
Eight More Research Directions

Artiom Alhazov

artiom@math.md

.

Direction list

• Counting

• Anti-membranes

• Channels

• Global

• Concistency

• cP

• PLingua

• RuleForms

Counting 1

• “How much information is stored in a configuration
of a membrane system with symbol objects?“

• Modulo isomorphism: as "size" it is enough to specify the
number m of membranes and t of objects.

• In total: infinite unless we bound the alphabets
(membrane alphabet (labels) and object alphabet
(symbols),
One alternative: fix the alphabets, in particular |O|=n
kinds of objects, the number m of membranes and
maximal number k of objects of each kind in each region.
Then the total number of objects is not fixed, but
bounded by m*n*k.

Counting 2

• One membrane, modulo isomorphism.

t=0-->1 (empty multiset), t=1-->1,

t=2-->2 (aa,ab), t=3-->(aaa,aab,abc),

t=4-->5, t=5-->7, t=6-->11. Can be

specified by a recurrent two-argument

function. Seems to correspond to number

sequence https://oeis.org/A000041

Counting 3

• Unlabeled membrane structures without
objects, modulo isomorphism.

• m=1-->1 (only skin),

• m=2-->1 (two nested membranes),

• m=3-->2 ([[][]] and [[[]]]),

• m=4-->4, m=5-->9.
Seems to correspond to number sequence
https://oeis.org/A000081

• Note: with labels, already m=2 gives 2 different
configurations, [[]_2]_1 and [[]_1]_1.

Counting 4

• One membrane, one label, one
polarization, no isomorphism.

• Fixing the alphabet size |O|=n, the number
of different multisets of cardinality t is the
number of t-combinations with repetitions
of set O, equal to C(n+t-1,t), where
C(n,k)=n!/(k!*(n-k)!).
https://en.wikipedia.org/wiki/Combination#
Number_of_combinations_with_repetition

Counting 5

• m membranes, |O|=n, at most k objects of
any kind in any membrane, no isomorphism.
Then the number of different configurations
would seem to be equal to the number of
different membrane structures with m
membranes, multiplied by (mn)^(k+1).
Correction: but even in this case it is not so
simple, because [[a][]] and [[][a]] are the same
configuration; the expression above only holds
under the assumption that there are no
indistinguishable membranes, e.g., all
membranes have different labels.

Counting 6

• Goal: to have a general formula for each typical
set of parameters specifying "size", of all
configurations of this "size".
If counting tree structures is difficult, start with
tissue.
Why? to understand how much information is
indeed stored in a configuration of a P system,
because the general impression that, with m
membranes and t objects, there are
approximately exponentially many different
configurations, is too inaccurate and in some
settings incorrect.

Counting 7

• This topic is easy to start thinking about,
and hopefully it would motivate you
to take a pen and a piece of paper and try
to count something.
When a problem is clarified, one can try to
use favorite programming language
to automatically enumerate and count
configurations until some small bound,
but still beyond the point where one would
introduce too many mistakes by hand.

Anti-membranes 1

• Reminder: rules of types []h�[]j []k, []h[]h'�λ ; could also be with
objects.

• A. ALHAZOV, R. FREUND, S. IVANOV: (Tissue) P Systems with
Anti-Membranes. In Seventeenth Brainstorming Week on Membrane
Computing (Orellana-Martín, D.; Păun, Gh.; Riscos-Núñez, A.; Andreu-
Guzmán, J. A., Eds.), Sevilla. RGNC report 1/2019, University of
Seville, Artes Gráficas Moreno, S.L., 2019, 29–30.

