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Summary. A deterministic computing system is reversible if every configuration of the
system has just one previous configuration or it is an initial configuration. In this paper
it is proved that for every reversible register machine there exists a reversible P system
with symport/antiport rules such that the P system accepts the same set of integers
as the register machine accepts. The result shows that the family of sets accepted by
reversible P systems with symport/antiport rules is the family of recursively enumerable
sets of integers.

1 Introduction

E. Schrödinger has pointed out, in his famous essay [8], that living organisms
incorporate energy of low entropy, maintain systematic activity (including self-
reproduction, which is a kind of information processing), and emit energy of high
entropy. That is, life uses “negative entropy”, to keep its structure, which in-
evitably generates heat.

On the other hand, it has been also shown that a reversible information pro-
cessing system is physically possible [4]. Because such a system is reversible, com-
putation is performed without entropy generation, without information loss, or
equivalently, without heat generation. More specifically, an external force (e.g.,
mechanical, electrical, etc) proceeds a reversible computing system to the “for-
ward” direction. The force does some work on the system and hence consumes
some energy. The energy is stored in the reversible system and is restored from
the system to the source of the external force during the reverse computation.
Thus reversible computation is performed without energy dissipation or heat gen-
eration. This property, in turn, may help us to resolve the contemporary problem
of huge heat emission in a large data processing centre.

There are two researches on reversible P systems [1, 2, 5]. In [5], simulation
of the Fredkin gate is focused. Backward dynamics of a P system with object
rewriting rules are considered in [1] by introducing dual P systems. The notion of
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dual P systems with determinism leads reversibility. In [2], reversible P systems
with symport/antiport rules are considered. It is shown that such systems with
one membrane and with control of priorities or inhibitors are universal. In this
paper, we proceed studies on reversible P systems with symport/antiport rules and
without any control on rules. The family of reversible P systems with 4 membranes
is proved to be computationally universal. The result is shown by constructing
a reversible P system which simulates a reversible register machine. Reversible
register machines which are suitable for reversible P systems are explored in the
next section, although a general study of them are already done by K. Morita [6].

2 Reversible register machine

Because nondeterministic change cannot be reversible, we consider deterministic
systems only. First we introduce reversible register machine.

Let M = (n,B, l0, lh, R) be a deterministic register machine, where n is the
number of registers, B is the set of instruction labels, l0 is the start label, lh is
the halt label, and R is the set of instructions. An instruction is one of the forms
li : (ADD(r), lj) or li : (SUB(r), lj , lk). The former adds 1 to register r and then
executes the instruction labelled by lj . The latter subtract 1 from register r if
register r has a positive integer then executes the instruction labelled by lj ; or, if
register r is 0, executes the instruction labelled by lk. For every instruction label
but the halt label, there is exactly one instruction. There are no instructions which
are labelled by the halt label.

An n+1-tuple (l, ii, . . . , in) is said to be a configuration of M if l ∈ B and ij ∈ N
for every 1 ≤ j ≤ n where ij is the number which is stored in register rj and N is the
set of nonnegative integers. An instruction ι ∈ R maps a configuration (l, i1, . . . , in)
to a configuration (l′, i′1, . . . , i

′
n), denoted by ι((l, i1, . . . , in)) = (l′, i′1, . . . , i

′
n), if one

of the following three conditions holds:

1. ι = l : (ADD(rj), l′), i′j = ij + 1, and i′k = ik for k 6= j.
2. ι = l : (SUB(rj), l′, lk), ij > 0, i′j = ij − 1, and i′p = ip for p 6= j.
3. ι = l : (SUB(rj), lk, l′), ij = 0, and i′p = ip for every p.

For two configurations c and c′, if there is an instruction ι of M such that ι(c) = c′,
then c′ is said to be directly derived from c and is denoted by c `M c′. As usual,
the reflective and transitive closure of `M is denoted by `∗M . We write ` and `∗
instead of `M and `∗M if M is understood.

A configuration (l, i1, . . . , in) is called an initial (resp. halting) configuration
if l = l0 (resp. l = lh). A sequence of configurations c0, c1, . . . , ck where c0 is an
initial configuration is said to be a computation of M if for every i = 0, 1, . . . , k−1
ci ` ci+1. A computation is said to be successful if the last configuration ck is a
halting configuration.

Let M = (n,B, l0, lh, R) be a register machine. Let c0 = (l0, i, 0, . . . , 0) be
an initial configuration of M where i ∈ N. If there is a successful computation
c0, c1, . . . , ck, then the input i is accepted by M . The set
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N(M) = {i | i ∈ N is accepted by M}
is the set of integers which is accepted by M .

