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Summary. We have recently developed a prototype hardware implementation of mem-
brane computing based on reconfigurable computing technology called Reconfig-P. The
existing hardware design treats reaction rules as the primary computational entities and
represents regions only implicitly. In this paper, we present an alternative hardware de-
sign that more directly reflects the intuitive conceptual understanding of a P system
and therefore promotes the extensibility of Reconfig-P. A key feature of the design is
the fact that regions, rather than reaction rules, are the primary computational entities.
More specifically, in the design, regions are represented as loosely coupled processing
units which communicate objects by message passing. Experimental results show that
for many P systems the region-oriented and rule-oriented designs exhibit similar perfor-
mance and hardware resource consumption. To accomplish a seamless integration of the
rule-oriented and region-oriented designs and other alternative implementation strate-
gies in Reconfig-P, and to make Reconfig-P amenable to future integration of additional
implementation strategies, we have produced a new version of P Builder, our intelli-
gent hardware source code generator. The sophisticated new design for P Builder was
produced in accordance with a novel design pattern called Content-Form-Strategy. We
describe the design and implementation of the new version of P Builder in the paper.

1 Introduction

We have recently developed a prototype hardware implementation of membrane
computing based on reconfigurable computing technology called Reconfig-P. The
existing hardware design treats reaction rules as the primary computational en-
tities and represents regions only implicitly. Consequently there is not always a
direct mapping between the components of the intuitive conceptual understanding
of a P system and the hardware components. Such indirectness is a byproduct of
our attempt to simplify the hardware circuit and therefore promote the perfor-
mance and efficiency of Reconfig-P. Nevertheless, a more faithful rendering of the
intuitive conceptual understanding of a P system in hardware would have benefits
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for the extensibility of Reconfig-P. In particular, it would facilitate the process of
augmenting Reconfig-P to support additional types of P systems. In this paper,
we present an alternative hardware design that more directly reflects the intuitive
conceptual understanding of a P system and therefore promotes the extensibility
of Reconfig-P. A key feature of the design is the fact that regions, rather than
reaction rules, are the primary computational entities. More specifically, in the
design, regions are represented as loosely coupled processing units which commu-
nicate objects by message passing. Experimental results show that for many P
systems the region-oriented and rule-oriented designs exhibit similar performance
and hardware resource consumption. To accomplish a seamless integration of the
rule-oriented and region-oriented designs and other alternative implementation
strategies in Reconfig-P, and to make Reconfig-P amenable to the future integra-
tion of additional implementation strategies, we have produced a new version of P
Builder, our intelligent hardware source code generator. The sophisticated new de-
sign for P Builder was produced in accordance with a novel design pattern called
Content-Form-Strategy. We describe the design and implementation of the new
version of P Builder in the paper.

The contents of the paper are as follows. In Section 2, we discuss the background
to the research described in the paper. In Section 3, we describe the region-oriented
hardware design. In Section 4, we explain some aspects of our implementation of
regions in hardware. In Section 5, we describe the motivation for a new version of
P Builder, and describe its design and implementation. In Section 6, we present
the results of an empirical analysis of the hardware resource consumption and per-
formance of hardware circuits using the region-oriented design. Finally, in Section
7, we draw some conclusions regarding the significance of our contributions.

2 Background

2.1 The intuitive conceptual understanding of a P system

Although in one sense a P system is a pure mathematical construct, in another
sense a P system is seen as having non-mathematical properties. For example, in
an informal discussion of P systems one might speak of membranes ‘dissolving’,
of regions being ‘inside’ other regions, or of objects being ‘consumed’ by reaction
rules. The very frequent use of such physicalistic metaphors in describing the
operation of a P system is, of course, a result of the fact that P systems have since
their introduction been modelled after biological cells. The biological interpretation
of a P system, far from being dispensable, provides one with a means of intuitively
grasping the computational characteristics of P systems.

According to what we call the intuitive conceptual understanding of a P sys-
tem, a P system comprises a hierarchy of membranes, each of which defines a
region that contains a collection of objects and is associated with a set of reac-
tion rules. The P system evolves in a series of stages. At each stage, the reaction
rules in every region are applied. The application of the reaction rules in a region
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results in the occurrence of an object transformation process within the region.
The object transformation processes in the different regions occur independently.
Sometimes an object transformation process results in the movement of objects
between regions. Therefore, although the processes in the different regions occur
independently, they may influence each other indirectly by influencing their re-
spective inputs for the next stage of the evolution of the P system.

Given the intuitive conceptual understanding of a P system, in the context
of implementing P systems on a computing platform, it is natural to regard a P
system as a collection of distributed processing units (the object transformation
processes occurring in the different regions) that interact only by means of message
passing (the transfer of objects).

2.2 Current status of Reconfig-P

Reconfig-P [8] [9] is an implementation of membrane computing based on recon-
figurable hardware (specifically, a field-programmable gate array!) that is able to
execute P systems at high performance. It exploits the reconfigurability of the
hardware by constructing and synthesising a customised hardware circuit for the
specific P system to be executed. The hardware circuit is constructed using the
hardware specification language Handel-C [2].

To maximise performance and minimise hardware resource consumption, the
current version of Reconfig-P takes a minimalistic approach to the implementa-
tion of the features of a P system in hardware. According to this approach, only
those features of the intuitive conceptual understanding of a P system absolutely
necessary to the computational operation of a P system are implemented explic-
itly as processing units or data structures. As a consequence, some features that
are of primary importance in the conceptual understanding of a P system are
not explicitly represented as components of the hardware circuits generated by
the current version of Reconfig-P. Most significantly, membranes and the regions
defined by membranes are not explicitly represented. Instead, the existing imple-
mentation represents these features implicitly as logical constructions arising from
the connections that exist between processing units corresponding to the reaction
rules and arrays corresponding to the multisets of objects available in the regions
of the P system. In other words, the conceptual model of a P system underlying
the design of the current version of Reconfig-P includes only reaction rules and
multisets of objects as primary features; membranes and regions are not directly
represented in the model, but must be inferred on the basis of the connections
that exist between the reaction rules and multisets of objects.

! A standard field-programmable gate array (FPGA) consists of a matrix of configurable
logic blocks (CLBs). The CLBs, which are connected by means of a network of wires,
can be used to implement logic or memory. The functionality of the logic blocks and
the connections between them can be modified by loading configuration data from a
host computer. In this way, any custom digital circuit can be mapped onto the FPGA,
thereby enabling it to execute a variety of applications.
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2.3 Motivation for the alternative hardware design

Although it promotes performance and efficiency, the hardware design used in
the existing version of Reconfig-P has some disadvantages. These disadvantages
diminish the elegance, understandability (and therefore maintainability), flexibility
and extensibility of Reconfig-P. First, by deviating from the intuitive conceptual
understanding of a P system, the design is not as elegant and understandable as it
could be. Second, the design does not facilitate the implementation of P systems
that represent membranes as active entities or include membrane-mediated rules
(such as symport and antiport rules). Third, the design removes the possibility of
adopting an elegant region-oriented strategy for the distribution of computation
across parallel processing units. These three disadvantages have motivated us to
develop an alternative hardware design.

The alternative hardware design proposed in this paper, which we call the
region-oriented design, is intended to

e promote the elegance and understandability of Reconfig-P by more closely re-
flecting the intuitive conceptual understanding of a P system,

e promote the extensibility of Reconfig-P by providing a framework within which
the future implementation of additional types of P systems — especially P
systems that include cell-to-cell connections (e.g., tissue-like P systems [12]
and spiking neural P systems [6]), represent membranes as active entities, or
include membrane-mediated rules (e.g., [1], [10], [3], [11] and [12]) — can more
easily be achieved, and

e facilitate an elegant region-oriented approach to the distribution and paralleli-
sation of the computational activities occurring in a P system.

A region-oriented approach to the distribution of the computational activities
occurring in a P system is desirable because, not only does it match the intuitive
conceptual understanding of how these activities are distributed in a P system,
it also allows a very natural means of scaling the amount of available hardware
resources to suit the size of the P system to be executed. For example, one can
envision implementing a P system using multiple hardware circuits, where each
hardware circuit implements the processing associated with a particular region (or
subhierarchy of regions) of the P system. Indeed, the techniques developed in im-
plementing a region-oriented approach could be adapted to allow the composition
of whole P systems into larger systems. That is, these techniques could be adapted
to allow hardware circuits implementing distinct P systems to communicate and
therefore form a larger system.

3 The region-oriented hardware design

In this section, we provide an overview of the region-oriented hardware design.
For the sake of simplicity, in this overview we do not treat aspects of the design
related to nondeterministic object distribution.
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¥ b main (void)
{
unsigned 8 Reg;
L C v chan C;
clE #| C7 Reg
par
W h 4 {
cC ! 8; // ‘send’
C 7 Reg; // ‘receive’
W W }
}

Fig. 1. Example of a Handel-C chan (channel) construct being used to implement com-
munication between two parallel branches.

