
Discovering the Membrane Topology of Hyperdag
P Systems

Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand
{radu,mjd}@cs.auckland.ac.nz tkim021@aucklanduni.ac.nz

Summary. In an earlier paper, we presented an extension to the families of P systems,
called hyperdag P Systems (hP systems), by proposing a new underlying topological
structure based on the hierarchical dag structure (instead of trees or digraphs). In this
paper, we develop building-block membrane algorithms for discovery of the global topo-
logical structure from the local cell point of view. In doing so, we propose more convenient
operational modes and communication transfer modes, that depend only on each of the
individual cell rules.

Finally, by extending our initial work done in visualization of hP system membranes
with interconnections based on dag structures without transitive arcs, we propose several
ways to represent all communication channels, including transitive ones, in the plane by
3D-folded (and possibly twisted) simple-closed regions.

1 Introduction

In this paper we continue our study [8]. Specifically, we are interested to validate
the adequacy of our hP system model for describing a subset of fundamental
distributed algorithms that present relevance to networking.

For several algorithms, especially Algorithms 1 and 5 below, we follow and
extend to dags the approach used by Ciobanu et al. in [4, 3]. We also use traditional
rewriting rules, without pseudo-code.

In this process, we identify areas where our initial model was not versatile
enough and we propose corresponding adjustments, that can also be retrofitted to
other models of the P family, such as the refinement of the rewrite and transfer
modes. We also advocate the weak policy for priority rules [10], which we believe
is closer to the actual task scheduling in operating systems.

This paper focuses on basic building blocks that are relevant for network discov-
ery (see also [7]): broadcast, convergecast, flooding, and a simple synchronization
solution, that highlights the versatility of the dag structure underlying hP systems.

We have earlier proposed an algorithm to visually represent hP systems, where
the underlying cell structure was restricted to a canonical dag (i.e., without tran-

Discovering the Membrane Topology of Hyperdag P Systems 427

sitive arcs) [8]. Nodes were represented as simple closed regions on the plane (with
possible nesting or overlaps) and communication channels by direct containment
relationships of the regions. In this paper, we extend this planar representation
by presenting several plausible solutions that enable us to visualize any hP sys-
tem, modelled as an arbitrary dag, in the plane. Additionally, for these solutions,
we discuss their advantages and limitations. Finally, in Section 6, we describe a
new algorithm for representing general hP systems, where transitive arcs are not
excluded.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations [8]:
relations, graphs, nodes (vertices), arcs, directed graphs, directed acyclic graphs
(dags), canonical dags (dags without transitive arcs), trees, node height (number
of arcs on the longest path to a descendant), topological order, set or multiset
based hypergraphs, simple closed curves (Jordan curves), alphabets, strings and
multisets over an alphabet.

We also assume familiarity with transition P systems and their planar repre-
sentation [10] and with hyperdag P systems (hP systems) [8].

Without giving all functional details, we recall here the basic notations and
the definition of hP systems. Given a set of objects O, we define the following sets
of tagged objects: O↑ = {o↑ | o ∈ O}, O↓ = {o↓ | o ∈ O}, O↔ = {o↔ | o ∈ O},
Ogo = {ogo | o ∈ O}, Oout = {oout | o ∈ O}. Intuitively, the ↑, ↓, ↔ tags indicate
objects that will be transferred to parents, children, siblings, respectively; the go

tags indicate transfer to all neighbors (parents, children and siblings); the out tags
indicate transfer to the environment.

Definition 1 (Hyperdag P systems). An hP system of order m is a system
Π = (O, σ1, . . . , σm, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set of states;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects;
• Pi is a finite set of multiset rewriting rules of the form sx → s′x′u↑v↓w↔

ygozout, where s, s′ ∈ Qi, x, x′ ∈ O∗, u↑ ∈ O∗↑, v↓ ∈ O∗↓, w↔ ∈ O∗↔,
ygo ∈ O∗go and zout ∈ O∗out, with the restriction that zout = λ for all
i ∈ {1, . . . ,m}\Iout;

3. δ is a set of dag parent-child arcs on {1, . . . ,m}, i.e., δ ⊆ {1, . . . ,m} ×
{1, . . . ,m}, representing duplex communication channels between cells;

4. Iout ⊆ {1, . . . ,m} indicates the output cells, the only cells allowed to send
objects to the “environment”.

428 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

The dynamic operations of hP systems, i.e., the configuration changes via ob-
ject rewriting and object transfer, are a natural extension of similar operations
used by transition P systems and nP systems. Our earlier paper, [8], describes the
dynamic behavior of hP systems, in more detail.

We measure the runtime complexity of a P system in terms of P-steps, where
a P-step corresponds to a transition on a parallel P machine. If no more transi-
tions are possible, the hP system halts. For halted hP systems, the computational
result is the multiset of objects emitted out (to the “environment”), over all the
time steps, from the output cells Iout. The numerical result is the set of vectors
consisting of the object multiplicities in the multiset result. Within the family of
P systems, two systems are functionally equivalent if they yield the same compu-
tational result.

Example 1. Figure 1 shows the structure of an hP system that models a computer
network. Four computers are connected to “Ethernet Bus 1”, the other four com-
puters are connected to “Ethernet Bus 2”, while two of the first group and two
of the second group are at the same time connected to a wireless cell. In this fig-
ure we also suggest that “Ethernet Bus 1” and “Ethernet Bus 2” are themselves
connected to a higher level communication hub, in a generalized hypergraph.

We have already shown, [8], that our hP systems can simulate any transi-
tion P system [10] and any bidirectional nP system [9], with the same number of
steps and object transfers. To keep the arguments simple, we have only considered
systems without additional features, such as dissolving membranes, priorities or
polarities. However, our definition of hP systems can also be extended, as needed,
with additional features, in a straightforward manner, and we do so in this paper.

