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Summary. A variant of spiking neural P systems is introduced, with (positive or nega-
tive) weights on synapses and with the restriction that the rules of a neuron fires when
the potential of that neuron equals a given threshold. The involved numbers – weights,
thresholds, potential consumed by each rule – can be real (computable) numbers, ratio-
nal, integer, natural numbers. The power of the obtained systems is investigated. For
instance, it is shown that integer numbers (very restricted: 1,−1 for weights, 1 and 2 for
thresholds and for writing the rules) suffice in order to compute all Turing computable
sets of numbers, both in the generative and the accepting modes. Using only natural
numbers we characterize the family of semilinear sets of numbers. Some open problems
and suggestions for further research are formulated.

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced in [5] in the
aim of defining computing models based on ideas specific to spiking neurons, cur-
rently much investigated in neural computing (see, e.g., [4], [7], [8]). The resulting
models are a variant of tissue-like and neural-like P systems from membrane com-
puting – we refer to [10] for basic information in this research area, to [11] for a
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comprehensive presentation, and to the web site [13] for the up-to-date informa-
tion.

In short, an SN P system consists of a set of neurons placed in the nodes of a
directed graph and sending signals (spikes, denoted in what follows by the symbol
a) along synapses (arcs of the graph). Thus, the architecture is that of a tissue-like
P system, with only one kind of objects present in the cells. The objects evolve by
means of spiking rules, which are of the form E/ac → a; d, where E is a regular
expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is
that a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can consume c
spikes and produce one spike, after a delay of d steps. This spike is sent to all
neurons to which a synapse exists outgoing from the neuron where the rule was
applied. There also are forgetting rules, of the form as → λ, with the meaning that
s ≥ 1 spikes are forgotten, provided that the neuron contains exactly s spikes.
The system works in a synchronized manner, i.e., in each time unit, the rule to be
applied is non-deterministically chosen, each neuron which can use a rule should
do it, but the work of the system is sequential in each neuron: only (at most)
one rule is used in each neuron. One of the neurons is considered to be the output
neuron, and its spikes are also sent to the environment. The moments of time when
a spike is emitted by the output neuron are marked with 1, the other moments
are marked with 0. This binary sequence is called the spike train of the system –
it might be infinite if the computation does not stop. The result of a computation
is encoded in the distance between consecutive spikes sent into the environment
by the (output neuron of the) system.

In SN P systems, the applicability of each rule is determined by checking the
content of the neuron against a regular set associated with the rule. There is a
considerable computational power hidden into the implicit mechanism that SN P
systems use to decide whether a given rule can be applied or not. For instance, in
[6] it is proved that deciding whether a rule can be applied is at least NP-complete.

In this paper, a variant of SN P systems is presented, aiming to decide in an
easy way the applicability of rules. To this aim, we do not count spikes, as in usual
SN P systems, but we consider that each neuron contains a potential, which, in
the general case, can be expressed by a real number (to avoid any complication,
in what follows we always use computable real numbers). Each neuron fires when
its potential is equal to a given threshold; at that time, part of the potential is
consumed and a unit potential is produced (a spike). This unit potential passes
to neighboring neurons multiplied with the weights of synapses. The weights can
also be real numbers, hence both positive and negative. In this way, we can define
computations and the result of computations as usual in SN P systems (the result is
associated with the spike train of the computation – here we consider the distance
between the first two spikes which leave the output neuron; SN P systems working
in the accepting mode are also considered).

An important convention is assumed: when the potential of a neuron is higher
than its firing threshold, then the potential remains unchanged (can be changed
– increased or decreased – by adding new amounts coming from other neurons,
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amounts which can be positive or negative, depending on synapses weights), but
when the potential of a neuron is smaller than the firing threshold, then this
potential vanishes, the potential of the neuron is set to zero. These assumptions
are essentially used in the proofs below, but we do not know what happens when,
for instance, potentials smaller than the firing thresholds remain unchanged instead
of being removed.

As we will see, SN P systems with integer values for weights and potentials are
computationally universal, and the proofs are rather simple (and they use very
small numbers, only 1,−1 as weights, and 1, 2 for writing the rules).

Besides the above computer science motivation, considering SN P systems with
weights and firing thresholds has also a biological motivation. Like most other cells
in the body, the plasma membrane of excitable cells exhibits a membrane potential
(an electrical voltage difference across the membrane), called resting membrane
potential, and its typical value is −70 mV. Moreover, each neuron has its own
threshold potential which is the membrane potential to which a membrane must be
depolarized to initiate an action potential. If the membrane potential of a neuron
equals its threshold potential, then the neuron will fire, sending out an action
potential (signal), and its membrane potential will return to the resting membrane
potential. If the membrane potential is smaller than the threshold potential, then
no signal is emitted and the membrane potential will also return to the resting
membrane potential. For more details see [4] and [8].

Let us note that SN P systems with synapses which transmit negative amounts
of spikes to the destination neurons were investigated, e.g., in [1], [2], where also
further biological motivations can be found.

In what follows, the reader is assumed to have some familiarity with (basic
elements of) language theory, e.g., from [12], as well as basic membrane computing
[10] (for more updated information about membrane computing, please refer to
[13]). We here mention that by N,Z,Q,Rc we denote the sets of natural, integer,
rational, and computable real numbers, respectively, while SLIN, NRE denote the
families of semilinear and of Turing computable sets of numbers. (Note that SLIN
is the family of length sets of regular languages and NRE is the family of length
sets of recursively enumerable languages.)

