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Summary. In this paper, we present results on the power and the size of generalized
communicating P systems in the case of eight restricted variants of communication rules.
These constructs are purely communicating tissue-like membrane systems with commu-
nication rules which allow the movement of only pairs of objects. We show that seven
of these restricted variants are computationally complete, even with limited size, while
systems belonging to the remaining one variant are able to compute only finite single-
tons of non-negative integers. The obtained results complete the investigations of the
computational power of generalized communicating P systems.

1 Introduction

The theory of P systems provides several examples for computational models with
large computational power and at the same time with simple architecture and
small size complexity.

One of the main research directions in P systems theory is the study of the
computational power of purely communicating membrane systems. Adequate ex-
amples of these constructs are the symport/antiport P systems [1]. Motivated
by the problem how to define a common generalization of various purely com-
municating models in the framework of P systems, the concept of a generalized
communicating P system was introduced in [3].
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A generalized communicating P system, or a GCPS for short, corresponds to
a graph where each node, called a cell, contains a multiset of objects which - by
communication - may move between the cells. The communication rules are rather
restricted, any rule identifies four cells, two input cells and two output cells, such
that a pair of objects from the two input cells move synchronously to the two
output cells. The form of a communication rule is (a, i)(b, j)→ (a, k)(b, l) where a
and b are objects and i, j, k, l are numbers that identify the input and the output
cells. Such a rule means that an object a from cell i and an object b from cell j
move synchronously to cell k and cell m, respectively. It can easily be seen that
these very simple communication rules can also be interpreted as interaction rules.
Although a GCPS realizes a graph structure, the cells are defined implicitly, since
the system is given as a set of communication rules over an alphabet.

Depending on the relation of i, j, k, l, nine restricted variants of communication
rules (modulo symmetry) can be distinguished. (For example, i 6= j 6= k 6= l is one
of these restrictions, called a parallel-shift rule.) When the GCPS has only one
type of these restricted rules, we speak of generalized communicating P systems
with minimal interaction, a GCPSMI for short.

In this article, we consider generalized communicating P systems which use
only one type of the above interaction operations. In [3] it was shown that any
register machine can be simulated by a GCPS having 19 cells and using only
parallel-shift rules. Continuing the examination of the power of GCPSMIs, we
study the remaining eight restricted variants of communication rules. We prove
that in most of the cases (7 of 8) computational completeness is obtained, i.e.,
the corresponding GMPCSs are able to determine any recursively enumerable set
of non-negative integers; the only exception determines only finite singletons of
natural numbers. The constructions in the proofs also demonstrate that this large
expressive power can be obtained by P systems with relatively small numbers of
cells and simple graph architectures.

2 Definitions

In this section we recall some basic notions and notations commonly used in mem-
brane computing and some basic concepts of formal language theory that we need
throughout the paper.

We consider register machines with two types of instructions: (p,A+, q, s) and
(p,A−, q, s), where p, q, s are states and A is a register. Register machines generate
NRE.

Next we present the basic definitions concerning generalized communicating P
system; for further details and motivations of these constructs, see [3].

Definition 1. A generalized communicating P system of degree n (a GCPS, for
short) is a construct: Π = (O,E,w1, . . . , wn, R, io), where:

1. O is a finite alphabet,
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2. E ⊆ O;
3. wi ∈ O∗, for all 1 ≤ i ≤ n, the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules of the form (a, i)(b, j)→ (a, k)(b, l), where
a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and j = 0, then {a, b} ∩ (O \ E) 6= ∅;
i.e. a /∈ E or b /∈ E;

5. io ∈ {1, . . . , n} is the output cell.

The system consists of n cells, numbered from 1 to n, that contain multisets of
objects over O; initially cell i contains the multiset wi. There is also a special cell
distinguished, numbered by 0, called the environment. The environment contains
symbols of E ⊆ O in an infinite number of copies.

The cells interact with each other by means of the rules in R of form r =
(a, i)(b, j)→ (a, k)(b, l), with a, b ∈ O and 0 ≤ i, j, k, l ≤ n. Such an interaction
rule may be applied if there is an object a in cell i and an object b in cell j. As the
result of the application of r, the object a moves from cell i to cell k and b moves
from cell j to cell l. If two objects from the environment are moved to some other
cell or cells, then at least one of them must not appear in the environment in an
infinite number of copies.

Notice that the structure of a GCPS corresponds neither to a tree as in cell-like
P systems nor to a graph as in tissue P systems, though some models of cell-like
P systems and tissue P systems can be seen as special variants of GCPSs.

In general, for a given GCPS, every rule is defined over a block of cells which
allows certain objects to pass from the input cells to the output cells; altogether
these rules define a network of communicating cells.