Model refinements

• As initially defined [8], the rules are applied according to the current cell state s,
in the rewrite mode α(s) ∈ {min, par, max}, and the objects are sent out in the
transfer mode β(s) ∈ {one, spread, repl}. In this paper, we propose a refinement
to these modes and allow that the rewrite and transfer modes to depend on the
rule used (instead of the state), as long as there are no conflicting requirements.
We will highlight the cases where this modes extension is essential.

• We also consider rules with priorities, in their weak interpretation [10]. In the
current paper, lower numbers (i.e., first enumerated) indicate higher priority.
In the weak interpretation of the priority, rules are applied in decreasing order
of their priorities — where a lower priority rule can only applied after all
higher priority rules have been applied (as required by the rewriting modes).
In contrast, in the strong interpretation, a lower priority rule cannot be applied
at all, if a higher priority rule was applied. We will highlight the cases where
the weak interpretation is required.

Discovering the Membrane Topology of Hyperdag P Systems 429

Ethernet Bus 1 Ethernet Bus 2

Wireless Bus

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Bus

Fig. 1. A computer network and its corresponding hP representation.

3 Basic algorithms for network discovery—without IDs

In this section and the following, we study several basic distributed algorithms
for network discovery, adapted to hP systems. Essentially, all cells start in the
same state and with the same or similar set of rules, but there are several different
scenarios:

1. Initially, cells know nothing about the structure in which they are linked,
and must even discover their local neighborhood (i.e., their parents, children,
siblings), as well as some global model topology characteristics (such as various
dag measures or shortest paths).

2. As above, but each cell has its own ID (identifier) and is allowed to have custom
rules for this ID.

3. As above, each cell has its own ID and also knows the details of its immediate
neighbors (parents, children and, optionally, siblings).

430 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

1

2 3

4 5 6

7

8

9

Fig. 2. Sample dag for illustrating our algorithms.

Algorithm 1: Broadcast to all descendants.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules. The initiating cell has an
additional object a, that is not present in any other cell.

Postcondition: All descendant cells are eventually visited and enter state s1.

Rules:

1. s0a→ s1a↓, with α = min, β = repl.
2. s1a→ s1, with α = par.
ut

Proof. This is a deterministic algorithm. Rule 1 is applied exactly once, when the
cell is in state s0 and an a is available. This a is consumed, the cell enters state
s1 and another a is sent to all the children, replicated as necessary. Additional a’s
may appear in a cell, because, in a dag structure, a cell may have more than one
parent. Rule 2 is applicable in state s1 and silently discards any additional a’s,
without changing the state and without interacting with other cells. All a’s will
eventually disappear from the system—however, cells themselves may never know
that the algorithm has completed and no other a’s will come from its parents. By
induction, all descendants will receive an a and enter state s1. ut

Remark 1.

• This broadcast algorithm can be initiated anywhere in the dag. However, it is
probably most useful when initiated on a dag source, or on all sources at the
same time (using the same object a or a different object for each source).

Discovering the Membrane Topology of Hyperdag P Systems 431

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other broadcasting algorithms can be built in a similar manner, such
as broadcast to all ancestors or broadcast to all reachable cells (ancestors and
descendants).

• This algorithm family follows the approach used by Ciobanu et al. [4, 3], for tree
based algorithms, called Skin membrane broadcast and Generalized broadcast.

Example 2. We illustrate the algorithm for broadcasting to all descendants, for the
hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0a s0a s0 s0 s0 s0 s0 s0
2 s1 s1 s1 s0a s0aa s0a s0 s0 s0
3 s1 s1 s1 s1 s1a s1 s0a s0a s0
4 s1 s1 s1 s1 s1 s1 s1 s1a s0
5 s1 s1 s1 s1 s1 s1 s1 s1 s0

Algorithm 2: Counting all paths from a given ancestor.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0 and with the same rules. The initiating cell has an
additional object a, not present in any other cell.

Postcondition: All descendant cells are eventually visited, enter state s1 and will
have a number of b’s equal to the number of distinct paths from the initiating cell.

Rules:

1. s0a→ s1ba↓, with α = par, β = repl.
2. s1a→ s1ba↓, with α = par, β = repl.
ut

Proof. This is a deterministic algorithm. Rule 1 is applied when the cell is in state
s0 and an a is available. This a is consumed, the cell enters state s1, a b is gener-
ated and another a is sent to all its children, replicated as necessary. Additional
a’s may appear in a cell, because, in a dag structure, a cell may have more than
one parent. Rule 2 is similar to rule 1. State s1 is similar to state s0 and is not
essential here, it appears here only to mark visited cells. The number of generated
b’s is equal to the number of received a’s, which eventually will be equal to the
number of paths from the initiating cell. All a’s will eventually disappear from the

432 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

system—however, cells themselves may never know that the algorithm has com-
pleted, that no other a’s will come from a parent and all paths have been counted.
A more rigorous proof will proceed by induction. ut

Remark 2.

• This algorithm completes after h + 1 P-steps, where h is the height of the
initiating node.

• State s1 may be reached before the algorithm completes and cannot be used
as a termination indicator.

• Several other path counting algorithms can be built in a similar manner, such
as the number of paths to a given descendant.

Example 3. We illustrate the algorithm for counting all paths from a given ances-
tor, for the hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1b s0a s0a s0 s0 s0 s0 s0 s0
2 s1b s1b s1b s0a s0aa s0a s0 s0 s0
3 s1b s1b s1b s1b s1bb s1b s0a s0aa s0
4 s1b s1b s1b s1b s1bb s1b s1b s1abb s0
5 s1b s1b s1b s1b s1bb s1b s1b s1bbb s0

Algorithm 3: Counting the children of a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. The initiating cell and its children start in state s0 and with the same rules.
The initiating cell has an additional object a, not present in any other cell.

