
On the Power of Computing with Proteins on
Membranes

Petr Sośık1,2, Andrei Păun1,3,4, Alfonso Rodŕıguez-Patón1, and David Pérez1

1 Departamento de Inteligencia Artificial, Facultad de Informática
Universidad Politécnica de Madrid, Campus de Montegancedo s/n
Boadilla del Monte, 28660 Madrid, Spain
{psosik,apaun,arpaton,dperez}@fi.upm.es

2 Institute of Computer Science, Silesian University, 74601 Opava, Czech Republic
3 Department of Computer Science/IfM, Louisiana Tech University, P.O. Box 10348,

Ruston, LA 71272, USA
4 Bioinformatics Department, National Institute of Research and Development for

Biological Sciences, Splaiul Independenţei, Nr. 96, Sector 6, Bucharest, Romania

Summary. P systems with proteins on membranes are inspired closely by switching
protein channels. This model of membrane computing using membrane division has been
previously shown to solve an NP-complete problem in polynomial time. In this paper
we characterize the class of problems solvable by these P systems in polynomial time
and we show that it equals PSPACE. Therefore, these P systems are computationally
equivalent (up to a polynomial time reduction) to the alternating Turing machine or the
PRAM computer. The proof technique we employ reveals also some interesting trade-offs
between certain P system properties, as antiport rules, membrane labeling by polarization
or the presence of proteins.

1 Introduction

We continue the work on P systems with proteins on membranes, a model com-
bining membrane systems and brane calculi as introduced in [7]. We consider a
rather restrictive case, where the “main” information to process is encoded in the
multisets from the regions of a P system, but these objects evolve under the control
of a bounded number of proteins placed on membranes. Also, the rules we use are
very restrictive: move objects across membranes, under the control of membrane
proteins, changing or not the objects and/or the proteins during these operations.
In some sense, we have an extension of symport/antiport rules [5], with the men-
tioning that we always use minimal rules, dealing with only one protein, one object
inside the region and/or one object outside of it.

The motivation came from the observation by several authors recently that the
maximal parallelism way of processing different species of molecules in the mem-
brane structure is not very close to reality, thus we are considering a model that

On the Power of Computing with Proteins on Membranes 477

is limiting the parallelism through the modeling of the trans-membrane proteins
(protein channels) observed in nature. A second motivation comes from the brane
calculi in which many rules act at the level of the membrane (unlike rules which
act within the region enclosed by the membrane). In brane calculi introduced in
[3], one works only with objects – called proteins – placed on membranes, while the
evolution is based on membrane handling operations, such as exocytosis, phago-
cytosis, etc. In the membrane computing area we have rules associated with each
region defined by a membrane, and in the recent years the rules in membrane
computing have been considered mainly to work on symbol objects rather than
other structures such as strings. The extension considered in [7] and in [8] was to
have both types of rules (both at the level of the region delimited by membranes
and also at the level of membrane controlled by a protein). The reason for con-
sidering both extensions was that in biology, many reactions taking place in the
compartments of living cells are controlled/catalysed by the proteins embedded
in the membranes bilayer. For instance, it is estimated that in the animal cells,
the proteins constitute about 50% of the mass of the membranes, the rest being
lipids and small amounts of carbohydrates. There are several types of such pro-
teins embedded in the membrane of the cell; one simple classification places these
proteins into two classes, that of integral proteins (these molecules can “work” in
both inside the membrane as well as also in the region outside the membrane),
and that of peripheral proteins (macromolecules that can only work in one region
of the cell) – see [1].

In this paper we show that P systems with proteins on membranes can solve
in polynomial time exactly the class of problems PSPACE. Mathematically, this
property can be expressed as

M -PTIME = M -NPTIME = PSPACE, (1)

where M -(N)PTIME is the class of problems solved in polynomial time by a (non-)
deterministic machine M. (In our case, the machine M will be a P system with
proteins on membranes.) This relation is also known as the Parallel Computation
Thesis [12]. Computational devices with this property form the so-called second
machine class. Another members of this class are the alternating Turing machine,
SIMDAG (also known as SIMD PRAM) and other standard parallel computer
models [12].