3.1 Basic characteristics of the design

In the region-oriented hardware design, instead of being represented only implicitly,
regions are implemented explicitly as hardware components. More specifically, the
design has the following three key attributes:

1. Regions are implemented as core processing units.

2. Region processing units operate independently. That is, each region processing
unit coordinates all the activities occurring in one particular region of the P
system and is not aware of activities occurring in other regions.

3. The movement of objects between regions is implemented as message passing
between region processing units.

A key aspect of the region-oriented implementation is the use of the chan
(channel) construct of Handel-C to accomplish inter-region communication. The
chan construct supports the implementation of synchronous communication be-
tween parallel processing units. The example Handel-C code in Figure 1 shows a
channel C being used to transfer the value 8 to the register Reg.

3.2 Region processing units

Similar to the rule processing units in the rule-oriented design, the region process-
ing units in the region-oriented design complete the execution of a transition in two
phases: an object assignment phase and an object production phase?. In the object
assignment phase, a region processing unit determines the maximum number of

2 The object assignment phase and object production phase roughly correspond to the
preparation phase and updating phase in the rule-oriented design, respectively (see [8]
for details)
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instances, and hence the applicability status, for each reaction rule in the region
in the current transition. In the object production phase, a region processing unit
carries out the consumption, production and communication of objects for the
reaction rules in the region based on their maximum number of instances. In the
case of P systems that contain reaction rules with relative priorities, the region
processing unit must calculate the maximum numbers of instances for those reac-
tion rules with higher priorities before doing so for those reaction rules with lower
priorities. To save clock cycles, the region processing unit carries out the object
consumption for the reaction rules with higher priorities in the object assignment
phase rather than in the object production phase.

Object assignment phase

An important aspect of the hardware design for the object assignment phase is
the way in which the region processing unit respects the relative priorities of
the reaction rules (if indeed such priorities are defined), while minimising the
number of clock cycles required to complete the phase by avoiding the processing
of inapplicable reaction rules.

It is an assumption of the design that reaction rules in a region that consume
common object types are assigned relative priorities (using the relation >, which
is to be interpreted as ‘has higher priority than’). Given this assumption, the set
of reaction rules in a region may be partitioned into (a) a collection of singleton
sets, where for each reaction rule not related by priority to any other reaction
rule, there is exactly one singleton set containing that reaction rule in the collec-
tion, and there are no other singleton sets in the collection, and (b) a collection
of totally >-ordered sets, where each reaction rule related by priority to another
reaction rule is in exactly one totally >-ordered set, and if two reaction rules have
relative priorities then they belong to the same totally >-ordered set. In the ex-
ample illustrated in Table 1, the columns correspond to totally >-ordered sets
of reaction rules. The totally >-ordered sets are: Ty = {R11, R12, Ri3, R14, R15},
T = {RQl,R227R237R24,R25}, and T3 = {R31,R32,R33,R34}. From the sets in
the partition formed in this way, one or more partially time-ordered sets of reac-
tion rules can be constructed that may be interpreted as indicating the possible
temporal orders in which the region processing unit can process the reaction rules
in the object assignment phase. The constraints on the possible temporal orders
are that (a) reaction rules with the same priority should be processed at the same
time, and (b) reaction rules with relative priorities should be processed one after
the other according to their priorities.

The temporal order in which the region processing unit should process reaction
rules in the object assignment phase can be determined at compile-time as follows:
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In parallel
In sequence
Process reaction rules in T}
In sequence
Process reaction rules in 75
In sequence
Process reaction rules in 73

Which of the possible temporal orders is actually followed depends on how
many clock cycles are required to process each specific reaction rule.

It might appear that this static approach allows the degree of parallelisation to
be maximised. However, the approach neglects the fact that reaction rules may be
inapplicable at the outset of the object assignment phase or become inapplicable
as other reaction rules are assigned objects, and therefore may not need to be fully
processed in the phase. To maximise the performance of the implementation, we
use a technique that avoids the processing of inapplicable reaction rules. Naturally,
such a technique must be applied at run-time. The technique involves checking the
applicability status of reaction rules both at the beginning of the phase and when-
ever any objects have been assigned to a reaction rule, and using this applicability
information to determine the temporal order in which the currently applicable
reaction rules should be processed in order to minimise the total number of clock
cycles used in the remainder of the phase. For the example shown in Table 1,
after checking the applicability of the reaction rules at the beginning of the object
assignment phase, the region processing unit determines that only reaction rules
Ry1, R13, R15, Ros, R3o and Rsy are applicable. Based on this information and
the totally >-ordered sets 71, T5 and T3, it determines that the currently most
time-efficient way of processing the reaction rules is to first process R11, Ro5 and
R3o in parallel, then process Ry3 and R34 in parallel, and finally process Ris5. It
then proceeds to process Ri1, Ros and Rso in parallel. After doing this, it again
checks the applicability of the reaction rules, and based on the applicability infor-
mation obtained re-evaluates the temporal order in which the currently applicable
reaction rules should be processed. The region processing unit continues in this
way until no reaction rules are applicable.

It is desirable to implement the dynamic determination of the partially time-
ordered set of executable reaction rules in as few clock cycles as possible. In our
current implementation, the number of clock cycles required to perform this task
is 0. See Section 4 for details about our implementation.

Object production phase

In the object production phase, a region processing unit (a) updates the multiplic-
ities of the object types in its region and attempts to send objects to and receive
objects from the other regions, and then (b) updates the multiplicities of the ob-
ject types in its region based on the objects it has received from other regions. All
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Execution order|Reaction rules Execution order Reaction rules
1 R11|R21| R31 1 Rii1:a |R21:nalR3q:na
2 R12|R22| Ra2 2 Ri2:na|Roz:na| R3z2:a
3 R13|R23| R33 3 Ri3:a |R23:na|R33:na
4 R14|R24| Raa 4 Ri4:na|Re4:na| R3s:a
5 R1s5(R25 5 Ris:a | Ros:a

Table 1. An illustration of how a region processing unit determines the order in which
to process reaction rules in the object assignment phase. The region processing unit
begins with a preliminary order determined at compile-time, as shown in the table on
the left. At the start of the object assignment phase, the region processing unit checks
the applicability of the reaction rules. The results of the applicability check are shown in
the table on the right (applicable reaction rules are labelled ‘a’, and inapplicable reaction
rules ‘na’). The region processing unit then updates the processing order by removing
the inapplicable reaction rules from consideration. The reaction rules that the region
processing unit processes immediately after the first applicability check are shown in
boldface.

of the updating and communication tasks are accomplished in a massively parallel
manner.

To resolve resource conflicts that may occur in the object production phase (i.e.,
situations in which the multiplicity of an object type is to be updated by more than
one parallel process), the region-oriented design includes two resource conflict reso-
lution strategies: the space-oriented strategy and the time-oriented strategy. These
strategies are similar to those adopted in the rule-oriented hardware design (see [8]
and [9]). In the space-oriented strategy, copy registers are created for those object
types whose multiplicities are to be updated by more than one parallel process,
and the relevant parallel processing units store the updated multiplicity values in
their assigned copy registers. The time-oriented strategy involves interleaving the
operations of distinct parallel processes so that update operations which would
conflict if executed in the same clock cycle are executed in different clock cycles.

The space-oriented strategy is implemented in basically the same way in both
the rule-oriented and region-oriented hardware designs, with a couple of differ-
ences. The first difference is that, whereas in the rule-oriented design a special
multiset replication coordinator processing unit needs to be introduced to coor-
dinate the values stored in the copy registers, in the region-oriented design this
coordination task can be performed by the already introduced region processing
unit. The second difference is that in the region-oriented design copy registers do
not need to be introduced for processing units sending objects to the region from
other regions, because the already introduced register dedicated to the storage of
the data received over the relevant communication channel can be used as a copy
register. As in the rule-oriented design, in the region-oriented design, when the
space-oriented strategy is used, the object production phase takes two clock cycles
to complete. In the first clock cycle, register updates implementing the production
of objects by reaction rules local to the region are performed. In the second clock
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cycle, the values stored in the various registers representing multiplicity values of
object types (including registers associated with channels) are coordinated, and
the new multiplicity values for the object types in the region are stored in the
original registers storing such values.
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Fig. 2. An illustration of the region-oriented hardware design in comparison to the
rule-oriented hardware design for a sample P system. (a) The sample P system. (b)
The region-oriented design for the sample P system in which regions are implemented
as processing units that communicate via channels. (c¢) The rule-oriented design for the
sample P system in which reaction rules are implemented as processing units.

