the end of the 1940s

 Study the process of self-reproduction

 Inspired by the brain as a system of interconnected cells (neurons)

 Applications:

 Mathematics

 Theoretical computer science

 Natural sciences

 Engineering

9

(2) - CA models of natural and artificial systems

 CA are the simplest possible model of “complex systems”:

 Composed of many simple, locally interacting components

 Can generate emergent global behaviours resulting from the actions of its
parts rather than being imposed by a central controller

 CA retain the main features of complex systems but are
computationally advantageous

 Applied to build models in:

 Physics: fluid dynamics, reaction diffusion processes, magnetization in
solids, growth processes...

 Chemistry: chemical reactions

 Biology: inmune system, viral deseases, epidemic propagation, ecological
population dynamics...

 Geology: lava flow, landslides

 Sociology, economics...

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications:

 Laser dynamics:

 Simulates the creation of a laser beam from interaction of molecules inside the

laser device material and laser photons

 Dynamic Recrystallization:

 Simulates the formation of crystals during deformation in metallurgy and geology.

 Chemical reaction:

 Simulates the catalytic oxidation of CO on a metal surface

 Similarities and differences:

 Generic methodology to design CA models and characterise emergent

properties

10

11

(2) - Cellular automata (CA)

 A class of spatially and temporally discrete mathematical systems:

 Space is represented by a discrete lattice of cells (1D, 2D or 3D)

 Homogeneity: all the cells are equivalent

 Discrete states: each cell is characterized by a state taken from a finite set of

discrete values

 Local interactions: each cell interacts only with a number of cells that are in

its local neighbourhood

 Discrete dynamics: At each discrete time step, all the cells update their states

synchronously:

 Evolution rules: Determine the state of each cell in time t in function of

the state of the cells included in its neighbourhood in time t-1

(2) - CA algorithm

 General structure of a CA algorithm:

12

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications  Similarities and differences:

13

(2) - Example 1: laser dynamics

14

15

(2) - Laser: physical processes

 Laser: Device that generates electromagnetic radiation based on the

stimulated emission process:

 This process competes with absorption

 Normally: lower level more populated  absorption has greater probability

than emission

 Laser mechanism: energy pumping process  population inversion


 An incoming photon with h=E12 can give rise to a cascade of stimulated

coherent photons

E12

E1

E2

h = E12 h

h

E1

E2

2D, multivariable and partially probabilistic CA:

 Cellular space: 2-dims. square lattice with periodic boundary conditions

 States of the cells:

each cell has four

variables associated:

 Neighbourhood:

“Moore neighbourhood”:

Each cell has

nine neighbours:

16

(in cell 𝒓 = (𝒊, 𝒋) at time t)

(2) - CA model for laser dynamics (1)

𝚪𝒓(𝒕) = ෍

𝒓´≡𝒏𝒆𝒊𝒈𝒉𝒃.(𝒓)

𝒄𝒓´(𝒕)

𝒂𝒓 𝒕 ∈ 𝟎, 𝟏 → State of the electron

𝒄𝒓 𝒕 ∈ 𝟎, 𝟏, 𝟐,… ,𝑴 → Number of photons

෦𝒂𝒓 𝒕 ∈ 𝟎, 𝟏, 𝟐,… , 𝝉𝒂 → Time since electron in upper laser state

෪𝒄𝒓
𝒌 𝒕 ∈ 𝟎, 𝟏, 𝟐, … , 𝝉𝒄 → Time since photon k was created

17

n(t) → number of laser photons

N(t) → population inversion

c → decay time of photons in the cavity

a → decay time of the upper laser level (E2)

R → Pumping rate

K → Coupling constant

(2) - Laser dynamics: rate equations

















)()(
)()(

)(
)()(

)(

tntKN
tN

R
dt

tdN

tn
tntKN

dt

tdn

a

c





 Simple model of a laser:

4-level laser system

 Standard description:

laser rate equations

18

(2) - CA model for laser dynamics (2)

 Transition function:

 R1- Pumping: If 𝒂𝒓 𝒕 = 0 ⟶ 𝒂𝒓 𝒕 + 𝟏 = 1 with a probability 𝝀

 R2- Stimulated emission: If 𝒂𝒓 𝒕 = 𝟏, 𝜞𝒓 > 𝜹 ⟶ ቊ
𝒄𝒓 𝒕 + 𝟏 = 𝒄𝒓 𝒕 +1

𝒂𝒓 𝒕 + 𝟏 = 0

 R3- Photon decay: Photon is destroyed 𝝉𝒄 time steps after it was created

 R4- Electron decay: Electron decays 𝝉𝒂 time steps after it was promoted

 R5- Evolution of temporal variable ෦𝒂𝒓 𝒕 : counts number of time steps since an
electron is promoted to upper state.

