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Summary. We present an overview of recent results on small size insertion-deletion
P systems. Together with the ordinary definition we consider systems with priority of
deletion over insertion. In both cases, obtained P systems are strictly more powerful than
ordinary insertion-deletion systems, and in most of the cases they are computationally
complete. We list several such results. When using the priority relation, the computational
completeness may be achieved by context-free insertion and deletion of one symbol only.

1 Introduction and definitions

Insertion and the deletion operations originate from the language theory, being in-
troduced mainly with linguistic motivation. In general form, an insertion operation
means adding a substring to a given string in a specified (left and right) context,
while a deletion operation means removing a substring of a given string from a
specified (left and right) context. More precisely, an insertion rule (u, α, v) corre-
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sponds to the rewriting rule uv → uαv, and a deletion rule (u, α, v) corresponds
to the rewriting rule uαv → uv.

An insertion-deletion system is a construct ID = (V, T,A, I,D), where V is an
alphabet, T ⊆ V , A is a finite language over V , and I,D are finite sets of insertion
and deletion rules, respectively. The language L(ID) generated by ID is defined
as {w ∈ T ∗ | A 3 x =⇒∗ w}, where =⇒ is the relation defined by an insertion or
deletion rule.

The size of an InsDel system ID = (V, T,A, I,D) is defined as
(n,m,m′; p, q, q′), where

n = max(u,α,v)∈I |α|, m = max(u,α,v)∈I |u|, m′ = max(u,α,v)∈I |v|,
p = max(u,α,v)∈D |α|, q = max(u,α,v)∈D |u|, q′ = max(u,α,v)∈D |v|.

The corresponding families of languages are denoted by INSm,m
′

n DELq,q
′

p .
Insertion-deletion systems of a “sufficiently large” size characterize RE.

An insertion-deletion P system is a tuple Π = (O, T, µ,M1, . . . ,
Mn, R1, · · · , Rn), where O is a finite alphabet, T ⊆ O is the terminal alphabet, µ is
the (tree) structure of n membranes, it can be represented by a string of correctly
nested labeled parentheses. Region i is delimited by membrane i, 1 ≤ i ≤ n. The
set Mi is a finite language of initial objects, and Ri is a set of insertion and deletion
rules of region i, of the following forms: (u, x, v; tar)a, where (u, x, v) is an insertion
rule, and (u, x, v; tar)e, where (u, x, v) is a deletion rule, and the target indicator
tar is from the set {here, inj , out | 1 ≤ j ≤ n}. The configurations, transitions and
computations of the system are defined in the standard way. The result L(Π) of
generated by Π consists of strings over T ever sent out of the system during its
computations.

We denote by ELSPk(insm,m
′

p , delq,q
′

p ) the family of languages L(Π) gener-
ated by insertion-deletion P systems with k ≥ 1 membranes and insertion and
deletion rules of size at most (n,m,m′; p, q, q′). We omit letter E if T = O. If
deletion rules have a priority over insertion rules, the corresponding class is de-
noted as (E)LSPk(insm,m

′

p < delq,q
′

p ). Letter ”t” is inserted before P to denote
classes for the tissue case (defined similarly to the membrane case). We write ∗ if
corresponding parameter is unbounded.

We consider register machines with three types of instructions: p :
(ADD(k), q, s), p : (SUB(k), q, s) and p : (WRITE(A), q), where p, q, s are states,
k is a register, and A is a symbol. The last form of instruction writes a symbol on
the output tape. Register machines generate PsRE. RE is generated if WRITE
instructions are used.

2 Minimal context-free insertion-deletion P systems

Systems in INS0,0
1 DEL0,0

∗ only generate strings obtained by inserting any number
of specific symbols anywhere in words of a finite language ([6]); this is included in
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the regular languages family; strictly as, e.g., for {a∗b∗} the system has no control
on the place of insertion or deletion in the string and the initial language is finite.
Therefore, INS0,0

1 DEL0,0
1 ⊂ REG.

Adding a membrane structure, by mutual simulation of blind register machines
(which do not have the zero check in the decrement instruction) it can be obtained:

Theorem 1. PsStP∗(ins
0,0
1 , del0,01 ) = PsMAT .

However, {a∗b∗} cannot be generated, while non-context-free languages are
generated even without priorities and deletion. Therefore,

Theorem 2. REG\LStP∗(ins0,0n < del0,01 ) 6= ∅, for any n > 0, and
LStP∗(ins

0,0
1 , del0,00 ) \ CF 6= ∅.

A more general inclusion holds:

Theorem 3. ELStP∗(ins0,0n , del0,01 ) ⊂MAT , for any n > 0.
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Fig. 1. Simulating p : (ADD(k), q, r)(left) and p : (SUB(k), q, r) (right).

Nevertheless, minimal context-free insertion-deletion systems with priorities
do generate PsRE. This is especially clear for the tissue P systems: jumping to
an instruction corresponds to sending a string to the associated region, and the
entire construction is a composition of graphs shown in Figure 1. Notice the use
of priority of deletion over insertion in decrement.

A more sophisticated proof can be done for the tree-like membrane structure [2].

Theorem 4. PsSP∗(ins
0,0
1 < del0,01 ) = PsRE.

3 Small contextual insertion-deletion P systems

Although Theorem 4 shows that the systems from the previous section are quite
powerful, they cannot generate RE without control on the place where a symbol
is inserted. Once we allow a context in insertion or deletion rules, they can.

Theorem 5. LSP∗(ins
0,1
1 < del0,01 ) = RE.

A similar result holds if contextual deleting operation is allowed.

Theorem 6. LSP∗(ins
0,0
1 < del1,01 ) = RE.
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Proof. As in Theorem 5, we use the construction from Theorem 4. However, 7k
additional membranes are needed to simulate k writing instructions.

The WRITE instruction is simulated by inserting symbols to be written (to-
gether with some temporary marking symbols) in the string and performing a
check that they are located at the end by using trap rules and the priority of the
deletion. If the corresponding symbol is not inserted at the rightmost position,
then it would be able to delete the symbol that just follows it. In such a way the
trapping mechanism is realized.

Corollary 1. LSP∗(ins
1,0
1 < del0,01 ) = LSP∗(ins

0,0
1 < del0,11 ) = RE.

The contextual deletion can be replaced by a context-free deletion of two symbols.

Theorem 7. LSP∗(ins
0,0
1 < del0,02 ) = RE.

We mention that the counterpart of Theorem 7 obtained by interchanging
parameters insertion and deletion rules is not true, see Theorem 2.

If one considers a context dependency in both insertion and deletion rules, then
the priority relation can be avoided. The following results are from [3].

Theorem 8. ELSP5(ins1,01 del1,01 ) = ELSP5(ins1,01 del0,02 ) =
REELSP5(ins0,02 del1,01 ) = RE.

Note that corresponding insertion-deletion systems cannot generate RE. In
particular, the last two systems cannot generate the language L = (ba)+, [3]. In
the same article, a characterization of the class INS1,0

1 DEL1,0
1 in terms of context-

free grammars is also given.
Finally, we remark that the context is important when no priorities are used:

Theorem 9. REG \ ELSP∗(ins0,02 del0,02 ) 6= ∅.
As it was shown in [3], the language Lab = a∗b /∈ ELSPk(ins0,02 del0,02 ), for any
k ≥ 1.
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