The time-oriented strategy is implemented differently in the two designs. In the
rule-oriented design, the way in which updates are interleaved over time can be
completely determined at compile-time, and so can be hard-coded into the source
code defining the hardware circuit (see [8] and [9]). In the region-oriented design,
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a distinction is drawn between internal objects and external objects for a region in
a particular transition. The internal objects of a region in a transition are those
objects produced in the transition by one of the reaction rules associated with
the region. Objects sent to the region during the transition from other regions are
external to the region. While it is possible to determine at compile-time the ap-
propriate interleaving for updating operations occasioned solely by the production
of internal objects, the interleaving for updating operations occasioned wholly or
partly by the receipt of external objects must be determined at run-time. This
is because, to preserve the independence of region processing units, information
about when it might receive external objects is unavailable to the relevant region
processing unit. To accomplish the run-time determination of the interleaving, an
approach based on the use of semaphores is used.

3.3 Synchronisation

It is necessary to synchronise the execution of the object assignment phases of
distinct region processing units. Without such synchronisation, it would be possible
for objects produced in the object production phase for one region to be sent to
another region still in its object assignment phase, thereby improperly interfering
with the results of the object assignment phase in that region.

Unlike in the rule-oriented design, where synchronisation of the object assign-
ment phases of reaction rules across regions is implemented explicitly using signals
and flags, the synchronisation of the execution of the object assignment phases of
distinct region processing units in the region-oriented design is implemented in a
more implicit manner by having region processing units communicate over chan-
nels.

Channels are also used to perform explicit synchronisation at the end of each
transition. The region-oriented design includes a system coordination processing
unit which is responsible for coordinating the execution of the region processing
units so that the transition-by-transition evolution of the P system can be re-
alised. The system coordination processing unit is connected to each of the region
processing units via dedicated synchronisation channels. Once a region processing
unit has completed all of its tasks for a particular transition, it sends a signal
down its synchronisation channel. Once the system coordination processing unit
has received a signal from every region processing unit, it triggers a new transition.

One potential problem associated with the use of channels to implement the
movement of objects between regions is the occurrence of deadlock. Handel-C
channels operate in a synchronous manner. That is, once a pair of processing units
have started engaging in a communication, neither the sending nor the receiving
processing unit can move on to perform other tasks until the communication has
been accomplished. Consequently, unless the operations of sending and receiving
objects among region processing units are conducted in an appropriate order,
deadlock can occur. To prevent deadlock from occurring we ensure that the channel
communications for different regions are carried out in distinct parallel branches
of execution.



A Region-Oriented Hardware Implementation for Membrane Computing 395

Processing unit Processing unit for Processing unit
for region 1 membrans 2 for regicn 2

kE ﬂ

| Reqgion execution coordinator I

Fig. 3. An illustration of the implementation of a P system with an antiport rule (aa,
in; b, out) using the region-oriented design. In this example, two instances of the antiport
rule are executed.

3.4 Extensibility of the design

The region-oriented hardware design makes it possible to implement P systems
with features that require the explicit presence of membranes in an intuitive way.
In particular, each membrane can be implemented as a processing unit associated
with two region processing units (corresponding to the inner and outer regions of
the membrane) (see Figure 3). Such a membrane processing unit could, for exam-
ple, mediate the exchange of objects between regions effected by antiport rules.
For an antiport rule to be applicable, enough objects of the right types need to be
available in both regions. As each of the two region processing units for the two
regions do not know the multiset of objects available in the other region, it is not
possible for the region processing units to implement the antiport rule on their
own — a membrane processing unit is also required. Nevertheless, it is still pos-
sible for the membrane processing unit to remain quite independent from the two
region processing units. For example, the region-oriented hardware design could
be augmented to implement antiport rules as follows. The region processing units
for the inner and outer regions send objects to a membrane processing unit. The
membrane processing unit attempts to couple objects in the way specified by the
antiport rule, and sends coupled objects to their destination regions and returns
uncoupled objects to their regions of origin. In this way, not only do the region pro-
cessing units not know about each other’s multiset of objects, but the membrane
processing unit does not need to know this information either. It is sufficient that
both region processing units know about the existence of the membrane processing
unit.
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4 Implementing regions in hardware

In this section, we describe how the regions of a P system are implemented using
Handel-C when the region-oriented hardware design is adopted.

4.1 Atomic operations associated with the application of reaction rules

From one perspective, the overall behaviour of a P system emerges from the ap-
plication of reaction rules. At the implementation level, the execution of a single
application of a reaction rule involves the execution of a certain number of in-
stances of each of a set of logically atomic operations:

Rule execution = (pDIV, ¢MIN, rMUL, sSUB, tCOM, uADD), where

p=0orl,q,r, s, t, u>0, DIV denotes the operation of dividing the mul-
tiplicity of the objects of a given type available in the region by the number of
objects of that type required for the application of one instance of the reaction
rule, MIN denotes the operation of computing the maximum number of instances
of the reaction rule that can be applied in the current transition, MUL denotes
the operation of computing the number of objects of a particular object type to be
consumed/produced by the reaction rule in the current transition, SUB denotes
the operation of reducing the multiplicity of a particular object type available
in the region (by a certain amount), COM denotes the operation of sending (or
attempting to send) a certain number of objects of a particular type to a par-
ticular region, and ADD denotes the operation of increasing the multiplicity of a
particular object type available in the region (by a certain amount).

In Reconfig-P, each of the above operations is realised as an atomic operation.
These atomic operations are the building blocks for the construction of any partic-
ular hardware circuit. The names of the operations reflect the main computational
operations involved in their implementation. Mapping the atomic operations onto
a hardware circuit requires making decisions about their temporal granularity. At
fine granularity, an operation is performed over multiple clock cycles and therefore
needs to be decomposed into suboperations. At coarse granularity, an operation
is performed in one clock cycle. Although assigning a logically atomic operation
a fine granularity at implementation results in a greater number of clock cycles,
it often reduces logic depth, and therefore can lead to an increased system clock
rate.

To determine the appropriate degree of granularity for a given logically atomic
operation, it is necessary to examine the implementation characteristics of the
operation in terms of hardware resource consumption and logic depth. Multipli-
cation and division can generate complicated combinatorial circuits and therefore
in general are expensive to implement in one clock cycle. However, in the specific
case of the execution of a P system, in both multiplication and division operations
one of the operands is a constant. This significantly reduces the logic depth of
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the combinatorial circuits that implement the operations®. Addition and subtrac-
tion are relatively inexpensive operations and, based on the performance results
for the current version of Reconfig-P (reported in [8]), do not compromise the
performance of the hardware circuit. Given these considerations, in the hardware
implementation the default scenario is that each of the logically atomic operations
is performed in one clock cycle. However, to accommodate situations in which a
large number of processing units is required and therefore the system clock rate
would otherwise be compromised significantly, P Builder has the ability to gen-
erate the hardware circuit in such a way that the logically atomic operations are
performed over several clock cycles.

4.2 Implementations of the logically atomic operations

We now describe how we have implemented the logically atomic operations iden-
tified in the previous section in hardware.

DIV and MUL The DIV and MUL operations are implemented in a similar way.
The obvious implementation approach is to devote a separate piece of hardware
to the execution of each of the operations for each reaction rule. However, this
approach would lead to unnecessary duplication of hardware resources because it
is often the case that different reaction rules consume/produce the same number
of objects for an object type (i.e., the multiplicity of the consumed/produced
object type is the same in the definitions for the reaction rules). Duplication of
hardware resources can be particularly problematic when Handel-C is used as the
specification language, since the Handel-C compiler generates distinct pieces of
hardware for the same division or multiplication operation if this operation occurs
in different places in the source code. Our solution to the problem of unnecessary
hardware duplication is to have distinct DIV/MUL operations which share the
same operands implemented as a single processing unit, and for the collection
of all such processing units to be implemented as a pool of servers. The DIV
and MUL servers continuously perform their respective division/multiplication
operations. They execute their operation in one clock cycle, and then store the
result in an output register. Each of the servers has direct access to the data
for both operands for its operation, and so operates totally independently from its
clients. A client processing unit that needs to evaluate one of the relevant divisions
or multiplications is required to invoke the appropriate server (but is not required
to supply any input to the server). It first waits for one clock cycle (to allow the
server to execute its operation with the current values for the operands), and then
reads the appropriate output register to obtain the result. As there is one division
pool and one multiplication pool per region (rather than for the P system as a

3 The Xilinx Virtex-II FPGA used in the implementation contains hardware multipliers
that allow efficient and high-performance implementation of multiplication operations
[13]. However, where one of the operands is a contant, multiplications can be more ef-
ficiently implemented on slices using either bitshifts or constant coefficient multipliers.
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Fig. 4. An illustration of the implementation of a pool of DIV servers.

whole), our implementation approach does not cause routing problems. Figure 4
shows an example of a pool of DIV servers.

MIN For reasons similar to those described above, a pool of processing units is
used to perform MIN operations. By default, each MIN operation is implemented
as a hard-coded Handel-C macro expression which executes in one clock cycle.
However, as the logic depth of a MIN operation is linearly proportional to the
numbers of object types consumed by the reaction rules in the region, a MIN
operation can easily be subjected to logic depth reduction.

