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Summary. This article introduces a new derivation mode for P systems that permits to
make a look-ahead on the next configuration and check for some forbidding conditions on
it. The interesting point is that the software implementation of this mode needs very small
modifications to the standard algorithm of rule assignment for maximally parallelism.
As benefits of this mode some non-deterministic proofs become deterministic. As an
example we present a generalized communicating P system that accepts 2" in n steps in
a deterministic way. Another example shows that in the deterministic case this mode is
more powerful than the maximally parallel derivation mode. Finally, this mode gives a
natural way to define P systems that may accept or reject a computation.

1 Introduction

P systems are defined as non-deterministic computational devices. However, for
implementation reasons, it is better to limit the inherent non-determinism to a
smaller degree and eventually have a deterministic evolution. One of such ap-
proaches is based on an examination of the next configuration(s) and cutting off
non-deterministic computational branches that have some pre-defined properties.
The notion of k-determinism [7, 2] is closely related to such optimizations. For
a system having the k-determinism property one can examine all possible future
configurations for at most k steps and find a single evolution that is not forbidden.
This gives an efficient procedure of the construction of the next configuration.
However, it is not an easy task to prove that a P system has this property.

A derivation mode lies in the heart of the semantics of P systems as it permits to
specify which multiset among different possible applicable multisets of rules can be
applied. When P systems were introduced, only the maximally parallel derivation
mode was considered which states that corresponding multisets should be maximal,
i.e. non-extensible. With the apparition of the minimal parallel derivation mode [3]
the concept of the derivation mode had to be precisely defined and [5] presents a
framework that permits to easily define different derivation modes.
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This article tries to express the notion of one-step look-ahead in terms of a
derivation mode which gives a way to implement P systems in a more efficient
way. The look-ahead is a forbidding condition formalized by a set of forbidden
rules that should not be applicable after a maximally parallel multiset of normal
(non-forbidding) rules was chosen. Such a formalization needs a small overhead
and can be easily incorporated and efficiently implemented in already existing
software simulators for P systems. In more general way, the look-ahead derivation
can be considered as a further evolution of the notion of k-determinism (more
precisely of 1-determinism), but without restricting to a deterministic evolution.

The look-ahead mode can give advantages in terms of deterministic evolu-
tion of the system and we show an example that demonstrates that the evolution
in the look-ahead mode introduces more power into the system. Moreover, it is
known that a deterministic evolution usually sequentializes the computation and
it needs more steps. With the look-ahead derivation mode we show that deter-
ministic computations can be efficient by giving an example of a P system with
minimal interaction that can recognize 2" in n steps. An interesting side effect of
the definition permits to define computations that are accepted or rejected without
introducing additional symbols.

2 Definitions

We do not present here standard definitions. We refer to [10] for all details.

We also assume that the reader is familiar with standard notions of P systems,
which can be consulted in the book [8] or at the web page [9]. We shall only
focus on the semantics of the evolution step. We will follow the approach given
in [5], however we will not enter into deep details concerning the notation and the
definition of derivation modes given there. Consider a P system II of any type
evolving in any derivation mode. The key point of the semantics of P systems
is that according to the type of the system and the derivation mode § for any
configuration of the system C' a set of multisets of applicable rules, denoted by
Appl(II,C,0), is computed. After that, one of the elements from this set is chosen
non-deterministically for the further evolution of the system. In order to define
the look-ahead derivation mode we suppose that the set of rules of II, denoted
by R, is composed from two parts: normal rules Ry and forbidden rules Ry, i.e.
R = Ry URy. Then we define Appl(II,C, LAJ) as follows:

Appl(IT,C,LAS) = {R' | R' € Appl(I11,C,6) and R' N Ry = (0}.

This means that only those multisets of rules which do not contain any rule
from the forbidden set Ry can be considered for further evolution of the system.
The set Ry can be replaced by other checking conditions, we shall discuss them in
Section 4. By convention, we shall skip ¢ if it is the maximally parallel derivation
mode (§ = maz) and call the obtained mode simply look-ahead derivation mode
or LA mode.
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We remak that the look-ahead derivation can be considered for any derivation
mode, however in this article we shall consider only look-ahead derivation for the
maximally parallel derivation mode, which is the most commonly used.

Let us consider the particularities of the look-ahead derivation mode. In fact,
the rule set R gives conditions that shall not be satisfied by the current configura-
tion with the condition that a particular multiset of rules from Appl(II,C,§) will
be applied. This differentiates the look-ahead derivation mode from permitting or
forbidding conditions which are checked before the assignment of objects to rules
is done (in order to see if the rule is applicable), while the conditions in LA mode
are checked after all assignments of objects to rules are done. This gives a greater
flexibility as such a procedure permits to evaluate next possible configurations and
to cut off some of them according to Ry. In such a way the non-determinism of
the system may be significantly decreased.

