NVIDIA CUDA RESEARCH CENTER

APLICACIONES Y OPORTUNIDADES

Miguel Ángel Martínez del Amor

Research Group on Natural Computing (RGNC)

Universidad de Sevilla

Contenido

- Presentación del NVIDIA CRC
 - Beneficios
 - EI RGNC
- Introducción a GPU computing
 - Computación Paralela
 - Evolución de la GPU
 - Introducción a CUDA
 - Otros estándares y tecnologías
- Recursos y oportunidades

Presentación del NVIDIA CRC

NVIDIA CUDA Research Center

- Nominación concedida por la compañía NVIDIA corp.
- Para la Universidad de Sevilla, hasta Enero de 2015.
- Por la "visión, calidad e impacto" de la investigación desarrollada empleando CUDA.

NVIDIA CUDA Research Center

- Beneficios para la comunidad de nuestra universidad:
 - Donación de una Tesla K40.
 - Participación en el Centers Reward Program para descuentos en equipos.
 - Sesiones de formación online.
 - Designación de personal técnico de NVIDIA.
 - 25% dto. para registro en el GTC2015.

NVIDIA CUDA Research Center

Research Group on Natural Computing

- Director: Mario J. Pérez-Jiménez (miembro Academia Europaea).
- Reconocido por el PAI: TIC-193
- Miembro del European Molecular Consortium
- 12 miembros: 7 matemáticos, 5 ingenieros informáticos

Research Group on Natural Computing

- Natural Computing: "un área interdisciplinar concerniente a la relación entre Computación y Biología"¹.
- Áreas de investigación:

Computación inspirada en Biología

- Neural Networks
- Genetic Algorithms
- Ant Colony Optimizations

Biología motivada en Computación

- Bioinformática
- Biología de Sistemas
- Biología sintética

Computación con Biología

- Quantum Computing
- DNA Computing
- Membrane Computing²

Research Group on Natural Computing

• Línea de investigación: Desarrollo de tecnologías habilitadoras basadas en métodos formales bio-inspirados para la especificaciones, simulación, análisis y estudio teórico de fenómenos biológicos.

Modelos bio-inspirados de computación

Aplicación de nuevos paradigmas computacionales inspirados en la Naturaleza viva para el establecimiento de <u>nuevas fronteras de</u> <u>la eficiencia</u>. Caracterización de la conjetura P≠NP en estos modelos no convencionales de computación.

Biología de Sistemas computacional

Aplicación de modelos bio-inspirados a la modelización de sistemas celulares, como rutas señalizadoras involucradas en la proliferación no controlada de células tumorosas, y en la comunicación entre bacterias (p.ej. quorum sensing).

Modelización Ecológica

Desarrollo de <u>modelos probabilísticos</u> y multi-compartimentales de <u>ecosistemas reales</u> basados en modelos de computación bio-inspirados. Desarrollo de <u>herramientas software</u> que permitan a los ecólogos utilizar nuestros modelos.

Computación de Alto Rendimiento con GPUs

Desarrollo de herramientas de <u>simulación de alto rendimiento</u> para modelos bio-inspirados empleando arquitecturas paralelas como la <u>GPU</u> y CPUs multi-núcleo. Administración de un cluster de GPUs en el grupo.

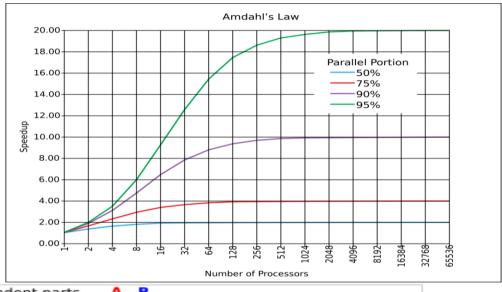
Introducción a GPU Computing

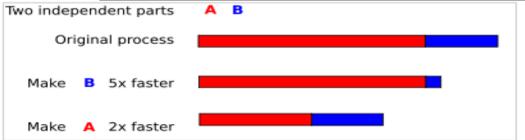
Computación Paralela

Computación Paralela

- Formas de acelerar una aplicación:
 - Disminuyendo la complejidad del algoritmo.
 - Aumentando la velocidad y capacidad del medio de computación: frecuencia de reloj.
 - Buscando tareas dentro de la aplicación que puedan realizarse de forma paralela.