SUB As reaction rules with relative priorities are not processed simultaneously,
there are two implementations of the SUB operation: SUBy; and SUBgr. SUB); is
used for those reaction rules that are unrelated by priority to any other reaction
rule. It is implemented in Handel-C as a macro expression, which corresponds to
a single unshareable piece of hardware with both operands hard-coded. SUBy is
used for reaction rules with relative priorities. It is implemented as a Handel-C
function, which corresponds to a single shareable piece of hardware. Since in gen-
eral the subtractions performed by different reaction rules have different operands,
to make SUBp processing units shareable among the processes implementing the
application of reaction rules, the implementation of a SUBg processing unit op-
erates at the level of object types rather than at the level of reaction rules. More
specifically, there is a SUBp processing unit for each object type.

ADD All ADD operations (which are used in the implementation of the produc-
tion of objects by reaction rules, a process which is not subject to any temporal
constraints) can in principle be executed simultaneously. However, unless appro-
priate precautions are taken, the parallel execution of ADD operations can result
in parallel processes attempting to update the same register at the same time.
There are two main strategies for the avoidance of such update conflicts: the time-
oriented strategy and the space-oriented strategy (see Section 3.2).

When the space-oriented strategy is used, for each copy register there is one
ADD); processing unit responsible for updating that register. Each ADDy; process-
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ing unit is implemented as a Handel-C macro. This allows all updating operations
in the object production phase to be completed in one clock cycle.

When the time-oriented strategy is used, there are three types of processing
units implemented. The first type, called ADDyy, is used to update the multiplic-
ity value for an object type with no conflicts. The second type, called ADDg, is
used to update the multiplicity value for a local object type with conflicts. The
third type, called ADDg, is used to update the multiplicity value for an external
object type. ADDg implements semaphore-based interleaving using the trysema
and releasesema constructs provided by Handel-C.

COM COM operations, which apply only to the region-oriented design, are im-
plemented using channels (see Section 3). Whenever it is possible for objects to
move from one region to another region, the implementation includes a channel
connecting the region processing unit for the source region to the region process-
ing unit for the destination region. There are various ways in which one could
implement inter-region communication using channels. The approach one takes
influences the number of channels required, as well as the amount of processing
needed to complete sending and receiving operations. We will now briefly discuss
three possible implementation methods.

In the first method, for every reaction rule r in a region = that sends objects
(of any type) to a region y, there is exactly one channel connecting the region
processing units for x and y. This channel is used only for the distribution of objects
produced by r. Therefore, the data sent over the channel must allow the region
processing unit for y to determine which object types are being sent and how many
of each type are being sent. To avoid making the definition of r available to the
region processing unit for y (and thereby compromising the independence of this
region processing unit), this could be achieved by having the region processing unit
for x send an n-tuple over the channel, where n is the number of object types found
in the whole P system (not only those produced by r destined for y), which contains
for each object type found in the whole P system the multiplicity of that object
type being sent to y. Upon receiving the n-tuple, the region processing unit for y
would proceed to update the multiset array for y. Obviously, if there are multiple
reaction rules in x that produce objects destined for y, there will be multiple
channels between the region processing units for  and y. The region processing
unit for y would need to coordinate the data received over these channels, as it
would receive data relating to the same object type on different channels.

As it is possible to determine at compile-time which types of objects might
be produced by which reaction rules and sent to which regions, it is possible to
hard-code the relevant pieces of this information in the implementation of the
receiving region processing unit. The second method of implementing inter-region
communication illustrates this possibility. To implement this method, we would
need to relax (albeit to a minimal extent) our requirement that region processing
units be independent of each other. In the method, for each reaction rule r in a
region x and for each object type o produced by r to be sent to a region y, there
is exactly one channel connecting the region processing units for z and y. This
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Fig. 5. An illustration of different strategies of implementing inter-region communication
using channels. Diagram (a) illustrates the first method mentioned in the text, diagram
(b) illustrates the second method, and diagram (c) illustrates the third method.

channel is used only for the distribution of objects of type o produced by r destined
for y. Assume that the region processing unit for y has access to information about
which channel is associated with which object type. Then the region processing
unit for z needs to send only the multiplicity value for o (i.e., the number of objects
of type o that are to be sent in the current transition) down the channel. As in
the first method, because the region processing unit for y might receive objects of
the same type on different channels, it needs to coordinate the data received over
the different channels before proceeding to update the multiset array for y.

In the third method, for every object type that might be produced in a region x
and sent to a region y, there is exactly one channel between the region processing
units for x and y. Again assume that the region processing unit for y knows which
channel is associated with which object type. In this scenario, the region processing
unit for x needs to evaluate for each object type the total number of objects of
that type to send before engaging in the relevant channel communication. Once
it has done this, it sends a single value down the channel. The region processing
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unit for y simply stores this value in the appropriate register of the multiset array
for .

Figure 5 illustrates the three methods of implementing inter-region communi-
cation described above.

We now discuss the relative merits of the three methods of implementing inter-
region communication. As regards faithfulness to the biological inspiration of P
systems, we rank the third method highest. The first method is perhaps the least
in keeping with the biological inspiration of P systems. If we regard the channels
in the implementation as representations of cellular transport mechanisms (such
as ion channels and osmosis), and reaction rules as representations of chemical
reactions, then according to the first method each cellular transport mechanism
facilitates the transportation of only the products of a single chemical reaction. In
the general case, this is biologically unrealistic. The second method is also quite
removed from the biological inspiration of P systems in that cellular transport
mechanisms would again be regarded as facilitating the transportation of only the
products of a specific chemical reaction. The third method is the most biologically
realistic because, in this method, cellular transport mechanisms would be regarded
as facilitating the transportation of single types of chemicals (such as potassium
ions), as is commonly found in biological cells. As regards the extent to which
the independence of region processing units is preserved, the first method ranks
highest, with the second and third methods being roughly equivalent. Even so,
neither the adoption of the second method nor the adoption of the third method
would result in a significant reduction in the independence of region processing
units. This is because in these methods the information a region processing unit
possesses about other region processing units is available only in an implicit sense.
The information is embedded into the very structure of the region processing unit,
and so the region processing unit does not explicitly refer to this information
when carrying out its operations. As regards efficiency, the third method ranks
highest, both in terms of the number of channels used and the amount of processing
required. Based on the considerations just outlined, we decided to adopt the third
method when implementing the region-oriented design.

4.3 Linking and synchronisation

In the previous section, we described the hardware components that implement the
logically atomic operations. To realise operations occurring at the level of reaction
rules, at the level of regions, or at the level of the entire P system, it is necessary to
link and synchronise the execution of these basic components. In this section, we
describe how the components are linked and synchronised to accomplish some of
the processing performed by a region processing unit. We have chosen to focus on
this particular case because it is fundamentally important to the region-oriented
design.

Figure 6 shows a high-level UML activity diagram for the object assignment
phase of the execution of a region processing unit (see Section 3.2 for a description
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of this phase). Hardware components for logically atomic operations (described in
Section 4.2) are represented as shaded boxes in the diagram. This section contains
a description of how the other aspects of the diagram — the control flow, linking
and synchronisation represented by arrows, solid bars and unshaded boxes — are
implemented in hardware.

Linking and synchronisation within a region processing unit

To implement the simple internal control flow within a region processing unit, we
use the basic control constructs provided by Handel-C. For example, the arrows in
the activity diagram shown in Figure 6 are implemented using the seq construct,
the solid bars are implemented as par constructs, and diamonds are implemented
using conditional constructs such as if.

Linking and synchronisation between a region processing unit and
external processing units

In the implementation of the object assignment phase of a region processing unit, it
is necessary to link the region processing unit with processing units implementing
the logically atomic operations DIV, MIN, MUL, SUB and ADD, and to syn-
chronise the execution of the region processing unit with these other processing
units.

In our implementation, processing units may be categorised according to
whether they execute constantly without invocation or execute only when invoked.
Among the processing units that execute constantly are the processing units im-
plementing the DIV and MUL operations as well as a processing unit responsible
for checking whether at least one reaction rule in the region is applicable (see
below). Due to the continuous execution of these processing units, when a region
processing unit uses one of these processing units, it needs to read the register in
which the processing unit stores the result of its computation. However, to ensure
that it reads the result applicable to the current transition, the region processing
unit must wait for the currently applicable data to be stored in the register. This
can be done by inserting the appropriate number of delay statements in the rel-
evant section of the Handel-C code implementing the region processing unit or,
preferably, by having the region processing unit perform other processing during
the clock cycles over which the external processing unit is performing the currently
applicable computation. As for the processing units that must be invoked, a re-
gion processing unit can invoke these processing units efficiently by using a set of
signals and flags as follows:
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//Processing unit 1:
while(1) {

signal = 1; // clock cycle x

}

//Processing unit 2:
while(1) {

par{
flag = signal; //clock cycle x
if(flag == 1) {
... //clock cycle x+1
} else
delay;

Checking the region applicability status

Our implementation of the region-oriented design includes for each region process-
ing unit a processing unit which is responsible for checking whether at least one
reaction rule in the relevant region is applicable. This processing unit is used by
the region processing unit for the purpose of preemptive termination. After the
region processing unit calculates the maximum number of instances of a reaction
rule, it immediately records the applicability status of the reaction rule in a 1-bit
register. The external processing unit reads the applicability registers for all the
reaction rules in the region, computes whether there is at least one applicable reac-
tion rule, and then writes the result to a 1-bit output register. Therefore there is a
single delay statement in the Handel-C code implementing the region processing
unit just before the code implementing the reading of the output register.