The rest of the paper is organized as follows: after introducing basic concepts
used throughout the paper in Section 2, we show in Section 3 that the P systems
with proteins on membranes can solve the problem QSAT in linear time. Then
in Section 4 we show that such a P system can be simulated with a conventional
computer (and hence also with Turing machine) in a polynomial space. Section 5
concludes the paper and mentions also some open problems.

478 P. Sosik et al.

2 Definitions

We will start by giving some preliminary notations and definitions which are stan-
dard in the area of membrane systems. The reader is referred to [4, 9] for an
introduction and overview of membrane systems, and to [13] for the most recent
information. The membranes delimit regions precisely identified by the membranes.
In these regions we place objects — elements of the set O. Several copies of the
same object can be present in a region, so we work with multisets of objects. For
a multiset M we denote by |M |a the multiplicity of objects a in M. A multiset
M with the underlying set O can be represented by a string x ∈ O∗ (by O∗ we
denote the free monoid generated by O with respect to the concatenation and the
identity λ) such that the number of occurrences of a ∈ O in x represents the value
|M |a.

In the P systems which we consider below, we use two types of objects, proteins
and usual objects; the former are placed on the membranes, the latter are placed in
the regions delimited by membranes. The fact that a protein p is on a membrane
(with label) i is written in the form [

i
p|]

i
. Both the regions of a membrane

structure and the membranes can contain multisets of objects and of proteins,
respectively.

We consider the types of rules introduced in [7]. In all of these rules, a, b, c, d
are objects, p is a protein, and i is a label (“res” stands for “restricted”):

Type Rule Effect
1res [

i
p|a]

i
→ [

i
p|b]

i
a[

i
p|]

i
→ b[

i
p|]

i
modify an object, but not move

2res [
i
p|a]

i
→ a[

i
p|]

i
a[

i
p|]

i
→ [

i
p|a]

i
move an object, but not modify

3res [ip|a] i → b[ip|] i
a[ip|] i → [ip|b] i modify and move one object

4res a[ip|b] i → b[ip|a] i interchange two objects
5res a[ip|b] i → c[ip|d] i interchange and modify two objects

In all cases above, the protein is not changed, it plays the role of a catalyst, just
assisting the evolution of objects. A generalization is to allow rules of the forms
below (now, “cp” means “change protein”):

Type Rule Effect (besides changing also the protein)
1cp [ip|a] i → [ip

′|b] i
a[ip|] i → b[ip

′|] i modify an object, but not move
2cp [ip|a] i → a[ip

′|] i
a[

i
p|]

i
→ [

i
p′|a]

i
move an object, but not modify

3cp [
i
p|a]

i
→ b[

i
p′|]

i
a[

i
p|]

i
→ [

i
p′|b]

i
modify and move one object

4cp a[
i
p|b]

i
→ b[

i
p′|a]

i
interchange two objects

5cp a[
i
p|b]

i
→ c[

i
p′|d]

i
interchange and modify two objects

On the Power of Computing with Proteins on Membranes 479

where p, p′ are two proteins (possibly equal, and then we have rules of type res).
An intermediate case can be that of changing proteins, but in a restricted

manner, by allowing at most two states for each protein, p, p̄, and the rules either
as in the first table (without changing the protein), or changing from p to p̄ and
back (like in the case of bistable catalysts). Rules with such flip-flop proteins are
denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we allow both rules which
do not change the protein and rules which switch from p to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in their complementary state (from p into p̄ and vice versa).
Such rules are said to be of pure ff or cp type, and we indicate the use of pure ff
or cp rules by writing ffp and cpp, respectively.

To divide a membrane, we use the following type of rule, where p, p′, p′′ are
proteins (possible equal): [ip|] i → [ip

′|] i[ip
′′|] i

The membrane i is assumed not to have any polarization and it can be non-
elementary. The rule doesn’t change the membrane label i and instead of one
membrane, at next step, will have two membranes with the same label i and
the same contents replicated from the original membrane: objects and/or other
membranes (although the rule specifies only the proteins involved).

