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Summary. Brane Calculi are a family of biologically inspired process calculi, proposed
in [6] to model the interactions of dynamically nested membranes. We propose a seman-
tics that describes the causal dependencies occurring between the reactions of a system
described in Brane Calculi. We investigate the basic properties that are satisfied by such
a semantics. The notion of causality turns out to be quite relevant for biological systems,
as it permits to point out which events occurring in a biological pathway are necessary
for another event to happen.

1 Introduction

Brane calculi [6] are a family of process calculi proposed for modeling the behavior
of biological membranes.

The formal investigation of biological membranes has been initiated by G.
Paun [20], in the field of automata and formal language theory, with the defini-
tion of P systems. In a process algebraic setting, the notions of membranes and
compartments are explicitly represented in BioAmbients [23], a variant of Mobile
Ambients [8] based on a set of biologically inspired primitives of interaction.

Brane calculi represent an evolution of BioAmbients: the main difference w.r.t.
previous approaches consists in the fact that the active entities reside on mem-
branes, and not inside membranes. In [6] two basic instances of brane calculi have
been proposed: the Phago/Exo/Pino (PEP) and the Mate/Bud/Drip (MBD) cal-
culi.

In this paper we concentrate on the MBD calculus. The primitives of MBD are
inspired by membrane fusion (mate) and fission (mito). Because membrane fission
is an uncontrollable process that can split a membrane at an arbitrary place, it
is replaced by two simpler operations: budding, that is splitting off one internal
membrane, and dripping, that consists in splitting off zero internal membranes.

The aim of this work is to start an investigation of the causal dependencies
arising in Brane Calculi, and more precisely in the MBD calculus. The main moti-
vation for this work comes from system biology, as the understanding of the causal
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relations occurring between the events of a complex biological pathway could be
of precious help, e.g., for limiting the search space in the case some unpredicted
event occurs.

The study of a causal semantics for process algebras dates back to the early
nineties for CCS [17] (see, e.g., [10, 9, 15]), and to the mid nineties for the -
calculus [18] (see, e.g., [1, 3, 11, 12]).

To the best of our knowledge, the only other work that deals with causality
in bio-inspired calculi is [14], where a causal semantics for Beta Binders [21, 22]
— based on the m-calculus semantics and on the enhanced operational semantics
approach of [12] — is defined. One of the main differences between Beta Binders
and Brane Calculi is that the membrane structure in Beta Binders is flat, whereas
in Brane Calculi the membranes are nested to form a hierarchical structure. As we
will see, this difference has a deep impact on the complexity of the causal relation.
The other differences between the two approaches will be discussed throughout
the paper.

The paper is organized as follows. Section 2 introduces the syntax and the
interleaving semantics for the MBD fragment of the Brane Calculus. Sections 3
and 4 are devoted to the definition of the causal semantics. Section 3 provides
an informal description of the features of the causal semantics we are defining,
and illustrates the problems that have arised through a list of examples. The
formal definition of the causal semantics is in Section 4, followed by a discussion
concerning the properties that are (not) satisfied by such a semantics. Finally,
Section 5 reports some conclusive remarks.

2 MBD Calculus: Syntax and Semantics

In this section we recall the syntax and the standard, interleaving semantics of
Brane Calculi, and specialize it to MBD [6].

2.1 Syntax and structural congruence of Brane Calculi

A system consists of nested membranes, and a process is associated to each mem-
brane.

Definition 1. The set of systems is defined by the following grammar:
P,Q == o|PoQ|!P|o(P)

The set of membrane processes is defined by the following grammar:

o

, 7 u= 0|alr|lo]ac

Variables a,b range over actions, that will be detailed later.
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The term ¢ represents the empty system; the parallel composition operator on
systems is o. The replication operator ! denotes the parallel composition of an un-
bounded number of instances of a system. The term o (] P |) denotes the membrane
that performs process ¢ and contains system P.

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !0 we denote the parallel composition of an unbounded number of
instances of process 0. Term a.o is a guarded process: after performing the action
a, the process behaves as o.