Postcondition: The initiating cell ends in state s1 and with a number of c’s equal
to its child count. The child cells end in state s1. As a side effect, other parents
(if any) of these children will receive superfluous c’s—however, these c’s can be
discarded, if needed (rules not shown here).

Rules:

1. s0a→ s1p↓, with α = min, β = repl.
2. s0p→ s1c↑, with α = min, β = repl.
ut

Proof. This is a deterministic algorithm with a straightforward proof, not given
here. ut

Discovering the Membrane Topology of Hyperdag P Systems 433

Remark 3.

• This algorithm completes after 2 P-steps.
• Several other algorithms that enumerate the immediate neighborhood can be

built in a similar manner, such as counting parents, counting siblings, counting
neighbors.

Algorithm 4: Broadcast for counting all children.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0 and with the same rules. The initiating cell has an
additional object a, not present in any other cell.

Postcondition: Each descendant cell enters state s1 and, eventually, will contain
a number of c’s equal to its child count.

Rules:

0. For state s0:
1) s0a→ s1p↓, with α = min, β = repl.
2) s0p→ s1p↓c↑, with α = min, β = repl.

1. For state s1:
1) s1p→ s1, with α = par.
ut

Proof. This a deterministic algorithm: the proof combines those from the broad-
cast algorithm (Algorithm 1) and the child counting algorithm (Algorithm 3). ut

Remark 4.

• This algorithm runs in h + 1 P-steps, where h is the height of the initiating
cell.

• State s1 may be reached before the algorithm completes its cleanup phase and
cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of
the initiating node will receive superfluous c’s.

• Several other algorithms that broadcast a request to count the immediate
neighborhood can be built in a similar manner, such as broadcast for count-
ing all parents, broadcast for counting all siblings, broadcast for counting all
neighbors.

Example 4. We illustrate the algorithm for counting all children via broadcasting,
for the hP system shown in Figure 2.

434 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p s0p s0 s0 s0 s0 s0 s0
2 s1cc s1 s1 s0p s0pp s0p s0 s0 s0
3 s1cc s1cc s1cc s1 s1p s1 s0p s0p s0c
4 s1cc s1cc s1cc s1 s1c s1c s1c s1p s0c
5 s1cc s1cc s1cc s1 s1c s1c s1c s1 s0c

Algorithm 5: Counting heights by flooding.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules and have no initial object.

Postcondition: All cells end in state s2. The number of t’s in each cell equals
the distance from a furthest descendant.

Rules:

0. For state s0:
1) s0 → s1ac↑, α = min, β = repl.

1. For state s1, the rules will run under the following priorities, under the weak
interpretation:
1) s1ac→ s1atc↑, α = max, β = repl.
2) s1c→ s1, α = max.
3) s1a→ s2, α = min.
ut

Proof. Each cell emits a single object c to each of its parents in the first step.
During successive active steps, a cell either: (a) uses rule 1.3 to enter the termi-
nating state s2 or (b) continues via rule 1.1 to forward one c up to each of its
parents. In the latter case, since we have α = max, and as enabled by the weak
interpretation of priorities, rule 1.2 is further used to remove all remaining c’s (if
any), in the same step. The cell safely enters the end state s2 when no more c’s
appear. Induction shows that the set of times that c’s appear is consecutive: if a
cell at k > 1 links away emitted a c, then there must be another cell at k − 1
links away emitting another c. Finally, the number of times rule 1.1 is applied is
the number of times a cell receives at least one new c from below. These steps are
tallied by occurrences of the object t. ut

Remark 5.

• The time complexity of this quick algorithm is h + 2 P-steps, where h is the
height of the dag. The two extra P-steps correspond to the initial step and the
step to detect no more c’s.

Discovering the Membrane Topology of Hyperdag P Systems 435

• This algorithm, like other distributed flooding based algorithms, requires that
all cells start at the same time. Achieving this synchronization could be a
non-trivial task—see Section 5.

• This algorithm follows the approach by Ciobanu et al. [4, 3], for the tree based
algorithm called Convergecast. Here we prefer to use the term flooding, and
use the term convergecast for a result accumulation triggered by an initial
broadcast.

• This algorithm makes critical use of the weak interpretation for priorities.

Example 5. We illustrate the algorithm for counting heights by flooding, for the
hP system shown in Figure 2.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0 s0 s0 s0 s0 s0 s0 s0 s0
1 s1acc s1acc s1acc s1a s1ac s1ac s1ac s1a s1ac
2 s1acct s1act s1acct s2 s1at s1act s1at s2 s1act
3 s1acctt s1att s1actt s2 s2t s1att s2t s2 s1actt
4 s1act

3 s2tt s1at
3 s2 s2t s2tt s2t s2 s1at

3

5 s1at
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

6 s2t
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

Algorithm 6: Counting nodes in a single-source dag.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. All cells start in state s0, with the same rules. The initiating cell is the source
of a single-sourced dag and has an additional object a, not present in any other
cell.

Postcondition: Eventually, the initiating cell will contain a number of c’s equal
to the number of all its descendants, including itself, which is also the required
node count.

Rules:

0. For state s0:
1) s0a→ s3p↓c, with α = min, β = repl.
2) s0p→ s1p↓, with α = min, β = repl.

1. For state s1:
1) s1 → s2c↑, with α = min, β = one.

2. For state s2:
1) s2c→ s2c↑, with α = max, β = one.
2) s2p→ s2, with α = max.
ut

Proof. We prove that the source will eventually contain the k copies of object c,
where k is the order of the single-source dag. The source cell will produce a copy

436 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

of c following rule 0.1. A non-source cell σi will send one c to a parent σj , where
j ∈ δ−1(i), because a node is at state s1 during at most one P-step, by rule 1.1.
A cell σi will forward up, using rule 2.1, additional c’s to one of its parents, which
will eventually arrive at the source. ut

Remark 6.

