VARIANTS OF ENERGY-CONTROLLED P SYSTEMS

Artiom Alhazov¹ Rudolf Freund² Sergiu Ivanov³

¹Institute of Mathematics and Computer Science, Moldova ²TU Wien, Austria ³Université Paris Est, France

NIT 2016, Valencia

Overview

The Basic Model of Membrane (P) Systems

Register Machines

Energy-Controlled P Systems Energy-Controlled Simple P Systems with Cooperative Rules (Purely) Catalytic Energy-Controlled Simple P Systems

Conclusion

P Systems

P systems are formal systems processing multisets of objects in a cell-like membrane structure. In the basic model introduced by Gheorghe Păun, in each transition step, a maximal multiset of rules is applied to the objects in each membrane region.

嗪 Gh. Păun:

Computing with membranes.

J. Comput. Syst. Sci., 61 (2000), 108–143 (see also TUCS Report 208, November 1998, www.tucs.fi).

Sh. Păun, G. Rozenberg, A.Salomaa (Eds.): The Oxford Handbook of Membrane Computing. Oxford Univ. Press, 2010.

Stems Website: http://ppage.psystems.eu.

The Basic Model of P Systems

A (cell-like) P system is a construct

- $\Pi = (O, C, \mu, w_1, \dots, w_m, R_1, \dots, R_m, f_l, f_O) \text{ where}$
 - ► *O* is the alphabet of objects,
 - $C \subset O$ is the set of catalysts,
 - µ is the membrane structure
 (with *m* membranes),
 - ▶ w₁,..., w_m are multisets of objects present in the m regions of µ at the beginning of a computation,
 - R_1, \ldots, R_m are finite sets of rules, associated with the membrane regions of μ ,

The Basic Model of P Systems

- *f_l* is the label of the membrane region where the inputs are put at the beginning of a computation (in the accepting/computing case).
- f₀ is the label of the membrane region from which the outputs are taken at the end of a halting computation (in the generative/computing case).

 $f_I = 0/f_I = 0$ indicates that the output/input is taken from the environment.

Structure of a P System

environment (0)

1

Structure of a P System

environment (0)

1

The Rules in the Basic Models of P Systems

A rule $u \rightarrow v$ is called

- cooperative if $u \ge 2$,
- ▶ *non-cooperative* if *u* = 1, and
- ► catalytic if it is of the form ca → cv, where c ∈ C is a special object which never evolves and never passes through a membrane, it just assists object a to evolve to the multiset v.

Catalytic P system: catalytic rules as well as non-cooperative rules.

Purely catalytic P system: only catalytic rules.

Derivation Modes

- sequential derivation mode (sequ): exactly one rule is used in each step.
- asynchronous derivation mode (asyn):
 an arbitrary number of rules is used in each step.
- maximally parallel derivation mode (max): in each step, a multiset of rules from the sets R₁,..., R_m of rules is chosen in such a way that no further rule can be added to it so that the obtained multiset would still be applicable to the current configuration.

Other Variants of Maximal Derivation Modes

As the rules compete for the objects present in the current configuration, we also consider the following:

maximal number of objects derivation mode (max_{objects}):

in each derivation step, from the maximal multisets of rules only those are taken which affect the maximal number of objects.

maximal number of rules derivation mode (max_{rules}):

in each derivation step, from the maximal multisets of rules only those are taken which use the maximal number of rules.

Set Derivation Modes

The derivation modes where we consider sets of rules, i.e., each rule can be used at most once in each step, are called set derivation modes.

- asynchronous set derivation mode (sasyn): in each derivation step, one applicable set of rules is used.
- set maximal derivation mode (smax): in each step, a set of rules from the sets R₁,..., R_m is chosen in such a way that no further rule can be added to it so that the obtained set of would still be applicable to the current configuration.

Set Derivation Modes

► *smax_{objects}*:

in each derivation step, from the maximal sets of rules only those are taken which affect the maximal number of objects.

► *smax_{rules}*:

in each derivation step, from the maximal sets of rules only those are taken which use the maximal number of rules.

Computations in a P System

The membranes and the objects present in the compartments of a system at a given time form a *configuration*.

We start from the given *initial configuration* and using the rules as explained above, we get *transitions* among configurations.

A sequence of transitions forms a *computation*.

Halting in P Systems

A computation is called *halting* if it reaches a configuration where no rule can be applied.

Halting with states means that the computation reaches a configuration which fulfills a specific (computable) condition.

Adult halting means that the P system reaches a configuration which does not change any more with the application of any (multi)set of rules.

Results of Halting Computations in P Systems

In generating P systems, with a halting computation we associate a *result*, in the form of the number of (different) objects present in region f_O in the halting configuration.

In accepting P systems, the input given in a membrane region $f_I \neq 0$, is accepted by a halting computation.

