
An Efficient Simulation of Polynomial-Space
Turing Machines by P Systems
with Active Membranes

Andrea Valsecchi, Antonio E. Porreca, Alberto Leporati,
Giancarlo Mauri, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{valsecchi,porreca,leporati,mauri,zandron}@disco.unimib.it

Summary. We show that a deterministic single-tape Turing machine, operating in poly-
nomial space with respect to the input length, can be efficiently simulated (both in terms
of time and space) by a semi-uniform family of P systems with active membranes and
three polarizations, using only communication rules. Then, basing upon this simulation,
we prove that a result similar to the space hierarchy theorem can be obtained for P sys-
tems with active membranes: the larger the amount of space we can use during the
computations, the harder the problems we are able to solve.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [11] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain multisets of objects (represented by symbols of an alphabet) and
evolution rules. Using these rules, the objects may evolve and/or move from a
region to a neighboring one. Usually, the rules are applied in a nondeterministic
and maximally parallel way. A computation starts from an initial configuration of
the system and terminates when no evolution rule can be applied. The result of
a computation is the multiset of objects contained into an output membrane, or
emitted from the skin of the system. An interesting subclass of membrane systems
is constituted by recognizer P systems, in which: (1) all computations halt, (2) only
two possible outputs exist (usually named yes and no), and (3) the result produced
by the system only depends upon its input, and is not influenced by the particular
sequence of computation steps taken to produce it. For a systematic introduction

490 A. Valsecchi et al.

to P systems we refer the reader to [13], whereas the latest information can be
found in [22].

Since the introduction of membrane systems, many investigations have been
performed on their computational properties: in particular, many variants have
been proposed in order to study the contribution of various ingredients (associ-
ated with the membranes and/or with the rules of the system) to the achievement
of the computational power of these systems. In this respect, it is known [14, 20, 6]
that the class of all decision problems which can be solved in polynomial time by a
family of recognizer P systems that use only basic rules, that is, evolution, commu-
nication and membrane dissolution, coincides with the complexity class P. Hence,
in order to efficiently solve computationally difficult (for example, NP-complete)
problems by means of P systems it seems necessary to be able to exponentially in-
crease (in polynomial time) the number of membranes, that can be regarded as the
size of the workspace. In particular, two features have proven to be of paramount
importance in establishing whether a membrane system is able to solve compu-
tationally difficult decision problems in polynomial time: membrane dissolution
and division. Dissolution rules simply dissolve the surrounding membrane when
a specified symbol occurs. Division rules are inspired from the biological process
called mitosis: they allow to duplicate a given membrane that contains a specified
symbol, possibly rewriting this symbol in a different way in each of the membranes
produced by the process. All the other symbols, as well as the rules, which are con-
tained in the original membrane are copied unaltered into each of the resulting
regions. As for the membranes possibly contained in the original region (if any), we
can consider the following situations. If no membrane occurs, then we say that the
division is elementary ; if one or more membranes occur, then we have to specify
how they are affected by the division operation. If all the membranes are copied
to each of the resulting regions, then we have a weak (non-elementary) division;
if, instead, we can choose what membranes are copied into each of the resulting
regions, then we have a strong (non-elementary) division.

Recognizer P systems with active membranes (using division rules and, pos-
sibly, polarizations associated to membranes) have been successfully used to effi-
ciently solve NP-complete problems. The first solutions were given in the so called
semi-uniform setting [12, 20, 9, 10], which means that we assume the existence of
a deterministic Turing machine that, for every instance of the problem, produces
in polynomial time a description of the P system that solves such an instance. The
solution is computed in a confluent manner, meaning that the instance given in
input is positive (resp., negative) if and only if every computation of the P system
associated with it is an accepting (resp., rejecting) computation. Another way to
solve NP-complete problems by means of P systems is by considering the uniform
setting, in which any instance of the problem of a given length can be fed as input
– encoded in an appropriate way – to a specific P system and then solved by it.
Sometimes, a uniform solution to a decision problem Q is provided by defining a
family {ΠQ(n)}n∈N of P systems such that for every n ∈ N the system ΠQ(n)
reads in input an encoding of any possible instance of size n, and solves it. P sys-

A Simulation of Polynomial-Space Turing Machines by P Systems 491

tems with active membranes have thus been successfully used to design uniform
polynomial-time solutions to some well-known NP-complete problems, such as
sat [15].

All the papers mentioned above deal with P systems having three polarizations,
that use only division rules for elementary membranes (in [19] also division for non-
elementary membranes is permitted, and in this way a semi-uniform solution to
the PSPACE-complete problem qsat is provided), and working in the maximally
parallel way. As shown in [2], the number of polarizations can be decreased to two
without loss of efficiency. On the other hand, in [5] the computational power of
recognizer P systems with active membranes but without electrical charges and dis-
solution rules was investigated, establishing that they characterize the complexity
class P. Finally, in [21] it was shown that polarizationless P systems with active
membranes that use strong division for non-elementary membranes and dissolution
rules, working in the maximally parallel way, are able to solve in polynomial time
the NP-complete problem 3-sat. This result establishes that neither evolution nor
communication rules, and no electrical charges are needed to solve NP-complete
problems, provided that we can use strong division rules for non-elementary mem-
branes (as well as dissolution rules, otherwise we would fall in the case considered
in [5]).