• http://www.gcn.us.es/files/17bwmc/029_AntiMembranes.pdf

• and

• A. Alhazov, R. Freund, S. Ivanov: P Systems with Anti-Membranes.
In Proceedings of the 20th International Conference on Membrane
Computing, CMC20, Curtea de Argeș (Păun, Gh., Ed.). Bibliostar,
Râmnicu Vâlcea, 2019, 249–256.
http://membranecomputing.net/cmc20/pdf/procCMC20.pdf#page=250

Anti-membranes 2

• 1) Can we still do anything non-trivial if changing membrane labels
is forbidden? Is it possible, e.g., to simulate boolean circuits?

• 2) What if we forbid changing labels but allow a limited (3?) number
of polarizations? let's say annihilation needs _some_ form of
polarization agreement

• 3) Descriptional complexity of a small universal NFPAMS

• 4) Which ingredients are needed to solve SAT with anti-membranes?

• 5) How we can exploit deeper membrane structures? For instance,
annihilation of nested membranes outside-in performs an ordered
sequence of membrane dissolutions.

• 6) antiMembranes for efficiency? In any way that is not a trivial
translation of the previous research from objects to membranes.

Channels
• For symport/antiport P systems, in tissue case, it is _usually_ assumed that channels

do not admit any parallelism. There has been a few exceptions. 1) Some Rudi's talk
with PPT slides many years ago, where cells were represented by huge colored
circles, I do not remember the title. 2)

• A. Alhazov, R. Freund, M. Oswald: Tissue P Systems with Antiport Rules and
Small Numbers of Symbols and Cells. In: De Felice C., Restivo A. (eds)
Developments in Language Theory. DLT 2005. Lecture Notes in Computer Science
3572. Springer, Berlin, Heidelberg, 2005, 100-111.

• https://doi.org/10.1007/11505877_9

• , where in Ot'P, primed letter t indicated that it was allowed to have distinct channels
(i,j) and (j,i). 3) A more recent paper

• H. Adorna, A. Alhazov, L. Pan, B. Song: Simulating Evolutional Symport/Antiport
by Evolution-Communication and vice versa in Tissue P Systems with Parallel
Communication. In: Gheorghe M., Rozenberg G., Salomaa A., Zandron C. (eds)
Membrane Computing. CMC 2017. Lecture Notes in Computer Science 10725.
Springer, Cham, 2018, 1-14.

• https://doi.org/10.1007/978-3-319-73359-3_1

• relating evolutional symport/antiport with evolution-communication -- in order to make
it possible having direct simulation with a slowdown by a factor of a constant,
communication needed to be massively parallel. 4) Older research on neural P
systems, probably by [Krishna,Rama], long time before spikingB anyway, that last
one was quite a different model.

• - Parallel VS sequential channels in tP systems.

• Improve results with mcre from NP∪co-NP to PSPACE.

Global
• considered by A.Păun and once briefly by myself. This relates to problem (Q6) in

Gheorghe's open problem list http://www.gcn.us.es/?q=18bwmc_openproblems . IF
membrane structure is static and we do not care about descriptional complexity, making
all rules global does not seem to restrict us at all: objects can always be renamed when
moved, so they know where they are ☺

• However, the total number of rules in this reduction may increase, and this technique
becomes more complicated, or even impossible, with dissolution. BTW, this may open
an interesting discussion at solving hard problems in polytime. Besides, not all
membranes are created equal: by definition, elementary membrane division is not
applicable to membranes that are (currently) non-elementary, and the skin cannot be
dissolved or divided (and sometimes it is forbidden for any object to enter it) - this trick
might help distinguishing membranes when needed, however, requiring non-
determinism or complicated simulation. On the other hand, with sufficient ingredients
one working region is already enough, so we should stay in a restricted enough settings.

• A. Păun: On P Systems with Global Rules. In: Jonoska N., Seeman N.C. (eds) DNA
Computing. DNA 2001. Lecture Notes in Computer Science, vol 2340. Springer, Berlin,
Heidelberg, 2002, 329-339.