Paralelización de las aplicaciones


- La siguiente vía para acelerar la ejecución, vendría dada por la paralelización de ciertas tareas de nuestro programa, de forma que se ejecuten de forma simultánea (hilos).
- Para ello se necesita:
 - Adaptar la aplicación para ser ejecutada en paralelo.
 - Disponer de plataformas paralelas donde ejecutarse.

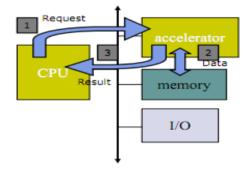


Computación paralela

Ley de Amdahl

Tipos de paralelismo

Paralelismo de Tareas



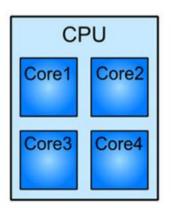
Paralelismo de Datos

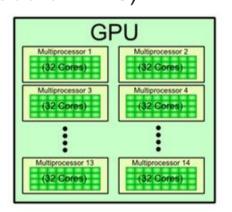
Aceleradores para HPC

- Dispositivos hardware de propósito específico o general para aumentar el rendimiento de las aplicaciones complementando a la CPU
- Los aceleradores HW están diseñados para código software computacionalmente intensivo

Aceleradores para HPC

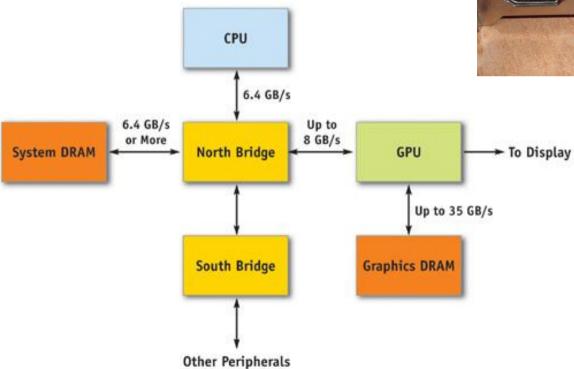
- Ventajas
 - Arquitecturas altamente paralelas y sin caída de nodos
 - Económicas (en comparación con soluciones anteriores)
 - Menor consumo energético y mejor mantenimiento
- Desventajas
 - Programación compleja, y dependiente de arquitectura
 - Capacidad de cómputo limitada a los recursos
- Algunas soluciones:
 - CMP (chip multiprocessor)
 - Cell BE
 - FPGA
 - Intel Phi
 - GPU
 - Híbridos



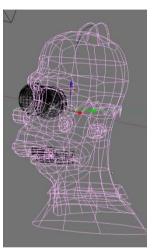

Introducción a GPU Computing

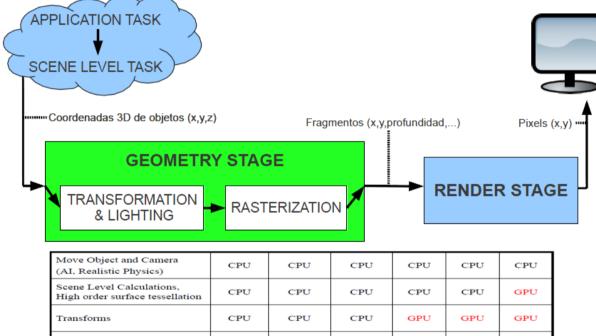
Evolución de la GPU

¿Qué es la GPU?


- Graphics Processing Unit.
- El procesador de las tarjetas gráficas era de propósito sólo gráfico.
- GPGPU: Técnicas de programación para usar la GPU como un coprocesador paralelo.
- Actualidad: Programación intuitiva y alta cantidad de recursos (hasta 2880 núcleos en K40).

Posición de la GPU




Evolución del pipeline gráfico

Lighting

Rendering

Triangle Setup and Clipping

CPU

CPU

Graphics

Processor

CPU

Graphics

Processor

CPU

Graphics

Processor

Graphics

GPU

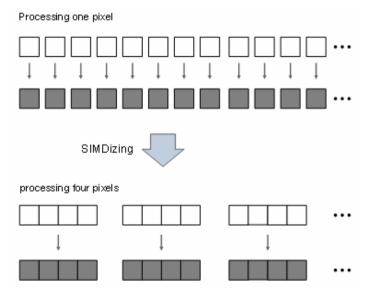
GPU

GPU

GPU

GPU

GPU


GPU

GPU

2002+

La GPU: Procesadores SIMD

- Paralelismo masivo de datos:
 - Gran cantidad de hilos procesando de forma simultánea la misma instrucción sobre distintos datos.