By looking at the literature one can see that, until now, the research on the
complexity theoretic aspects of P systems with active membranes has mainly fo-
cused on the time resource. In particular, we can find several results that compare
time complexity classes obtained by using various ingredients (such as, e.g., polar-
izations, dissolution, uniformity, etc.). Other works make a comparison between
these classes and the usual complexity classes defined in terms of Turing machines,
either from the point of view of time complexity [14, 4, 20], or space complexity
[19, 1, 17]. A first definition of space complexity for P systems was given in [7],
where the measure of space is given by the maximum number of objects occurring
during the computation. The definition was then generalized to P systems with
mutable membrane structure [16], in particular P systems with active membranes,
thus formalizing the usual notion of exponential workspace generated through
membrane division.

In this paper, basing upon the formal definitions given in [16], we present some
results concerning the relations among space complexity classes defined in terms
of P systems, under some specified constraints. In particular, we first show how to
simulate a deterministic single-tape Turing machine by a semi-uniform family of
P systems with active membranes and three polarizations.

Then, by focusing our attention on computations occurring in polynomial
space, we define a pseudo-hierarchy of space complexity classes. Such classes are
inspired by the space hierarchy theorem, that we restate and prove (albeit in a
slightly different form) for P systems with active membranes. Let us note that a
different hierarchy for catalytic P systems with a fixed membrane structure has
been introduced in [7].

492 A. Valsecchi et al.

The paper is organized as follows. In section 2 we recall the definition of recog-
niser P systems with active membranes, thus establishing our model of computa-
tion, and we recall some basic notions that will be used in the rest of the paper. In
section 3 we show how to simulate a deterministic single-tape Turing machine by
means of a semi-uniform family of P systems with active membranes. In section
4 we recall the space hierarchy theorem and, inspired by it, we define a pseudo-
hierarchy of space complexity classes determined by P systems with active mem-
branes. Finally, section 5 contains the conclusions and some directions for further
research.

2 Definitions

We begin by recalling the definition of P systems with active membranes.

Definition 1. A P system with active membranes of the initial degree m ≥ 1 is a
tuple

Π = (Γ,Λ, µ, w1, . . . , wm, R)

where:

• Γ is a finite alphabet of symbols, also called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of m mem-

branes enumerated by 1, . . . ,m; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m initial regions of µ;

• R is a finite set of rules.

Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

The rules are of the following kinds:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having polarization α
and containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having polarization α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the polarization of h is changed to
β.

A Simulation of Polynomial-Space Turing Machines by P Systems 493

• Communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the polarization of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the membrane h is dissolved and its
contents are left in the surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having polarization α, con-
taining an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and polarizations β
and γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form[
[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α
h
→
[
[]δh1
· · · []δhk

]β
h

[
[]εhk+1

· · · []εhn

]γ
h

They can be applied to a membrane labeled by h, having polarization α, contain-
ing the positively charged membranes h1, . . . , hk, the negatively charged mem-
branes hk+1, . . . , hn, and possibly some neutral membranes. The membrane h
is divided into two copies having polarization β and γ, respectively; the positive
children are placed inside the former, their polarizations changed to δ, while
the negative ones are placed inside the latter, their polarizations changed to ε.
Any neutral membrane inside h is duplicated and placed inside both copies.

A configuration in a P system with active membranes is described by its current
membrane structure, together with its polarizations and the multisets of objects
contained in its regions. The initial configuration is given by µ, all membranes
having polarization 0 and the initial contents of the membranes being w1, . . . , wm.
A computation step changes the current configuration according to the following
principles:

• Each object and membrane can be subject to only one rule during a computation
step.

• The rules are applied in a maximally parallel way: each object which appears
on the left-hand side of applicable evolution, communication, dissolution or
elementary division rules must be subject to exactly one of them; the same holds
for each membrane which can be involved in a communication, dissolution or
division rule. The only objects and membranes which remain unchanged are
those associated with no rule, or with unapplicable rules.

• When more than one rule can be applied to an object or membrane, the actual
rule to be applied is chosen nondeterministically; hence, in general, multiple
configurations can be reached from the current one.

494 A. Valsecchi et al.

• When dissolution or division rules are applied to a membrane, the multiset of
objects to be released outside or copied is the one resulting after all evolution
rules have been applied.

• The skin membrane cannot be divided, nor it can be dissolved. Furthermore,
every object which is sent out from the skin membrane cannot be brought in
again.

A (halting) computation C of a P system Π is a sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π, every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration can
be reached from Ck (i.e., no rule can be applied).

We can use families of P systems with active membranes as language recognis-
ers, thus allowing us to solve decision problems.

Definition 2. A recogniser P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

If all computations starting from the initial configuration agree on the result,
then Π is said to be confluent; if this is not necessarily the case, then it is said to
be non-confluent (and the global result is acceptance iff an accepting computation
exists).