 R6- Evolution of temporal variable ෪𝒄𝒓
𝒌 𝒕 : counts number of time steps since a

photon is created.

 R7- Random noise photons: 𝒄𝒓 𝒕 + 𝟏 = 𝒄𝒓 𝒕 +1 for ~ 0.01% of total cells

19

(2) - Simulations

 Initial state: 𝒂𝒓 𝟎 = 0, 𝒄𝒓 𝟎 = 0, ∀𝒓 except small fraction of noise photons

 The system evolves by the application of the transition rules

 In each time step, we measure:

 n(t): Total number of laser photons

 N(t): Total number of electrons in upper laser state ≡ population inversion

 System → 3 parameters: { , c , a }:

  → Pumping probability

 c → Life time of laser photons

 a → Life time of excited electrons

 System size used: normally 400×400 cells

20

(2) - Simulation results:

Lasers behaviours
(b): Relaxation oscillations (laser spiking)(a): Constant regime

21

 Laser rate equations → depending on parameters values, 2 main behaviours:

 Oscillatory

 Constant regime

(2) - Simulation results:

Dependence of behaviour on laser parameters

Theoretical stability curve






















14

2

t

t

c

a

R

R

R

R





R → Pumping rate

a → Life time of excited electrons

c → Life time of laser photons

Oscillatory behaviour

Constant behaviour

22

 Laser rate equations → depending on parameters values, 2 main behaviours:

 Oscillatory

 Constant regime

 Simulations → Shannon's entropy of temporal distribution of n(t) and N(t): fingerprint of oscillations

(2) - Simulation results:

Dependence of behaviour on laser parameters

Theoretical stability curve






















14

2

t

t

c

a

R

R

R

R





ttR

R




(with)

R → Pumping rate

 → Pumping probability

a → Life time of excited electrons

c → Life time of laser photons


i

ii ffS 2log

23

(2) - Simulations results:

Spatio-temporal patterns

Oscillatory behaviour

Constant regime

(2) - Example 2: Dynamic Recrystallization

 Formation of crystals during deformation in metallurgy and geology:

grain domains depend on deformation (strain):

24

(2) - Example 2: Dynamic Recrystallization

 Mean Grain Size curves (dependence on deformation or strain) and

Stress-strain curves (curvas tensión-deformación):

25

(2) - Example 3: chemical reaction

 Catalytic oxidation of CO on a metal Surface:

26

(2) - Example 3: chemical reaction

 Spatio-temporal patterns:

27

(2) - Example 3: chemical reaction

 Different values of Shannon’s entropy are associated with different

behaviors:

28

(2) - Methodology to design efficient CA models

of complex systems

 3 CA models of real scientific applications  Similarities and differences:

29

30

3 - Parallel Cellular Automata (CA) simulation of laser

dynamics on Multicore and GPU using Cloud (1)

Developing Efficient Discrete Simulations on Multicore and GPU Architectures.

Cagigas-Muñiz, D.; Diaz-del-Rio, F.; López-Torres, M.R.; Jiménez-Morales, F.;

Guisado, J.L.

Electronics, 9, 189. 2020. JCR Q3.

4 - Cellular Automata – Agent based model

of Electric Vehicles urban traffic

 Goal: Optimizing the deployment of electric vehicles charging stations through

simulation

 Hybrid Cellular Automata – Agent based model

31

5 - P-System simulation using pthreads

• Synchronous P-System simulation: in each step of the simulation of

a P-System, every possible rule is executed in every membrane.

• There are both sequential and CUDA (for GPUs) implementations

of P-Systems. Some in OpenMP not very tunned --» Not easy to

parallelize a sequential P-System using OpenMP.

• In the case of CUDA each rule is executed by a HW thread. Objects are

distributed pseudo-randomly among rules.

• Problems:

1) This approach is not close to the real behavior of a membrane system.

2) Ad-hoc CUDA implementations (hand coded). The conversion of a P-

Lingua specification to CUDA code is not available --» This is not practical

and is not scalable.

32

5 - P-System simulation using pthreads (2)

 CAT Department: new approach to parallelize a P-System

simulation on a multiprocessor. Two possible alternatives have

been attempted that try to get closer to a membrane system.