We adopt the following abbreviations: with a we denote .0, with ( P]) we
denote 0( P ), and with o( ) we denote o( © ).

The structural congruence relations on systems and processes is defined as
follows:!

Definition 2. The structural congruence = is the least congruence relation satis-
fying the following axioms:

PoQ=QoP oclr=71|o
Po(QoR)=(PoQ)oR  a|(r|p=(0]")|p
Poo=P ol0=0o

lo=9o 0=0
(PoQ)=!PolQ o |7)=lo | Ir
"p=pP o =lo

PolP =P ollo=lo

0o D=0

2.2 Interleaving semantics of Brane Calculi

We recall the standard, interleaving semantics. At each computational step, a
single reaction is chosen and executed. The next definition provides the set of
generic reaction rules that are valid for all brane calculi, while the reaction axioms
are specific for each brane calculus; the reaction axioms for MBD will be provided
in Definition 5.

Definition 3. The basic reaction rules are the following:

P — P —
(par) Q (brane) Q
PoR — QoR o1 P) — o(Q)
P=pP P —-Q Q=Q
(strucong)
P/ N Q/

! With abuse of notation we use = to denote both structural congruence on systems
and structural congruence on processes.
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Rules (par) and (brane) are the contextual rules that respectively permit to a
system to execute also if it is in parallel with another process or if it is inside a
membrane, respectively. Rule (strucong) ensures that two structurally congruent
systems have the same reactions.

With —* we denote the reflexive and transitive closure of a relation —. Given
a reduction relation —, we say that the system P’ is a derivative of the system P
if P —* P’; the set of derivatives of a system P is denoted by Deriv(P).

We say that a system P has a divergent computation (or infinite computation)
if there exist an infinite sequence of systems Py, Py,..., P;,... such that P = P,
and Vi > 0: P, — P;;1. We say that a system P has a terminating computation
if there exists @ € Deriv(P) such that QQ 4. We say that all computations of a
system P terminate if P has no divergent computations.

We use [] (resp. ) to denote the parallel composition of a set of processes
(vesp. systems), i.e., [[;cy  y0i=01] ... [onand Qe .ipPi =P o ... 0
P,,. Moreover, [[;c40: = 0 and OjepP; = ©. Finally, [, o (resp. O, P) denotes
the parallel composition of n copies of process o (resp. system P).

2.3 Syntax and interleaving semantics of MBD

The actions of the MBD calculus, proposed in [6], are inspired by membrane fusion
and splitting. To make membrane splitting more controllable, in [6] two more basic
operations are used: budding, consisting in splitting off one internal membrane, and
dripping, consisting in splitting off zero internal membranes. Membrane fusion, or
merging, is called mating.

Definition 4. Let Name be a denumerable set of names, ranged over by n,m, . ...
The set of actions of MBD is defined by the following grammar:

a = mate, | mate,, | bud, | bud, (o) | drip(c)

Actions mate, and mate,; will synchronize to obtain membrane fusion. Action
bud,, permits to split one internal membrane, and synchronizes with the co-action
bud,;. Action drip permits to split off zero internal membranes. Actions bud" and
drip are equipped with a process o, that will be associated to the new membrane
created by the membrane performing the action.

Definition 5. The reaction relation for MBD is the least relation containing the
following azioms, and satisfying the rules in Definition 3:

(mate) mate,.olog( P|) o mate,.T|10( Q) — olog|T|mo( Po Q)
(bud)  bud,, (p).7|70( budn.cloo( P e Q) — ploloo( P)) o 7Im(Q)

(drip) drip(p).oloo( P — p( ) o oloo( P
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3 A Causal Semantics for MBD: an informal explanation

In this section we provide a causal semantics for MBD.

To define a causal semantics for process calculi, we follow the approach used
in [15] for CCS, and in [1] for the m-calculus. The idea consists in decorating the
reaction relation with two pieces of information:

e a fresh name k, that is associated to the reaction and it is taken from the set
of causes IC;

e aset H C K, containing all the names associated to the already occurred
reactions, that represent a cause for the current reaction.