• This algorithm takes up to 2h P-steps, where h is the height of the initiating
cell.

• The end state s3 is not halting, may be reached before the algorithm completes
and cannot be used as a termination indicator.

Example 6. We illustrate the algorithm for counting nodes in a single-sourced dag
via convergecast, for the hP system shown in Figure 2, after removing node 9.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0a s0 s0 s0 s0 s0 s0 s0
1 s3c s0p s0p s0 s0 s0 s0 s0
2 s3c s1 s1 s0p s0pp s0p s0 s0
3 s3c

3 s2 s2 s1 s1p s1 s0p s0p
4 s3c

3 s2c s2cc s2 s2p s2 s1 s1p
5 s3c

6 s2 s2 s2 s2 s2c s2c s2p
6 s3c

6 s2 s2c s2 s2 s2c s2 s2
7 s3c

7 s2 s2c s2 s2 s2 s2 s2
8 s3c

8 s2 s2 s2 s2 s2 s2 s2

4 Basic algorithms for network discovery—with IDs

In this section we assume each cell has an unique ID and the cells only know their
own ID. Objects may be tagged with IDs to aid in communication.

Algorithm 7: Counting descendants by convergecast—with cell IDs.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. For each cell with index i, 1 ≤ i ≤ m, the alphabet includes special ID objects
ci and c̄i. All cells start in state s0 and have the same rules, except several similar,
but custom specific, rules to process the IDs. The initiating cell has an additional
object a, not present in any other cell.

Postcondition: All visited cells enter state s1 and, eventually, each cell will con-
tain exactly one c̄i for each descendant cell with index i, including itself: the
number of these objects is the required count.

Discovering the Membrane Topology of Hyperdag P Systems 437

Rules:

0. For state s0 and cell i (these are custom rules, specific for each cell):
1) s0a→ s1p↓c̄i, with α = min, β = repl.
2) s0p→ s1p↓ci↑c̄i, with α = min, β = repl.

1. For state s1, the rules will run under the following priorities:
1) s1cj c̄j → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1c̄j c̄j → s1c̄j , for 1 ≤ j ≤ m, with α = max.
3) s1cj → s1cj↑c̄j , for 1 ≤ j ≤ m, with α = max, β = repl.
4) s1p→ s1, with α = max.
ut

Proof. Assume that δ is the underlying dag relation. For each cell σi, consider the
sets Ci = {cj | j ∈ δ∗(i)}, C̄i = {c̄j | j ∈ δ∗(i)}, which consist of ID objects
matching σi’s children. By induction on the dag height, we prove that each vis-
ited cell σi will eventually contain the set C̄i, and, if it is not the initiating cell,
will also send up all elements of the set Ci, possibly with some duplicates (up to
all its parents). The base case, height h = 0, is satisfied by rule 0.1, if σi is the
initiator, or by rule 0.2, otherwise. For cell σi at height h+ 1, by induction, each
child cell σk sends up Ck, possibly with some duplicates. By rules 0.1 and 0.2,
cell σi further acquires one c̄i and, if not the initiator, sends up one ci. From its
children, cell σi acquires the multiset C ′i, consisting of all the elements of the set⋃
k∈δ(i) Ck = Ci \ ci, possibly with some duplications. Rule 1.3 sends up one copy

of each element of multiset C ′i and records a barred copy of it. Rule 1.2 halves
the number of duplicates in multiset C ′i. Rule 1.1 filters out duplicates in multiset
C ′i, if a barred copy already exists. Rule 1.4 clears all p’s, which are not needed
anymore. ut

Remark 7.

• Other counting algorithms can be built in a similar manner, such as counting
ancestors, counting siblings, counting sources or counting sinks.

• The end state s1 is not halting, it may be reached before the algorithm com-
pletes and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of
the initiating node may receive superfluous ci’s.

• This algorithm works under both strong and weak interpretation of priorities.

Example 7. We illustrate the algorithm for counting descendants via convergecast
using cell IDs, for the hP system shown in Figure 2.

438 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1c1 s0p s0p s0 s0 s0 s0 s0 s0
2 s1c2c3 s1 s1 s0p s0pp s0p s0 s0 s0

c̄1 c̄2 c̄3
3 s1 s1c4c5 s1c5c6 s1 s1p s1 s0p s0p s0c6

c̄1c̄2c̄3 c̄2 c̄3 c̄4 c̄5 c̄6
4 s1c4c5c5c6 s1 s1 s1 s1c8 s1c7 s1c8 s1p s0c6

c̄1c̄2c̄3 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5 c̄6 c̄7 c̄8
5 s1 s1c8 s1c7c8 s1 s1 s1c8 s1 s1 s0c6c7

c̄1c̄2c̄3c̄4c̄5c̄5c̄6 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5c̄8 c̄6c̄7 c̄7c̄8 c̄8
6 s1c7c8c8 s1 s1c8 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
7 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
8 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

Algorithm 8: Shortest paths from a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topol-
ogy. For each cells with indices i, j, 1 ≤ i, j ≤ m, the alphabet includes special ID
objects: pi, p̄i, c̄i, xij . All cells start in state s0 and have the same rules, except
several similar but custom specific rules to process the IDs. The initiating cell has
an additional object a, not present in any other cell.