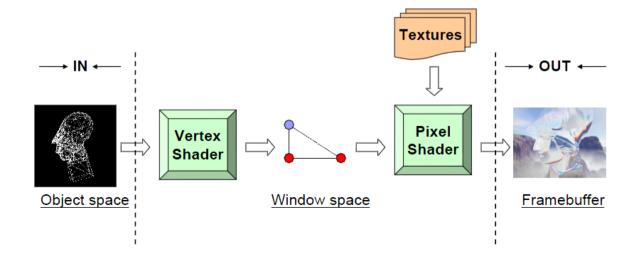
GPGPU: primeros programas de propósito general

Las GPUs:

- son altamente paralelas
- tienen gran núm. shaders (16-200)
- pueden ejecutar muchos hilos
- comparativamente muy baratas

Idea:

- Shader como motor de computación no gráfico
- Primer enfoque: convertir datos a formato de gráficos y aplicar transformaciones



Evolución a lenguajes de alto nivel

- Surge la necesidad de pasar a lenguajes de alto nivel
- Facilitar la programación de shaders
- Surgen los lenguajes Cg, HLSL, GLSlang, CTM...

NVIDIA CUDA

- CUDA = Compute Unified Device Arquitecture
- "Una plataforma diseñada conjuntamente a nivel software y hardware que permite al programador aprovechar la potencia de una GPU en aplicaciones de propósito general."

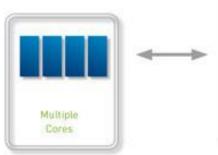
Introducción a GPU Computing

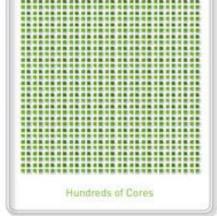
Introducción a CUDA

- CUDA hace referencia a:
 - · Modelo de programación paralela.
 - Entorno de programación: extensión de C/C++.
 - · Compilador, driver y conjunto de herramientas.
 - Dispositivos y arquitecturas GPU compatibles.

Ofrece:

- Computación paralela para las masas: solución bajo coste/rendimiento (280€/3.2TFLOPS, GeForce GTX770).
- Computación masivamente paralela: nuevo modelo de propósito general de "alto nivel".



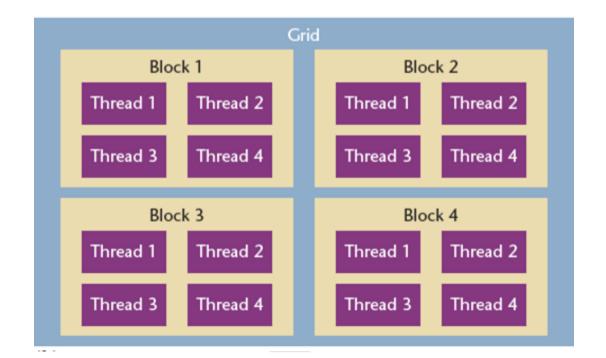


- CUDA permite:
 - Escalar el paralelismo a miles de hilos "ligeros" ejecutándose en cientos de procesadores.
 - Abstraer la GPU a los programadores.
 - Componer un sistema heterogéneo (CPU + GPU):
 - . CPU dedicada a código secuencial y control.
 - . GPU dedicada a código paralelo.

CPU

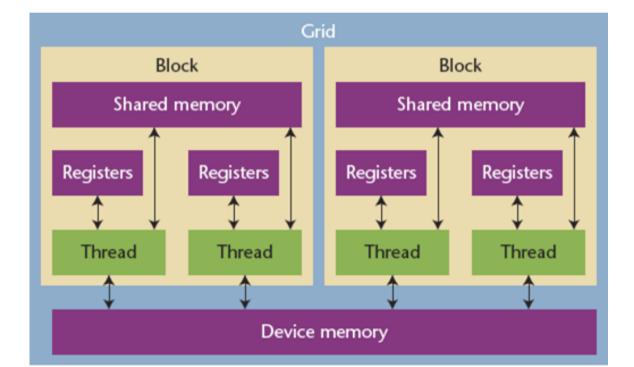
GPU

- Algunas definiciones del modelo:
 - · Host, Device, Kernel
 - Compute Capability
 - Warp (32 hilos)
- Los hilos son muy ligeros: poca sobrecarga de creación y de planificación.
- Primitivas de sincronización simples y ligeras.