Definition 1 (reversible register machine). A deterministic register machine
M is reversible if every configuration of M which is reachable from an initial
configuration has just one previous configuration or the configuration is an initial
configuration.

In order to have a deep insight into the meaning of the notion of a reversible
register machine, let us consider a computation c0, c1, . . . , cn of a non-reversible
deterministic register machine M . Let us assume that configuration c in the com-
putation is not reversible, that is there are two configurations c′ and c′′ such that
c′ 6= c′′, c′ ` c, and c′′ ` c. If c′ appears earlier than c′′ in the sequence c0, c1, . . . , cn,
then c′′ appears after c, that is, c `∗ c′′. This means that the computation is cyclic
and hence cannot be successful. In other words, for every successful computation
c0, . . . , cn of a non-reversible deterministic register machine, every configuration c
has at most one configuration c′ such that c′ ` c. The “non-reversibility” emerges
in the situation that two different initial configurations c0 and c′0 derive the same
configuration c. By keeping the inputs, which are the non-zero values of registers
in the initial configuration, in all subsequent configurations, the situation may be
avoided, that is, a non-reversible register machine may be converted to a reversible
machine. But the next property must be took into account.

Property 1. Let M be a reversible register machine. Then M does not contain a
SUB instructions of the type li : (SUB(r), li, lk) which is executable from two
different initial configurations and register r has non-zero initial value in at least
one initial configuration.

Proof . The instruction li : (SUB(r), li, lk) clears register r, in other words, loses
information of the initial configuration. Reversible computation cannot contain
such an instruction. ¤

We note that an instruction ι = li : (SUB(r), li, lk) in a non-reversible register
machine can be removed by introducing a new register r′ with initially 0. That is,
the previous instruction of ι is modified to go directly to the instruction labelled
by lk and successive instructions of lk which operate on register r are modified to
operate on register r′.

A sequence of instructions ι1, ι2, . . . , ιp such that ι1 = li1 : (SUB(r), lj1 , lk1),
the next instruction label of ιp is li1 , and that ι1, ι2, . . . , ιp are executable in this
order may cause the same situation as Property 1, i.e., register r may be cleared.
In order to avoid losing information in register r, a new register r′ which contains
initially 0 and a new instruction ιn = ln : (ADD(r′), lj1) are introduced and ι1 is
modified to ι′1 = li1 : (SUB(r), ln, lk1). Then information in register r is copied to
register r′ and is kept for the reverse computation.

We also note that an ADD instruction which adds an initially 0 register is
treated specially. The reverse of an ADD instruction is a SUB instruction. If a
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reverse SUB instruction encounters 0 in the register, then it is the initial state and
there are no previous configurations, that is, the reverse computation should halt
at this point.

The next theorem follows from the definition of reversible register machines
and Property 1 and its notes. Under slightly different notations, the same theorem
is described in [6] with more detailed and sophisticated proof.

Theorem 1. The family of sets accepted by reversible register machines is NRE,
where NRE is the family of Turing computable sets of nonnegative integers.

Now let us consider reverse instructions of a register machine. First, it should
be noted that an instruction of a register machine is not reversible — a SUB
instruction has two possible successors. By associating informations of register
contents, it may be possible to make reverse transformation of configurations of a
register machine. We modify, however, instructions to fit reverse operations, which
corresponds to the transition functions of a reversible Turing machine [3].

Let G be the set of register names, let Op = {−, 0, +}, and let S = {0, 1, ∗}.
An instruction ι is an element in (B ×G× S)×Op × (G× S ×B) which has one
of the forms:

(li, r, ∗) + (r, 1, lj) (1)

(li, r, 0) 0 (r, 0, lk) (2)

(li, r, 1)− (r, ∗, lj) (3)

The left triplet shows the instruction label, register of the instruction, and the
content of the register, where 0 means that the register is 0, 1 means that the
register has a positive integer, and ∗ means that there may be both cases 0 and
positive. The middle symbol, +, 0, or −, is the operation of the instruction, in
which + means that the register is added by one, 0 represents that the register
is unchanged, and − represents that the register is subtracted by one. The right
triplet shows the register and its content after the operation and the label of the
next instruction. An instruction of the form (1) is an add instruction. Instructions
(2) and (3) form a subtract instruction. That is, an instruction of type (3) is
accompanied by an instruction of type (2) which has the same instruction label at
the first position in the left triplet. If register r is 0, then the instruction of type
(2) is executed. Otherwise, type (3) is executed. We note that a single instruction
of type (2) may be used as a goto instruction.