Definition 3. Let L ⊆ Σ? be a language and let Π = {Πx : x ∈ Σ?} be a family
of recogniser P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ?, the result of Πx is acceptance iff x ∈ L.

Usually, a condition of uniformity, inspired by those of families of Boolean
circuits, is imposed on families of P systems.

Definition 4. A family of P systems Π = {Πx : x ∈ Σ?} is said to be semi-
uniform when the mapping x 7→ Πx can be computed in polynomial time by a
deterministic Turing machine.

Time complexity classes for P systems are defined as usual, by restricting the
amount of time available for deciding a language. By MC?

D(f(n)) we denote the
class of languages which can be decided by a semi-uniform class of confluent P sys-
tems Π of classD (e.g.,AM denotes the class of P systems with active membranes)
where each computation of Πx ∈ Π halts within f(|x|) steps. The class of lan-
guages decidable in polynomial time is denoted by PMC?

D.
Recently, a space complexity measure for P systems has been introduced [16].

We recall here the relevant definitions.

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is defined
as the sum of the number of membranes in µ and the total number of objects they

A Simulation of Polynomial-Space Turing Machines by P Systems 495

contain1. If C = (C0, . . . , Ck) is a halting computation of Π, then the space required
by C is defined as

|C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then

|Π| = max{|C| : C is a halting computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems; also let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ?.

Next, we formally define the variant of Turing machine we use in the following
sections.

Definition 6. A single-tape deterministic Turing machine is a tuple

M = (Q,Σ, Γ, δ, q0, A,R)

where:

• Q is a finite and nonempty set of states;
• Σ is the finite input alphabet;
• Γ is the tape alphabet, a finite superset of Σ;
• the partial function δ : Γ ×Q→ Γ ×Q×{←,−,→} is the transition function;

we assume that δ is undefined on both accepting and rejecting states;
• q0 ∈ Q is the initial state;
• A ⊆ Q is the set of accepting states;
• R ⊆ Q is the set of rejecting states, disjoint from A.

Finally, we recall the definition of constructible function (for further informa-
tion on this topic see, for instance, [8, 3, 18]).

Definition 7. A function f : N → N is said to be time-constructible iff the map-
ping 1n 7→ 1f(n), i.e., from the unary representation of n to the unary represen-
tation of f(n), can be computed by a deterministic Turing machine in O(f(n))
time.

The function f is space-constructible iff the mapping 1n 7→ 1f(n) can be com-
puted by a deterministic Turing machine in O(f(n)) space.

1 An alternative definition, where the size of a configuration is given by the sum of
the number of membranes and the number of bits required to store the objects they
contain, has been considered in [16]. However, the choice between the two definitions
is irrelevant as far as the results of this paper are concerned.

496 A. Valsecchi et al.

3 Simulating Turing machines

In this section we show that a single-tape Turing machine M having Σ = {0, 1}
as input alphabet and operating in polynomial space f(n) and time g(n) can be
simulated efficiently (i.e., by using O(f(n)) space and O(g(n)) time) by a semi-
uniform family ΠM = {ΠM,x : x ∈ {0, 1}?} of P systems with active membranes
and three polarizations, where each ΠM,x simulates the computation of M on
input x. We also stress the fact that these P systems can be defined in such a way
that communication is the only required kind of rule.

Turing machines operate by reading and writing symbols on a tape divided into
cells: the main idea of our simulation is representing each cell by a membrane. In a
Turing machine the tape cells are linearly ordered (we assume they are numbered
by nonnegative integers); one way to organise the membranes without losing this
information is in a nested way, i.e., one inside the other. Either the innermost or
the outermost membrane can be put into correspondence with the leftmost tape
cell; without loss of generality, we choose the outermost one.

Each cell of the Turing machine contains a symbol taken from the tape al-
phabet, which we assume to be Γ = {0, 1, }, where denotes the blank symbol.
In the P system, the symbol written in a cell is stored in the polarization of the
corresponding membrane. The default neutral polarization represents a blank cell,
while the negative and positive polarizations represent 0 and 1, respectively.

A single object in the P system represents the state of the Turing machine
(an element q of the finite set Q), and its location inside the membrane structure
represents the position of the tape head: the object is located immediately inside
the i-th membrane iff the tape head of the simulated machine is located on the
i-th leftmost tape cell. The object is changed (via communication rules) both in
form and location in order to reflect the change of state and position of the tape
head of the Turing machine.

Finally, the transition function δ : Γ ×Q→ Γ ×Q× {←,−,→} of the Turing
machine is implemented by using a set of communication rules. The object rep-
resenting the head position and state of the Turing machine is moved to the new
position, while simultaneously changing the polarization of the current membrane
in order to update the contents of the tape; it is also rewritten into a (possibly
different) symbol, representing the new state of the machine. In order to execute
these operations, the P system requires a constant number of steps for each com-
putation step of the simulated Turing machine.