 La ejecución de los hilos es SPMD (Single Program Multiple Data): ejecutan el código (del mismo kernel) sobre distintos datos (copiados previamente a la GPU).

```
0 1 2 3 4 5 6 7
                                                 0 1 2 3 4 5 6 7
threadID
                                     threadID
        float x = input[threadID];
                                             float x = input[threadID];
            float y = func(x);
                                                 float y = func(x);
          output[threadID] = y;
                                                output[threadID] = y;
            0 1 2 3 4 5 6 7
                                                 0 1 2 3 4 5 6 7
threadID
                                     threadID
        float x = input[threadID];
                                             float x = input[threadID];
            float y = func(x);
                                                 float y = func(x);
          output[threadID] = y;
                                                output[threadID] = y;
```



Jerarquía de hilos en el modelo.

• Jerarquía de memoria en el modelo:

Tarjetas gráficas de NVIDIA

La arquitectura "Kepler", K40 (2013):

- 15 SMX x 192 SP, 745Mhz
- 65536 registers.
- 48 KB shared/L1.
- 1.5 MB L2 cache.
- 12 GB global ECC.

Tarjetas gráficas de NVIDIA

- Gamas de NVIDIA:
 - GeForce: gráficos de consumo (videojuegos).
 - Quadro: visualización profesional.
 - Tesla: cálculo paralelo y computación de altas prestaciones.
 - lon: para portátiles.
- En común: Todas las soluciones soportan CUDA.
- Tesla es dedicada (más recursos), tiene ECC y soporte de NVIDIA para centros de computación.

Desarrollo en CUDA

- Lenguaje CUDA C++:
 - Corta línea de aprendizaje (una librería sobre C++).
 - Permite al programador involucrarse a distintos grados de exigencia, según el nivel de rendimiento deseado:
 - Básico: Fácil portabilidad desde C/C++.
 - Medio: Requiere un buen conocimiento de la arquitectura gráfica subyacente.
 - Avanzado (ninja): Mapeo eficiente del problema sobre muchos procesadores SIMD, minimizando conflictos en el acceso a memoria.

Desarrollo en CUDA

- El software de desarrollo en 3 categorías:
 - "Baja abstracción": Programación clásica en CUDA C/C++ (CUDA Toolkit, CUDA SDK y Parallel Nsight).
 - "Subrutinas estándar de alta abstracción": Bibliotecas desarrolladas en CUDA que implementan soluciones a problemas bien conocidos (CUDPP, CUFFT, CUBLAS, CURAND...).
 - "Aproximación de compiladores de alta abstracción": Lenguajes de alto nivel, con compiladores, que evitan la sobrecarga de código de CUDA (PGI, HMPP, PyCUDA...).

Desarrollo en CUDA

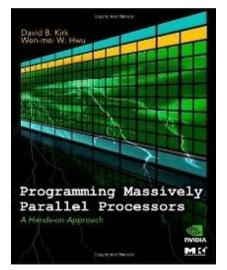
- CUDA Toolkit 6.5:
 - Compilador nvcc para C/C++, depurador cuda-gdb
 - Visual Profiler, Parallel Nsight
 - Librerías estándar: BLAS, FFT, SPARSE, RAND, MATH, THRUST...
 - Documentación.
- CUDA SDK 6.5:
 - · Códigos de ejemplo: matrices, vectores, fluidos, etc.
 - Algunas librerías para desarrollo en CUDA.

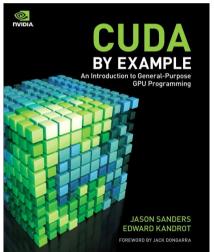
http://developer.nvidia.com/

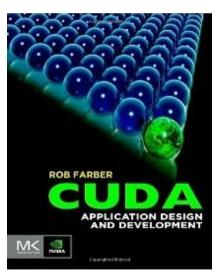
Desarrollo en CUDA

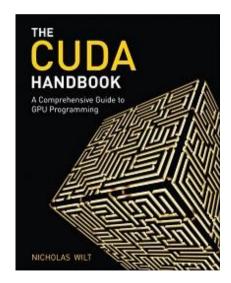
Parallel Nsight:

- Windows 7/8: Extensión para MS Visual Studio.
- · Linux: Extensión para Eclipse.
- · Compilación y depuración visual.
- Analizador (versión profesional).
- (Win) Uso servidor GPU remoto (monitor).