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

2 Spiking Neural P Systems with Weights and Firing
Thresholds

We introduce directly the type of spiking neural P systems which we investigate
in this paper; the reader is assumed familiar with the basic elements of “classic”
SN P systems.

An SN P system with weights and thresholds (from now on we will deal only
with such systems, hence sometimes we say shortly SN P systems; when necessary
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to stress the new type of systems, we will write WTSN P systems), of degree
m ≥ 1, is a construct of the form

Π = (σ1, . . . , σm, syn, in, out), where:

1. σ1, . . . , σm are neurons, of the form σi = (pi, Ri), 1 ≤ i ≤ m, where:
a) pi ∈ Rc is the initial potential in neuron σi;
b) Ri is a finite set of spiking rules of the from Ti/dj → 1, j = 1, 2, . . . , ni

for some ni ≥ 1, where Ti ∈ Rc, Ti ≥ 1, is the firing threshold potential of
neuron σi, and dj ∈ Rc with the restriction 0 < dj ≤ Ti;

2. syn ⊆ {1, 2, . . . , m}× {1, 2, . . . , m}×Rc are synapses between neurons, where
i 6= j, r 6= 0 for each (i, j, r) ∈ syn;

3. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The spiking rules are applied as follows. Assume that at a given moment,
neuron σi has the potential equal to p. If p = Ti, then any rule Ti/dj → 1 ∈ Ri can
be applied. The execution of this rule consumes an amount of dj of the potential
(thus leaving the potential Ti − dj) and prepares one unit potential (we also say
a spike) to be delivered to all the neurons σj such that (i, j, r) ∈ syn. Specifically,
each of these neurons σj receives a quantity of potential equal to r, which is added
to the existing potential in σj . Note that r can be positive or negative, hence the
potential of the receiving neuron is increased or decreased. The potential emitted
by a neuron σi passes immediately to all neurons σj such that (i, j, r) ∈ syn, that
is, the transition of potential takes no time. If a neuron σi spikes and it has no
outgoing synapse, then the potential emitted by neuron σi is lost.

We stress that (1) each neuron σi has only one fixed threshold potential Ti; (2) if
a neuron has the potential equal to its threshold potential, then all rules associated
with this neuron are enabled, and only one of them is non-deterministically chosen
to be applied; (3) when a neuron spikes, there is always only one unit potential
emitted.

If neuron σi has the potential p such that p < Ti, then the neuron σi returns
to the resting potential 0. If neuron σi has the potential p such that p > Ti, then
the potential p keeps unchanged.

Summing up, if neuron σi has potential p and receives potential k at step t,
then at step t + 1 it has the potential p′, where:

p′ =





k, if p < Ti;
p− dj + k, if p = Ti and rule Ti/dj → 1 is applied;
p + k, if p > Ti.

As usual in membrane computing, a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized. Each
neuron uses at most one rule in each step, non-deterministically chosen among its
rules, provided that its potential equals the firing threshold, but all neurons which
can use a rule must do it.



518 J. Wang et al.

The configuration of the system is described by the distribution of potentials
in neurons. The initial configuration of the system is the tuple 〈p1, . . . , pm〉. Us-
ing the rules as suggested above, we can define transitions among configurations.
Any sequence of transitions starting from the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where no rule can be
used. With any computation, halting or not, we associate a spike train, the binary
sequence with occurrences of 1 indicating time instances when the output neuron
sends one unit potential (a spike) out of the system (we also say that the system
itself spikes at that time).

The result of a computation can be defined in several ways. In this paper, with
any spike train containing at least two spikes, the first two being emitted at step
t1, t2, one associates a result, in the form of the number t2 − t1; we say that this
number is computed by Π. The set of all numbers computed in this way by Π
is denoted by N2(Π) (the subscript indicates that we only consider the distance
between the first two spikes of any computation; note that 0 cannot be computed,
that is why we disregard this number when investigating the computing power of
any device).

SN P systems can also work in the accepting mode: we start the computation
from the initial configuration, and we introduce in the input neuron two spikes, in
steps t1 and t2 (hence we introduce in σin one unit of potential in each step t1 and
t2); the number t2 − t1 is accepted by the system if the computation eventually
halts. We denote by Nacc(Π) the set of numbers accepted by Π.

In the generative case, the neuron with label in is ignored; in the accepting
mode, the neuron with label out is ignored (sometimes below, we identify the
neuron σi with its label i, so we say “neuron i” understanding that we speak
about “neuron σi”).

We denote by NαWTXSNPm the families of all sets Nα(Π), α ∈ {2, acc},
computed by WTSN P systems with at most m ≥ 1 neurons, using weights,
thresholds, and amounts of consumed potentials in the rules taken from the set X,
for X ∈ {N,Z,Q,Rc}. When the number of neurons is not bounded, the subscript
m is replaced with ∗.

Usually, in the SN P systems area one takes into account several other param-
eters describing the size of the used systems, such as the maximal number of rules
in a neuron, the maximal number of spikes consumed by a rule, etc. Here we can
also consider the maximal firing threshold, the maximal positive weight and the
minimal negative weight of a synapse, etc. However, as we will see in the following
sections, these parameters will have very small values in all results we obtain, so
we prefer to simplify the notation and ignore these parameters.

3 One Example

In the next sections we will give several explicit constructions of SN P systems with
weights and thresholds, always with integer numbers for describing the potentials
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and the rules, that is why we discuss here only one example, where rational non-
integer numbers are used.