Let M be a single-tape deterministic Turing machine operating in space f(n).
Let x = x1x2 · · ·xn ∈ {0, 1}? be an input for M . The membrane structure µM,x

is made of f(n) membranes labelled by h and placed one inside the other; this
structure is surrounded by a further membrane h0, which also contains a membrane
labelled by w. The initial configuration of µM,x is as follows:

[[q̂0]0w

f(n) membranes︷ ︸︸ ︷
[x1[x2 · · · [xn︸ ︷︷ ︸
n membranes

[· · · [

f(n) membranes︷ ︸︸ ︷
]0h · · ·]0h]0h · · ·]0h]0h︸ ︷︷ ︸

n membranes

]0h0

A Simulation of Polynomial-Space Turing Machines by P Systems 497

Each of the outermost n membranes labelled by h contains an object xi ∈ {0, 1},
representing the i-th input symbol of M ; these objects are used to set up the
initial contents of the tape (recall that, by definition, all membranes are initially
required to be neutral). The following communication rules serve the purpose of
changing the polarization of a membrane h according to the symbol contained in
the corresponding tape cell:

[0]0h → []−h # (1)

[1]0h → []+h # (2)

where # is a “junk” object, i.e., an object which does not appear on the left-hand
side of any rule.

While the initial configuration of the simulated machine M is being set up
(only one step is required to do so) the head/state object q̂0, where q0 is the initial
state of M , is sent out from w by means of the following rule:

[q̂0]0w → []0w q̂0 (3)

After that, q̂0 enters the membrane corresponding to the leftmost tape cell, while
simultaneously losing the “hat”, by using one of the following communication rules:

q̂0 []αh → [q0]αh ∀α ∈ {−, 0,+} (4)

Object q̂0 is initially located inside w so that it requires two steps in order to reach
the membrane corresponding to the initial cell of M , thus avoiding conflicts with
the rules setting up the initial tape contents.

Now the real simulation begins. To each quintuple (a, q1, b, q2, d) describing a
transition of M (i.e., denoting the fact that δ(a, q1) = (b, q2, d)) corresponds a
constant number of communication rules. If δ(a, q1) = (b, q2,←) then there is a
single rule

[q1]αh → []β q2 (5)

where α and β are − or + when a and b are 0 or 1 respectively. The rule moves
the head/state object outwards (which corresponds to moving the tape head of M
one position to the left) while changing it as the state of M does.

If the tape head does not move, as in δ(a, q1) = (b, q2,−), then two rules are
needed:

[q1]αh → []βh q
′
2 (6)

q′2 []βh → [q2]βh (7)

The first rule changes the symbol in the current cell, while the second one moves
the (updated) head/state symbol back to that cell.

When the tape head moves right, i.e., δ(a, q1) = (b, q2,→), five rules are needed:

[q1]αh → []β q′′2 (8)

q′′2 []βh → [q′2]βh (9)
q′2 []γh → [q2]γh ∀γ ∈ {−, 0,+} (10)

498 A. Valsecchi et al.

The three rules in (10) are used to move the head/state symbol one membrane
deeper, thus completing the simulated movement of the tape head to the right.

Finally, the result of the computation of M is sent out of the membrane struc-
ture. If M enters an accepting state q, the head/state symbol is changed to yes
and expelled:

[q]αh → []αh yes ∀α ∈ {−, 0,+} (11)
[yes]αh → []αh yes ∀α ∈ {−, 0,+} (12)

[yes]0h0
→ []0h0

yes (13)

An analogous situation occurs when q is a rejecting state:

[q]αh → []αh no ∀α ∈ {−, 0,+} (14)
[no]αh → []αh no ∀α ∈ {−, 0,+} (15)

[no]0h0
→ []0h0

no (16)

Definition 8. With a slight abuse of notation, we denote by µM,x the whole P sys-
tem “module” consisting of both the membrane structure described above and the
set of rules (1)–(16). We also denote by ΠM the family of P systems with active
membranes {ΠM,x : x ∈ {0, 1}?}, where ΠM,x consists of the module µM,x only.

Theorem 1. Let M be a single-tape deterministic Turing machine halting on ev-
ery input and operating in space f(n), where f(n) = Ω(n), f(n) = O(nk) for some
fixed k and f(n) is time-constructible. Also assume that M operates in time g(n).
Then ΠM is semi-uniform and decides the same language as M in O(f(n)) space
and O(g(n)) time; furthermore, ΠM can be constructed in O(f(n)) time.

Proof. Each P system ΠM,x consists of f(n) + 2 membranes and contains n + 1
objects, where n = |x|; hence ΠM clearly uses O(f(n)) space.

Each transition of M on input x is simulated by ΠM,x in at most three steps;
another step is required to set up the initial contents of the tape. When the result
object yes/no is produced, it is expelled from the system after a number of steps
which equals the number of the tape cell where M enters the final state, plus a
further step to exit the outermost membrane h0. Hence, the total time is O(g(n)).

The mapping x 7→ ΠM,x can be computed in time O(f(n)), as

• the membrane structure consists of f(|x|) identical membranes (and two further
membranes w and h0) and can be constructed in O(f(n)) time steps, as f is
time-constructible by hypothesis;

• the initial configuration of the P system can be constructed in linear time from
x, as exactly n symbols are to be placed inside the outermost membranes;

• the set of communication rules only depends on M , and not on x.