Reporting completion

As mentioned in Section 3.3, our implementation of the region-oriented design
includes a system execution coordinator processing unit, which is responsible for
checking whether all region processing units have completed their executions for
the current transition, and triggering a new system transition when this condition
is satisfied. In the implementation, once it has completed its operations for the cur-
rent transition, a region processing unit signals this fact to the system execution
coordinator via a synchronisation channel (see Figure 2). The following Handel-C
code shows how this is achieved in the case where there are two region processing
units.
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//Region processing unit 1
while(1) {

synChani !1; //report completion

}
//Region processing unit 2
while(1) {
synChan2 !1; //report completion
}
//System execution coordinator
while(1) {
par {
synChanl ? templ; //receive completion signal on first channel
synChan2 ? temp2; //receive completion signal on second channel
}
//trigger new transition
}

Determining which reaction rules are applicable

As discussed in Section 3.2, when processing reaction rules in the object assignment
phase, it is advantageous for a region processing unit to check the applicability
of the reaction rules. If a reaction rule is inapplicable, it need not be processed
further. The implementation approach for the applicability checking operation
that most readily comes to mind is the use of if and else constructs. However,
because the Handel-C compiler enforces an else implementation with every if
implementation, unless one is willing to spread the operation over multiple clock
cycles, this approach will in general result in a deeply nested if-else construction.
This problem does not arise if goto statements are used instead of else constructs.
Consequently, in our implementation we use goto statements. Such statements are
inserted just before the code implementing the processing of a reaction rule, and
allow this code to be skipped. The combination of goto statements results in a
hardware state machine which allows the region processing unit to process the
reaction rules in the most time-efficient manner. Specifically, if it is found that
a reaction rule is inapplicable, the control will jump to the part of the code for
the reaction rule with the highest priority out of all the remaining reaction rules.
Because if and goto statements take zero clock cycles to execute, no clock cycles
are wasted in determining which reaction rule should be processed next. Taking
this implementation approach allows the various reaction rules to be processed in
a consistent manner, and therefore greatly simplifies the control flow required for
the processing of the reaction rules.
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5 Design and implementation of a new version of P Builder

The existing version of Reconfig-P implements only the rule-oriented hardware de-
sign. In the previous sections, we have described a new design, the region-oriented
design. The region-oriented design has several attractive features, such as its faith-
fulness to the intuitive conceptual understanding of a P system and its modularity.
Nevertheless, the rule-oriented design has features which make it preferable to the
region-oriented design in many scenarios. For example, since the adoption of the
rule-oriented design can result in a higher system clock rate, a user of Reconfig-P
might prefer to use the rule-oriented design when high performance is a prior-
ity. Given that the rule-oriented design and region-oriented design have different
strengths and weaknesses, it is desirable to include both in Reconfig-P. That way,
the decision about which design is most suited to the problem at hand can be
left to the user or made based on an analysis of the characteristics of the input P
system.

P Builder, implemented in Java, is the component of Reconfig-P responsible
for generating customised Handel-C source code for the input P system. When
developing the new version of Reconfig-P, we re-engineered P Builder so that
it can accommodate both the rule-oriented and region-oriented designs. When re-
engineering P Builder, we aimed at promoting its maintainability and extensibility
through the use of appropriate software engineering design patterns. In this section,
we explain the design and implementation of the new version of P Builder.

5.1 Requirements for the new version of P Builder

When determining the hardware specification for the input P system, P Builder
aims to maximise performance and minimise hardware resource consumption. The
existing version of P Builder achieves this aim, as evidenced by the fact that the
existing version of Reconfig-P delivers a good balance between performance, flex-
ibility and scalability as a computing platform for membrane computing applica-
tions. Performance refers to the extent to which the system can execute P systems
in a time-efficient manner. Flexibility refers to the extent to which the system can
support the execution of a variety of classes of P systems. And scalability refers
to the extent to which the system can support the execution of large P systems.
Our primary purpose in re-engineering P Builder was to improve the flexibility of
Reconfig-P, while not too significantly compromising its existing levels of perfor-
mance and scalability. More specifically, our primary purpose was to broaden the
range of implementation approaches according to which P system models can be
realised as hardware circuits, and to develop a sophisticated object-oriented design
that promotes the maintainability and especially the extensibility of Reconfig-P,
where extensibility refers to the extent to which the system can readily be aug-
mented to support additional P system models and additional implementation
approaches.
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Fig. 7. The high-level architecture of the new version of P Builder, which was developed
according to the Content-Form-Strategy design pattern.

5.2 Design methodology

In the design of the new version of P Builder, our guiding design principle was
that of separation. First, we viewed the hardware implementation for a P system
as a complex of form and content, and attempted to treat the formal aspects
of this complex in isolation from its content. Second, we attempted to cleanly
separate the different functions performed by P Builder. We achieved the first
type of separation through the use of a novel design pattern, and achieved the
second type by allocating different functions to different modules. We now briefly
discuss these separation strategies.

The Content-Form-Strategy design pattern

The basic problem that P Builder is intended to solve is the generation of Handel-C
source code for a hardware circuit which implements an input P system according
to one of a variety of alternative implementation strategies (for example, with a
rule-oriented design and space-oriented resource conflict resolution). This problem
can be viewed as an instance of a more general problem: that of producing an
algorithm for the solution of a problem, where this algorithm must be constructed
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according to one of a variety of possible implementation strategies. An implemen-
tation strategy does not affect the logical characteristics of an algorithm, but only
its implementation characteristics (such as performance or memory usage). When
constructing such an algorithm, it is beneficial to separate as much as possible
the logical characteristics of the algorithm from its implementation characteris-
tics. Not only does this make the algorithm easier to understand, it also facilitates
the use of new implementation strategies in the future. However, it is often quite
difficult to achieve a clean separation of the logical and implementation aspects
of an algorithm. Our novel design pattern, which we call Content-Form-Strategy,
prescribes a general solution to the general problem just outlined.

A key idea of the Content-Form-Strategy pattern is that an algorithm may be
viewed as a complex of form and content, where the units of content are logically
atomic computational operations and the form is the way in which these units of
content relate to each other logically and temporally. If an algorithm is viewed
as a flowchart such as that shown in Figure 6, then the shaded boxes in the
flowchart comprise the content of the algorithm, and the diamonds, arrows, bars
and unshaded boxes comprise the form of the algorithm. Note that computational
operations that are included in the algorithm solely for the purpose of linking and
synchronising other computational operations are regarded as part of the form
of the algorithm (they would be represented as unshaded boxes in a flowchart).
A strategy for the construction of an algorithm influences both the content and
form of the algorithm. That is, different strategies may require the inclusion of
different logically atomic computational operations, and will necessitate different
logical and temporal relationships between these operations.

The solution prescribed by the Content-Form-Strategy design pattern consists
of nine steps:

1. Define an abstract model of an algorithm as expressed in the desired imple-
mentation language.

2. For each implementation strategy, identify the logically atomic computational
operations in terms of which the algorithm to be constructed can be defined.

3. Express the logically atomic operations identified in step 2 in terms of the
elements of the abstract model of an algorithm defined in step 1.

4. For each implementation strategy, and for each of the logically atomic op-
erations identified in step 2, determine (a) the preprocessing operations and
postprocessing operations (if any) for the execution of the operation, (b) the
data writing (if any) performed by the operation, and (c) the temporal rela-
tionship of the operation with all the other logically atomic operations.

5. Express the preprocessing operations, postprocessing operations, data writing
and temporal relationships determined in step 4 in terms of the elements of
the abstract model of an algorithm.

6. Based on the results of steps 2 and 4, identify (a) the logically atomic com-
putational operations that apply to all implementation strategies, and (b) in-
variant preprocessing operations, postprocessing operations, data writing and
temporal relationships (i.e., those preprocessing operations, postprocessing op-
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erations, data writing and temporal relationships that obtain regardless of the
implementation strategy).

7. Based on the result of step 6, define a template algorithm which specifies the
features common to all possible algorithms for all implementation strategies
in terms of the elements of the abstract model of an algorithm.