We remark that the overhead introduced by such a procedure is minimal and we
discuss in Section 4 possible implementations of the look-ahead derivation mode.

Another interesting point is that it is possible that all multisets from the set
Appl(I1,C, §) contain rules from R;. In this case, Appl(II,C, LA§) will be empty,
hence a halting configuration is reached. It is possible to differentiate this halting
case from the case when Appl(II,C,J) is also empty and naturally introduce re-
jecting and accepting computations. This is particulary interesting for decision P
systems, because it gives a natural way to obtain an answer yes or no without the
need for additional symbols.

3 Examples

In this section we give two examples that show the interest of the look-ahead
derivation mode. The first example presents a deterministic recognition of 2™ in n
steps using minimal symport/antiport and conditional uniport, while the second
example shows how the initial number of symbols can be increased by minimal
symport/antiport P systems in a deterministic way.

3.1 Deterministic recognition of 2™

In this subsection we consider P systems with minimal interaction which are a
restricted variant of generalized communicating P systems [12]. We recall that the
later systems are a purely communicating model defined on a graph and having
rules of form (A,i)(B,k) — (A,7)(B,m), where A and B are two multisets of
objects and i, j, k,m are labels of membranes (cells). This rule permits to move
multisets A and B from cells ¢ and & to cells j and m synchronously. We remark
that symport, antiport and conditional uniport [11] rules are a particular case of
these general communication rules.

The minimal interaction rules are obtained from the generalized communication
rule by restricting multisets A and B to one symbol each. Minimal symport and
minimal antiport rules are a particular case of minimal interaction rules.
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Consider the following system IT = (O
the environment) where O = {A, B, Z},
R = Ry U Ry is defined as follows.

Ry ={1:(4,1)(A,1) — (4,2)(A, 1), 2: (A4,1)(B,2) — (A,2)(B,1)} and

Ry ={3:(A,1)(Z,2) — (A,0)(Z,2)}.

We remark that the first rule is a conditional uniport rule that sends a copy of
A from cell 1 to cell 2, providing that another A remains in cell 1. The second rule
is an antiport rule exchanging A and B in cell 1 and 2. The third rule is in fact an
uniport rule of A to the environment, but because of the definition an interaction
of two symbols is required, hence a dummy symbol Z is present in cell 2.

Consider now the evolution of the system. Let Cy be the initial configuration. If
k is even then all three rules are applicable. Hence, Appl(I1, Cy, max) contains two
multisets of applicable rules: {1¥/2} and {1%¥/2-1,2, 3}. By the definition of the LA
mode, the second multiset is eliminated and only the first possibility remains. It is
clear that a similar reasoning applies to all configurations C' having an even number
of symbols A in cell 1 and a symbol B in cell 2. If & is odd, then Appl(I1, Cy, max)
contains following multisets of rules: {1*=1/2 2} and {1%*=1)/2 3}, By the defini-
tion of LA mode the second possibility is eliminated and only the first one remains.
The same holds for all configurations having an odd number of A in cell 1 and a
copy of symbol B in cell 2.

Now consider the first application of rule 2. It might happen only when the
number of symbols A in cell 1 is odd. In all consequent configurations symbol B is
present in cell 1. Consider a further configuration having m symbols A in the first
cell. If m is even, then again two multisets of rules are applicable in maz mode:
{1™/2} and {1"™/?71 3} and only the first one remains in the LA mode. If m is
odd, then there is only one applicable multiset in max mode: {1(7”_1)/2, 3} and
there are no applicable rules in LA mode.

The recognition of 2™ is done as follows. It is known that if a number k& = 2"
is divided by 2 in a cycle, then at each step the quotient is always even, except at
the end when it becomes 1. For a number k # 2", a similar process yields an odd
number ¢ > 2. Repeating this procedure for ¢t —1 yields another odd number ¢ > 1.
Rule 1 permits to divide the number of A’s in cell 1 by two at each step. Rule 2
permits to decrement once the number of A’s in cell 1. Hence, if initially k = 27,
then at each step an even number of A’s will be present in cell 2, except the last
one where the rule 2 will be applied. Otherwise, when an odd number ¢ > 2 of
symbols A will be present in cell 1, both rules 1 and 2 will be applied. Further,
an odd number of symbols A will appear in cell 1 and the computation will stop.
In the first case we obtain an accepting computation, while in the second one the
computation is rejecting. We remark that the acceptance of a computation may
be done in other ways as it is shown in Section 4.

, E,wy,ws, R), having 2 cells (0 denotes
E =0, w; = {AF}, wy = {B,Z} and

3.2 Deterministic minimal symport/antiport on a tree structure

In this subsection we consider P systems (having a tree structure) with minimal
symport and antiport rules. An antiport rule is denoted as (u,in; v, out) and per-
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mits to exchange the multiset of objects v present in the membrane ¢ where this
rule is located with the multiset of objects u present in the parent membrane of
i. A symport rule, denoted as (u,in) or (v,out), permits to send a multiset v to
the parent membrane or the multiset u to one of inner membranes. In the case of
minimal antiport, respectively symport, the size of the multisets u and v is equal
to one, respectively two.