• https://doi.org/10.1007/3-540-48017-X_31

• A. Alhazov, R. Freund: On the Efficiency of P Systems with Active Membranes and
Two Polarizations. In: Mauri G., Păun G., Pérez-Jiménez M.J., Rozenberg G.,
Salomaa A. (eds) Membrane Computing. WMC 2004. Lecture Notes in Computer
Science, vol 3365. Springer, Berlin, Heidelberg, 2005,

• https://doi.org/10.1007/978-3-540-31837-8_8

• A. Alhazov, R. Freund, S. Ivanov: Length P Systems. Fundamenta Informaticae 134(1-
2), 2014, 17-37.

• https://doi.org/10.3233/FI-2014-1088

Consistency
• Reminder: here applicability does not only depend on lhs. I have heard

about a practical use of this mode in a BWMC2019 discussion from
Agustin (though I forgot which application it was for, so I would not
know what reference to cite).

• Usually in membrane computing rule applicability only depends on the
left side of the rule (whether all reactants are present in the current
configuration, and, possibly, whether some additional conditions are
satisfied, e.g., promoters, inhibitors, etc.).

• Consider rules changing membrane polarization. Allow to apply
multiple rules (maximal parallelism), as long as the polarization in their
rhs is the same. Let me call it "polarization agreement". Need to be
precise, probably need to choose the polarization corresponding to at
least one applied rule, if possible.

• Other examples of maximal consistency:

• - Parallel string rewriting without conflicts [D. Besozzi], many years ago,
reference needed.

• - Rudi's target agreement/label agreement, original reference needed.

• - Any other shared resource to agree upon?

• Overall, I believe this feature deserves more attention.

cP
• = P systems with complex objects, see [Nicolescu]. Reminder: prolog-like rules using

power of term rewriting and unification. Very powerful model, e.g., a solution of the
Travelling Salesman Problem has been reported with five rules only
[CooperNicolescu_ACMC2017].

• Some longer time ago the colleagues in my institute wanted to attack with P systems the
problem of finding Gröbner basis. Unfortunately, the data structures that can be
represented and efficiently processed by usual P systems are limited, and hence they
are not suited well to work, e.g., with dynamic ordered lists of strings (a solution via
Turing machine is not elegant). It turns out that cP systems are much more flexible in
representing and efficiently processing complicated data structures.

• Some problems that have been addressed besides universality/computational
completeness and NP-hard problems, by usual P systems:

• - sorting https://doi.org/10.1007/3-540-29937-8_8 ,

• - dictionary search and update
http://univagora.ro/jour/index.php/ijccc/issue/download/44/pdf_165 ,

• - inflections http://www.math.md/publications/csjm/issues/v17-n2/10082/ , annotating
affixes https://doi.org/10.1007/978-3-642-54239-8_7 ,

• - firing squad synchronization problem

• https://doi.org/10.1007/978-3-540-95885-7_9

• (more problems and solutions can be found in

• Applications of Membrane Computing, 2005 and Membrane Computing Handbook).

• Need: more problems that are practical, well defined and sufficiently simple (simpler
than Gröbner basis), to be attacked by cP systems, but not completely trivial (needing,
say, more than two rules).

PLingua 1
• 1. Simulator. It would be very useful for theory to have a proper tool computing

the set of all possible transitions from a given configuration.

• (Yes, I remember you are more focused on applications like zebra muscles,
and you are quite concerned that it does not scale well. However, enough
theory is anyway done, and there can be multiple simulators for PLingua. A
few times I have been so upset that I thought about programming something
like that myself, but what I do is normally not compatible, not user-friendly and
definitely not in Java)

• Basically, having fixed the current configuration C, for each rule r it is easy to
compute the maximal number max(r,C) of times it can be applied in parallel.
By dividing, for each object a in lhs(r), |C|_a by |lhs(r)|_a rounding down, and
taking the minimum. Same works in a distributed way, assuming proper
flattening, possibly on the fly. In the _worst_ case, all possibilities are among
the combinations, for each rule r, of applying it from 0 to max(r,C) times. It only
takes to verify that the multiset union of lhs(r) times the number of applications
of r, summed over all rules r, is contained in r. That would be asynchronous
mode. For any other mode, compliance is also to be checked. Of course, for
maxpar that would be non-applicability of ANY further rule to the idle objects.
Of course, in particular cases the set of possible transitions could be computed
more efficiently.