Postcondition: This algorithm builds a shortest paths spanning tree, that is a
breadth-first tree rooted at the initiating cell and preserving this dag’s relation δ.
Each visited cell σi, except the initiating cell, will contain one p̄k, indicating its
parent σk in the spanning tree. Each visited cell σi will also contain one c̄j for
each σj that is a child of σi in the spanning tree, i.e., it will contain all elements
of the set {c̄j | (i, j) ∈ δ, σj contains p̄i}.

Rules:

0. For state s0 and cell i (custom rules, specific for cell i):
1) s0a→ s1pi↓, with α = min, β = repl.
2) s0pj → s1p̄jpi↓xji↑, for 1 ≤ j ≤ m, with α = min, β = repl.
3) s0xkj → s0, for 1 ≤ k, j ≤ m, k 6= i, with α = max.

1. For state s1 and cell i (custom rules, specific for cell i):
1) s1xij → s1c̄j , for 1 ≤ j ≤ m, with α = max.
2) s1pj → s1, for 1 ≤ j ≤ m, with α = max.
3) s1xkj → s1, for 1 ≤ k, j ≤ m, k 6= i, with α = max.
ut

Proof. It is clear that every visited cell σi, except the initiating cell, contains one
p̄k where k ∈ δ−1(i) from rule 0.2. By a node’s height, we prove that a cell σi will

Discovering the Membrane Topology of Hyperdag P Systems 439

contain the set Ci = {c̄j | (i, j) ∈ δ, σj contains p̄i}. For height 0, Ci = ∅ is true
since a sink σi does not have any children to receive an xji—see rule 0.2. For a
cell σi of height greater than 0, first observe that rule 1.1 is only applied if rule
0.2 has been applied for a child cell j. Thus, Ci contains all c̄j such that (i, j) is
in the spanning tree. Those xkj ’s are removed by rule 0.3, and xij ’s that are not
converted to c̄j are removed by rule 1.3. ut

Remark 8.

• For this algorithm, cells need additional symbols, see the precondition.
• This algorithm takes h+ 1 P-steps, where h is the height of the initiating cell.
• The end state s1 is not halting, it may be reached before the algorithm com-

pletes and cannot be used as a termination indicator.
• As a side effect, any parent of the visited children that is not a descendant of

the initiating node will receive superfluous xij ’s, but they are removed by rule
0.3.

• The rules for state s0 make effective use of our rewrite mode refinement: rules
0.1 and 0.2 use α = min, while rule 0.3 uses α = max.

• Provided that arcs are associated with weights, this algorithm can be extended
into a distributed version of the Bellman-Ford algorithm [7].

Example 8. We illustrate the algorithm for counting nodes in a single-source dag
via convergecast, for the hP system shown in Figure 2. The thick arrows in Figure 3
show the resulting spanning tree.

1

2 3

4 5 6

7

8

9

Fig. 3. A spanning tree created by the shortest paths algorithm (Algorithm 8).

440 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p1 s0p1 s0 s0 s0 s0 s0 s0
2 s1x12x13 s1p̄1 s1p̄1 s0p2 s0p2p3 s0p3 s0 s0 s0
3 s1c̄2c̄3 s1p̄1x24x25 s1p̄1x25x36 s1p̄2 s1p3p̄2 s1p̄3 s0p6 s0p5 s0x36

4 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2x58 s1p̄3x67 s1p̄6x58 s1p7p̄5 s0
5 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2c̄8 s1p̄3c̄7 s1p̄6 s1p̄5 s0

5 The Firing-Squad-Synchronization-Problem (FSSP)

More sophisticated network algorithms can be built on the fundamental building
blocks discussed in the previous sections.

For a given hP system, with cells σ1, . . . , σm, we now consider the problem
of synchronizing a set of cells F ⊆ {σ1, . . . , σm}, where all cells in the set F
synchronize by entering a designated firing state simultaneously and (of course)
for the first time.

There are several ways to solve the problem. In the simplest scenario, we are
allowed to extend the structure. The tree structures allow only limited extensions,
that are not useful in solving this problem. However, dag structures (or more
general models) allow extensions that greatly simplify the solution to this problem
and other similar problems, to the point that they become “trivial”. We take this
as an additional argument supporting the introduction of dag structures in the
context of P systems.

Here, we consider only the first scenario, in which we may extend the structure.
We select an arbitrary subset of squad cells, F ⊆ {σ1, . . . , σm}, that we wish to
synchronize (possibly the whole set), and an arbitrary commander cell σc ∈ F .
As a simple solution to this problem, we add an external cell, called sergeant, to
the existing hP system and additional communication channels from the sergeant
to all cells in the set F . The commander initiates the synchronization process by
sending a notification to the sergeant. When the sergeant receives this notification,
the sergeant sends commands to all cells in the set F , which prompts the cells to
synchronize by entering the firing state. The algorithm below does not consider
the sergeant as part of the firing squad. However, with a simple extension (not
shown here), we can also cover the case when the sergeant is to be part of the
firing squad.

Algorithm 9: A dag synchronization algorithm.

Precondition: We are given an hP system with m cells σ1, . . . , σm, a squad
subset F ⊆ {σ1, . . . , σm}, and a commander cell σc ∈ F . We extend the underlying
dag structure by adding a new sergeant cell σm+1 and additional communication
channels from σm+1, as parent, to σi, as child, for each i ∈ F ⊆ X.

All cells start in the state s0 and have the same rules. The state s1 is the firing
state. Initially, the sergeant σm+1 has an object c, the commander σc has an object

Discovering the Membrane Topology of Hyperdag P Systems 441

a, and all other cells have no object.

Postcondition: All cells in the set F enter the state s1, simultaneously and for
the first time, after 3 P-steps.