To keep track of the names of the already occurred reactions that may represent a
cause for the reactions that may happen in the future, the syntax of the terms of
the calculus is enriched with such an information on causal dependencies. As in [1],
for the sake of clarity we only keep track of the so called immediate causes, as the
set of general causes can be reconstructed by transitive closure of the immediate
causal relation. We will provide more explanation on this point with an example
in the following part of the paper.

Now we start with an informal introduction of causality in MBD. First we
discuss how the standard kinds of causality arising in most process calculi — i.e.,
those due to the prefix structure of processes and to the synchronization of two
complementary actions — scale to Brane Calculi. Then we perform a design choice
concerned with the semantics of calculi for membranes, and finally we discuss other
features peculiar of the MBD operations.

3.1 Classical causal dependencies: structural and synchronization
causality

We start the kind of causal dependencies that arises in all process calculi, namely,
structural causality and synchronization causality.

Structural causality arises from the prefix structure of terms. Consider for
example the following system:

drip(c).drip(p)( |

Such a system can first create a new membrane with process o, followed by the
creation of a second new membrane with process p; i.e., it can perform the sequence
of reactions

drip(o).drip(p)( ) — drip(p)( ) o o ) —=0( ) ool )opl )

The creation of the first membrane is a necessary condition for the creation of
the second membrane, hence we say that the execution of the drip(p) operation is
caused by the execution of the drip(c) operation.

To remember the fact that the action drip(c) will be a cause for the actions
performed by the continuation of the prefix, we replace the drip(c) prefix with a
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causal operator containing the cause name associated to the drip(c) action. Thus,
we obtain the following causal reactions:

drip(o).drip(p)( ) L {h} = drip(p)(| Dol ) =L {k} 00 Dool hop( )

The decoration h;( of the first reaction means that the first reaction is labeled
with the causal name h and that its set of causes is empty. The decoration k; {h}
of the second reaction means that the second reaction has associated the causal
name k, and it is caused by the reaction named h (i.e., the first reaction). The
process {h} :: drip(p) means that the first action performed by process drip(p)
is caused by the reaction named h. Note that — for the sake of brevity — process
{k} :: 0is decorated only with the immediate cause {k}, as the whole set of causes,
i.e., {h,k} can be easily constructed.

To lighten the notation, in the following we will drop the parentheses surround-
ing the set of causes, if this creates no confusion.

The other kind of causality, i.e., synchronization causality, arises when two
processes synchronize on complementary actions. Consider the system

drip(o1).mate,.drip(T1)( | o drip(oz).mate,, .drip(m2)( |

The mate reaction can be performed when both the actions drip(o1) and drip(os)
have been performed; hence, it is caused by both actions. We obtain the following:

drip(o1).mate,.drip(1)( |) o drip(oa).mate;;.drip(2)( DM .
) ) o drip(oz).mate;.drip(r2)( ) o or( )=
hi :: mate,.drip(m1)( ) o hg it mates.drip(2)( |) o o1( |) o o2
k:: (drip(m) | drip(r2)( ) © o1 ) o o2 )

Hence, the (label k of the) mate reaction will be an immediate cause for both
drip(71) and drip(72), and the global set of causes of these two drip actions will be

{h1, ha, k}.

hi 2 mate,.drip(m
k;hi,ho
) ——

3.2 How does the causes distribute over the parallel components of a
membrane process?

When moving to consider the features of the causal relation peculiar of membrane
calculi, a first question arises: if a process on a membrane performs an action, this
action will be a cause only for its continuation (and eventually for the continuation
of its synchronizing action), or for the whole process on the membrane? In other
words, consider the system