8. For each implementation strategy, define an algorithm for the filling out of the
template algorithm defined in step 7 in terms of the elements of the abstract
model of an algorithm.

9. Express each of the algorithms defined in step 8 in the desired implementation
language.

Table 2 illustrates how the Content-Form-Strategy design pattern applies to the
specific problem of generating Handel-C source code for a circuit that implements
an input P system according to one of a variety of alternative implementation
approaches.

Modularisation

The new version of P Builder has been designed as a set of modules. Components
within a module are relatively tightly coupled, whereas components in different
modules are relatively loosely coupled. Each module has a well-defined interface
which indicates the high-level functions performed by the components in the mod-
ule. Via this interface, components in other modules can make use of these func-
tions. Because of the relatively loose coupling between modules, future modifica-
tions to a module will usually not necessitate changes in other modules. Clearly,
this improves the maintainability of P Builder.

5.3 Overview of the design and implementation

Figure 7 shows the high-level architecture of the new version of P Builder. This
architecture was designed according to the Content-Form-Strategy design pattern.
The UML class diagram shown in Figure 10 indicates how some elements of the
architecture are implemented as classes.

The main modules in P Builder are P System Representation, Strategies, Oper-
ation Builder, System Utilities, State Machine and Hardware Circuit Abstraction.
The modules have been designed and implemented with the aid of object-oriented
design patterns [4], which prescribe thoroughly tested and effective solutions to de-
sign problems, and therefore enable the creation of flexible, elegant and reusable
object-oriented designs?. We now briefly describe the modules.

4 For more information about object-oriented design patterns, we refer the reader to [4],
the classic reference in the field.
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P System Representation

The P System Representation module provides an object-oriented representation of
a P system. It specifies classes of entities (such as Region, Rule and ObjectType),
attributes of these classes (such as the mul-

tiplicity attribute of the ObjectType class), and relationships that hold between
classes (such as the reflexive one-to-many relationship of containment that holds
for the Region class). The main purpose of this module is to allow P Builder to
represent the input P system as an object.

Hardware Circuit Abstraction

The Hardware Circuit Abstraction module provides an abstract representation of
a Handel-C specification of a hardware circuit.

A hardware circuit may be regarded as a complex processing unit composed
of simpler processing units. The most elegant and efficient way to represent such
a compositional structure of processing units in an object-oriented system is to
use of the Composite design pattern [4]. This pattern prescribes a way of repre-
senting part-whole hierarchies using tree structures of objects. The advantage of
using the Composite pattern is that it allows atomic objects (individual objects)
and composite objects (trees of objects) to be treated uniformly. Therefore in P
Builder we represent a Handel-C specification of a hardware circuit as a tree of
processing units. There are two types of processing units: parallel processing units
and sequential processing units. A processing unit may contain other processing
units. If a sequential processing unit contains other processing units, then these
other processing units are to be executed sequentially. If a parallel processing unit
contains other processing units, then these other processing units are to be ex-
ecuted in parallel. A processing unit which is not composed of other processing
units is called an atomic processing unit. For the sake of neatness, we regard an
atomic processing unit as a parallel processing unit. Each atomic processing unit is
associated with the specification of an operation, which we call a statement, which
executes in the smallest possible time interval. Atomic processing units correspond
to Handel-C statements, which execute in one clock cycle. The root node of the
tree of processing units, which is called the root processing unit, represents the
full execution of the hardware circuit. It corresponds to the main function in the
Handel-C program for the circuit. In the region-oriented design, the region pro-
cessing units are immediate children of the root processing unit, whereas in the
rule-oriented design the immediate children of the root processing unit include the
rule processing units. The leaf nodes of the tree are all atomic processing units.
To allow for the representation of control flow, every processing unit begins with
a preprocessing phase and ends with a postprocessing phase. Each type of phase
consists of a sequence of zero or more operations. Such an operation might be the
checking of a condition (for example, the condition for a while loop), the execu-
tion of a single statement (for example, the storage of data in a register), or the
execution of a collection (block) of statements.
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Aspect of Content-
Form-Strategy pattern

Example of how the aspect applies to
the generation of a hardware
circuit for a P system

Algorithm to be
generated

Handel-C program that specifies the
hardware circuit for the input P system

Current implementation
approaches

Rule-oriented /region-oriented design;
space-oriented /time-oriented resource
conflict resolution; deterministic/
nondeterministic execution

Possible future
implementation approaches

Alternative algorithms for
nondeterministic object distribution

Logically atomic
computational operations

DIV, MIN, MUL, SUB, COM, ADD
(see Section 4.2)

Preprocessing for the
execution of a logically
atomic operation

An ADD operation proceeds only
if the corresponding reaction
rule is applicable

Temporal relationship
between logically atomic
operations

A SUB operation should execute
only after its associated
MIN operation has executed

Operations included solely
for the purpose of linking
and synchronisation

Operations performed
by system execution
coordinator

Abstract model of an algorithm
as expressed in the
implementation language

Abstract model of a
hardware circuit as expressed in
a Handel-C program

Template algorithm

An algorithm that specifies
the high-level stages of a
transition (e.g., object assignment)

Filling out of
the template algorithm

Inclusion of object assignment
for reaction rules with
priorities and object production when
space-oriented strategy is used
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Table 2. Illustration of how the Content-Form-Strategy design pattern applies to the
problem of generating Handel-C source code for a circuit that implements an input P
system according to one of a variety of implementation approaches.

The UML class diagram in Figure 9 explains how these ideas are represented in
the implementation of P Builder. Figure 8 shows an example of Handel-C source
code generated from a tree of processing units. The correspondence between the
processing units and code sections is marked in the figure.
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Fig. 8. Illustration of the correspondence between Handel-C source code and a tree of se-
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General design for all modules

All the modules share the same basic structure. More specifically, each module
contains four layers. The top layer is an interface which is exposed to the other
modules. The rest of the layers constitute a hierarchy of classes. The second layer
is a class that implements general operations for the module. When a client mod-
ule requests that one of these operations be performed in a certain way, the class
returns the specific subclass that implements the operation as requested. The third
layer consists of classes responsible for implementing specific overall implementa-
tion strategies (the currently available overall implementation strategies are the
rule-oriented and region-oriented strategies). The bottom layer consists of classes
responsible for implementing resource conflict resolution strategies (the currently
available resource conflict resolution strategies are the space-oriented and time-
oriented strategies).

Strategies

The Strategies module contains classes that realise different overall strategies for
the implementation of a P system on a hardware circuit. Currently there are
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Fig. 9. The main classes of entities used in an abstract representation of a hardware
circuit.

classes for the rule-oriented and region-oriented strategies. This module could be
extended to include classes for other strategies, such as nondeterministic reaction
rule application (see [7]).

GeneralStrategy

The top-level class of this module is GeneralStrategy. This class implements
the features common to all strategies. Depending on the requirements of the client
using the Strategies module, a specific strategy for the implementation of the input
P system on a hardware circuit needs to be applied. To decouple the client from the
various complex algorithms for the specific strategies, the Strategy design pattern
[4] is used. This design pattern states that a family of algorithms solving the same
problem in different ways should be defined in such a way that (a) the algorithm
that is used to solve the problem for a client is selected dynamically based on
the specific requirements of the client, and (b) the client does not need to know
which particular algorithm is used. In our design, the algorithms for the different
strategies are implemented in different subclasses of the GeneralStrategy class,
which implements the StrategyInterface interface. When a client wishes for the
strategy most appropriate to its requirements to be applied, it needs only to pass
its requirements as parameters to an instance of a class called StrategySelector,
which returns an instance of a subclass of GeneralStrategy which satisfies the
requirements, and then invoke the execute () method of the returned instance. So
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all the client needs to know is its own requirements and the interface specified in
StrategylInterface.

One way of implementing different strategies for the hardware representation
of the execution of a P system and for resource conflict resolution is to implement
each specific algorithm in a separate class. However, taking such an approach
would likely result in duplication of code, which is bad for maintainability. Hence
a better implementation approach is required.

As discussed in Section 3.2, the high-level execution algorithm that underlies
each of the different implementation strategies consists of an object assignment
phase and an object overall production phase, each of which is defined in terms of
a set of logically atomic operations. Distinct strategies for the hardware represen-
tation of the execution of a P system differ with respect to the way in which the
logically atomic operations are put together to realise high-level operations. There-
fore, we implement the high-level execution algorithm in the GeneralStrategy
class, and implement the specialised versions of the execution algorithm for the
different strategies in different subclasses of GeneralStrategy. This is achieved in
an elegant way through the use of the Template design pattern [4]. By following
this design pattern, we can enforce that specialised algorithms in the subclasses
conform to the high-level algorithm, and make the implementation transparently
reflect the logical characteristics of the execution of a P system. A template method
in a superclass defines the skeleton of an algorithm, which can be filled out in
different ways in different subclasses. That is, a subclass fills some or all of the
placeholders in the template method in order to implement a more specialised algo-
rithm. As shown in Figure 10, the algorithms defined by the assignObjects() and
produceObjects () methods, which implement the object assignment and object
production phases in terms of the logically atomic operations, are implemented as
template methods. They define the sequence of logically atomic operations that
needs to be executed to accomplish the processing for the relevant phase. Each
method is declared as final in order to prevent subclasses from overriding the
method (and therefore from being able to change the order in which the logically
atomic operations are executed). To define specialised algorithms, one need only
provide implementations of the logically atomic operations in the subclasses of the
class containing the template method.