A) Each individual object on each membrane is a software

thread (pthread) that tries to apply as many rules as it can.

B) Each type/class of object on each membrane is a software

thread (pthread).

 Solution A is closer to a membrane system but the number of

threads is dependent on the number of objects. This number is

easily reached (the OS only supports 4096 software threads per

process maximum).

 Solution B is more scalable as it is dependent on the number of

existing membranes and the alphabet (object types/classes)

33

5 - P-System simulation using pthreads (3)

 A simple example has been prototyped using Posix pthreads and events

in Windows.

ab -» c

ac -» b

d -» & (disolution)

 Good performance, complicated code.

 Objective: to create a P-Lingua back-end that automatically generates

C/C++ code of a P-System and based on software threads (pthreads).

That code will work on any multiprocessor of any architecture.

 There is some evidence/suspicion that performance results may be similar

or even better than using CUDA (see CATD article in MABICAP)

 Complicated work (definition of data structures, and development with

pthreads) and coordinated with CCCIA by P-Lingua

 An attempt will be made to develop a first version for transitional P-Systems

and then to try to extend it to P-Systems with active membranes.

34

6 - Simulation of a membrane processor

to be implemented in FPGA: Initial objetives

 Create a design for a membrane rule processor with logic gates, ALUs,

registers …

 Fixed number of members in right and left part of the rule

 Dissolution rules included

 Assess the viability of a chained set of rule processors and elements.

Paso de Computación

 Evaluation of the end of computation of the system

 Maximal paralelisim contempled

 Design system for being scalable to a multi-membrane system

6 - Simulation of a membrane processor

to be implemented in FPGA: Basic architecture

 Elements store

 Stores actual quantity and queued
quantity of every element

 Elements bus

 Pass elements by all rule processors

 Chained (n) rule processors (i x d)

 Get in or get out elements (purgado) when
they pass beside the rule processor

 Execute rules in parallel

 Control Unit

 Controls element store’s IN/OUT

 Push elements in the bus …, Ω is the
last one

 Assess the computation step (CS) when Ω
arrives to the strore

 The content of the stores is not
modified between two passes of Ω

 Executes dissolution if δ arrives (queued)
and CS

 Not solved:

 Initial load of store and processors

…

TMP x i TE x d

TMP x i TE x d

TMP x i TE x d

e1
e2
E3
…
δ
Ω

CU

6 - Simulation of a membrane processor

to be implemented in FPGA: Results of basic architecture

 Creation of a membrane simulation in C#

 Running principle verified

 Maximal paralelism, Computation step, disolution, End of processing

 Rule priorities (depends of rule’s location in the bus)

 Chained (pipeline) processing successfully executed

 Added features

 Random rule execution

 Limitations

 Only one membrane

 Fixed number of elements at both sides of the rule

 Fixed number of rules

6 - Simulation of a membrane processor

to be implemented in FPGA: Single-membrane simulator

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture I

 Se añaden buses y un controlador de buses

 Bus para hermanos / padre

 Bus para hijos

 Alterna entre los buses de padres e hijos

 Conexión en margarita

 Se añaden señales de control entre procesadores

 Out RDY_BUS_SUP, ENABLE_HIJOS

 Out RQ_PC, RQ_FN, RQ_DI, EXC_OUT

 In ENABLE

 Se añade un controlador del sistema de membranas

 Evalúa el PC, el Fn y la disolución de membranas (movimiento de

elementos)

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture II

40

…

TMP x i TE x d

TMP x i TE x d

TMP x i TE x d

e1
e2
E3
…
δ
Ω

UC

InOut
Bus Out Bus In

Bus Out Bus In

Control de buses

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane architecture III

41

M1

M4

M3M2

M1

M2 M3

M4

Sys Ctrl

6 - Simulation of a membrane processor

to be implemented in FPGA: Multi-membrane simulator

42

6 - Simulation of a membrane processor

to be implemented in FPGA: Final Results

 Running principle assessed successfully

 CS, DI, MaxP, Random execution of rules

 Limitations:

 Membrane: M element => M rules in the processor

 Rules only produce elements within its proper membrane, but they can come from others

 Not solved

 In dissolutions there is not a Hw sollution for elements movements between membranes

 Membrane disolving is not fully implemented (bus bypassing)

 Not implemented bus connection in execution time

 Mitosis

 Advantages

 Rule and membrane paralelism

 Scalability

 Problems

 Massive need of hw resources in massive membrane systems

 Possible problems in clock signal propagation (very big systems) => slower clock frequency