Cómo aprender CUDA


- Página web oficial y programming model guide: <u>https://developer.nvidia.com/cuda-zone</u>
- Entrenamiento y cursos:
 https://developer.nvidia.com/cuda-training
- Universidades: <u>http://www.nvidia.com/object/cuda_courses_and_map.html</u>
- Seminarios gratuitos:
 http://www.gputechconf.com/resources/gtc-express-webinar-program




Cómo aprender CUDA

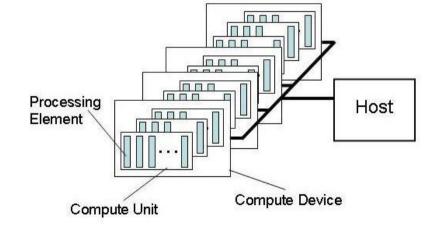
Libros recomendados:

Introducción a GPU Computing

Otros estándares y tecnologías

Introducción a OpenCL

- Open Computing Language.
- Primer estándar para programación de sistemas heterogéneos basados en GPGPU y C/C++.
- Por el consorcio Khronos Group:



- Más de 100 compañías: Intel, Nvidia, ATI, Apple, ...
- · Creador APIs gráficas y cómputo paralelo: OpenGL, OpenAL, ...
- Introducido por Apple. Aprobado y adaptado por Khronos.

Introducción a OpenCL

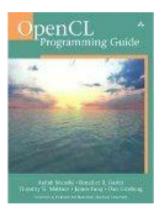
- Device: GPU y/o CPU.
- Código no compilado (en runtime).
- Similitudes con CUDA:
 - Hilo = Item de trabajo
 - Bloque de hilos = Grupo de trabajo
 - Kernel = Kernel
 - Shared memory = Local memory
 - Global memory = Global memory

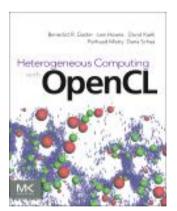
Programación en OpenCL

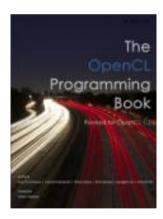
- Soporte de NVIDIA:
 - Compilador nvcc adaptado.
 - Librerías del toolkit y códigos del SDK ampliados con OpenCL.
 - Código ejecutado sobre CUDA: pérdida rendimiento.
- Soporte de AMD:
 - Stream SDK para gamas FirePro y Radeon (2816 cores con 16 GB de memoria).
 - AMD APP (Accelerated Parallel Processing).
- . Soporte de Intel:
 - Compilador para extensiones AVX de Intel Core e Intel Xeon.
 - Haswell, Ivy Bridge, Intel Phi

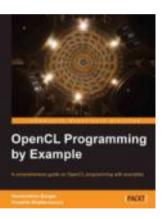
Cómo aprender OpenCL

- Página desarrollo AMD: <u>http://developer.amd.com</u> <u>http://developer.amd.com/tools-and-sdks/opencl-zone/</u>
- Seminarios gratuitos: https://www.youtube.com/playlist?list=PLVk9nlso0x0LoT7P-GVWEASBSS750gLn6






Cómo aprender OpenCL


Libros recomendados:

Programación en OpenAcc

- Tecnología de Cray, CAPS, NVIDIA y PGI
- Basado en directivas (estilo OpenMP).
- Soporte sólo comercial (NVIDIA PGI), aunque GNU GCC trabaja en incluirlo.

AMD FirePro, Radeon y Fusion

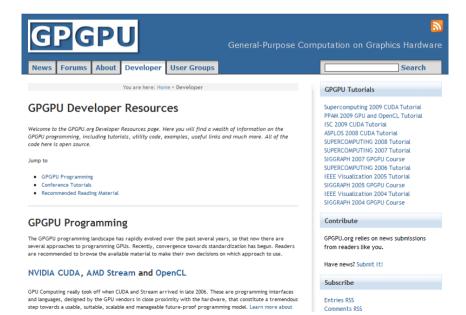
- AMD adquirió ATI, mayor competidor en GPUs
- FirePro S9150: 2815 núcleos, 16GB memoria, 5TFLOPS
- Programado con OpenCL y Microsoft C++ AMP
- Algunas "ventajas":
 - Suelen ser más baratas
 - Mejor rendimiento de cálculo
 - APUs avanzadas