SpecificImplementationStrategy

A SpecificImplementationStrategy class implements the execution algorithm
for a specific overall implementation strategy (i.e., currently either the rule-
oriented strategy or region-oriented strategy). This can be achieved by (a) im-
plementing the relevant atomic operations defined in the template methods for
assignObjects() and produceObjects() so that the object assignment and ob-
ject production phases take on the specific behaviours characteristic of the imple-
mentation strategy, and/or (b) implementing suitable wrapper code for the object
assignment and object production phases.
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Fig. 10. A high-level view of the major modules in P Builder and their relationships.
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SpecificImplementationAndConflictResolutionStrategy

A SpecificImplementa-

tionAndConflictResolutionStrategy class represents a strategy combining both
an overall implementation strategy and a resource conflict resolution strategy
(e.g., a combination of the region-oriented implementation strategy and the time-
oriented resource conflict resolution strategy). The class implements the specific
resource conflict resolution strategy by implementing the methods relevant to re-
source conflict resolution. For instance, because the updating of the multiset of
objects in a region is accomplished in different ways in the different resource con-
flict resolution strategies, the definition of the method which is devoted to this
operation is deferred to the SpecificImplementationAndConflictResol-
utionStrategy classes.

Builder

Instead of having each implementation class implement the complicated steps of
generating the source code for a logically atomic operation, which would result
in complicated code, we separate the actual construction of complex objects from
the high-level procedure or algorithm according to which the construction is to
proceed by delegating the actual construction to other classes. This is done in
accordance with the Builder design pattern [4].

The Builder module has a similar structure to the Strategy module, and the
classes in each of its layers fulfil similar roles. Briefly, a BuilderManager determines
the specific Builder to instantiate and execute based on the options passed by the
client to the Strategies module. The BuilderInterface interface specifies the ba-
sic functionality of Builder instances. The Builder class defines a template method
which specifies all the steps a specific Builder implementation should execute (see
Figure 10), and is responsible for selecting the specific Builder to execute given the
client’s requirements. The SpecificBuilder classes implement concrete Builder
implementations for specific atomic operations (e.g., ADDBuilder, DIVBuilder and
COMBuilder). The classes in the bottom layer of the module refine these concrete
Builder implementations in order to accommodate the overall implementation
strategy and conflict resolution strategy.

One of the major operations a concrete Builder implementation carries out is
generateFunctionPUnit, which involves generating the hardware component that
implements a specific logically atomic operation. There may be more than one ap-
proach to the implementation of the operation. For instance, at present the MIN
operation is implemented as a macro expression which executes in one clock cycle.
However, when the input P system is large, one might wish to apply logic-depth
reduction in the implementation of this operation, or implement the operation in a
different way. To add flexibility to the implementation of hardware components for
the logically atomic operations, the Visitor pattern [4] is used. The Visitor pattern
applies to contexts in which an operation needs to be performed on elements of
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an object structure. It allows a new operation to be defined without changing the
classes of the elements on which it operates. The source code below illustrates how
the Visitor pattern allows the addition of a new method of implementing the MIN
operation — a method which reduces the logic depth of the operation — without
changing any of the existing classes.

interface MINMethod {
generateMINImplementation() ;
getNumber0fClockCyclesConsumed(); //needed for synchronisation purposes

}

class NoLogicDepthMIN implements MINMethod {

}

class LogicDepthMIN implements MINMethod {

}

class MINBuilder{
MINMethod method; //the method of implementing MIN
public MINBuilder() {
method = new NoLogicDepthMIN;//default method is NoLogicDepthMIN

}

public void accept (MINMethod newMethod){
method = newMethod; //set the method of implementing MIN
public void generateFunctionPUnit(){
method.generateMINImplementation();

StateMachineGenerator

This module implements the linking and synchronisation of processing units dis-
cussed in Section 4.3 by generating the appropriate state machines. This involves
using the control constructs of Handel-C (e.g., if and for) to implement basic state
machines, as well as defining special-purpose components for the implementation of
high-level linking and synchronisation of application-level processing units. When
generating hardware source code for an operation, the Builder classes implement
the state machine for the internal implementation of the operation. The StateMa-
chineGenerator module is different in that it implements state machines for the
linking and synchronisation of application-level processing units: at the level of
reaction rules, at the level of regions, and at the level of the whole P system.
The representation of the hardware circuit as a tree structure of processing
units (see Section 5.3) facilitates powerful and flexible approaches to the imple-
mentation of state machines. A ProcessingUnitManager is able to traverse the
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tree of processing units. It can link and synchronise processing units by adding
code to the preprocessing and postprocessing phases of the processing units. The
added code can take on the form of a conditional expression, a single statement or
a block of statements. It can create new processing units, delete processing units,
include a processing unit in another processing unit, and modify the temporal
relationships between processing units.

As already mentioned, the StateMachineGenerator module generates state ma-
chines at three levels. These three levels are handled by three different classes:
RuleStateMachine, RegionStateMachine and SystemStateMachine. For exam-
ple, if the region-oriented implementation strategy is adopted, SystemStateMach-
ine produces state machines and processing units (such as the system execution
coordinator mentioned in Section 3.3) for the synchronisation of the execution of
region processing units in order to accomplish the transition-by-transition evolu-
tion of the P system.

Utilities

To ensure that the names of variables, functions, macros, signals and other con-
structs in the Handel-C representation of a hardware circuit consistently follow
predefined naming conventions, a class called NameGenerator is implemented.
This class contains a method for each type of construct that returns a unique
identifier following the relevant naming convention. Although the functionality of
NameGenerator is quite basic, it plays a fundamental role in the generation of
understandable code, and therefore in the promotion of the maintainability of P
Builder.

In the source code generated for a hardware circuit, various types of procedures
are repeated in different parts of the code. For example, the procedure of initial-
ising an array of registers is usually instantiated multiple times. A class called
FunctionGenerator contains various methods which, when invoked with the ap-
propriate parameters, returns the code for common types of procedures specialised
according to the parameters. By eliminating duplication of code, the inclusion of
FunctionGenerator promotes the maintainability of P Builder.

A class called SystemConstants defines all of the constant values used by the
various components of P Builder. Defining the constant values in one place has
two advantages, both of which promote the maintainability of P Builder. First, if
any of these constants need to be modified in the future, only one modification
needs to be made. Second, it eliminates the possibility of different components
giving different values to the same constant, and therefore helps to prevent errors.

GenerationContext

To avoid the passing of parameters related to the current status of P Builder’s
operations (e.g., the region of the input P system currently being processed by P
Builder), which can be error-prone and inefficient, a class called GenerationContext
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is implemented using the Singleton design pattern [4]. The use of the Singleton
pattern ensures that there is only one instance of the class. The various classes
of objects implementing the functionality of P Builder access the fields of this
instance in order to obtain information about the current status of P Builder’s
operations, and also update these fields in order to reflect changes to this status
brought about by their own operations.

6 Evaluation of the region-oriented design

In this section, we evaluate our new region-oriented hardware design. More specif-
ically, we report on the hardware resource consumption and clock rates exhibited
by hardware circuits implementing P systems using the region-oriented design,
and compare the results obtained with those obtained for hardware circuits imple-
menting P systems using the rule-oriented design. We conclude the section with
comments about the performance and scalability of the region-oriented hardware
design in particular and Reconfig-P in general.

6.1 Details of the experiments

In the experiments, Reconfig-P was used to synthesise hardware circuits for a set of
input P systems, according to different implementation strategies. This hardware
source code was then synthesised into hardware circuits. The target hardware
platform was a Virtex-II RC2000.

Table 3 describes the characteristics of the input P systems used in the ex-
periments, including the number of regions and reaction rules in the P system,
the number of objects (i.e., the product of the number of object types and the
number of regions), the number of inter-region communications of object types in
the definitions of reaction rules, the number of communication channels used in
the implementation of the P system, and the total number of resource conflicts.
In the table, P systems P1 through to P5 are used to test the effect of increasing
the size of the input P system, and P6 and P7 are used to investigate the effect of
using channels for the communication of objects and the effect of using semaphores
for the dynamic updating of multisets of objects, respectively. Unlike P systems
P1 through to P5, which have region hierarchies, P system P7 contains regions
connected in a tissue-like fashion. P7 was included in order to facilitate the testing
of the effect of having large numbers of communications and channels.