As usual in this area, the systems are represented graphically, which may be
easier to understand than in a symbolic way. We use an oval with the initial
potential and spiking rules inside to represent a neuron, and arrows between these
ovals to represent the synapses; numbers will mark these arrows, indicating the
weights. The input neuron has an incoming arrow and the output neuron has an
outgoing arrow, suggesting their communication with the environment. When the
weight on a synapse is one, we omit writing it.

Consider the SN P system Π as shown in Figure 1, which consists of three
neurons.

out

2

1

3

1.5/1 1

2
1/1 1

1/1 1−1

−1.5−0.5
1.5

0.5

1

1.5/1.5 1

Fig. 1. Example of a WTSN P system Π

At step 1, only output neuron σout spikes, while the other two neurons σ1, σ2

maintain their potentials, because their potentials are greater than their corre-
sponding firing thresholds. Neurons σ1 and σ2 receive potentials −1.5 and −1,
respectively, from neuron σout. At step 2, neurons σ1 and σ2 have potentials 1.5
and 1, respectively, which equal their corresponding firing thresholds, hence both
neurons σ1 and σ2 spike.

When neuron σ2 spikes, it consumes one unit of potential and, at the same
time, it receives one unit of potential from neuron σ1, hence at next step it still
has potential 1, and spikes again. Neuron σ1 has two rules, 1.5/1.5 → 1 and
1.5/1 → 1, and one of them is non-deterministically chosen. If rule 1.5/1.5 → 1 is
applied, then with consuming potential 1.5 and receiving potential 1.5 from neuron
σ2, the potential of neuron σ1 is still 1.5, hence it will spike again. In this way,
neurons σ1 and σ2 can spike as long as rule 1.5/1.5 → 1 is chosen to be applied.
During this process, at each step, neuron σout receives potential −0.5 from σ1 and
potential 0.5 from σ2, which means that neuron σout has potential 0 and does not
spike.

If at step t ≥ 2, rule 1.5/1 → 1 is chosen to be applied, then at step t + 1,
neuron σ1 has the potential 1.5− 1 + 1.5 = 2, which is greater than its threshold
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and it will not spike. At step t + 1, neuron σ2 has potential 1 and spikes; neuron
σout receives potential 1 from neuron σ2 at step t + 1 and spikes at step t + 2.
At step t + 2, neuron σ1 receives potential −1.5 from neuron σout, its potential
changes to 2 − 1.5 = 0.5, which is less than its threshold potential 1.5 and the
neuron returns to resting potential 0 at step t+3. At step t+2, neuron σ2 receives
potential −1 from neuron σout, its potential changes to 0 − 1 = −1, which is less
than its threshold potential 1 and returns to resting potential 0 at step t + 3. So,
the system halts after step t + 3.

The number generated is (t + 2) + 1 = t + 3, where t ≥ 2, and the value of
t depends on the non-deterministic choice of rules 1.5/1.5 → 1 or 1.5/1 → 1 in
neuron σ1. Thus, N2(Π) = N − {1, 2} (recall that the number 0 is ignored when
investigating the computational power of devices).

4 Preliminary Results

Let us start by noting some immediate relations, following from the definitions:

Lemma 1. (i) NαWTNSNPm ⊆ NαWTZSNPm ⊆ NαWTQSNPm ⊆
NαWTRcSNPm ⊆ NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗.

(ii) NαWTXSNPm ⊆ NαWTXSNPm′ ⊆ NαWTXSNP∗, for all α ∈ {2, acc},
m′ ≥ m ≥ 1, and X ∈ {N,Z,Q,Rc}.

All relations are obvious, with the inclusion NαWTRcSNPm ⊆ NRE being a
consequence of the fact that we use only computable real numbers and of Turing-
Church thesis.

For a given WTSN P system Π = (σ1, . . . , σm, syn, in, out) and a constant
k ∈ Rc, let us denote by kΠ the system obtained by multiplying by k all weights
and potentials from Π (if a rule of Π is of the form Ti/dj → 1, then in kΠ we
use the rule kTi/kdj → 1; a synapse (i, j, r) will become (i, j, kr) in kΠ, hence
transporting a potential equal to kr when neuron σi produces one spike).

Lemma 2. For any WTSN P system Π and constant k ∈ Rc, with kΠ constructed
as above, we have Nα(Π) = Nα(kΠ), for all α ∈ {2, acc}.

The assertion directly follows from the way kΠ is defined, and has the next
interesting consequence:

Corollary 1. NαWTZSNPm = NαWTQSNPm for all α ∈ {2, acc} and m ≥ 1 or
m = ∗.

One inclusion is pointed out in Lemma 1, the opposite one follows from Lemma
2: take an arbitrary WT SN P systems with all constants in Q, let k be the
least common multiple of all denominators of rational numbers in Π (weights
and potentials), and consider kΠ. This has all used numbers integers and it is
equivalent with Π.
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5 Universality of WTSN P Systems with Integer Numbers

Expected enough, we obtain universality both in the generative and the accepting
case. However, these results cannot be obtained as particular cases of universality
results known for usual SN P systems: the weights and thresholds bring additional
possibilities to “program” the computation of an SN P system, but instead we
are very much restricted by the fact that all the rules of a neuron are enabled
at the same time, when the firing threshold is reached; this corresponds to usual
SN P systems with a finite number of spikes in each neuron (and only one regular
expression – identifying a singleton!), and such systems are known to only compute
semilinear sets of numbers.

5.1 The Generative Case

Consider first the case of sets N2(Π); we have the following result:

Theorem 1. N2WTZSNP∗ = NRE.