We start by the following remark.

Remark 1 For any deterministic P system with minimal symport/antiport rules
working in mazximally parallel derivation mode, the number of objects initially
present inside the system, i.e. not in the environment, cannot be increased.

The proof of the above assertion may be done in a similar way as it was done for
the case of one membrane in [1] and [6]. The main argument used in those articles
remains valid: if the number of objects is increasing, then any rule that permits to
bring an additional symbol from the environment will be used an arbitrary number
of times because of the minimality of rules and determinism.

However, the situation changes if the look-ahead derivation mode is permitted.
Then the following construction permits to bring one symbol from the environ-
ment, deterministically.

Let IT = ({p, A}, {A}, [1[2)2)1, {p}, 0, R1, R2 U R}) be a P system with minimal
symport rules having two membranes (the first membrane contains initially symbol
p while the second one is empty). We define the sets of rules Ry and Ry as follows
(by the superscript f we denote the forbidding set of rules).

Ry ={1:(p,out); 2: (pA,in)},

Ry ={3:(pA,in)} and R} = {4: (A, in)}.

The system works as follows. Firstly the symbol p is sent to the environment by
rule 1 and after that it brings a copy of symbol A by rule 2. Now, in the maximally
parallel derivation mode there are two applicable multisets of rules: {3} and {1, 4}.
In LA mode the second multiset is eliminated, hence only rule 3 can be applied.
In such a way, the number of symbols (A) is increased, deterministically.

Since the number of objects can be varied, we conjecture that a deterministic
register machine can be simulated, i.e. we conjecture that deterministic P systems
with minimal symport/antiport working in LA mode can recognize any recursively
enumerable set of numbers.

4 Implementation ideas

In this section we discuss some ideas about the practical implementation of the
look-ahead maximally parallel derivation mode. We consider the classical imple-
mentation of the maximally parallel derivation mode which orders rules and ap-
plies the rules maximal number of times according to the order and after that uses
backtracking to decrease the number of applications of rules of a higher order and
increase the number of applications of rules of a lower order. In this setup it is
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enough to place rules from Ry after the rules from Ry and to use an additional
condition that if a rule from Ry is chosen then the current multiset should be dis-
carded and a new backtracking round should begin. Hence, only the last condition
shall be additionally implemented, which is not so difficult.

Another possibility is to replace rules from R; by an union of finite sets that
check the presence of the symbols from the left-hand side of rules from R¢. In this
case it is enough to check that these sets are not present in the configuration after
all rules are chosen, supposing that the choice of rules marks or blocks in some
way used symbols. We recall that the difference between this check and ordinary
permitting/forbidding checks is that it should be done after an assignment of
object to rules is done.

The rejecting condition may be replaced by an emptiness check of a particular
cell, or, in a more general setup, by checking for some finite state conditions like
it is done for P automata (see [4] for an overview).

5 Final remarks

In this paper we introduced a new derivation mode for P systems: the look-ahead
mode. In some sense, this mode is an extension of the maximally parallel derivation
mode and all results formulated for the latter one are true for the look-ahead
mode. We also think that in the non-deterministic case both modes have same
computational properties. In a lot of cases forbidden rules can be replaced by
trapping rules that will move corresponding symbols to a trap membrane or will
transform them to trapping symbols and the computation will never stop. However,
in the deterministic case the behavior of two modes is very different, as it is shown
in Subsection 3.2.

We would like to mention some differences between the look-ahead mode and
the concept of k-determinism introduced in [7]. The notion of k-determinism is a
property of a P system that permits to examine all possible future configurations
for at most & steps and find a single evolution that is not forbidden. This property
cannot be easily checked for a P system. The look-ahead derivation mode is not
a property but a procedure that permits to possibly limit the non-determinism of
the system.

As further research topics we would mention the extension of the look-ahead
for k steps ahead. However, it is not clear if the gain in power is justified as
the computational overhead needed to compute further k configurations is quite
big. Another interesting problem would be the study of the efficiency of the new
mode. We think that a lot of existing proofs can be simplified using the look-ahead
and, moreover, efficient deterministic or almost deterministic solutions for different
computational problems may be constructed. In particular, it would be interesting
to give a deterministic simulation of a register machine by deterministic minimal
symport/antiport P systems.

Instead of forbidden rules one may consider sets or even multisets of rules that
cannot be applied together. This is a generalization of the concept of forbidden
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rules, because set Ry corresponds to set of pairs {(r,r’') | r € Ry,7’ € Rs}. This
permits a finer control of rules, in some sense similar to programmed grammars,
and it can be implemented quite easily.
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