Rules:

0. For state s0, the rules will run under the following priorities:
1) s0a→ s0b↑, with α = min, β = repl.
2) s0bc→ s0f↓, with α = min, β = repl.
3) s0b→ s0, with α = min.
4) s0f → s1 with α = min.
ut

Proof. At step 1, the commander sends a b notifier to all its parents, including
the newly created sergeant, via rule 0.1. At step 2, the sergeant sends the firing
command f to all squad cells, using rule 0.2. All other commander’s parents clear
their b notifiers at step 2, using rule 0.3. At step 3, all squad cells enter the firing
state s1, using rule 0.4. This algorithm will work under both weak and strong
interpretations of priorities. ut

Example 9. We illustrate the algorithm for synchronizing the hP system shown in
Figure 4. This hP system consists of 7 cells {σ1, . . . , σ7}, F = {σ1, . . . , σ5} and
σ5 is the commander. The actual system structure is irrelevant in this case and
was replaced by a blob that circumscribes the cells σ1, . . . , σ7. In the diagram,
this structure has already been extended by the sergeant cell σ8 and the required
communication channels.

σ2 σ3

σ1 σ7 σ4

σ6 σ5

σ8

Fig. 4. An hP system for the synchronization algorithm (Algorithm 9), extended by the
sergeant cell σ8 and the required communication channels.

442 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 s0 s0 s0 s0a s0 s0 s0c

1 s0 s0 s0 s0 s0 s0 s0 s0bc

2 s0f s0f s0f s0f s0f s0 s0 s0
3 s1 s1 s1 s1 s1 s0 s0 s0

Bernardini et al. present a deterministic solution for transition P systems with
polarizations and priorities [2], which works in time 4N + 2H, where N and H
are the number of tree nodes and tree height, respectively. Alhazov et al. present
another deterministic solution for P systems with promoters and inhibitors [1],
which works in time 3H, where H is the tree height.

In a follow-up paper, [5], we provide a more constrained solution, that does not
need structural extension, and covers both hP and nP systems. Our deterministic
solution uses rules applied under the weak priority scheme and works in time 6R,
where R is the radius of the commander in the underlying dag/digraph.

6 Planar representation

We define a simple region as the interior of a simple closed curve (Jordan curve).
By default, all our regions will be delimited by simple closed curves that are also
smooth, with the possible exception of a finite number of points. This additional
assumption is not strictly needed, but simplifies our arguments.

A simple region Rj is directly contained in a simple region Ri, if Rj ⊂ Ri and
there is no simple region Rk, such that Rj ⊂ Rk ⊂ Ri (where ⊂ denotes strict
inclusion).

It is well known that any transition P system has a planar Venn-like repre-
sentation, with a 1:1 mapping between its tree nodes and a set of hierarchically
nested simple regions. Conversely, any single rooted set of hierarchically nested
simple regions can be interpreted as a tree, which can further form the structural
basis of a number of transition P systems.

We have already shown that this planar representation can be generalized for
hP systems based on canonical dags (i.e., without transitive arcs) and arbitrary
sets of simple regions (not necessarily nested), while still maintaining a 1:1 mapping
between dag nodes and simple regions [8].

Specifically, any hP system structurally based on a canonical dag can be inten-
sionally represented by a set of simple regions, where direct containment denotes
a parent-child relation. The converse is also true, any set of simple regions can be
interpreted as a canonical dag, which can further form the structural basis of a
number of hP systems.

We will now provide several solutions to our open question [8]: How to represent
the other dags, that do contain transitive arcs? First, we discuss a negative result.
First, a counter-example that appeals to the intuition, and then a theorem with a
brief proof.

Discovering the Membrane Topology of Hyperdag P Systems 443

Example 10. Consider the dag (a) of Figure 5, where nodes 1, 2, 3 are to be repre-
sented by simple regions R1, R2, R3, respectively. We consider the following three
candidate representations: (e), (f) and (g). However, none of them properly match
the dag (a), they only match dags obtained from (a) by removing one of its arcs:

(e) represents the dag (b), obtained from (a) by removing the arc (1, 3);
(f) represents the dag (c), obtained from (a) by removing the arc (1, 2);
(g) represents the dag (d), obtained from (a) by removing the arc (2, 3).

Theorem 1. Dags with transitive arcs cannot be planarly represented by simple
regions, with a 1:1 mapping between nodes and regions.

Proof. Consider again the counter-example in Example 10. The existence of arcs
(2, 3), (1, 2) requires that R3 ⊂ R2 ⊂ R1. This means that R3 cannot be directly
contained in R1, as required by the arc (1, 3). ut

1

2

3

R1

R2

R3

R1 R2R3

(a)

1

2

3

(b)

(e)

1 2

3

1

2 3

(c) (d)

(f)

R1

R3R2

(g)

Fig. 5. A counter-example for planar representation of non-canonical dags.

It is clear, in view of this negative result, that we must somehow relax the
requirements, if we want to obtain meaningful representations for general hP sys-
tems, based on dag structure that may contain transitive arcs. We consider in turn
five tentative solutions.

444 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

6.1 Solution I: Self-intersecting curves

We drop the requirement of mapping nodes to simple regions delimited by simple
closed curves. We now allow self-intersecting closed curves with inward folds. A
node can be represented as the union of subregions: first, a base simple region,
and, next, zero, one or more other simple regions, which are delimited by inward
folds of base region’s contour (therefore included in the base region). For this
solution, we say that there is an arc (i, j) in the dag if and only if a subregion
of Ri directly contains region Rj , where regions Ri, Rj represent nodes i, j in the
dag, respectively.

1

2

3

R1R2R3R′′
1

Fig. 6. Solution I: R1 is delimited by a self-intersecting closed curve.

Example 11. The region R1 in Figure 6 is delimited by a self-intersecting closed
curve with an inward fold that defines the inner R′′1 subregion. Note the following
relations:

• R1 = R1 ∪R′′1 , thus R′′1 is a subregion of R1;
• R1 directly contains R2, which indicates the arc (1, 2);
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1

is a subregion of R1.