Register Machines – a *Computationally Complete* Model of Devices Computing with Numbers

A register machine is a tuple

$$M = (d, B, I_0, I_h, R)$$
 where

- d is the number of registers,
- *R* is the set of instructions bijectively labeled by elements of *B*,
- $I_0 \in B$ is the initial label, and
- *I_h* ∈ *B* is the final label.
 The instructions of *M* in R can be of the following forms:

Register Machines – Instructions

- *I*₁ : (ADD (*j*), *I*₂, *I*₃), with *I*₁ ∈ B \ {*I*_h}, *I*₂, *I*₃ ∈ B, 1 ≤ *j* ≤ *d*. Increase the value of register *j* by one, and non-deterministically jump to instruction *I*₂ or *I*₃. This instruction is usually called *increment*.
- *I*₁ : (SUB (*j*), *I*₂, *I*₃), with *I*₁ ∈ B \ {*I*_h}, *I*₂, *I*₃ ∈ B, 1 ≤ *j* ≤ *d*. If the value of register *j* is zero then jump to instruction *I*₃, otherwise decrease the value of register *j* by one and jump to instruction *I*₂. The two cases of this instruction are usually called *zero-test* and *decrement*, respectively.
- ► *l_h* : HALT. Halt the register machine program.

Register Machines – Configurations and Computations

A *configuration* of a register machine is described by the contents of each register and by the value of the current label, which indicates the next instruction to be executed.

Computations start by executing the first instruction of R (labeled with l_0), and terminate with reaching the HALT-instruction.

Register machines provide a computationally complete model for computations with natural numbers.

Two Variants of Energy Control

In symbol energy-controlled P systems, fixed integer values of energy are assigned to each symbol in the system, i.e., instead of O we consider the set O_E consisting of pairs [x, f(x)] with $x \in O$ and $f: O \to \mathbb{Z}$ being a function assigning a unique energy value to each symbol in O. We extend f in the natural way to multisets over O. The energy balance of a rule $u \to v$ then is f(v) - f(u).

In rule energy-controlled P systems, the energy is directly assigned to the rules only.

Derivation Modes and Energy Control

All the derivation modes can also be used for symbol energy-controlled P systems and rule energy-controlled P systems.

In addition to the restrictions given by the derivation mode itself, the multisets or sets of rules then also must fulfill the condition of yielding the minimal amount of energy.

Simple P Systems with Cooperative Rules

Simple symbol or rule energy-controlled P systems with cooperative rules have only one membrane (the skin membrane), which also serves as input and output membrane, and cooperative rules of the form $u \rightarrow v$; |uv| is called its *size*. $\Pi = (O_E, w_1, R_1)$ where

- O_E is the alphabet of objects with unique integer energy values,
- w₁ is the finite multiset of objects over O_E present in the skin membrane at the beginning of a computation,
- R_1 is a finite set of cooperative rules over O_E .

Theorem

For any register machine $M = (d, B, I_0, I_h, R)$, with $m \leq d$ being the number of decrementable registers, we can construct a simple symbol energy-controlled P system with cooperative rules of size $\leq 3 \Pi = (O, w_1, R_1)$ working in any of the derivation modes sequ, asyn, sasyn, max, smax, $max_{rules}, max_{objects}, smax_{rules}, smax_{objects}$ and simulating the computations of M such that $|R_1| \leq |ADD^1(R)| + 2 \times |ADD^2(R)| + 2 \times |SUB(R)| + 1.$

Proof. Let $M = (m, B, l_0, l_h, R)$ be an arbitrary register machine. We now construct a simple symbol energy-controlled P system with cooperative rules of size 3 simulating M in real time. The number in register r is represented by the corresponding number of symbol objects $[o_r, 1]$. We also assume all objects in B to have energy value 1.

The number in between the brackets \langle and \rangle describes the total amount of energy consumed by the corresponding rule.

A deterministic ADD-instruction p : (ADD(r), q) is simulated by the rule

 $[p,1] \rightarrow [o_r,1] [q,1] \langle 1 \rangle.$

An ADD-instruction p: (ADD(r), q, s) is simulated by the two rules

 $[p,1]
ightarrow [o_r,1] \, [q,1] \, \langle 1
angle$ and

 $[p,1]
ightarrow [o_r,1] [s,1] \langle 1
angle.$

A SUB-instruction p: (SUB(r), q, s) is simulated by the rules

 $\left[p,1
ight] \left[o_{r},1
ight]
ightarrow \left[q,1
ight] \left\langle -1
ight
angle$ and

 $[p,1]
ightarrow [s,1] \langle 0
angle.$

As the total energy balance of the rule $[p, 1] [o_r, 1] \rightarrow [q, 1]$ is -1, in case the register is not empty, it has priority over the rule $[p, 1] \rightarrow [s, 1]$, which has the total energy balance 0 and performs the zero-test case.