Since f(n) is bounded by a polynomial, the construction of ΠM is semi-uniform.

A Simulation of Polynomial-Space Turing Machines by P Systems 499

4 A space pseudo-hierarchy

The space hierarchy theorem, a fundamental result in complexity theory, states
that Turing machines are able to solve harder problems when given a larger amount
of space to exploit. The proof [18] is constructive, as for every space bound f(n)
an explicit language is described which cannot be decided by using less space.

Definition 9. Let f : N → N. We denote by L(f) the language of strings x ∈
{0, 1}? of the form 〈M〉10?, where 〈M〉 is the binary description of a single-tape
deterministic Turing machine that rejects x without using more than f(|x|) space.

Theorem 2 (Space hierarchy theorem). Let f be a space-constructible func-
tion such that f(n) = Ω(n). Then L(f) is decidable in space O(f(n)) but not in
space o(f(n)).

Proof (Proof sketch). The language L(f) can be decided by a deterministic Turing
machine D which simulates M on x within a f(|x|) space limit, flipping the re-
sult whenever the simulation completes successfully and rejecting if the non-blank
portion of the tape of M becomes longer than the space limit. Such a simulation
can be carried out in space O(f(n)).

If L(f) could be decided in space g(n) = o(f(n)) by some deterministic Turing
machine M , then D on input 〈M〉10k (for large enough values of k) could complete
the simulation within the space limit and give a different result from M , thus
contradicting the hypothesis that L(D) = L(M) = L(f).

The trailing k zeros in the description of L(f) are a technical requirement:
since g(n) may be larger than f(n) for small n even when g(n) = o(f(n)), for some
inputs the simulation might not complete successfully; but D certainly answers the
opposite of M on all strings 〈M〉10k for large enough values of k, thus ensuring
they decide different languages.

A related result can be proved in the setting of P systems with active mem-
branes. The main idea is to modify the Turing machine D of the above proof,
in such a way that, instead of directly simulating the machine M it receives as
input, it constructs a P system Π ′′M,x,f which carries out this task. Π ′′M,x,f is a
variant of the P system ΠM,x described in the previous section; notice that ΠM,x

is not suitable for the present task, as it is designed to simulate only halting Turing
machines operating in polynomial space. The Turing machine D, instead, receives
arbitrary machines M as input, which on some input x could try to use more space
than we took into account when constructing ΠM,x; alternatively, they could also
run forever, whereas we need to always give an answer.

We begin by modifying the P system module µM,x such that, when M exceeds
the allocated space (i.e., when the tape head moves to the right of the rightmost
cell), the simulation ends by rejecting. Furthermore, when the simulation is com-
pleted correctly, we return the opposite result of M .

The P system module µ′M,x,f , simulating M on x with a f(|x|) space bound,
has the following membrane structure and initial configuration:

500 A. Valsecchi et al.

[[q̂0]0w

f(n) membranes︷ ︸︸ ︷
[x1[x2 · · · [xn︸ ︷︷ ︸
n membranes

[· · · [[]0h1

f(n) membranes︷ ︸︸ ︷
]0h · · ·]0h]0h · · ·]0h]0h︸ ︷︷ ︸

n membranes

]0h0

that is, the same structure of µM,x except for an additional membrane h1 in the
innermost position. Such a membrane is used to detect a space “overflow” and
halt the simulation if this event occurs, according to the following rules:

q []0h1
→ [yes]0h1

for all states q of M (17)

[yes]0h1
→ []0h1

yes (18)

Furthermore, the same rules (1)–(16) of definition 8 are used, except that rules
(13) and (16), involving the outermost membrane, are changed in order to flip the
result:

[yes]0h0
→ []0h0

no (13′)

[no]0h0
→ []0h0

yes (16′)

Definition 10. The P system consisting only of module µ′M,x,f is denoted by
Π ′M,x,f ; we also define the family Π′M,f = {Π ′M,x,f : x ∈ {0, 1}?}.

Lemma 1. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible; let M be a single-tape Turing machine which halts on
every input. Then the family of P systems Π′M,f is semi-uniform, in particular
constructible in O(f(n)) time, and

L(Π′M,f) = {x ∈ {0, 1}? : M rejects x in f(|x|) space}.

Proof. The family Π′M,f is obviously constructible in O(f(n)) time (hence semi-
uniform) as in the proof of theorem 1, since there is only one extra membrane and
the new rules (17)–(18) do not depend on x.

The language decided by Π′M,f is, by construction, the complement of that of
M , except that strings x generating computations which require more that f(|x|)
cells are rejected.

Another stumbling block we need to overcome is the fact that some Turing
machines might operate within the space bound we fixed, but without halting.
Fortunately, we know that a single-tape Turing machine, having tape alphabet
{0, 1, } and operating in f(n) space, either halts within f(n) · |Q| · 3f(n) steps
(Q being its set of states), or does not halt at all. We can solve the problem by
counting the number of simulated steps, and halting the simulation when such time
bound is exceeded. The usual solution, i.e., having an object which is successively
rewritten into all values of the counter, does not work, as the counter may assume
exponentially large values (with respect to n). Hence, a more sophisticated solution
is needed.