Remark 9. It is difficult to visualize a cell that is modelled by a self-intersecting
curve. Therefore, this approach does not seem adequate.

6.2 Solution II: Distinct regions

We drop the requirement of a 1:1 mapping between dag nodes and regions. Specif-
ically, we accept that a node may be represented by the union of one or more
distinct simple regions, here called subregions. Again, as in Solution I, an arc (i, j)
is in the dag if and only if a subregion of Ri directly contains region Rj .

Example 12. In Figure 7, the simple region R1 is the union of two simple regions,
R′1 and R′′1 , connected by a dotted line. Note the following relations:

Discovering the Membrane Topology of Hyperdag P Systems 445

1

2

3

R′
1

R2R3
R′′

1

Fig. 7. Solution II: R1 is the union of two simple regions, R′
1 and R′′

1 .

• R1 = R′1 ∪R′′1 , thus R′1 and R′′1 are subregions of R1;
• R′1 directly contains R2, which indicates the arc (1, 2), becauseR′1 is a subregion

of R1;
• R2 directly contains R3, which indicates the arc (2, 3);
• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1

is a subregion of R1.

Remark 10. In Example 12, a dotted line connects two regions belonging to the
same node. It is difficult to see the significance of such dotted lines in the world of
cells. Widening these dotted lines could create self-intersecting curves—a solution
which we have already rejected. Two distinct simple regions should represent two
distinct cells, not just one. Therefore, this approach does not seem adequate either.

6.3 Solution III: Flaps

We again require simple regions, but we imagine that our representation is an
infinitesimally thin “sandwich” of several superimposed layers, up to one distinct
layer for each node (see Figure 8b). Initially, each region is a simple region that is
conceptually partitioned into a base subregion (at some bottom layer) and zero, one
or more other flap subregions, that appear as flaps attached to the base. These flaps
are then folded, in the three-dimensional space, to other “sandwich” layers (see
Figure 8c). The idea is that orthogonal projections of the regions corresponding
to destinations of transitive arcs, which cannot be contained directly in the base
region, will be directly contained in such subregions (or vice-versa). Because the
thin tethered strip that was used for flapping is not relevant, it is represented by
dots (see Figure 8d). As in the previous solutions, an arc (i, j) is in the dag if and
only if a subregion Sk of Ri directly contains region Rj .

Superficially, this representation looks similar to Figure 7. However, its inter-
pretation is totally different, it is now a flattened three-dimensional object. We
can visualize this by imagining a living organism that has been totally flattened
by a roller-compactor (apologies for the “gory” image).

We next give a constructive algorithm that takes as input a dag (X, δ) and
produces a set of overlapping regions {Rk | k ∈ X}, such that (i, j) ∈ δ if and only
if a subregion of Ri directly contains Rj .

446 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Fig. 8. The process described in Solution III.

Algorithm 10: DagToRegions.

Input: dag (X, δ).
Output: flattened regions {Rk | k ∈ X}.

Step 1: Reorder the nodes of the dag (X, δ) to be in reverse topological order.
(That is, sink nodes come before source nodes.)

Step 2: For each node i in δ ordered as in step 1 do:
If i is a sink:

Create a new region Ri disjoint from all previous regions.
Otherwise:

Create a base region of Ri by creating a simple closed region prop-
erly containing the union of all regions Rj such that (i, j) ∈ δ.
Further, for any transitive arc (i, j) create a flap subregion that
directly contains Rj and attach it with a strip to the edge of the
base region.ut

Remark 11. In the set constructed by this algorithm, if two or more transitive arcs
are incident to a node j then the respective flaps (without tethers) may share the
same projected subregion directly containing region Rj .

Example 13. Figure 9 shows an input dag with 6 nodes, 3 transitive arcs and its
corresponding planar region representation. Note the reverse topological order is
6, 5, 4, 3, 2, 1 and the regions R1 and R2 use the same flap subregions containing
the region R6.

Discovering the Membrane Topology of Hyperdag P Systems 447

1 2

3 4

5 6

R5R1 R6 R4 R2R3

Fig. 9. Illustration of Algorithm 10.

Theorem 2. Every dag with transitive arcs can be represented by a set of regions
with folded flaps, with a 1:1 mapping between nodes and regions.

Proof. We show by induction on the order of the dags that we can always produce
a corresponding planar representation. First, note that any dag can be recursively
constructed by adding a new node i and arcs incident from i to existing nodes.
Note that Algorithm 10 builds planar representations from sink nodes (induction
base case) to source nodes (inductive case). Hence, any dag has at least one folded
planar representation, depending on the topological order used. We omit the de-
tails of how to ensure non-arcs; this can be easily achieved by adding “spikes” to
the regions—see our first paper for representing non-transitive dags [8]. ut

Theorem 3. Every set of regions with folded flaps can be represented by a dag
with transitive arcs, with a 1:1 mapping between nodes and regions.

Proof. We show how to produce a unique dag from a folded planar representation.
The first step is to label each region Rk, which will correspond to node k ∈ X
of a dag (X, δ). We add an arc (i, j) to δ if an only if a subregion of Ri directly
contains the region Rj . ut

Remark 12. One could imagine an additional constraint, that nodes, like cells,
need to differentiate between its outside and inside or, in a planar representation,
between up and down. We can relate this to membrane polarity, but we refrain
from using this idea here, because it can conflict with the already accepted role of
polarities in P systems. It is clear that, looking at our example, this solution does
not take into account this sense of direction.