mate, | drip(o)( ) omate,(

If the system performs the mate synchronization, then the drip action will be
caused or not by the mate action? The assumption that the drip will be caused
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by the mate may have the following biological interpretation: when a membrane
interaction operation is performed, all the membrane is involved, and at the end of
the operation the structure of all the membrane has been affected. This assumption
is considered in [14] in the definition of a causal semantics for Beta-binders [21,
22] , a bio-inspired process calculus roughly consisting of unnested compartments
enclosing m-calculus processes. It is also used in [2] for the definition of a maximal
parallelism semantics (i.e., step semantics with maximal progress: if an action can
be performed in the current step, then it must be performed) for MBD. It is also
the common approach used in the definition of the maximal parallelism semantics
for Membrane Systems with evolving membranes (see, e.g., [19, 20]). In the present
paper, we consider the opposite approach: in the above system, we consider the
drip operation independent from the mate operation, as the drip operation can be
executed regardless of the fact that the mate synchronization has been performed
or not. The biological interpretation may be the following: the membrane proteins
and the part of the lipid bilayer involved in the mate synchronization are different
from the membrane proteins and the part of the bilayer that is performing the
drip operation, and they lie in different parts of the membrane surface.
Thus, we consider the following causal reactions:
. h;0

mate, | drip(o)( ) omate:( ) —

he0 | drip(o) | h=o( ) 2%

h:0]k=0]|h:z0( )

Note that the information on the causes of the empty process 0 is completely
irrelevant, hence in the following we will replace H :: 0 with 0.

3.3 Causal dependencies generated by the mate operation

Now we analyze the features peculiar of the MBD operations. According to the
informal explanation above, a mate action turns out to be a cause for the con-
tinuations of the mate and the co-mate prefixes that synchronize to perform the
operation. However, when considering the mate operation, a more subtle kind of
causality, we call environment causality, is originated, e.g., between the mate ac-
tion and the processes on the child membranes of the two membranes performing
the mate and co-mate actions. This causality is due to the fact that the environ-
ment of such child membranes, i.e., the set of membranes with which they can
interact, is increased by the execution of the mate action.

Mate followed by mate
Consider the following process:

mate,( (maten, | mate,)( |) o matez( ) o
mate:( mates( ) )
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Now the mate synchronization on m cannot be performed, as the two mem-
branes whose processes can synchronize on such an operation belong to different
membranes. On the other hand, the mate synchronization on o can take place, as
both membranes whose processes can synchronize on such an operation belong to
the same membrane.

However, if the mate synchronization on n takes place, the two external mem-
branes are fused; this results in a change of the environment of the child membrane;
now the mate on m can take place, as the two child membranes now belong to
the same father membrane and can get in contact. Hence, the mate on m causally
depends on the mate on n.

To this aim, we decorate the processes of the child membranes of the external
membrane performing a mate with label £ in the following way: the child mem-
branes on the left are decorated with the enriched label k;" , whereas the child
membrane on the right with the enriched complementary label k;". 2 Note that we
cannot simply decorate both groups of child membranes with label k, otherwise
we are no longer able to distinguish between the synchronization on m, that is
caused by k, and the synchronization on o which has no causes.

The enriched labels are used in the following way: when two processes preceded
by enriched labels synchronize on a mate operation, the label k£ will be a cause for
such a synchronization if one process in decorated with an enriched label and the
synchronizing process is decorated with the complementary label.

We obtain the following causal reductions:

mate,( (mate,, | mate,)(| |) o mates( || o
mate,; (| mates, (| ) )
h;0
—_
(01 0)( (b :: matey, | hi = mate,)( ) o ki = mates( | o
h; = maten( ) )
Now, if the mate on m is executed, then it will be caused by h, as the mate
and comate processes are labeled with h:r and h;, respectively:
(01 0)( (hf :: maten, | hi :: mate,)(| ) o hi ::matet( | o

K2

h; :mates () )

i
k;h
-

(010)( (0] hi = mate,)(| |) o hf ::mates( ) o
o DD

On the other hand, if the mate on o is executed, then it is not caused by h,,,
because the mate and comate processes are labeled with the same label h;-".