Definition 1. A P system with proteins on membranes and membrane division
(in the sequel simply P system, if not stated otherwise) is a system of the form
Π = (O, P, µ, w1/z1, . . . , wm/zm, E,R1, . . . , Rm, io), where

m is the degree of the system (the number of membranes),
O is the set of objects, P is the set of proteins (with O ∩ P = ∅),
µ is the membrane structure,
w1, . . . , wm are the (strings representing the) multisets of objects present in the m

regions of the membrane structure µ,
z1, . . . , zm are the multisets of proteins present on the m membranes of µ,
E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each),
R1, . . . , Rm are finite sets of rules associated with the m membranes of µ, and
io is the label of the output membrane.

The rules are used in the non-deterministic maximally parallel way: in each
step, a maximal multiset of rules is used, that is, no rule is applicable to the objects
and the proteins which remain unused by the chosen multiset. At each step we have
the condition that each object and each protein can be involved in the application
of at most one rule, but the membranes are not considered as involved in the rule
applications except the division rules, hence the same membrane can appear in
any number of rules of types 1–5 at the same time. By halting computation we
understand a sequence of configurations that ends with a halting configuration
(there is no rule that can be applied considering the objects and proteins present
at that moment in the system). With a halting computation we associate a result,
in the form of the multiplicity of objects present in region io at the moment when
the system halts. We denote by N(Π) the set of numbers computed in this way

480 P. Sosik et al.

by a given system Π. We denote, in the usual way, by NOPm(pror;list-of-types-of-
rules) the family of sets of numbers N(Π) generated by systems Π with at most m
membranes, using rules as specified in the list-of-types-of-rules, and with at most
r proteins present on a membrane. When parameters m or r are not bounded, we
use ∗ as a subscript.

Example: Consider the P system

Π = (O, {p, q}, [0[1]1]0, ∅/∅, {a1}/{p}, ∅, ∅, R1, 0), where

O = {a1, . . . , an}
R1 = {[1p|]1 → [1q|]1[1q|]1, [1q|an]1 → an[1q|]1}

∪ {[1q|ai]1 → [1p|ai+1]1 | 1 ≤ i ≤ n− 1}.

Fig. 1. An example of a P system with proteins on membranes.

In its initial configuration the system contains two membranes and one object.
In every odd step all the membranes labelled 1 are divided and their membrane
proteins are changed from p to q. In every even step the proteins change back
from q to p, and objects ai in the membranes evolve to ai+1, for 1 ≤ i ≤ n − 1.
Therefore, every two steps the number of membranes labelled 1 is doubled. In 2n-
th step the objects an are expelled to the membrane labelled 0, which is the output
membrane, and the systems halts. The computation of the system is illustrated in
Fig. 1. Therefore, we can write that N(Π) = {2n |n ∈ N}.

Several computational universality results are known to hold for P systems
with proteins on membranes [8, 7], from which we recall only two:

NOP1(pro2; 2cpp) = NOP1(pro∗; 3ffp) = NRE ,

where NRE is the class of all recursively enumerable sets of non-negative integers.
In this paper, however, we focus on P systems working in accepting mode, described
in the next section, which can solve decision problems.

On the Power of Computing with Proteins on Membranes 481

2.1 Families of membrane systems

Most of the membrane computing models are universal, i.e., they allow for a con-
struction of a universal machine capable of solving any Turing-computable prob-
lem. However, when we try to employ the massive parallelism of P systems for
effective solutions to intractable problems, the concept of one universal P systems
solving all the instances of the problem is rather restrictive. The effective use of
parallelism can be restricted by the particular structure of such a P system. For
instance, the depth of the structure is fixed during the computation in most P
system models. But for an effective parallel solution to various instances, various
depths of the membrane structure might be needed.

Therefore, to attack intractable problems, we frequently use families of P sys-
tems instead of a single P system. Generally, given a computational problem X,
each machine Mn of the family M = (M0,M1, . . .) is able to solve the instances
of X of size n. We denote by |xi| the size of an instance xi of a problem X. In the
usual representation xi, i = 1, 2, . . . , are words over a fixed finite alphabet and |xi|
is the length of xi. The following definition is due to [6].

Definition 2. Let D be a class of P systems and let f : N −→ N be a total function.
The class of problems solved by uniform families of P systems of type D in time
f, denoted by MCD(f), contains all problems X such that:

1. there exists a uniform family of P systems ΠX = (ΠX(1);ΠX(2); . . .) of type
D : each ΠX(n) can be constructed by a deterministic Turing machine with
input n in a time polynomial to n.