Let Π = (O,E,w1, . . . , wn, R, io), n ≥ 1, be a GCPS. A configuration of Π
is a tuple (z0, z1, . . . , zn) with z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0
is the multiset of objects possibly present in the environment in a finite number
of copies, whereas, for all 1 ≤ i ≤ n, zi is the multiset of objects present inside
cell i. The initial configuration of Π is the tuple (λ,w1, . . . , wn). Then, given a
configuration of Π, a new configuration can be produced by applying the rules in
a non-deterministic maximally parallel way: all the rules that can be applied to
the objects currently present inside the cells and the environment must be applied
in parallel at the same time; the only restriction is that an occurrence of an object
has to be used by at most one rule. One such application of the rules represents
a transition step (in Π). A computation in Π is any sequence of transition steps
in Π which starts from its initial configuration. A successful computation in Π
is any computation which produces a configuration where no more rules can be
applied to the objects left inside the cells and in the environment. The result of
a successful computation is the non-negative integer corresponding to the size of
the multiset of objects inside the output cell io in the final configuration. The set
of non-negative integers computed in this way by GCPS Π is denoted by N(Π).

We may impose several restrictions on the interaction rules, some of these
restrictions directly correspond to antiport or symport rules of size 2.
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Below we define all possible restrictions (modulo symmetry): let O be an al-
phabet and consider an interaction rule (a, i)(b, j)→ (a, k)(b, l) with a, b ∈ O,
i, j, k, l ≥ 0. Then we distinguish the following cases:

1. i = j = k 6= l: the conditional-uniport-out rule sends b to membrane l provided
that a and b are in membrane i.

2. i = k = l 6= j: the conditional-uniport-in rule brings b to membrane i provided
that a is in that membrane.

3. i = j 6= k = l: the symport2 rule corresponds to the minimal symport rule,
i.e., a and b move together from membrane i to k.

4. i = l 6= j = k: the antiport1 rule corresponds to the minimal antiport rule,
i.e., a and b are exchanged in membranes i and k.

5. i = k 6= j 6= l: the presence-move rule moves the symbol b from membrane j
to l, provided that there is a symbol a in membrane i.

6. i = j 6= k 6= l: the split rule sends a and b from membrane i to membranes k
and l, respectively.

7. k = l 6= i 6= j: the joining rule brings a and b together to membrane i.
8. i = l 6= j 6= k or i 6= j = k 6= l: the chain rule moves a from membrane i to

membrane k while b is moved from membrane j to membrane i, i.e., where a
previously has been.

9. i 6= j 6= k 6= l: the parallel-shift rule moves a and b in independent membranes.

A generalized communicating P system may have rules of several types as
defined above. Moreover, we may allow uniport rules (i.e., rules of the form (a, i)→
(a, k) specifying that, whenever an object a is present in cell i, this may be moved
to cell k). In this case, GCPS with symport2 and uniport rules or with antiport1
and uniport rules become tissue P systems with minimal symport or minimal
symport and antiport, respectively.

When only one type of rules is considered, we call the corresponding GCPS a
minimal interaction P system, or a GCPSMI for short. We denote by NOtPk(x)
the set of numbers generated by a minimal interaction P system of degree k having
rules of type x, x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}.

3 Power and Size of Minimal Interaction P Systems

Minimal interaction P systems with any types of rules defined above, except an-
tiport1, are computationally complete devices, i.e. they are able to compute any
recursively enumerable set of non-negative integers. Moreover, the systems which
are computational complete are able to reach this computational power with a
number of cells limited by a small constant. In the case of split rules, 9 cells
suffice.

Theorem 1. NOtP9(split) = NRE.

Systems having symport 2 rules cannot generate NRE, however they can ac-
cept any recursively enumerable set of numbers. The proof of the result is based
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on a simulation of a split rule by symport2 rules. Then the result follows from
Theorem 1.

Theorem 2. For any S ∈ NRE there is Π ∈ NOtP8(sym2) that accepts S.

Theorem 3. NOtP∗(anti1) ⊂ NFIN .

The proof follows from the fact that the number of symbols in a cell cannot be
changed by using only antiport1 rules. Hence, only finite singletons of non-negative
integers can be generated.

The first equality below is proved by a direct simulation of the register machine,
and the second one is based on a simulation of a join rule by by a sequence of chain
rules.

Theorem 4. NOtP7(join) = NOtP∗(chain) = NRE.

Theorem 5. NOtP30(uin) = NRE.

This statement is proved by simulating the increment and the decrement in-
structions of a register machine. Instead of direct simulations of the instructions,
we define sets of conditional-uniport-in rules, so-called (primitive) blocks, as it was
done in [3] and [2], and then we show how a set of rules simulating an increment
instruction or a decrement instruction can be composed from these blocks. For
this purpose, we use three blocks: the so-called uniport block, the basic block or
main block, and the zero block.

The uniport block corresponds to an uniport rule. The basic or main block is a
variant of a minimal interaction rule that permits to move synchronously symbols
a from cell i to cell k and b from cell j to cell l. If b is not present, then an infinite
loop occurs. The zero block is a variant of a minimal interaction rule that moves
symbol a from cell i to k providing that there are no symbols b in cell j. If there
are symbols b in cell j then the computation enters into an infinite loop.

Next two equalities are proved in a similar way.

Theorem 6. NOtP30(uout) = NOtP36(presence) = NRE.
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