Proof. We only have to prove the inclusion NRE ⊆ N2WTZSNP∗, and to this
aim we use the characterization of NRE by means of register machines used in
the generating mode.

Let us consider a register machine M = (m,H, l0, lh, I) (number of registers,
set of labels, initial label, halt label, set of instructions) which is assumed that in
the halting configuration has all registers different from the first one empty, and
that output register is never decremented during the computation. We construct
a WTSN P system Π to simulate M as follows. We construct modules ADD and
SUB to simulate the instructions of M , as well as an output module FIN which
provides the result (in the form of a suitable spike train). Each register r of M
will have a neuron σr in Π, and if the register contains the number n, then the
associated neuron will have the potential 2n + 2. A neuron σli is associated with
each label li ∈ H, and some auxiliary neurons σ

l
(j)
i

, j = 1, 2, 3, . . . , will also be
considered, thus precisely identified by label li (remember that each li ∈ H is
associated with a unique instruction of M).

The modules will be given in a graphical form. In the initial configuration, all
neurons have the potential 0, except that the neuron associated with label l0 of
M has potential 1 and the neurons associated with the registers have potential 2.
In general, when a neuron σli , where li ∈ H, has potential 1, then that neuron
becomes active and the module associated with the respective instruction of M
starts to work, simulating the instruction.

Module ADD – simulating an ADD instruction li : (ADD(r), lj , lk).
Module ADD, shown in Figure 2, is composed of eight neurons: neuron σr

for register r, neurons σli , σlj , σlk for instructions with labels li, lj , lk, and four
auxiliary neurons.

The initial instruction of M , the one with label l0, is an ADD instruction. Let
us assume that at step t we have to simulate an instruction li : (ADD(r), lj , lk),
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li r
2

1/1 1

li
22 /2 1

li
1 1/1 1

2 /11

li
3 2 /2 1

l j
1/1 1

li
41/1 1

l k
1/1 1

2−1−1

Fig. 2. Module ADD (simulating li : (ADD(r), lj , lk))

with neuron σli having potential 1 and other neurons having resting potential 0,
except those neurons associated with registers. Having potential 1, neuron σli fires
by rule 1/1 → 1. Simultaneously, neurons σ

l
(1)
i

, σ
l
(2)
i

, and σr receive potentials 1,
2, 2, respectively. In this way, the potential of neuron σr increased by two, thus
simulating the increase of the number stored in register r by one.

At the next step, the computation of M passes non-deterministically to one
of the instructions with labels lj and lk; that is, we have to ensure the firing of
neurons σlj or σlk in system Π, non-deterministically choosing one of them. To
this aim, we use the non-deterministic choice of rules 2/2 → 1 and 2/1 → 1 in
σ

l
(2)
i

. Because neuron σ
l
(2)
i

has potential 2 (received from neuron σli at the last
step), it has to choose non-deterministically one of these rules. We have two cases.

(1) If rule 2/2 → 1 is applied at step t+1, then neuron σ
l
(2)
i

consumes its potential
for spiking. With receiving potential 1 from neuron σ

l
(1)
i

at step t+1, neuron σ
l
(2)
i

has potential 1 at step t + 2, which is less than its threshold potential, hence the
neuron returns to the resting potential 0. At step t+1, neuron σlj receives potential
−1 from neuron σ

l
(2)
i

, which is less than its firing threshold and it returns to the
resting potential 0 at step t + 2. At step t + 1, neuron σ

l
(4)
i

receives potential −1
from neuron σ

l
(1)
i

and potential 1 from neuron σ
l
(2)
i

, hence its potential is still 0.
At step t + 1, neuron σ

l
(3)
i

receives potential 2 from neurons σ
l
(1)
i

and σ
l
(2)
i

and
at step t + 2 it spikes by rule 2/2 → 1. Receiving potential 1 from neuron σ

l
(3)
i

,
neuron σlj becomes active, starting to simulate the instruction lj of M .
(2) If rule 2/1 → 1 is applied at step t + 1, then neuron σ

l
(2)
i

consumes one unit
of its potential for spiking. With receiving potential 1 from neuron σ

l
(1)
i

at step
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t+1, neuron σ
l
(2)
i

still has potential 2 at step t+2, and spikes again. At step t+1,
neuron σlj receives potential −1 from neuron σ

l
(2)
i

, which is less than its threshold
potential and returns to the resting potential 0 at step t+2. At step t+2, neuron
σlj receives potential −1 from neuron σ

l
(2)
i

and potential 1 from neuron σ
l
(3)
i

, so
its potential is zero. At step t + 1, neuron σ

l
(4)
i

receives potential −1 from neuron
σ

l
(1)
i

and potential 1 from neuron σ
l
(2)
i

, so its potential remains 0. At step t + 2,
neuron σ

l
(4)
i

receives one unit of potential from neuron σ
l
(2)
i

and it spikes at step
t + 3. Receiving potential 1 from neuron σ

l
(4)
i

at step t + 3, neuron σlk becomes
active, starting to simulate the instruction lk of M .

Therefore, from firing neuron σli , we pass to firing non-deterministically one of
neurons σlj , σlk , which correctly simulates the ADD instruction li : (ADD(r), lj , lk).