2. Each ΠX(n) is sound: ΠX(n) starting with a (properly encoded) input x ∈ X
of size n expels out a distinguished object yes if and only if the answer to x is
“yes”.

3. Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result: “yes” or “no”.

4. ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Alternatively we can consider semi-uniform families of P systems ΠX =
(ΠX(x1); ΠX(x2); . . .) whose members ΠX(xn) can be constructed by a deter-
ministic Turing machine with input xn in a polynomial time w.r.t. |xn|. In this
case, for each instance of X we have a special P system which therefore does not
need an input. The resulting class of problems is denoted by MCS

D(f). Obviously,
MCD(f) ⊆ MCS

D(f) for a given class D and a constructible function f.
Particularly, we denote by

PMCD =
⋃

k∈N
MCD(O(nk)), PMCS

D =
⋃

k∈N
MCS

D(O(nk)),

the classes of problems solvable by uniform (semi-uniform, respectively) families
of P systems in polynomial time. Let us denote by MP the class of P systems
with proteins on membranes. The following relation follows by [8] for P systems
with proteins on membranes:

482 P. Sosik et al.

NP ⊆ PMCS
MP . (2)

3 Solving QSAT in linear time

In this section we show that P systems with proteins on membranes can solve in
linear time the PSPACE-complete problem QSAT. More precisely, there exists
a semi-uniform family of these P systems such that for each instance of QSAT,
a proper P system solving that instance in a linear time can be constructed in a
polynomial time w.r.t. the size of the instance. We also observe interesting trade-off
between the use of certain elementary P systems operations.

The problem QSAT (satisfiability of quantified propositional formulas) is a
standard PSPACE-complete problem. It asks whether or not a given quantified
boolean formula in the conjunctive normal form assumes the value true. A formula
as above is of the form

γ = Q1x1Q2x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm), (3)

where each Qi, 1 ≤ i ≤ n, is either ∀ or ∃, and each Cj , 1 ≤ j ≤ m, is a clause
of the form of a disjunction Cj = y1 ∨ y2 ∨ . . . ∨ yr, with each yk being either a
propositional variable, xs, or its negation, ¬xs. For example, let us consider the
propositional formula

β = Q1x1Q2x2[(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)]

It is easy to see that it is true when Q1 = ∀ and Q2 = ∃, but it is false when
Q1 = ∃ and Q2 = ∀.

The proof given below is based on the technique already employed in [10]
which deals with P systems with active membranes. However, since the function
of membrane proteins is different, the proof was substantially adapted. Notice,
e.g., that in the P systems with active membranes, the division operation is driven
by both membrane contents and polarization, while here it is controlled solely by
membrane proteins. As a result, in [10] the membrane structure divides in the
bottom-up manner, here the reverse top-down order must be employed.

Theorem 1. PSPACE ⊆ PMCS
MP .

Proof. Consider a propositional formula γ of the form (3) with

Ci = yi,1 ∨ . . . ∨ yi,pi ,

for some pi ≥ 1, and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.
We construct the P system

Π = (O,P, µ, w0/z0, w1/z1, . . . , wn+2/zn+2, ∅, R0, R1, . . . , Rn+2, 0)

with the components

On the Power of Computing with Proteins on Membranes 483

O = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri, ri | 1 ≤ i ≤ m} ∪ {t, s},
P = {p0, p+, p−, px},
µ = [

0
[
1
. . . [

n
[
n+1

]
n+1

[
n+2

]
n+2

]
n

. . .]
1
]
0
,

w0 = wn+2 = λ,

wi = ai, for each i = 1, 2, . . . , n,

wn+1 = r1r2 . . . rm,

z0 = p0, z1 = px,

zi = p0, for all i = 2, . . . , n + 2.