PLingua 2
• 2. Semantics and membranes. The recent advances in PLingua, like defining user rule types, seem to

be quite useful. Yet, the main value I see is being able to specify rules other than the most usual ones
in the model (and, in particular, being able to combine rules from different models), and a comfortable
way to write them is secondary, though also nice.

• A thing which is often related to syntax is how to apply it, the most needed versions being "in max.
parallelism" and "sequentially". In particular, rules (a) are normally treated as parallel, even though
sequential version has been considered, while rules (b),(c),(d),(e),(are normally considered
sequential, even though without polarizations alternative semantics has been studied.

• Imagining rules involving more than one membrane, we need to be more precise. I proposed to
indicate for each user type of rules (how exactly is a secondary question) which membranes are
resources and which membranes are context. Then, resources are lhs(r) and contexts are like
promoters. Clearly, under usual definitions a rule would be sequential with respect to resources and
parallel with respect to contexts.

• If that is too difficult, usually it is enough to have implicit semantics: any membrane written completely
in lhs(r) is a reactant, a membrane written in rhs(r) is a product, and a membrane containing "�" is a
context. Then, [a�u] is a parallel rule, but [a]�[u] would be a sequential rule. Similarly, it
automatically follows in [[]�[][]] that the external membrane is a context, while internal membranes
are resources, so we already know what is parallel and what is sequential. However, if the user wants
such a rule to be sequential also w.r.t. the outer membrane, then it can be written as [[]]�[[][]] .

• Unfortunately, this convention alone does not suffice for automatic deduction of parallelism for rules
like (b_0), (c_0). Because the context is not outside. (Yes, they could be written as boundary rules,
but this syntax is neither universal nor compatible with traditional syntax for active membranes). But
of course something can always be invented, e.g., when specifying rule types, write "[p" vs "[s"
(parallel vs sequential) or "[r" vs "[c" (resource vs context).

• Moreover, I was told that there is some problem with templates without external membrane, except
the standard types �

PLingua 3
• 3. Dynamic membranes
• Clearly, without explicitly indicated semantics []�[[]] would be a seqential membrane creation, while [a�[b]] would be

a parallel membrane creation. Then,
• [[a]�b] is a membrane dissolution, where the external membrane is a context.
• But what is the behavior of other objects, those not specified in the rules explicitly?
• The main variant is of course, upon creation the new membrane will only contain b, and upon dissolution all the

contents of the old membrane is released in the outer membrane. But of course there are other rules, although less
studied. Last year I suggested to use some wildcard, or mask, e.g., $1, to represent other objects (similarly, something
like #1 can represent other membranes, and for technical reasons different characters may be chosen; I use these
ones to explain the idea how to describe semantics different from the main one).

• [a $1�$1 [b]] usual parallel membrane creation
• a $1�$1 [b] same without the outer context
• [a $1]�[b [$1]] create a new membrane around the existing one and send b there
• [[a $1]�b $1] usual membrane dissolution
• [[a $1]�b] lose contents of the dissolved membrane
• [a $1]�[b $1][c $1] usual membrane division
• [a $1]�[b $1][c] create a sibling membrane, without replicating contents
• [a $1]�[$1(O)][$1(O')] membrane separation
• [a $1[$2]]�[$2 [a $1]] exchange objects in two membranes if the first one contains a
• Then, there may be different kinds of non-elementary membrane division
• [a]�[b][c] same syntax as for elementary membranes, replicate objects and membranes.
• Can be written as [a $1 #1]�[b $1 #1][c $1 #1]
• [[][]]�[[]][[]] separating submembranes. But what exactly happens to other submembranes if there are more than these