Module SUB – simulating a SUB instruction li : (SUB(r), lj , lk)
Module SUB, shown in Figure 3, is composed of seven neurons: neuron σr

for register r, neurons σli , σlj , σlk for instructions with labels li, lj , lk, and three
auxiliary neurons σ

l
(1)
i

, σ
l
(2)
i

, σ
l
(3)
i

.

li

li
1r

2

1/1 1

1/1 1 1/1 1

1/1 1 2 /2 1

1/1 1 1/1 1

li
3li

2
l kl j

−1

−1−1

Fig. 3. Module SUB (simulating instruction li : (SUB(r), lj , lk)

Instruction li is simulated in Π in the following way. Initially, neuron σli has
potential 1, and other neurons have potential 0, except neurons associated with
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registers. Let t be the moment when neuron σli fires. At step t, neurons σ
l
(1)
i

and σr

receive potentials 1 and −1, respectively. At step t+1, neurons σ
l
(1)
i

fires, neurons
σ

l
(2)
i

and σ
l
(3)
i

receive potential 1 from neuron σ
l
(1)
i

. For neuron σr, there are the
following two cases.
(1) The potential of neuron σr is 2 at step t (that is, the number stored in register
r is 0). Then, at step t+1, neuron σr has potential 1 (it has received potential −1
from neuron σli at the previous step), and it spikes by rule 1/1 → 1. At step t+1,
neuron σ

l
(2)
i

receives potential −1 from neuron σr and potential 1 from neuron
σ

l
(1)
i

, so it has potential 0. At step t+1, neuron σ
l
(3)
i

receives potential 2 (one unit
of potential from neuron σr, another one from neuron σ

l
(1)
i

), and it spikes at step
t+2. Receiving potential 1 from neuron σ

l
(3)
i

, neuron σlk becomes active, and start
to simulate the instruction lk of M . Note that at step t + 2, neuron σr receives
potential 2 from neuron σ

l
(3)
i

, and in this way, it correctly ends with potential 2,
which corresponds to the fact that the number stored in register r is 0.
(2) The potential of neuron σr is 2n + 2 (n > 0) at step t. Then, at step t + 1,
neuron σr has potential 2n + 1, which is greater than its threshold, and will keep
unchanged. At step t+1, neuron σ

l
(3)
i

receives potential 1 from neuron σ
l
(1)
i

, which
is less than its threshold potential, hence it will not spike and have potential 0 at
step t + 2. At step t + 1, neuron σ

l
(2)
i

receives potential 1 from neuron σ
l
(1)
i

, and
it spikes at step t + 2. Receiving potential −1 from neuron σ

l
(2)
i

at step t + 2, the
potential of neuron σr changes to 2n, and in this way, it simulates that the number
stored in register r is decreased by one. Receiving potential 1 from neuron σ

l
(2)
i

at
step t + 2, neuron σlj becomes active, and starts to simulate the instruction lj of
M .

The simulation of SUB instruction is correct, we started from σli and ended in
σlj (if the register r is not empty and decreased by one), or in σlk (if the register
is empty).

Note that there is no interference between neurons used in the ADD and the
SUB modules, other than correctly firing the neurons σlj or σlk which may label
instructions of the other kind. However, it is possible to have interference between
neurons in two SUB modules. Specifically, if there are several SUB instructions lt
which act on register r, then neurons σ

l
(2)
t

and σ
l
(3)
t

receive potentials −1 and 1
from neuron σr, respectively, while simulating the instruction li : (SUB(r), lj , lk).
After receiving these potentials, neurons σ

l
(2)
t

and σ
l
(3)
t

have potentials that are
less than their corresponding firing thresholds, so both of them return to resting
potential 0 at next step. Consequently, the interference among SUB modules will
not cause undesired steps in Π.

Module FIN – outputting the result of the computation.
Module FIN is shown in Figure 4. Assume that the computation in M halts,

which means that the halting instruction is reached. This means that neuron σlh

in Π has potential 1 and fires by rule 1/1 → 1. At that moment, neuron σ1 has
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l h1/1 1

c2

1/1 1c11/1 1
c3

1/1 1

out
1/1 1 11/1 1

−1
−1−1

−1

−1

Fig. 4. Module FIN (outputting the result of computation)

potential 2n + 2, for the number n ≥ 1 stored in register 1 of M . When σlh fires,
each neuron σc1 , σc2 , σc3 receives potential 1; neuron σ1 receives potential −1,
changing its potential to 2n + 1; suppose that this is step t. At step t + 1, neuron
σc1 spikes; neuron σout receives potential 1 from neuron neuron σc1 , and spikes at
step t + 2 (this is the first spike sent out by system Π).

From step t + 1 on, consuming one unit potential, neurons σc2 and σc3 send
potential 1 to each other, and this process continues until they receive potential
−1 from neuron σ1. During this process, at each step, neuron σ1 receives potential
−1 from neuron σc2 and −1 from σc3 , which corresponds to decreasing by one the
value of the register 1. At step t + n + 1, neuron σ1 has potential 1 and spikes;
neurons σc2 and σc3 has potential 0 after receiving potential −1 from neuron σ1.
Receiving potential 1 from σ1 at step t + n + 1, neuron σout spikes again at step
t+n+2, the system sends the second spike to environment. The interval between
these two spikes sent out by the system is (t+n+2)− (t+2) = n, which is exactly
the number stored in register 1 of M at the moment when the computation of M
halts.

Note that after system Π sends out the second spike, all neurons in Π have
potential 0 except that neurons σi (i = 2, 3, . . . , m) have potential 2. For mathe-
matical elegance, we can return the potentials of neurons σi (i = 2, 3, . . . , m) to
0 when the computation of Π halts. To this aim, we just need to add synapses
(out, i,−2) (i = 2, 3, . . . , m) in system Π.