The rules contained in the sets Ri are defined below:

In Ri, 1 ≤ i ≤ n :

[
i
px|]

i
→ [

i
p+|]

i
[
i
p−|]

i
, [

i
p+|ai] i

→ [
i
p+|ti] i

, [
i
p−|ai] i

→ [
i
p−|fi] i

(4)

In Ri, 1 ≤ i ≤ n− 1 :

ti[i+1
p0|]

i+1
→ [

i+1
px|ti] i+1

, fi[i+1
p0|]

i+1
→ [

i+1
px|fi] i+1

(5)

In Ri, 3 ≤ i ≤ n :

tj [i
p0|]

i
→ [

i
p0|tj] i

, fj [i
p0|]

i
→ [

i
p0|fj] i

for all j, 1 ≤ j ≤ i− 2 (6)

In Rn+1 :

ti[n+1
p0|rj]n+1

→ rj [n+1
p0|ti]n+1

for all i, j, 1 ≤ i ≤ n, ≤ j ≤ m such that the clause Cj contains xi
(7)

In Rn+1 :

fi[n+1
p0|rj]n+1

→ rj [n+1
p0|fi]n+1

for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that the clause Cj contains ¬xi
(8)

In Rn+1 :

[
n+1

p0|ti]n+1
→ ti[n+1

p0|]
n+1

, [
n+1

p0|fi]n+1
→ fi[n+1

p0|]
n+1

for all i, 1 ≤ i ≤ n
(9)

In Rn+2 :
r1[n+2

p0|]
n+2

→ [
n+2

p0|r1]n+2
(10)

In Rn+2 :

ri+1[n+2p0|ri]n+2 → ri[n+2p0|ri+1]n+2 for all i, 1 ≤ i ≤ n− 1 (11)

In Rn+2 :
[
n+2

p0|rm]
n+2

→ t[
n+2

p0|]
n+2

(12)

484 P. Sosik et al.

0

1

2

...

n−1

n

s

s

s

s

s

...

p0

p0

px

p0

p0

s

s

s

s

s

s

s

s

s

p0

p+

p0

p−

p0

p0

p0

p0

p0

⇒
...

s

s s

s s s s

s

s sp+ p−

...
...

...

p+

p+

p−

p0

p+ p−

p−s

s sp+ p−

p+ p−

⇒∗

. . .

Fig. 2. Expansion of the initial membrane structure into a binary tree (only the first
n + 1 levels shown). The symbols at nodes indicate the proteins present on membranes.

In Ri, 1 ≤ i ≤ n such that Qi = ∀ :

[
i
p−|t] i

→ s[
i
p−|]

i
, s[

i
p+|t] i

→ t[
i
p+|s] i

(13)

In Ri, 1 ≤ i ≤ n such that Qi = ∃ :

[ip−|t] i → t[ip−|] i, [ip+|t] i → t[ip+|] i (14)

It is easy to check that the size of the P system Π (the number of objects,
membranes, rules, the size of the initial configuration etc.) is O(nm), n being the
number of variables and m the number of clauses. Also the system can obviously
be constructed in a polynomial (linear) time.

Initial phase of computation of the system Π is illustrated in Fig. 2. In the
first step the non-elementary membrane at level 1 is divided by the first rule in (4)
into two parts with different membrane proteins. In the next step, symbols f1 and
t1 are produced in the two resulting membranes, see the next rules in (4). In the
third step, these symbols are moved one level lower, into the membranes labeled 2,
see (5). The membrane protein on these membranes is changed to px. This cycle is
repeated n times and waves corresponding to the division by rules (4) descend the
membrane tree towards its leaves. Simultaneously, the produced symbols ti and fi

move towards the leaves of the tree thanks to the rules (6). This phase is finished
after 3n− 1 steps when the membrane structure forms a balanced binary tree, see
Fig. 2. Each of its 2n nodes at level n contains a set of objects {x1, x2, . . . , xn},
where xi ∈ {fi, ti}, 1 ≤ i ≤ n, such that all possible n-tuples are present.

Second phase consists of checking whether the formula without quantifiers is
satisfied by the n-tuples of logical values (x1, x2, . . . , xn). The checking is done for
all the n-tuples in parallel. It starts by moving of those objects ri, 1 ≤ i ≤ m,
corresponding to the clauses Ci which are satisfied by a particular n-tuple, from

On the Power of Computing with Proteins on Membranes 485

the membrane [
n+1

]
n+1

to [
n
]
n
. Rules (7)–(9) are responsible for this process.