% The i in the labels & and k; stands for “internal”, and means that the action with
label k£ has been performed by the father membrane. The need for such a label will be
made clear in the following.
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Mate followed by bud

A similar problem arises between the father and the child membrane when a bud
operation is performed. Consider the following process:

(maten | bud,, (p1))( budn( ) o bud,( ) o
(mate;; | budy (p2))( D

Now only the bud on m can be performed, as the membrane performing the bud
on o is not a child of the membrane performing the corresponding cobud. However,
the bud on o can be performed after the mate on n is performed, hence the bud
causally depends on the mate. Thus, besides decorating the children of a membrane
performing a mate (resp comate) with complementary labels k" (resp. k; ), we also
decorate the subprocesses in parallel with the subprocess performing the mate
(resp. the comate) with kI (resp. k7 )®. When a bud is performed, it is caused by
k if the process performing the cobud on the father membrane is decorated, e.g.,
with & and the process performing the bud on the child membrane is decorated
with k.

Note that, in case of a mate followed by a drip, the decorated causes will give
rise to no causal dependency: the drip is caused by the mate only if the mate (or
the comate) is a prefix of the drip.

3.4 Causal dependencies generated by the bud and the drip operations

The bud (resp. drip) operation create a new membrane — whose membrane process
is specified in the cobud (resp. drip) action — surrounding the child membrane
that performs the synchronizing bud action (resp. with no children). As the new
membrane does not exist before the bud (resp. drip) operation is performed, all
the actions that such a membrane will perform are caused by the bud (resp. drip)
operation.

Consider the following system:

bud;; (drip(o))( bud,( | )

This system can perform the following causal reactions:

bud* (drip(o))( bud,( ) ) 2%
00 ) o heudrip(a)( 0] ) 2%
00 ) oo0f0f Dho kol |

We note that the bud operation generates no environmental cause. Regarding
the child membranes, they are essentially divided into two sets, thus possibly
preventing some mate (or bud) operation that was possible before to happen. On
the other hand, the other processes in the father membrane are left unchanged.

3 Here the e means “external”
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4 A causal semantics for MBD: the formal definition

In this section we provide a formal definition of the notions introduced in the
previous section.

Definition 6. Let KC be a denumerable set of cause names, disjoint from the set
Names. Let Deco(K) be the set

Deco(K)=KU{kY | ke KAz € {i,e} Ny e {+,—}}

The set of membrane processes with causes are defined by the following gram-
mar:
5,7 u= 0]6|7|!6| K ac

Variables a,b range over MBD actions specified in Definition 4, K C Deco(K),
and a.o0 is a sequential process as defined in Definition 1.

The set of systems with causes is defined as in Definition 1, but using processes
with causes instead of processes to decorate membranes.

The set of causes preceding the process 0 is useless, hence it has been omitted.
We omit the ~over processes if it is clear from the context that they are processes
with causes.

To define the causal semantics, we need an auxiliary operator on processes (and
on systems) permitting to add a set of causes in front of each sequential subprocess
of the process (resp. of the processes associated to the most external membranes
of the system.

Definition 7. Given K C Deco(K), the operator K= is inductively defined on
processes with causes as follows:

Ke0=0
Ke(o|1)=K=o | KT
Kelo =Ko
Ke H:ac=HUK :a.o

The operator K= is inductively defined on systems as follows:

Keo=09
Ke (PoQ)=K=P o K& Q
K= (IP) =K P
Ke (o P ) =(K=o0)( P

If the set K is a singleton, often we omit the surrounding parenthesis in the
operator K=; thus we write, e.g., k= P instead of {k}= P.

. . k;H
Now we are ready to define the causal semantics for MBD. We write P —— P’
to denote the fact that system P performs an action — to which we associate the
cause name k — that is caused by the (previously occurred) actions whose action
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names form the set H. The cause name k is a fresh name: this means that it does
not occur in P and that it has not used yet in the current computation.

The structural congruence relation is the that in Definition 2. The causal rules
are obtained by decorating the rules in Definition 3 with the causal information.