If the number stored in register 1 is 0 when register machine M halts, then
at step t + 1, neuron σout has potential 2, which is greater than its threshold
potential 1. In this case, neuron σout is blocked, and system Π sends no spike
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to the environment. Furthermore, 0 is ignored when we investigate the power of
devices.

From the above description of the modules and their work, it is clear that the
register machine M is correctly simulated by the system Π. Therefore, N2(Π) =
N(M) and this completes the proof. 2

Let us now examine the weights used in the previous proof. In the ADD module
we have two synapses with weight 2. This value can be avoided, so that the module
only uses weights 1 and −1 in the following way: consider two new neurons, say σa

and σb, intermediate between σli and its neighboring neurons (specifically, with
synapses (li, a, 1), (li, b, 1), (a, r, 1), (b, r, 1), (a, l

(1)
i , 1), (a, l

(2)
i , 1), (b, l(2)i , 1). Each of

the new neurons holds the rule 1/1 → 1. In this way, both σr and σ
l
(2)
i

get two
potential units, two steps after activating σli , simultaneously with one potential
unit coming to σ

l
(1)
i

. From now on the work of the module continues as described
above. The same trick can be used in the SUB module in order to remove the
single synapse with weight 2, with the mentioning that now no synchronization
problem appears, hence the synapse is removed and two intermediate neurons are
introduced, similar to σa, σb above, between σ

l
(3)
i

and σr. Module FIN contains
only synapses with weights 1 and −1.

Consequently, the universality is obtained with WTSN P systems of a rather
restricted form. This observation deserves to be formulated as a normal form result:

Corollary 2. The universality of WTSN P systems is preserved if we use only (i)
weights 1 and −1 for synapses, (ii) at most two rules per neuron, and (iii) all
rules are of one of the following three forms: 1/1 → 1, 2/2 → 1, and 2/1 → 1.

The use of two rules in at least one neuron cannot be avoided, because in
the generative case the system should be non-deterministic, otherwise we generate
nothing or a singleton; non-determinism means choosing between rules, hence we
need at least two in the same neuron.

5.2 The Accepting Case

The number of rules per neuron can be decreased to one in this case, due to the
fact that the ADD instructions of a register machine used in the accepting mode
can be taken deterministic.

The number to be computed is introduced in the system as the distance between
the first two unit potentials which enter the input neuron. This is done by means
of a module INPUT as indicated in Figure 5. After receiving two unit potentials,
if the system halts, then the number is accepted. So, we do not need a module for
outputting the result of computation. For a SUB instruction li : (SUB(r), lj , lk), we
use the same module as in Figure 3. For a deterministic ADD instruction, of the
form li : (ADD(r), lj), we consider the simple module given in Figure 6. Initially,
all neurons in the system have the potential 0. The way the modules work can be
checked in a similar way as in the proof of Theorem 1.
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i01/1 1

a2

1/1 1
a1

1/1 1
a3

1/1 1

l 0

1/1 1 1

2 2

Fig. 5. Module INPUT (initializing the computation)

li1/1 1

l j1/1 1 r

2

Fig. 6. Module ADD in the deterministic case

We conclude with the following counterpart of Theorem 1 (with the mentioning
that also the assertions in Corollary 2 hold true, with point (ii) stating that exactly
one rule per neuron is used; the removing of synapses with weight 2 is done in the
same way as described above):

Theorem 2. NaccWTZSNP∗ = NRE.

The previous results can be summarized as follows:

Corollary 3. NαWTNSNPm ⊆ NαWTZSNPm = NαWTQSNPm =
NαWTRcSNPm = NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗.
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6 Systems with Natural Numbers as Weights and
Thresholds

The only case which has remained unsettled is that when our systems use natural
numbers as weights, thresholds, and potentials. Somewhat surprising at the first
sight, such systems characterize the family of semilinear sets. For the proof of this
assertion we use a series of lemmas.

Lemma 3. Every finite set of natural numbers is in the family N2WTNSNP∗.

Proof. Let us take a finite set of natural numbers, U = {n1, n2, . . . , nk}, all of
them different from zero. We construct a WTSN P system as suggested in Figure
7. Specifically, for each number ni we have a “subsystem” composed of neurons
σ(i,a), σ(i,b), σ(i,c), σ(i,0), σ(i,1), . . . , σ(i,ni+1), with synapses, rules, and initial poten-
tials as indicated in figure. A synapse exists from neuron σ(i,ni+1) to the output
neuron, σout. There also exists one further neuron, σ0, for which only two synapses
exist, ((1, 0), 0, 1) and (0, out, 1). Figure 7 only shows two generic subsystems, and
the subsystem which helps in generating number nk = 1.

This system works as follows. All neurons behave deterministically, except
σ(i,c), for each 1 ≤ i ≤ k. As long as such a neuron uses its second rule, 2/1 → 1, it
can spike again in the next step: one potential unit remains inside and a further one
is received from σ(i,b), hence the initial amount, equal to the firing threshold, is re-
stored. In turn, as long as σ(i,c) spikes, the sequence of neurons σ(i,1), . . . , σ(i,ni+1)

continues to work, moving to the right towards σout, the neuron which can fire:
a neuron in this sequence must receive two spikes in order to fire, one from the
preceding neuron (initially, σ(i,0) fires, because it has inside one potential unit),
and one from σ(i,c). Note that each time unit, σ(i,c) is fed by one potential unit by
σ(i,b), which works forever in cooperation with σ(i,a) (they can be stopped, e.g.,
when σout spikes, by sending to them a further spike, but this detail is not impor-
tant for our result – it can be so for other ways of defining the output, if halting
is relevant). If all neurons in the sequence σ(i,1), . . . , σ(i,ni+1) work, then in step
ni + 2 a spike is set to σout and in step ni + 3 a spike is sent to the environment.
Note however that the first spike is sent out of the system in step 3, on the path
σ(1,0), σ0, σout. Consequently, the distance between these spikes is (ni+3)−3 = ni.