A Simulation of Polynomial-Space Turing Machines by P Systems 501

Definition 11. We define a P system module κn, having the following (n + 1)-
degree membrane structure and initial configuration:

[

n− 2︷︸︸︷
[· · · [[d]0c0]0c1 · · ·]

0
cn−1

]0cn

The device is, essentially, an (n + 1)-bit binary counter. Each membrane corre-
sponds to one bit, c0 and cn being the least significant and most significant bits re-
spectively. Neutral and positive polarizations represent 0 and 1, respectively. Thus,
in the initial configuration, κn stores the value 0. By using communication rules,
such value is incremented up to 2n. Since all membranes c1, . . . , cn−1 have identi-
cal behaviour, they can all be given the same label, thus simplifying the structure
(and reducing the time required to construct it) as follows:

[

n− 2︷︸︸︷
[· · · [[d]0c0]0c · · ·]0c]0cn

Recall that incrementing a binary integer is performed by flipping its bits, one by
one and starting from the least significant one, until a 0 is flipped into 1. The
object d moves inside the membrane structure in order to perform this task. The
following rules (which are identical for membranes labeled by c0 and c) move d
outwards, and change it into d′ when the current increment operation has finished:

[d]0c0 → []+c0 d
′ (19)

[d]+c0 → []0c0 d (20)

[d]0c → []+c d
′ (21)

[d]+c → []0c d (22)

The next rules take d′ back to the starting position; when d′ re-enters the innermost
membrane c0 it is rewritten into d, and the next increment operation may begin:

d′ []αc → [d′]αc ∀α ∈ {0,+} (23)
d′ []αc0 → [d]αc0 ∀α ∈ {0,+} (24)

Finally, when d crosses the outermost membrane cn it is left outside (i.e., there is
no rule bringing it back inside), as a signal that the counter has reached the value
2n:

[d]0cn
→ []+cn

d (25)

Lemma 2. The P system module κn can be constructed in linear time, given the
unary representation of n; it sends out the object d after at least 2n steps.

Proof. The membrane structure is of linear size, and there is a constant number
of communication rules, hence the construction can be performed in O(n) time.
Since incrementing the binary counter requires at least two applications of com-
munication rules (and 2n in the worst case), the object d is not set out before 2n

time steps have passed.

502 A. Valsecchi et al.

When the object d is sent out from κn, we can use it to stop the simulation of
the Turing machine, as we know that if it has not halted yet, then it will never
do (assuming we have chosen a suitable value for n). The obvious solution is to
use d to dissolve the whole membrane structure µ′M,x,f ; however, besides requiring
the introduction of dissolution rules (recall that we have only used communica-
tion rules so far), there might exist computations during which d is not able to
enter a membrane in µ′M,x,f because it is blocked by the head/state object which
continuously enters and exits from that membrane (e.g., if the head of the Turing
machine is stuck on a single tape cell). Both problems can be solved by slightly
changing the definition of module µ′M,x,f .

We define a P system module µ′′M,x,f with the following membrane structure
and initial configuration:

[[q̂0]0w

2f(n) membranes︷ ︸︸ ︷
[[x1[[x2 · · · [[xn︸ ︷︷ ︸

2n membranes

[[· · · [[[]0h1

2f(n) membranes︷ ︸︸ ︷
]0h]0j · · ·]0h]0j]0h]0j · · ·]0h]0j]

0
h]0j︸ ︷︷ ︸

2n membranes

]0h0

that is, each membrane labelled by h is surrounded by a further membrane labelled
by j. The communication rules used to move the head/state object are changed
so that, when it crosses a membrane h (in either direction), it also crosses the
membrane j immediately outside whenever it is neutrally charged, without any
further change. However, when the head/state object crosses a membrane labelled
by j that is positively charged, it is changed into the object yes, so that it can be
sent outside as if machine M has accepted.

The module µ′′M,x,f still simulates M on input x with space bound f ; the double
membrane structure, besides slowing down the simulation by a multiplicative con-
stant, does not alter the simulated computation of M . However, we can combine
this module with κ`(n) (where `(n) is a value large enough to ensure that object d
is not sent out prematurely) in such a way that when the object d is sent out, it
traverses the membrane structure µ′′M,x,f and changes the polarization of all mem-
branes labelled by j to positive, thus stopping the simulation if it has not already
ended. Since the head/state object must always cross at least two membranes in
order to simulate a transition of M , the situation in which it continuously crosses
the same membrane forward and backward, thus blocking the object d, does never
happen.

Definition 12. The P system Π ′′M,x,f is defined as follows:

[µ′′M,x,f κ`(n)]0s

that is, a skin membrane containing the P system modules µ′′M,x,f and κ`(n), with
the initial configuration and rules given by those of the two modules together. A
further pair of rules is used to send out the result from the skin membrane s:

[yes]0s → []+s yes (26)

[no]0s → []+s no (27)

A Simulation of Polynomial-Space Turing Machines by P Systems 503

As noticed above, the value of `(n) must be large enough to ensure that object d is
not sent out from κ`(n) before the result of a possibly halting computation of M is
expelled from µ′′M,x,f . Since each transition of M can be simulated by at most six
steps of µ′′M,x,f , and since M may accept when its head is on the rightmost position
(the f(n)-th position) of the tape, thus requiring us to wait until the result object
has travelled through the whole membrane structure, an appropriate value is

`(n) = log
(
6 · f(n) · |Q| · 3f(n) + 2f(n) + 1

)
.