two?
• [$1 #1[][]]�[$1 #1[]][$1 #1[]] replicating other objects and membranes
• [$1 #1[][]]�[$1(O) #1[]][$1(O') #1[]] separating objects and replicating membranes
• [$1 #1[][]]�[$1 #1(H)[]][$1 #1(H')[]] replicating objects and separating membranes
• [$1 #1[][]]�[$1(O) #1(H)[]][$1(O') #1(H')[]] separating objects and membranes
• Overall, I think there may be some reasonable consistent universal way how to describe the precise evolution not only

of dedicated objects and membranes, but also related objects and membranes, because mass action is needed (the
first classical example of the mass action is dissolution, of course currently programmed explicitly).

PLingua 4

• 4. Tests

• From time to time, researchers consider rules
that were not considered in the original model.

• I believe many (though not all) of these issues
can be captured by the thoughts above.

• a) sequential (a), parallel (b),(c),(d),(e),@

• b) where other objects and membranes go -
division vs separation, outside vs delete, @

• c) external rules: a[]�u[], a[]�b, a[]�b[][], @

• d) @

PLingua 5
• 5. Other models besides active membranes

• With suitable choice of parallel/sequential semantics made clear, r∈Ri
can be written as [r]i. In most cases, membrane i must be treated as
context, hence, rules are parallel with respect to it.

• Antiport: u[v]� v[u]

• Evolutional antiport or boundary rules: u[v]�u'[v']

• Transitional: pretty standard, except multiple targets would be
represented as multi-membrane context, and dissolution semantics is
normally assumed parallel (multiple δ = one dissolution), not
sequential.

• Spiking: mostly similar, the main difference are additional regular
expressions.

• Promoters, inhibitors - how much is already captured by PLingua??

• Priorities - is there already a well-established syntax for them?

• Notice that strong and week priorities can co-exist: these are just
additional filters for the set of the next configurations (see part 1:
Simulator) besides the derivation mode.

• As discussed with Rudi a few days after BWMC19, filters like priorities
should be applied BEFORE the derivation mode filter.

PLingua 6

• 6. Other derivation modes.

• A new (mostly studied in the last few years) important
derivation mode for many models is set maximally-
parallel. Same as maximally parallel, but in each step
each rule may be only applied once. Technically similar
to having a dedicated catalyst for each rule.

• Some of the classical modes that would be most
important to also have are sequential and asynchronous.
Asyn is even easier than maxpar - just remove the
maximality filter. Sequential is of course the easiest to
implement.

• 7. New ways of rule control.

• Activation and blocking (I hope to soon finish formalizing
the concept also for zero-delay).

PLingua 7
• 8. One of the "worst" things that could happen.
• "Denying"
• This is how we call the situation where there exists at least one applicable rule, but there is no valid

multiset of rules. An example is ">1 mode" in the situation where only one rule is applicable. This
situation has been carefully avoided in the first years of membrane computing, but it does not present
a problem (except it is unusual), e.g., this is similar to what happens to partially blind register
machines when they try to decrement a register containing zero, which is not allowed by the model.

• Finally, a question is - can all of this co-exist in the same context?
• I still think it could. If anyone has an example of ANY membrane features that seem incompatible,

please let me know, and _maybe_ I will be able to convince you that there is no problem. Reminder -
a universal look at P systems models: network of cells, see a few publications on the Formal
Framework for a)static structures, b)dynamic structures, c)spiking.

• R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis G.,
Kefalas P., Păun G., Rozenberg G., Salomaa A. (eds) Membrane Computing. WMC 2007. Lecture
Notes in Computer Science 4860. Springer, Berlin, Heidelberg, 2007, 271-284.