Intel Xeon Phi (MIC)

- Intel Many Integrated Core Architecture (Intel MIC) es un multiprocesador empaquetado en una tarjeta, que sirve como coprocesador.
- En procesadores Intel Xeon Phi
- 61 cores, 4 hilos por core: 244 hilos
- Programación con TBB, OpenCL

Procesadores híbridos

- Procesadores de última generación que combinan CPU y GPU en el mismo chip.
 - Controlador implementado en chip.
 - Comparte misma memoria (RAM, más lenta: DDR3 vs GDDR5).
- Algunas tecnologías:
 - NVIDIA Tegra (móviles y tablets): 4CPUs (ARM) + 1GPU (192 cores) (Tegra K1)
 - AMD Fusion (APU): 4CPUs + 8GPU (512 cores) (A10-7850K)
 - Intel Haswell (22nm): 4(8) + 1GPU (20 cores)



gpgpu.org

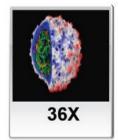
 Recursos para desarrolladores, noticias, eventos, foros, calls...

hgpu.org

 Base de datos que contiene trabajos relacionados con GPUs

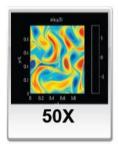
gpucomputing.net

Más información sobre recursos y comunidades



Recursos y oportunidades

Aplicaciones de la GPU


Imágenes biomédicas Univ. Utah

Dinámica molecular Univ. Illinois, Urbana

Transcoding de video
Elemental Tech

Computación Matlab AccelerEyes

Astrofísica RIKEN

Simulación financiera Oxford

Algebra lineal Univ. Jaume I

Ultrasonidos 3D Techniscan

Química cuántica Univ. Illinois, Urbana

Secuenciación genética Univ. Maryland

Supercomputación y CUDA

Top500, Junio 2014: 2º y 6º puestos.

RANK	SITE	SYSTEM	CORES	(TFLOP/S)	(TFLOP/S)	(KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P	3120000	33862.7	54902.4	17808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	17173.2	20132.7	7890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8586.6	10066.3	3945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect, NVIDIA K20x Cray Inc.	115984	6271.0	7788.9	2325

RMAX

RPEAK

POWER

Recursos en el RGNC

- Servidor "Teide":
 - 3 x Tesla C1060 (240 cores @ 1.3Ghz, 4GB)
 - 1 x GeForce GTX 550Ti (192 cores @ 1.9Ghz, 1GB)
- Servidor "Mulhacen":
 - 1 x Tesla K40 (2880 cores @ 0.75Ghz, 12GB)
 - 1 x GeForce GTX780 Ti (2880 cores @ 0.93Ghz, 3GB)
 - 1 x GeForce 9400GT (16 cores @ 1.4Ghz, 512MB)
- Financiados por MINECO, MICINN y Junta Andalucía
 - http://www.gcn.us.es/gpucomputing

Otros recursos

- NVIDIA Test Drive: http://www.nvidia.com/object/gpu-test-drive.html
 - Acceso de prueba a un servidor con GPU K20x, gratuito.
- Amazon EC2: http://aws.amazon.com/es/ec2/
 - Cuenta gratuita, pago de recursos por hora (~0,65\$/hora)
- BSC: http://www.bsc.es/marenostrum-support-services
 - Alta demanda y uso restringido.
- CETA-CIEMAT: http://www.ceta-ciemat.es
 - Cluster con GPUs, financiado con fondos públicos, fácil acceso.

Oportunidades

- Con CUDA:
 - Aceleración de aplicaciones a "bajo coste" y en local.
 - Aumento potencia de nodos de computación en clusters.
 - Requiere esfuerzo inicial para adaptar el problema.
- Oportunidades de publicación:
 - En el área correspondiente.
 - En el área de GPU computing.
- Estamos abiertos a cualquier tipo de colaboración.

Sería fantástico, dentro de la US, ...

- Crear una comunidad de interesados en la tecnología GPU
- Crear una comunidad de desarrolladores en CUDA
- Aunar esfuerzos para formar a los alumnos en nuevas tendencias de supercomputación.

Muchas gracias

- ¿Preguntas?
- Correo electrónico: mdelamor@us.es
- Página web: www.cs.us.es/~mdelamor