Definition 8. The causal reaction rules are the following:

kH ki H

(par) —— 9 (brane) — 9
par - rane -
PoRr L QoR o(P) EL 5(Q)
pP=p PELQ Q=q
(strucong) AT
P — Q

Now we are ready to define the causal reaction relation for MBD.

Definition 9. The causal reaction relation for MBD is the least relation contain-
ing the following axioms, and satisfying the rules in Definition 8:

(kmate) (Hj :: mate,.o)|oo( P)) o (Hz :: matey.7)|10( Q) L OmHs,
((]C U H1 Om HQ)@ g | k;h:} (o)} |
(kUHy O, H)e 1 | ke 1) (k= (P) o k= (Q))

(kbud) (H; :: bud: (p).r)|70(| (Ha = budy.o)|og( P o Q) =,

(kU Hy Gy Hp) 5= p( (kU Hy ©, Hy )= 0)|oo( P ) <
(FUHy©y He)= 1) | 10( Q)

(kdrip) (H = drip(p).cloo)( P ) 2L,

kU fi(H)e p( ) o (KU fj(H)= o) | oo P)

The auxiliary functions are defined as follows:

Hl@mHQZ{k|k€(H1UH2)ﬂIC}U
{k | {k] .k} C (HiUHa)}
Hy ©py Hy ={k¥ € H | k & (H, ®, Hy)}

H1@bH2:{k|k€(H1UH2)ﬂ’C}U
{k|k§eH1/\k:gEH2/\x7éy}

Hy @y Hy = {k € Hy | k & (Hy & H2)}

HyCyHy={k¥ €c H | k & (H, @, Hy)}

fa(H) = {k|kc HNK}
fo(H) = {kf | kf € HN Nz € {+,—}}
M(H) = {k | ki€ HNae{+,~}Aye{ie}}
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The auxiliary functions describe the way in which the (decorated) causes propagate
when a reduction is performed.

In the merge operation, the set of causes of the merge action, denoted by
H, &,, Hs, contains both the causes of the mate and the comate operation, as
well as those causes h such that h; decorates one of the merging membranes and
h; decorates the other (this means that the two membranes have become sibling
membranes by the execution of a mate operation with label h). The external
decorated causes are not taken into account because they are concerned with
bud operations between a father and a child membrane, and not with sibling
membranes. To avoid redundancy, the set of causes H; & Hs of the continuation of
the mate action is obtained by removing the decorated causes whose name appears
as a cause of the current mate synchronization (and analogously for comate, bud
and cobud actions).

In the bud operation, the set of causes of the bud actions, denoted by H; &y Ho,
contains both the causes of the bud and the cobud operation, as well as those
causes h such that, e.g., hl decorates the father membrane and h; decorates the
child membrane. The set of causes of the newly created membrane is denoted by
Hy ® Hy, and contains only internal causes; they are needed because in the system

matey,( bud, (matey,)( bud,( |) |) ) o mate,( mate, |)

the mate synchronization on m can happen only if the mate synchronization on n
has been performed.

Regarding the drip operation, here there is no synchronization; hence, the set
of causes labeling the reduction relation, represented by fq(H) is exactly the set
of nondecorated causes. The newly created membrane is decorated with function
f4(H) containing only internal causes; they are needed because in the system

mate, (| drip(matey,)(| | ) o mate;( mate;, |

the mate synchronization on m can happen only if the mate synchronization on n
has been performed. The external causes are not needed because they are used for
bud synchronization between father and child, and the newly created membrane
has no child taken from the old membrane.

4.1 Properties of the causal semantics

The only interesting property enjoyed by the causal semantics is the retrievability
of the interleaving semantics. We start defining the function DropCause which
removes the causes from processes and systems.