• https://link.springer.com/chapter/10.1007%2F978-3-540-77312-2_17
• R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan: A Formalization of Membrane Systems

with Dynamically Evolving Structures. International Journal of Computer Mathematics 90(4), 801–
815 (2013)

• https://doi.org/10.1080/00207160.2012.748899
• S. Verlan, A. Alhazov, R. Freund, S. Ivanov: A Formal Framework for Spiking Neural P Systems.

In Proceedings of the 20th International Conference on Membrane Computing, CMC20, Curtea de
Argeș (Păun, Gh., Ed.). Bibliostar, Râmnicu Vâlcea, 2019, pp. 523–535.
http://membranecomputing.net/cmc20/pdf/procCMC20.pdf#page=250

Rule Forms in Rewriting.

Catalytic P Systems

Artiom Alhazov

Vladimir Andrunachievici Institute of

Mathematics and Computer Science

Previous publication on this topic:
http://www.math.md/imcs55/Proceedings_IMCS_55.pdf#page=283

In collaboration with R. Freund and S. Ivanov

6th Annual Rogozhin Lectures. 15.11.2019

Intro
• A rewriting rule: u�v (u,v∈V*)

• In strings: sut�svt

• Multiset: an unordered string

• Parallelism: apply rule(s) to independent

objects

• Maximality requirement: nothing is applicable

to idle objects

• Inspiration: normal forms in grammars

– ex.: {A�BC,A�a}: Chomsky NF for {L∈CF|λ∉L}

Computational completeness
• Capability to generate/accept all recursively

enumerable sets of

– strings or

– vectors of non-negative integers

• Allow ignoring a bounded amount

– of extra symbols (ex: state, catalyst) and/or

– strings/multisets (ex: λ)

• Models: sequential/parallel string/multiset

rewriting

• Focus: number of rule forms, their length

Rewriting formally
• (V,R), where finite R∈V*×V*

• Additional specifications:

– Initial string/multiset w

– Sub-alphabets, e.g., terminals T or states Q

– Special sub-alphabets (for additional
restrictions/normal forms), e.g., catalysts C

– Derivation relation, e.g.,
{sut�svt|s,t∈V*,(u,v)∈R} for sequ. Grammars

– Halting condition, e.g.,
• absence of non-terminals (grammars)

• appearance of the final state (machines)

• inapplicability of any rule (P systems)

More?
• In principle rules may be more complicated

(control mechanisms or distributed systems)

• Notation may need special symbols for

additional ingredients

– e.g., permitting/forbidden context, membrane

labels/polarizations, etc.,

• We mainly restrict ourselves to the basic rule

forms

Rule form
• A pattern of the form u�v, where u,v are

strings of variables (and, possibly, special

symbols)

• For a computing model M, we say that a

system G of type M is constructed from a set

F of rule forms if each rule of G is obtained

from some rule form in F by replacing each

variable by an element from an alphabet

specified for this variable.

• Usual sub-alphabets: T⊆V, N=V\T

Rule form examples
• A�BC (A,B,C∈V) is a rule form

• A�u (A∈V,u∈V*) is not a rule form
– Can be written as infinite set of rule forms, one

for each |u|

• A set F of rule forms is sufficient for
computational completeness of a formal
computing model M if the family of
string/multiset languages
generated/accepted by systems of M
constructed from F equals RE/PsRE,
possibly ignoring a bounded amount of
symbols or strings/multisets

Sequential rewriting
• {A�BC,AB�C}: for Turing completeness

cooperation plus lengthening and shortening

the sentential form is enough

– Obtained from type-0 grammars or TMs with

intermediate symbols

– Also need A�λ to generate λ (obvious)

• Accepting (by halting): {AB�CDE} is enough

– AB�CGG for AB�C with AG�GGA, GA�AGG

– AE�BCE for A�BC

• Other remarkable examples can easily be

derived from well-known normal forms

From normal forms & ins/del
• [Pentonnen]: {A�BC,AB�AD,A�a,E�λ}

• �: {A�BC,AB�AD,A�λ} (A,B,C,D∈V)