Whenever objects r1, . . . , rm appear in membrane [n]n, another process starts
whose purpose is to check whether all ri, 1 ≤ i ≤ m, are present. This is done
by their movements to-and-from membrane [

n+2
]
n+2

driven by rules (10)–(12).
Eventually, object t is released into the membrane [

n
]
n
.

The application of rules of the second phase can partially overlap with the
initial phase: whenever first objects ti or fi arrive into the membrane [

n
]
n
, the

second phase starts, while remaining ti’s and fi’s can arrive later. However, the
application of the rules in the second phase described above is not altered.

Finally, third phase of computation checks whether the whole formula with
quantifiers is satisfied. Objects t move upwards the membrane structure tree,
checking at each level one quantifier ∀ or ∃. Observe that rules (13)–(14) allow
for existence of more than one symbol t per membrane (in the case of ∃) which,
however, do not alter the computation. Eventually, object t appears in membrane
0, signaling that the formula is satisfied, and the system halts.

The whole computation is performed by time linearly limited from above by
the values of n and m. More specifically, the initial phase is finished in 3n − 1
steps, the second phase takes up to 3m steps and the last phase up to 2n steps.
In total, the computation takes O(n + m) steps.

Observe that rules (5) are the only rules of type 2cp. All the rest are restricted
(or division) rules. Furthermore, these 2cp rules are used only to control the mem-
brane division process. The membrane division rules can be controlled solely by the
presence of a specific membrane protein. Assume that we introduced division rules
similar as in P systems with active membranes, i.e., of type [

i
p|a]

i
→ [

i
p|b]

i
[
i
p|c]

i
,

controlled by the presence of certain object in a membrane. Then the rules (5)
would not be needed and the whole P systems could use only restricted and divi-
sion rules.

Hence, it turns out that the only necessary purpose of membrane proteins is
the control of membrane division forced by the specific type of division rules. If
we compare our proof with that in [10], we observe that the role played in [10] by
the membrane polarization (which is in some sense generalized in the concept of
membrane proteins) is in our proof frequently replaced by the use of antiport rules
of types (4) and (5). Therefore, there is a trade-off between membrane labeling
(polarization, proteins) and antiport rules.

This suggests that from the point of view of efficiency, there is no substantial
difference between restricted and “change protein” rules. The paper [8] shows that
the universality can be reached only with the restricted rules, too. However, there
is another trade off between the number of membranes and the use of “change
protein” rules in this case.

486 P. Sosik et al.

4 Simulation of a P system with proteins on membranes in
polynomial space

In this section we demonstrate an algorithm for simulation of P systems with pro-
teins on membranes which proves the relation reverse to that given in Theorem 1.
Notice that the simulated P system is confluent (hence possibly non-deterministic),
therefore the conditions of the Parallel Computation Thesis are satisfied. However,
our simulation itself is deterministic – at each step we simulate only one chosen
multiset of applicable rules. Hence we simulate one possible sequence of config-
urations of the P system. The algorithm of selection of the rules to be applied
corresponds to introducing a weak priority between rules: (i) bottom-up priority
between rules associated to different membranes, (ii) priority between rules in the
same membrane, given by the order in which they are listed, including the priority
between types 1–6, in this order. The confluency condition ensures that such a
simulation leads always to a correct result.

We employ the technique of reverse-time simulation which is known from the
general complexity theory when dealing with the second class machines. Instead
of simulating a computation of a P system from its initial configuration onwards
(which could require an exponential space for storing configurations), we create
the recursive function State which returns the state of any membrane h after a
given number of steps. The recursive calls evaluate contents of the membranes
interacting with h in a reverse time order (towards the initial configuration). The
key observation is that the state of the membrane is determined by its own state,
states of the embedded membranes and its parent membrane at the previous com-
putational step. In such a manner we do not need to store a state of any mem-
brane, but instead we calculate it recursively whenever it is needed. The depth of
the recursive calls is proportional to the number of steps of the simulated P sys-
tem. Furthermore, at each level of the call stack we must store a state of a single
membrane which can be done in a polynomial space. In this way a result of any
T (n)-time-bounded computation of a confluent accepting P system with proteins
on membranes can be found in a space polynomial to T (n).

Theorem 2. PMCS
MP ⊆ PSPACE.