6.2 Experimental results
Efficiency of hardware circuits using the region-oriented design

Figure 11 illustrates the hardware circuits generated for the input P system P5
(which contains 5 regions and 50 reaction rules) using different implementation
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P system|Rules|Regions| Total objects|Inter-region communications|Channels| Total conflicts
P1 10 1 3 80 0 21
P2 20 2 6 16 5 32
P3 30 3 9 36 9 32
P4 40 4 12 44 12 40
P5 50 5 15 49 15 42
P6 50 25 75 74 64 42
P7 50 25 200 319 315 45

Table 3. Details of the input P systems used in the experiments.

strategies. In keeping with the desired logical independence of regions in the region-
oriented design, the five regions are realised as five separate, decoupled processing
units on the hardware circuits using this design (‘region-oriented circuits’). In
contrast to the region-oriented circuits, the circuits using the rule-oriented de-
sign (‘rule-oriented circuits’) implement the P system as 50 rule processing units
which operate both within and across the (merely conceptual) regions, resulting
in intermingled, strongly coupled circuits (especially when the time-oriented con-
flict resolution strategy is used). Although regions are not explicitly represented
when the rule-oriented design is used, it is still possible to discern the regions in
the rule-oriented, space-oriented circuits. This is a consequence of the existence of
processing units which operate at the region level (e.g., processing units involved
in the replication of registers storing the multiplicity values of object types in a
region and in the coordination of the values stored in these registers) and therefore
implicitly represent regions.

Hardware resource consumption

The results of the experiments demonstrate that region-oriented circuits tend to
be more efficient in terms of hardware resource consumption than rule-oriented
circuits. This is because (a) there are fewer core processing units to realise (since
the number of regions is usually smaller than the number of reaction rules) in
region-oriented circuits than in rule-oriented circuits, and (b) the number of chan-
nels used to implement inter-region communication, the main extra resource used
in the region-oriented design, is minimised in our design and is therefore rela-
tively small in general. As expected, among region-oriented circuits, those circuits
using the time-oriented resource conflict strategy (region-oriented time-oriented
circuits) consume fewer hardware resources than those using the space-oriented
resource conflict strategy (region-oriented space-oriented circuits).
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Region-oriented, space-oriented circuit
e

Rule-oriented, space-oriented circuit Rule-oriented, time-oriented circuit

Fig. 11. Hardware circuits implementing input P system P5.

However, when the number of regions becomes large (e.g., in P system P6), the
hardware resource consumption exhibited by region-oriented circuits is similar to
that exhibited by rule-oriented circuits. If the number of communications is also
large, and the number of channels used is large due to the specific characteris-
tics of these communications (as is the case in, for example, P system P7), the
hardware resource consumption exhibited by region-oriented circuits is greater
than that exhibited by rule-oriented circuits. It is notable that in this case the
region-oriented time-oriented circuits consume more hardware resources than the
region-oriented space-oriented circuits. This is because our time-oriented conflict
resolution strategy performs static interleaving for updating operations only for
local objects (which account for only 2% of all updating operations in the case of
P system P7) and therefore has to rely on Handel-C semaphores for the updating
of external objects (a method which is less efficient in terms of hardware resource
consumption).
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Resource consumption (%LUT) Clock rate (MHz)

P Region-oriented | Rule-oriented P Region-oriented | Rule-oriented
system| Space- | Time- | Space- | Time- system| Space- | Time- | Space- | Time-
oriented|oriented|oriented|oriented oriented |oriented |oriented [oriented

P1 2.03 1.83 2.25 2.08 P1 63.84 | 65.62 | 67.20 | 66.96
P2 3.82 3.53 4.24 3.75 P2 60.07 | 64.63 | 66.05 | 64.30
P3 5.72 5.47 6.49 5.79 P3 58.15 | 60.41 | 66.51 | 66.52
P4 7.34 7.16 8.29 7.69 P4 63.69 | 59.67 | 66.18 | 66.47
P5 9.20 8.85 10.43 9.33 P5 58.9 | 58.52 | 65.78 | 64.90
P6 12.28 | 11.68 | 12.00 | 11.81 P6 65.74 | 66.56 | 65.95 | 63.61
P7 1420 | 14.72 | 13.00 | 13.32 P7 58.79 | 43.48 | 62.50 | 60.00

Table 4. Experimental results for the hardware resource consumption and clock rates
exhibited by circuits implementing the P systems listed in Table 3 according to various
implementation strategies.

Clock rates

The clock rates achieved by region-oriented circuits tend to be lower than those
achieved by rule-oriented circuits. This is due to the logic depth associated with
the dynamic determination of applicable reaction rules in the object assignment
phase in region-oriented circuits. However, the lower clock rates are compensated
by a possible reduction in the number of clock cycles consumed in region-oriented
circuits: the dynamic determination of applicable reaction rules guarantees that
an optimal number of clock cycles is used in each round of the object assignment
phase in region-oriented circuits, which is something that cannot be guaranteed
in rule-oriented circuits. Therefore, in general the performance of region-oriented
circuits is satisfactory. Having said this, however, when the object production
phase involves a large number of external objects (as is the case in P system P7),
the clock rate achievable by region-oriented time-oriented circuits is significantly
reduced due to the logic depth associated with the use of semaphores.

Other observations

The experimental results show that circuits generated by Reconfig-P are very
efficient in terms of hardware resource consumption, with the biggest P system
P7 consuming only 14% of the total available resources when the region-oriented
strategy is used and only 12% when the rule-oriented strategy is used.

As the target computing platform used in the experiments was the Virtex-II
RC2000, the maximum clock rate at which a hardware circuit could execute and
communicate with the host computer was 656 MHz. Given this maximum clock
rate, the clock rates achieved by all the generated circuits are satisfying, especially
when one considers that Reconfig-P did not apply logic-depth reduction in the
experiments.
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Reconfig-P also achieves good scalability. The hardware resource consumption
increases sub-linearly as the size of the P system increases. Therefore increasing
the size of the input P system does not have a significant effect on the circuits
(especially rule-oriented circuits).

Hardware resource usage
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Fig. 12. Graphs of the experimental results presented in Table 4.

Since in the rule-oriented design a P system is implemented in such a way
that the application of reaction rules is accomplished by dedicated rule processing
units, hardware circuits generated according to this design are relatively insensi-
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tive to those characteristics of a P system related to regions (e.g., the number of
regions, the hierarchical structure of regions, and the way in which regions commu-
nicate). Therefore, in the experiments rule-oriented circuits exhibited consistently
good performance. Region-oriented circuits, for obvious reasons, are more sensi-
tive to region-related characteristics of the input P system. Nevertheless, for many
P systems, region-oriented circuits and rule-oriented circuits exhibited a similar
level of performance. Therefore, unless having the highest possible performance is
important, if one wishes to execute a P system that involves computational activ-
ities directly associated with membranes or regions, the region-oriented strategy
is perhaps the better choice.

7 Conclusion

In the course of developing the newest version of Reconfig-P, we have contributed

e an implementation of an elegant region-oriented hardware design that closely
matches the intuitive conceptual understanding of a P system, exhibits good
performance and scalability, and facilitates the future implementation of addi-
tional types of P systems,

e a novel design pattern which prescribes a general solution to the problem of
designing an algorithm (source code) generation system in such a way that the
logical and implementation aspects of the algorithm are kept separate, and

e a new version of P Builder designed according to the aforementioned design
pattern which seamlessly integrates the rule-oriented, region-oriented, space-
oriented and time-oriented implementation strategies and facilitates the adop-
tion of additional implementation strategies.

We believe that the work described in this paper has enhanced the versatility
of Reconfig-P and provided a solid foundation for the eventual development of a
hardware platform for membrane computing applications responsive to the needs
of a wide range of users. Indeed, we envision that Reconfig-P could be used in the
not-too-distant future for the execution of significant real-life applications.

One of the most interesting potential application areas is the simulation of
biological processes. In one sense, Reconfig-P is already ready for the simulation
of biological processes. The only requirement is that such processes be modelled
in terms of the basic P system models supported by Reconfig-P. However, the
biological applications of membrane computing published to date typically involve
P systems that incorporate non-standard or special features (such as reaction
rates). For Reconfig-P to be able to execute specialised biological applications
involving P systems with non-standard features, it would need to be augmented
to incorporate these features. The extensibility of the newest version of Reconfig-P
would facilitate such an augmentation.

One aspect of Reconfig-P that has been relatively neglected until now is its user
interface. In particular, currently an ad hoc language for the specification of input
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P systems is used. To enhance the usability of Reconfig-P, a more standardised
language for the specifications of input P systems could be incorporated. One
possibility is the incorporation of the P-Lingua language [5].
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