The system is augmented with a set of communication rules which cause the object
d, once it has been sent out from κ`(n), to traverse the nested membrane structure
of µ′′M,x,f while changing the polarization of all membranes labelled by j to positive
(without changing any other polarization), thus aborting any non-halting simulated
computation.

We denote by Π′′M,f the family of P systems {Π ′′M,f,x : x ∈ {0, 1}?}.

From this definition, and lemmata 1 and 2, we can prove the following result.

Lemma 3. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible; let M be a single-tape Turing machine (which does not
necessarily halt on every input). Then the family of P systems Π′′M,f is semi-
uniform, in particular constructible in O(f(n)) time, and

L(Π′′M,f) = {x ∈ {0, 1}? : M rejects x in f(|x|) space}.

We are now finally able to prove that L(f) can be recognised by a family of
P systems in O(f(n)) space.

Theorem 3. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible. Then L(f) can be decided by a semi-uniform family of
P systems ΠL(f) using only communication rules, operating in space O(f(n)) and
constructible in time O(f(n)).

Proof. We only need to prove that the mapping 〈M〉, x 7→ Π ′′M,x,f (i.e., we are
given both M and its input, and not only x) can be computed in O(f(n)) time.
The only feature of Π ′′M,x,f which depends on M (in contrast with other features
depending on x) is the set of communication rules. The number of rules is linear
with respect to the length of the encoding of M (due to the rules in (5)–(10)
and (17)). Assuming a “reasonable” encoding of M , all the communication rules
can be constructed in linear time, hence O(f(n)) time.

The family ΠL(f) of P systems is then constructed in O(f(n)) time by the
following Turing machine (here described informally):

If the input x is not of the form 〈M〉10?, then construct a P system which
rejects immediately. Otherwise, construct Π ′′M,x,f .

The P systems constructed by this Turing machine work in O(f(n)) space, and
the thesis follows.

504 A. Valsecchi et al.

In [17] a simulation algorithm for P systems with active membranes is de-
scribed. Although the precise space requirements are not detailed (only an asymp-
totic upper bound is given), by looking at the description of the algorithm one
can observe that, essentially, in order to simulate a P system Π we need to store
its current configuration, step by step (some auxiliary space is needed; however,
it does not exceed the space required by the configuration). Notice that a Turing
machine storing the configuration of Π does not have the same space requirements
as Π itself: indeed, a membrane structure of degree n may require up to n log n
space, since the labels of the membranes (which do not contribute to the space
required by Π) need to be stored in order to correctly apply the rules (especially
non-elementary division rules); all the labels may be different in the worst case.
Keeping in mind this detail, we can prove the following result.

Theorem 4. Let f : N→ N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed k,
be time-constructible. Then no family Π of P systems with active membranes, con-
structible in o(f(n)) time and operating in o(f(n)/ log f(n)) space, decides L(f).

Proof. Suppose otherwise. Let M be the Turing machine constructing Π and con-
sider a Turing machine M ′ implementing the following algorithm:

On input x, simulate M on x thus obtaining a description of a P system
Πx deciding whether x ∈ L(f). Then simulate Πx and return the same
result.

Then L(M ′) = L(Π) = L(f), and M ′ has the following space requirements:

o

(construction︷︸︸︷
f(n) +

simulation︷ ︸︸ ︷
f(n)

log f(n)
log

f(n)
log f(n)

)
= o(f(n))

This means that M ′ decides L(f) in o(f(n)) space, thus contradicting the space
hierarchy theorem.

Notice that there is no restriction on the kind of rules the family Π can use.
By combining theorems 3 and 4 we obtain:

Theorem 5. Let f : N → N, with f(n) = Ω(n) and f(n) = O(nk) for some fixed
k, be time-constructible. Then there exists a language L which can be decided by
a semi-uniform family of P systems with active membranes (and using only com-
munication rules) that can be built in O(f(n)) time and works in O(f(n)) space.
On the other hand, L cannot be decided by any family of P systems constructible
in o(f(n)) time and working in o(f(n)/ log f(n)) space.

5 Conclusions

In this paper we showed that a deterministic single-tape Turing machine, which
operates in polynomial space with respect to the input length, can be efficiently

A Simulation of Polynomial-Space Turing Machines by P Systems 505

simulated (both in terms of time and space) by a semi-uniform family of P systems
with active membranes and three polarizations. The proposed simulation contains,
in our opinion, a very interesting construction which has never been considered
before (to the best of our knowledge), and which is exploited to obtain the result:
the contents of the cells of the simulated Turing machine are stored in the po-
larization of the membranes. This allowed us to use only communication rules to
compute the result.