The proof of the above theorem is not included for its extensive length. The in-
terested reader can consult the technical report downloadable at the web address
http://ui.fpf.slu.cz/~sos10um/TR 2009-01.pdf.

If we put together Theorems 2 and 1, we obtain the parallel computation thesis
for semi-uniform families of confluent P systems with proteins on membranes:

Corollary 1. PMCS
MP = PSPACE.

5 Discussion

We have shown that semi-uniform families of P systems with proteins on mem-
branes can solve in polynomial time exactly the class of problems PSPACE.

On the Power of Computing with Proteins on Membranes 487

Therefore, they are computationally equivalent to other parallel computing model
as PRAM or alternating Turing machine. We conjecture that the same result holds
with regards to uniform families of P systems but no formal proof is known yet.
Possibly a construction similar to that in [2] could be used to solve this problem.
Also the characterization of power of non-confluent P systems with proteins mem-
branes remains open. The presented proof cannot be simply adapted to this case
by using a non-deterministic Turing machine. The reason is that we cannot store
non-deterministic choices of such a P system along a chosen trace of computation,
as this would require an exponential space. Therefore, we do not know what is the
power of non-confluent P systems with proteins on membranes.

A similar result has been previously shown in [11] for the case of P systems with
active membranes. Therefore, taking into the account another results of this kind
related to other types of natural or molecular computing, one could suggest that
the class PSPACE represents natural characterization of deterministic natural
computations. It is important to note that certain operations used in P systems
with proteins on membranes, as the division of non-elementary membranes, seem
to have in practice very limited scalability, on one hand. On the other hand,
certain properties of biocomputing models, as the massive parallelism, minimal
energy consumption, microscopic dimensions of computing elements etc. makes it
very attractive to seek for ways how to harness the micro-biological machinery for
algorithmic tasks.

Among further problems we mention restricted variants of the P systems with
proteins on membranes. How would the computational power of (semi)uniform
families of such systems change if only certain types of rules were allowed?

Acknowledgements. Research was partially supported by the National Science
Foundation Grant CCF-0523572, INBRE Program of the NCRR (a division of
NIH), support from CNCSIS grant RP-13, support from CNMP grant 11-56 /2007,
support from the Ministerio de Ciencia e Innovación (MICINN), Spain, under
project TIN2006-15595 and the program I3, and by the Comunidad de Madrid
(grant No. CCG06-UPM/TIC-0386 to the LIA research group).

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, New York, 4th edition, 2002.

2. A. Alhazov, C. Mart́ın-Vide, and L. Pan. Solving a PSPACE-complete problem by P
systems with restricted active membranes. Fundamenta Informaticae, 58(2):67–77,
2003.

3. L. Cardelli. Brane calculi – interactions of biological membranes. In Computational
Methods in Systems Biology, LNCS 3082, 257–280, Springer, Berlin, 2005.

4. P. Frisco. Computing with Cells. Advances in Membrane Computing. Oxford Uni-
versity Press, Oxford, 2009.

5. A. Paun and Gh. Paun. The power of communication: P systems with sym-
port/antiport. New Generation Comput., 20(3):295–306, 2002.

488 P. Sosik et al.

6. M.J. Pérez-Jiménez, A.R. Jiménez, and F. Sancho-Caparrini. Complexity classes in
models of cellular computing with membranes. Natural Computing, 2:265–285, 2003.

7. A. Păun and B. Popa. P systems with proteins on membranes. Fundamenta Infor-
maticae, 72(4):467–483, 2006.

8. A. Păun and B. Popa. P systems with proteins on membranes and membrane division.
In O.H. Ibarra and Z. Dang, editors, DLT 2006, LNCS 4036, 292–303, Springer,
Berlin, 2006.

9. G. Păun. Membrane Computing – An Introduction. Springer, Berlin, 2002.
10. P. Sośık. The computational power of cell division in P systems: Beating down

parallel computers? Natural Computing, 2(3):287–298, 2003.
11. P. Sośık and A. Rodŕıguez-Patón. Membrane computing and complexity theory: A

characterization of PSPACE. J. Comput. System Sci., 73(1):137–152, 2007.
12. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume A, pages 1–66. Elsevier, Amster-
dam, 1990.

13. The P systems web page. http://ppage.psystems.eu/.