For example, considering the scenario of Figure (9), regions R3, R2 and R′1 (the
base subregion of R1) can be stacked “properly”, i.e., with the bottom side of R3

on the top side of R2 and the bottom side of R2 on the top side of R′1. However,
the top side of R′′1 (the flap of R1) will improperly sit on the top side of R3, or,
vice-versa, the bottom side of R′′1 will improperly sit on the bottom side of R3.

Can we improve this? The answer follows.

448 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

6.4 Solution IV: Flaps with half-twists

This is a variation of Solution III, that additionally takes proper care of the out-
side/inside (or up/down) directions. We achieve this by introducing half-twists (as
used to build Moebius strips), of which at most one half-twist is needed for each
simple region.

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Half twist

Fig. 10. The process described in Solution IV.

Example 14. Figure 10 describes this process.

(a) a given dag with three nodes, 1, 2 and 3;
(b) three simple regions, R1, R2 and R3, still in the same plane;
(c) R1 flapped and half-twisted in three-dimensional space;
(d) final “roller-compacted” representation, where dots represent the thin strip

that was flapped, and the mark × a possible location of the half-twist.

Corollary 1. Dags with transitive arcs can be represented by regions with half-
twisted flaps, with a 1:1 mapping between nodes and regions.

Proof. Since half-twisted flaps are folded flaps, the projection of the boundary of
the base and flaps used for a region is the same region as given in the proof of
Theorems 2 and 3, provided we always twist a fold above its base. ut

Remark 13. This solution solves all our concerns here and seems the best, taking
into account the impossibility result (Theorem 1).

Discovering the Membrane Topology of Hyperdag P Systems 449

1

2

3

4

R4 R3

R2

R1

(a) (b)

(c) (d)

R4 R3 R2R1

R4
R3

R2R1

Half twist

Half twist

Fig. 11. The process described in Solution IV.

6.5 Solution V: Moebius strips

To be complete, we mention another possible solution, which removes any distinc-
tion between up and down sides. This representation can be obtained by repre-
senting membranes by (connected) Moebius strips.

Perhaps interestingly, Solutions IV and V seem to suggest links (obviously
superficial, but still links) to modern applications of topology (Moebius strips and
ladders, knot theory) to molecular biology, for example, see [6].

7 Conclusions

In this paper we have presented several concrete examples of hP systems for the
discovery of basic membrane structure. Our primary goal was to show that, with

450 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

R3

R1

R2

Fig. 12. The process described in Solution IV.

the correct model in terms of operational and communication modes, we could
present simple algorithms. Our secondary goal was to obtain reasonably efficient
algorithms.

We first started with cases, where the cells could be anonymous, and showed,
among other things, how an hP system could (a) broadcast to descendants, (b)
count paths between cells, (c) count children and descendants, and (d) determine
cell heights. We then provided examples where we allowed each cell to know its
own ID and use it as a communication marker. This model is highlighted by our
algorithm that computes all the shortest paths from a given source cell —a sim-
plified version of the distributed Bellman-Ford algorithm, with all unity weights.
For each of our nontrivial algorithms, we illustrated the hP system computations
on a fixed dag, providing step-by-step traces.

We then moved onto a simple solution that can be used to synchronize a subset
(possibly all) of the states of the membrane’s cells. We presented a fast trivial
solution that requires structural extensions, which are straightforward with dags,
but not applicable to trees. In a related paper [5], we describe a sophisticated
solution that works on dags without extending the structure.

Finally, we focused on visualizing hP systems in the plane. We presented a
natural model, using folded simple closed regions to model the membrane inter-
connections, including the transitive channels, as specified by an arbitrary dag
structure of a hP system.

As with most ongoing projects, there are several open problems regarding prac-
tical computing using P systems and their extended models. We end by mentioning
just a few, closely related to the development of fundamental algorithms for dis-
covery of membrane topology.

• In terms of using membrane computing as a model for realistic networking, is
there a natural way to route a message between cells (not necessarily connected
directly) using messages, tagged by addressing identifiers, in analogy to the
way messages are routed on the internet, with dynamically created routing
information?

Discovering the Membrane Topology of Hyperdag P Systems 451

• What are the system requirements to model fault tolerant computing? The tree
structure seems to fail here, because a single node failure can disconnect the
graph and make consensus impossible. Is the dag structure versatile enough?

• Do we have the correct mix of rewrite and transfer modes for membrane com-
puting? For example, in which situations can we exploit parallelism and in
which scenarios are we forced to sequentially apply rewrite rules?

Acknowledgements

The authors wish to thank John Morris and the three anonymous reviewers for
detailed comments and feedback that helped us improve the paper.

References

1. A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems. In
David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Workshop on Membrane Computing, volume 5391 of Lecture Notes
in Computer Science, pages 118–128. Springer, 2008.

2. F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci., 19(5):1183–
1198, 2008.

3. G., R. Desai, and A. Kumar. Membrane systems and distributed computing. In
Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, editors,
WMC-CdeA, volume 2597 of Lecture Notes in Computer Science, pages 187–202.
Springer, 2002.

4. G. Ciobanu. Distributed algorithms over communicating membrane systems. Biosys-
tems, 70(2):123–133, 2003.

5. M.J. Dinneen, Y.-B. Kim, and R. Nicolescu. The firing squad problem revisited
(work in progress). Technical report, The University of Auckland, 2009.

6. E. Flapan. When Topology Meets Chemistry: A Topological Look at Molecular Chi-
rality. Cambridge University Press, 2000.

7. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1996.

8. R. Nicolescu, M.J. Dinneen, and Y.-B. Kim. Structured modelling with hyperdag
P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics and
Theoretical Computer Science, The University of Auckland, Auckland, New Zealand,
December 2008.

9. Gh. Păun. Membrane Computing-An Introduction. Springer-Verlag, 2002.
10. Gh. Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.

Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 1–42. Springer, 2006.

