P Colony Automata with LL(k) conditions

Erzsébet Csuhaj-Varjú¹, Kristóf Kántor², György Vaszil²

¹Eötvös Loránd University, Budapest ²University of Debrecen LL(k) grammars

P colonies,
 P colony automata,
 generalized P colony automata

LL(k) P colony automata

A grammar:

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

B -> b | bS | aBB

	aabb#				
	S#				
	ı				
	aabb#				
S ₁	aB#				
-	ı				
a	abb#				
S₁a	B#				
-	1				
a	abb#				
S ₁ aB ₃	aBB#				
1 3	1				
aa	bb#				
S ₁ aB ₃ a	BB#				
± 3					

aa	bb#		
S ₁ aB ₂ aB ₁	bB#		
S ₁ aB ₃ aB ₂	b\$B#		
	l		
aab	b#		
S ₁ aB ₃ aB ₁ b	B#		
$S_1 a B_3 a B_2 b$	SB#		
	I		
aab	b#		
S ₁ aB ₃ aB ₁ bB ₁	b#		
S ₁ aB ₃ aB ₁ bB ₂	bS#		
$S_1 a B_3 a B_2 b S_2$	bAB#		
	I		
aabb	#		
S ₁ aB ₃ aB ₁ bB ₁ b	#		
$S_1 a B_3 a B_1 b B_2 b$	S#		
S ₁ aB ₃ aB ₂ bS ₂ b	AB#		
-	I		
aabb#			
S ₁ aB ₃ aB ₁ bB ₁ b#			

• An LL(1) grammar: S → aB
B → b | aBb

S₁aB₂aB₁b b#

	aabb# S#	→ :	S ₁	aabb# aB#	\rightarrow	a S ₁ a	abb# B#	· · ->
a a	abb# aBb#	-> :	aa S ₁ aB ₂ a	bb# Bb#	->		bb# bb#	: ->
aab k	b#		aabb	#		aabb#		-

 $S_1aB_2aB_1bb\#$

S₁aB₂aB₁bb #

As we have seen

• $\{a^nb^n|n>1\}$ is an LL(1) language

It is also known:

• $\{a^nb^n|n>1\} \cup \{a^nc^n|n>1\}$ is **not** an LL(k) language for any k

P colonies

- A population of very simple cells in a shared environment:
 - Fixed number of objects (1, 2, 3) inside each cell
 - Simple rules (programs) for moving and changing the objects
- The objects are exchanged directly only between the cells and the environment

[Kelemen, Kelemenová, Paun 2004]

P colonies

rewriting + checking communication

$$(a \to b, c \leftrightarrow d/c \leftrightarrow g)$$

The computation

- Start in an initial configuration
- Apply (a maximal set of) programs in parallel in the cells, halt if no program is applicable
- The result is the number of the multiplicities of certain objects found in the environment

The computation

initial configuration

a possible result

P colony automata

- Response to the changes in the environment
- Automata-like behavior an input string is given
- Tape rules and non-tape rules: the application of programs with tape rules reads a symbol of the input

[Ciencialová, Cienciala, Csuhaj-Varjú, Kelemenová, Vaszil 2010]

P colony automata

The effect of tape rules:

Different computation modes ...

- nt, ntmax, ntmin: any recursively enumerable language can be accepted/characterized
 [Ciencialová, Cienciala, Csuhaj-Varjú, Kelemenová, Vaszil 2010]
- t, one cell: only CS languages can be generated [Cienciala, Ciencialová 2011a]
- initial: any recursively enumerable language can be characterized

[Cienciala, Ciencialová 2011b]

Generalized P colony automata

- A maximal set of programs is chosen, tape rules and non-tape rules together
- The chosen tape rules might "read" several different symbols in one step

[Kántor, Vaszil 2014]

Computation and rules – small example

Generalized P colony automata

- A maximal parallel set of programs is chosen, tape rules and non-tape rules together
- The chosen tape rules might "read" several different symbols in one step

- Three modes:
 - all-tape: all programs contain at least one tape rule
 - com-tape: all communication rules are tape rules
 - no restriction

Example

$$\Pi = (\{a, b, c\}, e, \emptyset, (ea, P), F)$$

$$P =$$

$$\begin{array}{c|c}
\langle e \to a, a \stackrel{T}{\leftrightarrow} e \rangle & \langle e \to b, a \stackrel{T}{\leftrightarrow} e \rangle & \langle e \to b, b \stackrel{T}{\leftrightarrow} a \rangle \\
\hline
\langle e \to c, b \stackrel{T}{\leftrightarrow} a \rangle & \langle a \to b, b \stackrel{T}{\leftrightarrow} a \rangle & \langle a \to c, b \stackrel{T}{\leftrightarrow} a \rangle
\end{array}$$

 $\{(v,ca)|a \notin v\}$

Possible computation:

$$(,ea) \stackrel{(a)}{\Longrightarrow} (a,ea) \stackrel{(a)}{\Longrightarrow} (aa,ea) \stackrel{(a)}{\Longrightarrow} (aaa,eb) \stackrel{(b)}{\Longrightarrow} (aab,ba)$$

$$\stackrel{(b)}{\Longrightarrow} (bba, ab) \stackrel{(b)}{\Longrightarrow} (bbb, ca)$$

$$A(\Pi) = \{(a)^n (b)^n | n \ge 0\}$$

$$L(\Pi, f_{perm}) = \{a^n b^n | n \ge \mathbf{0}\}$$

Some results

- $\mathcal{L}_{perm}(genPCol, *(1)) = \mathcal{L}(RE)$.
- $\mathcal{L}_{perm}(genPCol, X(1)) \setminus \mathcal{L}(REG) \neq \emptyset \text{ for } X \in \{all-tape, com-tape}\}.$
- $\mathcal{L}_{perm}(genPCol, all-tape(k)) = \mathcal{L}(RE) \text{ for } k \geq 2.$

[K. Kántor, Gy. Vaszil, to appear.]

LL(k) P colony automata

Informal definition:

The next *k* symbols of the not-yet-processed part of the input string determines the cell and the program to be applied in the next computational step.

As we have seen:

{aⁿbⁿ | n>1} ∪ {aⁿcⁿ | n>1} is **not** an LL(k) language for any k

Similarly,

 ${(ab)^n(cd)^n | n>1} \cup {(ab)^n(fg)^n | n>1}$

is **not** an LL(k) language for any k.

Example with 1 symbol lookahead

Possible computation:

$$(,ea) \xrightarrow{(a)} (a,eb) \xrightarrow{(b)} (b,ea) \xrightarrow{(a)} (ab eb) \xrightarrow{(b)} (bb,ea)$$

$$\Rightarrow (bb,ce) \xrightarrow{(c)} (bc,bd) \xrightarrow{(d)} (bcd,ce) \xrightarrow{(c)} (cdc,bd) \xrightarrow{(d)} (cdcd,ce)$$

 $L(\Pi, f_{perm}) = \{(ab)^n (cd)^n | n > 1\} \cup \{(ab)^n (fg)^n | n > 1\}$

Thus:

$$L = \{(ab)^n (cd)^n | n > 1\} \cup \{(ab)^n (fg)^n | n > 1\}$$

is **not** generated by an **LL(k)** grammar for any k, but

L is an **LL(1) P colony automata** language

Acknowledgment

Research supported in part

- by project no. K 120558, implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the K 16 funding scheme, and
- by the construction EFOP-3.6.3-VEKOP-16, a project supported by the European Union, co-financed by the European Social Fund.