However, any of these processes of sending a spike towards σout along the path
σ(i,1), . . . , σ(i,ni+1) can be stopped at any step after the first one, by using the rule
2/2 → 1 in neuron σ(i,c): using this rule consumes both potential units of σ(i,c), only
one unit is received from σ(i,b), which is removed, and σ(i,c) remains idle. Therefore,
non-deterministically, we can stop all but one sequence σ(i,1), . . . , σ(i,ni+1) of neu-
rons, 1 ≤ i ≤ k, so that the output neuron receives only two spikes, the one in step
3, along the path σ(1,0), σ0, σout, and the one along the path σ(i,1), . . . , σ(i,ni+1)

which remained unblocked. In conclusion, each number in the set {n1, n2, . . . , nk}
can be generated, that is, N2(Π) = U , hence FIN ⊆ N2ATNSNP∗.

Of course, the number of neurons depends on the sum of numbers in the set
U , but some neurons in the previous construction can be saved (a unique pair
σ(i,a), σ(i,b) can fed up all neurons σ(i,c)), but this aspect is not relevant for us. 2
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Fig. 7. A WTSN P system generating a finite set of numbers

Lemma 4. Any arithmetical progression Pk,l = {kn + l | n ≥ 1} with k ≥ 2, l ≥ 2
is in the family N2WTNSNP∗.

Proof. Let us consider the system Π in Figure 8. It generates the set N2(Π) =
{2n + 2 | n ≥ 1}.

The output neuron spikes in the first step and then only after receiving a spike
from neuron σ4. In turn, this neuron spikes only after receiving a spike from each
neuron σ2 and σ3 (if we have only one spike in σ4, then it is removed). Then,
neuron σ2 can sent a spike to σ4 simultaneously with σ3 only if it, after receiving
two spikes from σ2 (note that the synapse (0, 2, 2) is the only one with weight
2), uses first the rule 2/1 → 1, so that one spike remains inside, making possible
the firing in the next step. If neuron σ2 uses the rule 2/2 → 1, then its spike will
re-initiate the work of neuron σ0, and the spikes from σ2 (received from σ1) and,
after one step from σ4, are removed. Thus, the output neuron fires for the second
time after a number of passings through the cycle σ0, σ1, σ0 (which means two
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Fig. 8. A WTSN P system generating an infinite set of numbers

steps), then ending the computation, which needs two further steps. The precise
checking of the functioning of the system in Figure 8 is left to the reader.

Thus, we can generate the arithmetical progression P2,2. If we want to generate
a progression Pk,l with k = 2 + i and l = 2 + j, then we add i neurons between
σ2 and σ0, (instead of the synapse (2, 0, 1)) and j neurons between σ4 and σout,
arranged in a sequence, with the rule 1/1 → 1 in each of them. These neurons
will lengthen the cycle σ0, σ2, . . . , σ0 with further i steps, and the path from σ4 to
σout with j steps. We denote by Πi,j the obtained system. We have N2(Πi,j) =
{(2 + i)n + (2 + j) | n ≥ 1} = Pk,l. 2

Lemma 5. If Π1, . . . , Πn are WTSN P systems with natural numbers as weights
and potentials, and for each 1 ≤ i ≤ n there is Tj ≥ 1 such that all computations in
Πi spike for the first time at the same step Ti, then

⋃n
i=1 N2(Πi) ∈ N2WTNSNP∗.

Proof. Let us take separately neurons σ1, σ2, σ3, σ4, σout from Figure 8, with two
spikes present in σ2 and one in σ1 from the beginning; change also the label of
σout, for instance, to σ5, without having here any spike in the initial configuration.
This system behaves like a “trigger”: it sends or not a spike out of σ5, depending
on the non-deterministic behavior of σ2.

Consider now a finite set of WTSN P systems Π1, . . . , Πn as in the statement
of the lemma. Let T be the maximum of all Ti, 1 ≤ i ≤ n. From the output neuron
of each Πi we consider a chain of additional T − Ii neurons with the unique rule
1/1 → 1, ending with a new output neuron. Irrespective of the length of this chain,
the set of numbers generated by Πi remains the same, as the first two spikes leaving
the system remain at the same distance in time, they only leave later the system.
Moreover, in this way all modified systems spikes for the first time at step T .

Take a “trigger” as above for each of the modified systems Πi (we continue to
denote by Πi thm). Assume that a neuron σs from some Πi contains rs ≥ 1 spikes
in the initial configuration of Πi. We remove these spikes from σs and establish a
synapse (5, s, rs). In this way, when the neuron σ5 of the trigger spikes, the system
Π is “loaded” with exactly as many spikes as it contained initially.

In this way, non-deterministically, the “triggers” will load one or more of the
systems Πi, 1 ≤ i ≤ n. Take now an additional neuron which will be considered the
output neuron of the whole system, let us call it σf , and connect all output neurons
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of systems Πi to it. With a delay of one step, the spike train of each Πi, 1 ≤ i ≤ n,
is produced by the new system. It is important that all systems Πi spike for the
first time at the same moment: only one of the “triggers” has to activate a system
Π, all other systems Πj , j 6= i, should remain idle, without any spike inside,
otherwise the system produces no output. Indeed, if two spikes arrive at the same
time in neuron σf (this is the case if two systems Πi,Πj were activated), then σf

is blocked forever, its potential is higher than its firing threshold.
Consequently, the system whose construction was suggested above generates

the union of sets N2(Πi), 1 ≤ i ≤ n. 2

Theorem 3. N2WTNSNP∗ = SLIN .

