
On the Efficiency of Promoters and of
Cooperative Rules in P Systems

Roberto Barbuti1, Andrea Maggiolo-Schettini1, Paolo Milazzo1, Simone Tini2

1 Dipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy
{barbuti,maggiolo,milazzo}@di.unipi.it

2 Dip. di Scienze della Cultura, Politiche e dell’Informazione, Università dell’Insubria
Via Carloni 78, 22100 Como, Italy
simone.tini@uninsubria.it

1 Introduction

Membrane systems (P systems) were introduced by Paun in [5] as distributed
parallel computing devices inspired by the structure and the functioning of cells.
In the extension of [3] the application of rules may be conditioned by the presence
of promoter objects. A promoter does not participate in the application of rules,
and a single promoter may enable the application of several rules and multiple
applications of each one of these rules. P systems with promoters have been shown
to be universal even when non-cooperative rules are considered [3]. The same
holds for P systems without promoters but with cooperative rules [5]. We aim at
comparing the use of promoters with the use of cooperative rules from the point
of view of efficiency. Actually, the kind of efficiency we are interested in is not the
ability of solving NP complete problems in polynomial time (as in [6]), but the
ability of solving in constant time problems solvable in linear time. In this paper
we show that there exists a problem that can be solved in constant time with
cooperation and that requires at least linear time with promoters. Whether also
the opposite holds is left as an open problem.

2 P Systems with Promoters

In P systems with promoters [3] an evolution rule may have some promoters that
are objects required to be present in the membrane in order to enable the rule.
We can assume that all evolution rules have the following form:

u→ (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|p

where u is the multiset of objects consumed by the rule, {l1, . . . , ln} is a set of
membrane labels, vh, vo, v1, . . . , vn are the objects (grouped in multisets by target)

544 R. Barbuti et al.

produced by the rule and p is the multiset of promoters of the rule. Application
of evolution rules is done with maximal parallelism, as usual. Formally:

Definition 1. A P system Π is given by Π = (V, µ, w1, . . . , wn, R1, . . . , Rn),
where: (i) V is an alphabet whose elements are called objects; (ii) µ ⊂ IN× IN is
a membrane structure, such that (l1, l2) ∈ µ denotes that the membrane labeled by
l2 is contained in the membrane labeled by l1; (iii) wj with 1 ≤ j ≤ n are strings
from V ∗ representing multisets over V associated with the membranes 1, . . . , n of
µ; (iv) Rj with 1 ≤ j ≤ n are finite sets of evolution rules associated with the
membranes 1, . . . , n of µ.

In this paper we assume P systems to be closed computational devices, namely
objects cannot be sent out of the skin membrane (i.e. rules sending objects out are
not allowed in the skin membrane) and cannot be received by the skin membrane
from outside. We will usually consider the multiset of objects initially contained
in the skin membrane as the input of the P system and the multiset of objects
contained in the skin membrane of a final configuration as an output. Note that
infinite evolutions are not considered as valid computations.

From [1] it follows that any P system with promoters can be translated into
another one that computes the same function, by performing equivalent evolution
steps, having a flat membrane structure consisting only of the skin. The idea is to
enrich the alphabet of the P system with objects labeled with membrane indexes
and to use such objects in the skin membrane of the flat system to represent
objects placed in some inner membrane of the original system. This technique was
previously used in [2] but with P systems without promoters.

Theorem 1. Every P system with promoters can be translated into another one
whose membrane structure consists only of the skin membrane.

P systems dealing with multiset languages can be either language acceptors or
generators. In the first case a multiset is provided as the input and the result of
the computation says whether such a multiset belongs to a language or not. In the
second case the P systems has a fixed initial configuration and can give as results,
in a non-deterministic way, all possible multisets belonging to a given language.

Let us formalize the notion of P system used as language acceptor.

Definition 2. An acceptor P system for a multiset language L over an alphabet
Σ is a P system ΠL = (Σ ∪ C ∪ {T}, µ, w1 ∪ `, w2, . . . , wn, R1, . . . , Rn) where: (i)
C is a set of control objects such that Σ ∩ C = ∅; (ii) T is a special object not
contained in Σ ∪C; (iii) wi, for 1 ≤ i ≤ n, are multisets of objects in C; (iv) when
the placeholder ` is replaced by a multiset of objects the output of the computation
of the P system says whether such a multiset belongs to L as follows: the multiset
is accepted (belongs to L) if and only if a final configuration can be reached with
T appearing in the output.

We remark that one could define equivalent notions of acceptor P systems
without assuming Σ and C to be disjoint sets or by assuming that a multiset

Efficiency of Promoters and of Cooperative Rules in P Systems 545

is accepted if and only if a final configuration can be reached (by ignoring the
presence of T). The first of these two alternative notions can be simulated by ours
by assuming that there exists in C a primed copy a′ of every object a that should
be shared with Σ. Such primed objects are then rewritten into their unprimed
version in the first evolution step of the system. The second of the two alternative
notions can be simulated simply by adding T to w1 and by ensuring that there is
no rule in R1 using such a special object.

3 Efficiency of Promoters and of Cooperation

Let us take the language L = {a2n | n ≥ 0}. By exploiting cooperative rules, L
can be accepted in constant time. In fact, we can take a P system with only one
membrane containing the object T and the rules aa→ λ and aT → λ.