For the final label I_h , we take the rule $[I_h, 1] \rightarrow [\lambda, 0] \langle -1 \rangle$.

In the case of a deterministic register machine, the simulation by the P system is deterministic, too.

We also observe that the construction works for every derivation mode.

Corollary

For any register machine $M = (d, B, I_0, I_h, R)$, with $m \leq d$ being the number of decrementable registers, we can construct a simple rule energy-controlled P system with cooperative rules of size $\leq 3 \Pi = (O, w_1, R_1)$ working in any of the derivation modes sequ, asyn, sasyn, max, smax, max, max_{rules}, max_{objects}, smax, smax_{rules}, smax_{objects} and simulating the computations of M such that $|R_1| \leq |ADD^1(R)| + 2 \times |ADD^2(R)| + 2 \times |SUB(R)| + 1.$

Proof.

We can immediately take over the proof of the preceding theorem by just omitting the energy values assigned to the objects and taking the values given between the brackets \langle and \rangle as the energy values assigned to the corresponding rules.

For any register machine $M = (d, B, l_0, l_h, R)$, with $m \le d$ being the number of decrementable registers, we can construct a symbol or rule energy-controlled simple catalytic or purely catalytic P system

 $\Pi = (O_E, C_E, w_1 = [I_0, 1] [c_0, 1] \dots [c_m, 1], R_1)$

working in any of the maximal derivation modes max, smax, max_{rules}, smax_{rules}, max_{objects}, smax_{objects} and simulating the computations of M such that

 $egin{aligned} |R_1| &\leq |ADD^1(R)| + 2 imes |ADD^2(R)| + \ &4 imes |SUB(R)| + 2 imes m + 1. \end{aligned}$

Proof. Let $M = (m, B, I_0, I_h, R)$ be an arbitrary register machine. Again the number in register r is represented by the corresponding number of symbol objects $[o_r, 1]$.

For each decrementable register r, $1 \le r \le m$, we use one catalyst $[c_r, 1]$, and the catalyst $[c_0, 1]$ is used for the program symbols.

 $D_m = \prod_{i \in [1..m]} [d_i, 0],$ $D_{m,r} = \prod_{i \in [1..m] \setminus \{r\}} [d_i, 0].$

A deterministic ADD-instruction p: (ADD(r), q) is simulated by the rule

 $[c_0, 1] [p, 1] \rightarrow [c_0, 1] [o_r, 1] [q, 1] D_m \langle 1 \rangle.$

An ADD-instruction p: (ADD(r), q, s) is simulated by the two rules

 $egin{aligned} & [c_0,1] \ [p,1]
ightarrow [c_0,1] \ [o_r,1] \ [q,1] \ D_m \ \langle 1
angle \ & [c_0,1] \ [p,1]
ightarrow [c_0,1] \ [o_r,1] \ [s,1] \ D_m \ \langle 1
angle. \end{aligned}$

A SUB-instruction p: (SUB(r), q, s) is simulated by the following rules:

1. $[c_0, 1][p, 1] \rightarrow [c_0, 1][\bar{p}, 1] D_{m,r} \langle 0 \rangle;$

2.
$$[c_r, 1] [o_r, 1] \rightarrow [c_r, 1] [e, -3] D_m \langle -4 \rangle$$
,
 $[c_0, 1] [\bar{p}, 1] \rightarrow [c_0, 1] [\hat{p}, 2] \langle 1 \rangle$,
 $[c_r, 1] [\bar{p}, 1] \rightarrow [c_r, 1] [s, 1] D_m \langle 0 \rangle$; if there exists
at least one register symbol o_r , then the first
two rules yield the energy balance -3 and thus
supersede the third rule, which taken alone (and

leaving c_0 idle) supersedes the second rule if it cannot be combined with the first one.

Moreover, the catalysts c_i , $i \neq r$, cannot be used with a register object o_i , as the rule

$$[c_i, 1] [d_i, 0] \rightarrow [c_i, 1] [e, -3]^2 \langle -6 \rangle$$

has a higher negative energy value.

In the decrement case, we finish with a third step using the rule

 $[c_0, 1] [\hat{p}, 2] \rightarrow [c_0, 1] [q, 1] D_m \langle -1 \rangle.$

We finally observe that, if M is deterministic, then Π works in a deterministic way, too.

Conclusion

- We have considered several variants of P systems with the multisets or sets of rules chosen according to the derivation mode together with the condition of yielding the minimal total amount of energy.
- The simulations of register machines showing computational completeness can even be carried out in a deterministic way for deterministic register machines.
- Many more variants wait for future research.

Muchas gracias! Thank you very much! Danke schön!