Definition 10. The function DropCause is defined inductively on processes with
causes in the following way:

DropCause(0) =0
DropCause(c|7) = DropC’ause(&) | DropCause(T)
DropC’ause( g) = ropCause(&)

DropCause(K :: a.0) =
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The function DropCause is defined inductively on systems with causes in the
following way:

DropCause(o) = ¢
DropCause(P o Q) = DropCause(P) o DropCause(Q)
DropCause(!P) = |DropCause(P)
DropCause(6(P)) = DropCause(s)(DropCause(P))

Theorem 1. Let P be a system with causes. The following properties hold:

if P B P! then DropCause(P) — DropCause(P');
if DropCause(P) — Q then there exist a system with causes P’, a cause name

k and a set of cause names H such that P B prand Q@ = DropCause(P').

The so-called diamond property, stating that if two non-causally related actions
can happen one after the other, then they can happen also in the other order, and
at the end they reach the same system, does not hold. In our setting, the diamond

property can be formally defined as follows: given a system P, if P Wl pr BE pr

and h € K, then there exists a system ¢ such that P K, Q Wi, pr,
Consider e.g. the following system:

bud,, (0)( mate,(| ) o (budy, | matey)( ) )

This system can perform the mate action, followed by the bud action. Moreover,
the two actions are independent, i.e., causally unrelated. However, if we first per-
form the bud action, then the submembrane mate;:)( | is isolated from the other
submembrane, and the merge can no longer take place. However, there is no rea-
son to consider the bud action as causally dependent on the mate action, as the
bud action can actually independently occur at the beginning of the computation.
Nevertheless, there is a form of asymmetric conflict between the two actions: the
occurrence of the bud action prevents the mate action to happen, but the vice
versa does not hold. A similar phenomenon takes place, e.g., in Petri nets with
read and inhibitor arcs (see [4] for a discussion on this topic). A possible way to
capture this kind of asymmetric conflict is based on the following idea: if a mate
synchronization with causal label k is performed, we decorate the process of the
father membrane of the two membrane that are fusing with a label, say ky (where
the f stands for “father”). When the bud operation is performed, the cobud prefix
is decorated with k¢, whereas the bud prefix is decorate with k.. As a but syn-
chronization is performed in this situation, we get the information that — even if
the bud does not causally depend from the mate — the bud synchronization cannot
be swapped with the mate.

Even if there is no asymmetric conflict, there are situations where the diamond
property does not hold. Even if the two actions can be performed in either order,
the final states that are reached are different. Take the system

bud, (0).0( (bud,.7 | drip(p))(| ) )
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If the bud action is performed first, then the membrane with process p will be
dripped inside the newly created membrane, labeled with process 0. On the other
hand, if the drip is performed first then the membrane with process p remains
inside the older membrane (with process bud,, (0).c or with the continuation o.

5 Conclusion

In this paper we tackled the problem of defining a causal semantics for an instance
of Brane Calculi, namely, the MBD calculus.

As already pointed out in [14], we think that the study of the causal dependen-
cies that arise between the actions performed by a process is of primary importance
for biologically inspired calculi, because of its possible application to the analysis
of complex biological pathways.

This paper represents a first step in this direction, but a lot of work remains to
be done. The next step is the study of the causal semantics for the PEP calculus,
and its integration with the causal semantics for MBD. Then, we will move to the
full Brane Calculus, that, besides the membrane-membrane interaction primitives
of PEP and MBD, also contains objects representing free-floating molecules, and
primitives for molecule-molecule and membrane-molecule interactions. When the
definition of a causal semantics has been completed, we will start investigating the
causal dependencies arising in biological pathways involving membranes, such as,
e.g., the LDL Cholesterol Degradation Pathway [16], that has been modeled in the
full Brane Calculus in [5].

We also plan to perform a thorough investigation of the properties that are
enjoyed by the causal semantics, and possibly to refine the definition of the causal
semantics in order to fulfill some of the properties. For example, a possible solution
in order to obtain a causal semantics that partially enjoys the diamond property
has been sketched in the previous section, and deserves further investigation.

We also plan to extend our investigation to other calculi/systems whose mem-
branes are organized in a dynamically evolving hierarchical structure, such as,
e.g., the Projective Brane Calculus [13] or Membrane Systems with active, evolv-
ing membranes.
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