Basing upon the above simulation, we proved that a result similar to the space
hierarchy theorem can be obtained for P systems with active membranes: the larger
the amount of space we can use during the computations, the harder the problems
we are able to solve.

Several open problems and research directions still remain to be investigated.
First of all, the result related to the space (pseudo)-hierarchy for P systems con-
tains a logarithmic factor, which arises from the simulation we proposed. Can we
avoid such a factor, thus obtaining a theorem which exactly corresponds to the
space hierarchy theorem related to Turing machines?

Following this direction, we could also consider different classes of P systems
with active membranes (e.g., using different parallel semantics), and check whether
the space (pseudo)-hierarchy theorem still holds for such classes.

As for the simulation of the single-tape deterministic Turing machine we pre-
sented in section 3, we conjecture that it can be extended to consider nondetermin-
istic Turing machines, as well as multi-tape Turing machines, to obtain efficient
simulations both in terms of time and space also in these cases. It would also be
interesting to consider if such an efficient simulation can be performed for other
different computational models.

References

1. A. Alhazov, C. Mart́ın-Vide, L. Pan: Solving a PSPACE-complete problem by rec-
ognizing P systems with restricted active membranes. Fundamenta Informaticae,
58(2):67–77, 2003.

2. A. Alhazov, R. Freund: On efficiency of P systems with active membranes and two
polarizations. In: G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, G. Rozenberg, A. Salo-
maa, eds., Membrane Computing, Fifth International Workshop, WMC 2004, LNCS
3365, Springer-Verlag, Berlin, 2005, pp. 81–94.

3. J. L. Balcázar, J. Dı́az, J. Gabarró: Structural complexity I (second edition), Springer,
1995.

4. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero: P systems with active membranes, without polarizations and without dis-
solution: a characterization of P. In: C. Calude, M. J. Dinneen, G. Păun, M. J. Pérez-
Jiménez, G. Rozenberg, eds., Unconventional Computation, 4th International Con-
ference, UC 2005, Sevilla, Spain, LNCS 3699, Springer-Verlag, 2005, pp. 105–116.

5. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero: On the power of dissolution in P systems with active membranes. In:
R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds., Membrane Computing, Sixth

506 A. Valsecchi et al.

International Workshop, WMC 2005, LNCS 3850, Springer-Verlag, Berlin, 2006,
pp. 224–240.

6. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, F. J. Romero-
Campero, A. Romero-Jiménez: Characterizing tractability by cell-like membrane
systems. In: K. G. Subramanian, K. Rangarajan, M. Mukund, eds., Formal models,
languages and applications, Series in Machine Perception and Artificial Intelligence,
Vol. 66, World Scientific, 2006, pp. 137–154.

7. O. H. Ibarra: On the computational complexity of membrane systems, Theoretical
Computer Science, 320:89–104, 2004.

8. K. Kobayashi: On proving time constructibility of functions. Theoretical Computer
Science, 35:215–225, 1985.

9. S. N. Krishna, R. Rama: A variant of P systems with active membranes: solving
NP-complete problems. Romanian Journal of Information Science and Technology,
2(4):357–367, 1999.

10. A. Obtulowicz: Deterministic P systems for solving sat problem. Romanian Journal
of Information Science and Technology, 4(1–2):551–558, 2001.

11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

12. Gh. Păun: P Systems with active membranes: attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

13. Gh. Păun: Membrane computing. An introduction. Springer-Verlag, Berlin, 2002.
14. M. J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: The P versus NP

problem through cellular computing with membranes. In: N. Jonoska, Gh. Păun,
G. Rozenberg, eds., Aspects of Molecular Computing, LNCS 2950, Springer-Verlag,
Berlin, 2004, pp. 338–352.

15. M. J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In: E. Csuhaj-Varjú, C. Kintala,
D. Wotschke, G. Vaszil, eds., Proceedings of the Fifth Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automation Research
Institute of the Hungarian Academy of Sciences, Budapest, 2003, pp. 284–294.

16. A. E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complex-
ity measure for P systems, International Journal of Computers, Communications &
Control, 4(3):301–310, 2009.

17. A. E. Porreca, G. Mauri, C. Zandron: Complexity classes for membrane systems.
RAIRO Theoretical Informatics and Applications, 40(2):141–162, 2006.

18. M. Sipser: Introduction to the theory of computation (second edition), Course Tech-
nology, 2005.

19. P. Sośık: The computational power of cell division. Natural Computing, 2(3):287–298,
2003.

20. C. Zandron, C. Ferretti, G. Mauri: Solving NP-complete problems using P systems
with active membranes. In: I. Antoniou, C. S. Calude, M. J. Dinneen, eds., Uncon-
ventional Models of Computation, Springer-Verlag, Berlin, 2000, pp. 289–301.

21. C. Zandron, A. Leporati, C. Ferretti, G. Mauri, M. J. Pérez-Jiménez: On the compu-
tational efficiency of polarizationless recognizer P systems with strong division and
dissolution. Fundamenta Informaticae, 87(1):79–91, 2008.

22. The P systems Web page: http://ppage.psystems.eu