Reverse instructions are summarised by Table 1.

The next example shows a construction of a reverse machine from a reversible
register machine.

Example. Let us consider a function f(x, y) = x− y· which is defined by

x− y· =

{
x− y if x > y

0 if x ≤ y
.
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Table 1. Reverse instructions

forward reverse notes

(li, r, ∗) + (r, 1, lj) (lj , r, 1)− (r, ∗, li) If register r is initially 0, then instruction
(lj , r, 0) 0 (r, 0, l0) is added where l0 is the
halt label of the reverse machine.

(li, r, 0) 0 (r, 0, lk) (lk, r, 0) 0 (r, 0, li)

(li, r, 1)− (r, ∗, lj) (lj , r, ∗) + (r, 1, li)

Because f(x, y) is not logically reversible, we modify it to a function f ′ which maps
a triple of nonnegative integers (x, y, 0) to a triple (f(x, y), f(y, x), min(x, y)). The
register machine with 3 registers and instructions

(1, r2, 1)− (r2, ∗, 2)
(1, r2, 0) 0 (r2, 0, lh)
(2, r1, 1)− (r1, ∗, 3)
(2, r1, 0) 0 (r1, 0, 4)
(3, r3, ∗) + (r3, 1, 1)
(4, r2, ∗) + (r2, 1, lh)

computes the function f ′. Registers have initial values r1 = x, r2 = y, and r3 = 0.
The reverse instructions are

(2, r2, ∗) + (r2, 1, 1)
(lh, r2, 0) 0 (r2, 0, 1)
(3, r1, ∗) + (r1, 1, 2)
(4, r1, 0) 0 (r1, 0, 2)
(1, r3, 1)− (r3, ∗, 3)
(1, r3, 0) 0 (r3, 0, l0)
(lh, r2, 1)− (r2, ∗, 4)

Figure 1 shows the flows of instructions of the forward machine (left) and the
reverse machine (right).

3 Reversible P system with symport/antiport rules

In this section a reversible P system with symport/antiport rules is defined and
the family of such systems is proved to be computationally universal. We first
briefly summarise the notion of a P system with symport/antiport rules and with
accepting mode; for details the reader is referred to [7].

A P system with symport/antiport rules of degree n ≥ 1 is a construct of the
form
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Fig. 1. Flow graphs of a register machine (left) and its reverse machine (right).

Π = (O, µ, w1, . . . , wn, E, R1, . . . , Rn, iI),

where:

1. O is the alphabet of objects.
2. µ is a membrane structure consisting of n membranes. Membranes are injec-

tively labelled with 1, . . . , n.
3. w1, . . . , wn are strings of objects which represent the multiset over O initially

associated with the regions 1, . . . , n of µ.
4. E ⊆ O is the set of objects which are supposed to appear in the environment

in arbitrary many copies.
5. R1, . . . , Rn are finite sets of symport/antiport rules over O associated with the

membranes labelled 1, . . . , n.
6. iI is the input region.

Rules are applied in the usual nondeterministic maximally parallel manner. An
input of a P system with symport/antiport rules Π is the multiplicity of objects
initially associated with the input region, i.e., the multiplicity of wiI

. The system Π
accepts its input if and only if its computation halts. The set of numbers accepted
by Π is the set of all inputs which are accepted by Π and is denoted by Nacc(Π).

Definition 2 (reversible P system). A P system with symport/antiport rules Π
is said to be reversible if Π is deterministic and every configuration C of Π which
is reachable from an initial configuration satisfies that C is an initial configuration
or there is just one configuration C ′ such that C ′ is changed to C by Π.

In [2], a notion of a strongly reversible P system, in which every (including
non-reachable) configuration has at most one previous configuration, is defined
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in addition to the above reversible P system. But dynamics of configurations of
a strongly reversible P system without inhibitors and without priorities in rules
are extremely limited (Theorem 2 of [2]). Therefore, in this paper, we consider
reversible P systems which are defined by Definition 2.

The next theorem is the main result of this paper.

Theorem 2. For a reversible register machine M = (n,B, l0, lh, R), there exists a
P system with symport/antiport rules Π of degree 4 such that Π is reversible and
that Nacc(Π) = N(M).