– A�aE, E�λ for A�a

• [Geffert]: {S�uSv,S�u,AB�λ,CD�λ}

• �: {X�YZ,XY�λ}

• [MargensternPăunRogozhinVerlan]:

• {λ�AB,ABC�λ} and {λ�ABC,AB�λ}

Sequential multiset grammars
• Not computationally complete: power of

partially blind register machines

• Possible with additional mechanisms, e.g.,

inhibitors: {AB�C,A�BC|
¬F}

– p:(A(i),q) by p�a
i
q|

¬h
,

– p:(S(i),q,r) by pa
i
�q,p�p’p’’|

¬ai
, p’p’’�q

• Accepting (by halting): {AB�CDE|
¬F}

• Parallelism: later

Infinite tape
• [Turing]: {(p,A)�(q,B,R), (p,A)�(q,B,L)}

(p,q∈Q, A,B∈Γ)

• Rewriting: (p,A)�(q,B,R) by pA�Bq,

• (p,A)�(q,B,R) by CpA�qCB ∀C∈Γ

• Split into not moving and not reading/writing:

• � {(p,A)�(q,B,S),(p,C)�(q,C,d)∀C,d=L/R}

• Proof: (p,A)�(q,B,d) by (p,A)�(r,B,S) and
(r,B)�(q,B,d)

• Rewriting: (p,A)�(q,B,S) by pA�qB

• (p,A)�(q,A,R) by pA�Aq

• (p,A)�(q,A,L) by Cp�pC∀C

• � {PA�RB,RB�BR,BR�RB} (P,R∈Q, A,B∈Γ)

Two-stack machine & circular tape
• � {P�AR,AP�R,P�RA,PA�R}

(P,R∈Q, A,B∈Γ)

• push(left), pop(left), push(right), pop(right)

• [KudlekRogozhin]: {(p,A)�(B,q,R), (p,A)�(λ,q,R),

(p,A)�(BC,q,R)}

• “Circular Post Machine”

• Rewriting: pA�Bq, pA�q, pA�BCq

• “Variant 5”: (p,λ)�(A,q,R), (p,A)�(λ,q,R)

• � {pA�q,p�Aq} (p,q∈Q, A∈Γ)

• On linear tape: left deletion, right insertion

• Queue automaton

P systems
• Maximally parallel multiset rewriting

• Non-extendable multisets of rules acting on

multisets; halt when no rules are applicable

• One-region systems

• {A�BC,AB�C}

– p:(A(i),q) by p�a
i
q, p:(S(i),q,r) by p�p’D

i
,

p’�p’’p’’’, D
i
a
i
�Z

i
, p’’p’’’�p’’’’,

p’’’’D
i
�q, p’’’’Z

i
�r

• Accepting (by halting): {AB�CDE}

• Antimatter �{A�BC,AB�λ}

Purely catalytic
• {cA�cB1RBk|k∈F} (c∈C, A,B1,R,Bk∈V\C)

• [FreundKariOswaldSosík]: F={0,1,2,3} √

• cA�cB by cBE, cA�cBD by cA�cBDE

with dE�d give us F={0,3}, i.e.,

• �{cA�c,cA�cB1B2B3}

• Previously open: F={0,2}

Purely catalytic model: another view
• Put all rules with the same catalyst in a group

• Remove all catalysts

• cA�cB
1
@B

k
becomes “A�cB

1
@B

k
in group c”

• We have groups of non-cooperative rules
– Possibly with overlapping LHSs

• Choose exactly 1 rule non-deterministically from
each group or until no remaining groups have rules
applicable to remaining objects

• Studied as “min
1
”, an ugly name for a beautiful

concept. (pcat,max)=(ncoo,min
1
)

• Like multiple multiset grammars working on the
same sentential form, competing for resources

