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Summary. The approaches to the following question: Do spiking neural P systems cf.
[9], [16] provide biologically plausible mathematical models of brain cognitive functions?
are discussed.

1 Introduction

The (hierarchical) clustering (scene segmentation in particular) and binding (fea-
ture integration) problem solution in cortical neural network together with cortical
subnetworks realizing Radial Basic Functions (briefly RBFs) represent among oth-
ers cognitive functioning of brain. Recently various network models of clustering,
binding problem solution, and realization of RBFs in cortical network have been
proposed, where spiking neural networks are the most biologically plausible mod-
els, see [15], [17], [1], [2], [11], [13], [14], and [10] for a review. The main common
feature of these models is Hebbian learning which provides their biological evi-
dence. On the other hand, a transformation of an idea of Hebbian learning from a
framework of spiking neural networks to a framework of spiking neural P systems
has been proposed in [7]. Thus one formulates the following question:

Do spiking neural P systems provide biologically plausible mathematical
models of brain cognitive functions?

We approach the question and an answer to it in Section 2 by a brief review
of state of art for spiking neural nets and spiking neural P systems, discussion of
conjectures, and setting open problems.
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2 State of art, conjectures and open problems

The papers [4], [8] contain promising applications of spiking neural P systems for
solving topic problems related to some cognitive brain functions. But biological
evidence of these applications seems problematic because Hebbian learning proce-
dures approach is not considered for them.

On the other hand the Hebbian learning modelled by spiking neural P systems
with only input neurons and one output neuron presented in [7] and solution
of XOR problem by spiking neural networks equipped with a Hebbian learning
procedure and with only three input neurons and one output neuron described
in [3] gives rise to the following conjecture:

Conjecture. There exists a learning problem, understood as in [7], whose output
is a spiking neural P system solving XOR problem.

If we compare precise timing of spikes approach for spiking neural networks
to the number of spikes approach for spiking neural P systems, then the latter
seems coarse and hence less biologically plausible than the spiking neural network
approach.

On the other hand the precise timing of spikes approach for spiking neural
networks is less biologically plausible than probabilistic spiking neural networks
because a relevant amount of noise is contained in the behaviour of neurons (cf. [6]).
Therefore it is worth to initiate a research of probabilistic spiking neural P systems.

The view that human mind is “massively modular” (cf. [5], [12]) argued by
massively parallel functioning of brain neural network modules gives rise to a
question of approaching these massive modularity and massive parallelism of mind
and brain by application of a concept of a network of communicating spiking neural
P systems equipped with Hebbian learning procedures, respectively. The spiking
neural P systems constituting that network could correspond to brain network
modules realizing simultaneously various cognitive functions, respectively.

On the other hand, since spiking neural P systems seem more coarse with
respect to an approach to time than spiking neural networks with precise timing
of spikes, like e.g. in [1], we propose the following conjecture.

Conjecture. A biologically plausible modularity of brain could be represented
(modelled) by the following hybrid constructs:

• a two-level construct of a spiking super-neural P system which is a spiking
neural P system whose neurons are superneurons, i.e. multi-layer spiking neural
networks with a precise timing of spikes like e.g. in [1],

• a three-level construct of a spiking sub-super-neural P system which is a spik-
ing super-neural P system as above, where the neurons of superneurons are
P systems approaching neurons as cells which produce and transport copies of
molecules between electrically charged membranes.
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