Proof . The P system

Π = (O, [1 [2 [3 ]3 ]2 [4 ]4 ]1, w1, w2, w3, w4, E,R1, R2, R3, R4, 1)

is constructed by:

O = E = {l, l′, l′′, l′′′, liv, lv | l ∈ B} ∪ {ar | 1 ≤ r ≤ n} ∪ {t0, t1, t2},

w1 = ak
1 for an initial configuration (l0, k, 0, . . . , 0) of M,

w2 = t0, w3 = t1, w4 = l′′′0 t2

R2 = {(t0, out; t1, in), (t1, out; t2, in), (t2, out; t0, in)},
R3 = {(t0, out; t2, in), (t1, out; t0, in), (t2, out; t1, in)},

R4 = {(l′′′0 t2, out)}
and R1 consists of the rules

(li, out; l′jar, in), (l′j , out; l′′j , in), (l′′j , out; l′′′j , in), (l′′′j , out; livj , in),

(livj , out; lvj , in), (lvj , out; lj , in)

for an add instruction (li, r, ∗) + (r, 1, lj) and the rules

(liar, out; l′j , in), (l′j , out; l′′j , in), (l′′j , out; l′′′j , in), (l′′′j , out; livj , in),

(livj , out; lvj , in), (lvj , out; lj , in)

(lit2, out; l′′′k t2, in), (l′′′k , out; livk , in), (livk , out; lvk, in), (lvk, out; lk, in)

for subtract instructions (li, r,+)−(r, ∗, lj) and (li, r, 0) 0 (r, 0, lk). R1 also contains
the rules

(l′′′0 , out; liv0 , in), (liv0 , out; lv0 , in), (lv0 , out; l0, in).

The rule from R4 is applied at an initial configuration only and brings l′′′0 t2 to
region 1. At the same time, objects in regions 2 and 3 are exchanged by the rule
(t1, out; t0, in) from R3. The successive computations are illustrated in the next
table.
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rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (l′′′0 , out; liv0 , in) ak
1 l′′′0 t2 (t1, out; t2, in) t1 — t0

2 (liv0 , out; lv0 , in) ak
1 liv0 t1 — t2 (t0, out; t2, in) t0

3 (lv0 , out; l0, in) ak
1 lv0t1 (t0, out; t1, in) t0 — t2

4 ak
1 l0t0 t1 t2

From the last low of the above table, Π starts to simulate M .
An add instruction (li, r, ∗) + (r, 1, lj) is simulated by Π as follows:

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (li, out; l′jar, in) ap
r lit0 — t1 (t2, out; t1, in) t2

2 (l′j , out; l′′j , in) ap+1
r l′jt0 (t2, out; t0, in) t2 — t1

3 (l′′j , out; l′′′j , in) ap+1
r l′′j t2 — t0 (t1, out; t0, in) t1

4 (l′′′j , out; livj , in) ap+1
r l′′′j t2 (t1, out; t2, in) t1 — t0

5 (livj , out; lvj , in) ap+1
r livj t1 — t2 (t0, out; t2, in) t0

6 (lvj , out; lj , in) ap+1
r lvj t1 (t0, out; t1, in) t0 — t2

7 next rule ap+1
r ljt0 — t1 (t2, out; t1, in) t2

where p ≥ 0.
Subtract instructions (li, r, 1)− (r, ∗, lj) and (li, r, 0) 0 (r, 0, lk) are simulated by

Π as follows:

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 (liar, out; l′j , in) ap
r lit0 — t1 (t2, out; t1, in) t2

2 (l′j , out; l′′j , in) ap−1
r l′jt0 (t2, out; t0, in) t2 — t1

3 the following steps are similar to the add case

where p ≥ 1 and

rules used from Ri and objects in each region
step R1 region 1 R2 region 2 R3 region 3

1 — lit0 — t1 (t2, out; t1, in) t2
2 — lit0 (t2, out; t0, in) t2 — t1
3 (lit2, out; l′′′k t2, in) lit2 — t0 (t1, out; t0, in) t1
4 (l′′′k , out; livk , in) l′′′k t2 (t1, out; t2, in) t1 — t0
5 the following steps are similar to the add case

.

Therefore Π accepts its input if and only if M accepts its input, that is, Nacc(Π) =
N(M).

By the construction of rules, Π is deterministic and every configuration but
the initial configuration has just one previous configuration. Thus Π is reversible.
¤

Corollary 1. The family of sets accepted by reversible P systems with sym-
port/antiport rules is NRE.
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Remark. Theorem 2 and Corollary 1 give a negative answer to Conjecture 1 of
[2]. The P system which is constructed in the proof of Theorem 2 uses nested
membranes [1[2[3 ]3]2]1 and three timing objects t0, t1, and t2 in order to do a
zero-test by try-and-wait-then-check strategy. It is a future work to reduce the
numbers of membranes and objects in Theorem 2.
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