A solution without cooperation and exploiting promoters consists in a mem-
brane with objects T and 1 and the following rules:

a→ a|1 T → F |bb2 b→ λ|ok 1→ 2 2→ 3
a→ b|1 T → F |cc2 c→ λ|ok 3→ 4 4→ 1 |a
a→ c|1 T → OK|bc3 OK → T
Such a solution is linear in time w.r.t. n. We can show that without cooperation

a solution in constant time cannot be given.

Theorem 2. The language {a2n | n ≥ 0} cannot be accepted in constant time
without using cooperating rules.

Proof. By contradiction, let us assume that L = {a2n | n ≥ 0} can be accepted in
constant time, actually, that there exists and acceptor P system P able to accept
any multiset of the language L in at most k execution steps.

Given a possible accepting execution of P, let R1, . . . , Rk be the sets of rules
that are applied at least once in each of the k execution steps, respectively. Let ri,j ,
with 1 ≤ i ≤ k, denote one of the mi rules of set Ri, namely Ri = {ri,1, . . . , ri,mi

}.
Since L is infinite, whereas the number of execution steps and of evolution rules
are bounded, there must exist an infinity of different executions (each accepting
a different multiset in L) with the same sets of applied rules R1, . . . , Rk and that
differ only on the number of times such rules are applied in each execution step.
Let xi,j be the number of times rule ri,j is applied (in the i-th execution step).

Let N ⊂ IN be an infinite set s.t. L′ = {a2n | n ∈ N} is a set of multisets (sub-
language of L) accepted by executions in which the same sets of rules R1, . . . , Rk

are applied. At least one of the sets R1, . . . , Rk must contain a rule in which object
a is either consumed or used as a promoter, otherwise we would have that only
control objects are used so that P would accept any multiset.

Let us assume first that a is not consumed by any of the rules in R1, . . . , Rk, but
used as a promoter of some of these rules. Let ri,j be any of the rules having a as
a promoter, namely ri,j = o→ u|vap with o ∈ V , u, v ∈ V ∗ and p ∈ IN+. Since ri,j
has been applied (xi,j times), we have that at the i-th step there must be at least

546 R. Barbuti et al.

p occurrences of a. This must hold for any multiset in L′ to be accepted, namely
for any n1 ∈ N . Now, given any n1 ∈ N , let us take n2 = n1 + 1. It holds that
n2 6∈ N , since N contains only even numbers whereas n2 is odd by construction.
We have that an2 6∈ L but it is accepted by an execution of the acceptor P system
in which rules R1, . . . , Rk are applied exactly as many times as in the execution
that accepts an1 . This holds because the additional a is not consumed by any rule
and has not an influence on the applicability of rules having such an object as a
promoter. Hence, we have a contradiction.

Let us assume now that there are some rules in R1, . . . , Rk consuming a. Let
ri,j be any of these rules, namely ri,j = a → u|vap with u, v ∈ V ∗ and p ∈ IN.
Since ri,j has been applied (xi,j times), we have that at the (i + 1)-th step xi,j

copies of u are present. This holds for any multiset in L′ to be accepted, namely
for any n1 ∈ N , and, differently from the previous case, we have that the value
of xi,j might be proportional to n1. Given any n1, n2 ∈ N with n1 < n2, let us
take n3 = n1 + 1. It holds that n3 6∈ N , since N contains only even numbers
whereas n3 is odd by construction. We have that an3 6∈ L but it is accepted by an
execution of P in which applied rules are R1, . . . , Rk, and they are applied at least
as many times as in the execution that accepts an1 and at most as many times
as in the execution that accepts an2 . The fact that T is produced is guaranteed
by the fact that, in order to accept an1 , T was either present from the beginning
as a control object of the initial configuration or produced by one of the rules
in R1, . . . , Rk, and this still holds for an3 where the initial control objects and
the applied rules are the same. Moreover, the fact that the accepting execution
of an3 terminates is guaranteed by the fact that the objects produced during the
execution were produced (possibly in a greater quantity) also during the accepting
execution of an2 . This means that the accepting execution of an3 does not enable
the application of rules that were not applicable in the accepting execution of an2 .
Summing up, also this case leads to a contradiction.

Open Problem. Does there exist any language that can be accepted in constant
time only if promoters are exploited?

References

1. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and S. Tini: A P systems flat form
preserving step-by-step behaviour. Fundam. Inform. 87, 1–34, 2008.

2. L. Bianco and V. Manca: Encoding–decoding transitional systems for classes of P
systems. Proc. Work. on Membrane Computing, LNCS 3850, 134–143, 2006.

3. P. Bottoni, C. Martin-Vı́de, G. Pǎun and G. Rozemberg. Membrane systems with
promoters/inhibitors. Acta Informatica 38, 695–720, 2002.

4. M. Ionescu and D. Sburlan: On P systems with promoters/inhibitors. J. Univ.
Comp. Sci. 10, 581-599, 2004.

5. G. Păun, Membrane computing. An introduction, Springer, 2002.
6. C. Zandron, C. Ferretti and G. Mauri: Solving NP-Complete problems using P

systems with active membranes. Proc. UMC’2K, 289-301, 2000.