• Catalytic: also ncoo rules, = +1 maxpar. group

Improved rule forms
• Goal: computational completeness by rule

forms {cA�c,cA�cBD}

• Start: c1p0c2d2

• Note: ca�cb by ca�cbe and c3e�c3

• Note: p�# by c4p�c4#

• General rules:

cioi�cid3-i, cidi�ci, (di�#, #�#)

• Simulating p:A(j),q

• c1p�c1p1aj c2d2�c2 (p�#)

• c1p1�c1qd2 c2aj�c2oj (aj�#, p1�#)

Improved rule forms - II
• Assumption: registers 1,2 are never (0,0) for S - instructions

• Simulating p:S(1),q

• c1p�c1p2 c2d2�c2 (p�#)

• c1o1�c1d2 (or idle) c2p2�c2p3 (p2�#)

• c1p3�c1qd2 c2d2�c2 (p3�#)
(or c2o2�c2d1)

• Simulating p:S(2),q

• c1p�c1p1 c2d2�c2 (p�#)

• c1p1�c1p2 c2o2�c2d1 (or idle) (p1�#)

• c1d1�c1 c2p2�c2qd2 (p2�#)
(or c1o1�c1d2)

Improved rule forms - III
• Note: we treat decrement and zero-test as

separate instructions

• Simulating p:Z(1),q

• c1p�c1p2 c2d2�c2 (p�#)

• c1 idle (or c1o1�c1d2) c2p2�c2qd2 (p2�#)

• Simulating p:Z(2),q

• c1p�c1p1 c2d2�c2 (p�#)

• c1p1�c1qd2 c2 idle (or c2o2�c2d1) (p1�#)

• If instruction choice is wrong, at least one of
red symbols produces #

Improved rule forms - IV
• Proved: {cA�c,cA�cBD} is computationally

complete (4 catalysts)

• Replace cA�c (A≠e) by cA�cee and e�λ
• Proved: {A�λ,cA�cBD} is computationally

complete (2 catalysts; c3 and c4 not needed)

• Open: what about {cA�c,A�BD}

• Conjecture: not universal

• Reason: checking decrement needs a
witness (non-catalyst in rhs of a cat. rule)

• Question: what is the power of RMs with
unconditional transfer?

Improved rule forms - V
• Accepting Ps(d)RE

• Need a catalyst for each input registers + a

small constant number of working registers

• Do not need erasing, produce dummy-

symbols instead; only halting matters

• [FreundKariOswaldSosík]:�{cA�cBDE}

with d+3 catalysts

• Conjecture: {cA�cBD} should suffice for

computational completeness, maybe even

with the same number of catalysts

Research directions. Conclusions
• Sequential string grammars: further variants of rule forms,
e.g., Geffert-based

• Parallel multiset rewriting: further variants, e.g., with
mcre/mdiv, active membranes

• Generalize new cat. results for accepting vectors
• Presented: a number of generating&accepting devices and corresponding sets of rule

forms sufficient for obtaining computational completeness

• Discussed: sequential grammars & Turing machines, circular Post machines, 2-stack
machines as specific models for computations on strings

• Described: several sets of rule forms sufficient for obtaining computational completeness
for sequential string grammars, especially using specific well-known normal forms as the
Penttonen NF and the Geffert normal form

• Considered: model of 1-region membrane systems, where multisets are evolving by
applying non-extendable multisets of rules in parallel

• Investigated: rule forms necessary for several variants of P systems

• Proved comput.compl. for {cA�c,cA�cBD} and {A�λ,cA�cBD}.
• Open: is the number of catalysts optimal?

• Open: the challenging open question about {cA�c,A�BD}.

• Exercise: {cA�cB,A�BD,A�λ}.
• Discussed: further variants to be investigated in the future.

• Thank you for your attention

Direction list

• Counting

• Anti-membranes

• Channels

• Global

• Concistency

• cP

• PLingua

• RuleForms

• Thank you for your attention