Proof. (i) In order to obtain the inclusion SLIN ⊆ N2WTNSNP∗ we use the
known fact that any semilinear set is a finite union of a finite set with a finite
number of arithmetical progressions. From the previous lemmas we know that
finite sets and arithmetical progressions of the form Pk,l with k ≥ 2 and l ≥ 2
are in N2WTNSNP∗. Let us note that the systems constructed in the proofs of
Lemmas 3 and 4 have the property in the statement of Lemma 5, to have all
computations spiking for the first time at the same step. What remains to show is
that also arithmetical progressions which are not of the form Pk,l with k ≥ 2 and
l ≥ 2 are also in N2WTNSNP∗.

Such progressions are P2,1, P2,0, and P1,l for all l ≥ 0. However, we have

P2,1 = {3} ∪ P2,3, P2,0 = {2} ∪ P2,2,

consequently, with Lemmas 4 and 5, they belong to N2WTNSNP∗. Moreover,

P1,l = (P1,l ∩ {1, 2, 3}) ∪ (P1,l ∩ P2,2) ∪ (Pl,l ∩ P3,2).

Let l1 = min(P1,l ∩ P2,2) and l2 = min(P1,l ∩ P3,2). (Note that l1 ≥ 4 and l2 ≥ 5.)
Then, we have

(P1,l ∩ P2,2) = {l1} ∪ P2,l1 , (P1,l ∩ P3,2) = {l2} ∪ P3,l2 .

Using again Lemmas 4 and 5, we get L1,l ∈ N2WTNSNP∗, and this completes the
proof of the inclusion SLIN ⊆ N2WTNSNP∗.

(ii) The inclusion N2WTNSNP∗ ⊆ SLIN is somewhat straightforward, after
making the observation that, because all weights are positive, the potential accu-
mulated in a neuron can be decreased only if it is smaller than or equal to the
firing threshold of that neuron. Otherwise stated, if a neuron σi accumulates a
potential strictly larger than Ti, then the potential remains larger than Ti for-
ever (and no rule can be applied in σi). Therefore, the configurations of a sys-
tem Π = (σ1, . . . , σm, syn, out) can be described by a vector 〈α1, . . . , αm〉 where
αi ∈ {0, 1, . . . , Ti} ∪ {T̄}, where T̄ is just a symbol indicating that the potential
of σi is strictly greater than Ti. If new amounts of potential are brought to a neu-
ron whose content is already described by T̄ , then the same symbol will describe
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that neuron at the next step. In this way, the functioning of the system can be
described by a finite state device – e.g., by a regular (actually, right-linear, be-
cause we also need rules producing no terminal symbol) grammar: we start from
the initial configuration (its description is the axiom of the grammar) and to each
transition we associates a rule; because we have finitely many configurations, we
have finitely many rules. As long as no spike is sent to the environment, no ter-
minal is produced. When the first spike exits the system, we mark somehow the
reached nonterminal, and from now on we produce a terminal symbol in each step
(and we carry on the marking of nonterminals); when a second spike is produced
by the output neuron, the derivation stops, we no longer introduce a nonterminal.
The number of terminals produced is exactly the number generated by the system.
The formal details are left to the reader. 2

A similar result is expected for the case when WTSN P systems with natural
numbers are used in the accepting mode.

7 Final Remarks

In this paper, a variant of SN P systems is introduced, using weighted synapses,
potentials in neurons, and rules which handle these potentials under the control
of given firing thresholds. The universality is obtained for integers used for rep-
resenting all of these parameters, with the case of natural numbers as weights,
potentials, and thresholds remaining to be further investigated.

Several other issues remain to be clarified about these devices.
First, we just ignored non-computable real numbers; which is their effect on

the functioning and the computing power of WTSN P systems? What about con-
sidering as the result of a computation not a number related to the spike train
produced by the system, but the potential of the output neuron in the halting
configuration? In this case we compute real numbers, which is a rather new aspect
in membrane computing. Is this feature useful for applications of SN P systems in
learning and pattern recognition?

Returning to the definition: in the proofs above we have essentially used the fact
that a neuron whose potential is strictly smaller than its firing threshold vanishes,
it is reset to zero. What happens if this resetting does not hold, but the potential
remains as it is – in the same way as a potential greater than the threshold remains
unmodified. What about using the idea of decaying (e.g., as in [3]): the unused
potential, irrespective of its size, decreases in each step with a specified amount
(one unit, for instance)?

We stop concluding with the belief that SN P systems with weights and po-
tentials deserve further research efforts.

Acknowledgements

The work of J. Wang and L. Pan was supported by National Natural Science
Foundation of China (Grant Nos. 60674106, 30870826, 60703047, and 60803113),



Spiking neural P systems with weights and thresholds 533

Program for New Century Excellent Talents in University (NCET-05-0612), Ph.D.
Programs Foundation of Ministry of Education of China (20060487014), Chen-
guang Program of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural
Science Foundation of Hubei Province (2008CDB113 and 2008CDB180). The work
of Gh. Păun was supported by Proyecto de Excelencia con Investigador de Recono-
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