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Summary. To decrease the computational complexity and improve the search capa-
bility of quantum-inspired evolutionary algorithm based on P systems (QEPS), a real-
observation QEPS (RQEPS) was proposed. RQEPS is a hybrid algorithm combining the
framework and evolution rules of P systems with active membranes and real-observation
quantum-inspired evolutionary algorithm (QEA). The RQEPS involves a dynamic struc-
ture including membrane fusion and division. The membrane fusion is helpful to en-
hance the information communication among individuals and the membrane division is
beneficial to reduce the computational complexity. An NP complete problem, the time-
frequency atom decomposition of noised radar emitter signals is employed to test the
effectiveness and practical capabilities of the RQEPS. The experimental results show
that RQEPS is superior to QEPS, the greedy algorithm and binary-observation QEA in
terms of search capability and computational complexity.

1 Introduction

In 1998, Gheorghe Păun proposed membrane computing (P systems) [15][16]. A
P system, employing various features to specify the structure and functionality
of the living cells, is a membrane structure with objects in its membranes, with
specified evolution rules like transformation/communication, merging and dividing
membranes [15]. Until now, using the advantages of the new distributed parallel
computing model and evolutionary algorithms (EAs), the combination technique
of them, membrane algorithm, is applied to solve various complex problems. In [13]
and [14], a membrane algorithm with a nested membrane structure was introduced
to solve the travelling salesman problem as well as the min storage problem [10]. In
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[7]-[9], a hybrid algorithm combining a P system with a conventional genetic algo-
rithm (CGA) was proposed to solve single-objective and multi-objective numerical
optimization problems. In [20], a hybrid distributed EA with membrane systems
was presented to solve some continuous optimization problems. In [22], a mem-
brane algorithm combining one level membrane structure with binary-observation
quantum-inspired evolutionary algorithms (bQEA), called a QEA based on P sys-
tems (QEPS), was proposed to solve knapsack problems, and the experimental
results show that QEPS performs better than its counterpart bQEA. But there
are some drawbacks such as discretization error and Hamming cliff [6][24], when
bQEA is used to solve numerical optimization problems. In [24], a real-observation
QEA (RQEA) was proposed for numerical optimization problems to overcome the
disadvantages of bQEA.

By combining RQEA with P systems with active membranes, this paper pro-
poses an improved membrane algorithm, called a real-observation QEPS (RQEPS),
to reduce the computational complexity and improve the search capability of QEPS
[22][11]. In RQEPS, the real-observation rules are employed to connect quantum-
inspired bit (Q-bit) representation and real-valued variables in each elementary
membrane. And then all the elementary membranes are merged into one and all
individuals in elementary membranes enter the merged membrane, where a copy
of the best individual is sent out to the skin membrane. The recombination is
operated on all individuals in the merged membrane to exchange the informa-
tion among individuals. To demonstrate the effectiveness and applicability of the
introduced method, experiments are carried out on the time-frequency atom de-
composition (TFAD) of noised radar emitter signals to extend the application of
the membrane algorithm. The experimental results show that RQEPS performs
better than the greedy algorithm (GrA) [12], bQEA [6] and QEPS [22][11].

The TFAD is an approach that decomposes any signal into a linear combination
of waveforms selected from a redundant dictionary of time-frequency atoms, which
localized well both in time and frequency [12]. Differing from Fourier and Wavelet
transforms, the information in TFAD is not diluted across the whole basis. Unlike
Wigner and Cohen class distributions, the energy distribution obtained by TFAD
does not include interference terms [12]. Hence, TFAD has become an important
analysis technique in signal processing and harmonic analysis [12][17] [5]. One of
the most successful methods for signal representations in over-complete dictionar-
ies to solve this problem is the greedy algorithm (GrA) [12], but the extremely
high computational load greatly blocks its practical applications. In [18][3][19][2],
conventional genetic algorithms (CGAs) were introduced into TFAD to reduce
the computational cost. However, due to slow convergence and premature con-
vergence, it is difficult for CGAs to guide individuals toward better solutions in
the search space. This paper uses a novel algorithm combining the framework of
P systems with RQEA to reduce the computational load and improve the signal
representation in the TFAD.

The remainder of this paper is organized as follows. Section 2 describes the
TFAD and the pseudocode algorithm of EAs-based TFAD. Section 3 presents
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the detailed algorithm for RQEPS. Section 4 discusses the number of elementary
membranes, and conducts extensively comparative experiments on noised radar
emitter signals. Finally, conclusions are drawn in Section 5.

2 Time-Frequency Atom Decomposition

The TFAD is an approach to select satisfactory time-frequency atoms gγ(t)γ∈Γ

from a redundant time-frequency atom dictionary D = (gγ(t)) to decompose a
signal into a linear combination of waveforms [12]. Let f be the original signal,
f ∈ H , where H is a Hilbert space. When the signal f is decomposed up to the
order item, fitem can be represented as

fitem =
item∑
n=0

〈Rnf, gγn
〉gγn

+ Ritem+1f, (1)

where gγn
satisfies

|〈Rnf, gγn〉| = sup
γ∈Γ

|〈Rnf, gγ〉|, (2)

where Γ = R+ ×R2 is a set of indexes γ, and Rn+1f is the residual signal

Rn+1f = Rnf − 〈Rnf, gγn〉gγn . (3)

According to the conclusion [12]: limitem→∞ ||Ritem+1f || = 0, the signal fitem can
be represented as

fitem =
item∑
n=0

〈Rnf, gγn〉gγn . (4)

The problem of selecting a series of atoms to optimally approximate a signal
in a redundant time-frequency atom dictionary is NP-hard [1]. One of the most
successful methods to solve this problem is the greedy algorithm (GrA) [12]. GrA
used a greedy strategy, in which the time-frequency atoms were selected one by one
from an over-complete dictionary to best match the structure of signals [12][21].
However, as usual, the time-frequency dictionary is very large, so it is almost im-
possible for GrA to conduct the full search and represent the signals within a
finite time, which seriously limits the practical application of TFAD. By the way,
TFAD is a NP-hard problem. To decrease the computational efforts of TFAD, EAs
were introduced into TFAD to search the suboptimal time-frequency atom from
redundant time-frequency atom dictionaries [21]. The pseudocode algorithm for
EAs-based TFAD is shown in Fig. 1. In this paper, an improved membrane algo-
rithm, RQEPS is introduced into TFAD to decrease the computational complexity
and improve the search capability, which will be presented in the next section.
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Begin 

  Initialization of TFAD; % Initial iteration item=1; 

  While (not termination condition) do

Set parameters of time-frequency atom ; 

Search the suboptimal time-frequency atom in D

using EAs (RQEPS); 

Compute ,
item item

itemR f g g ;

( , )
item item

item item itemR f R f R f g g ;

item= item +1; 

  End while 

End begin

Fig. 1. Pseudocode algorithm for EAs-based TFAD

3 An Improved Membrane Algorithm

The structure of an improved membrane algorithm, RQEPS is shown in Fig. 2,
where the elementary membranes 1, 2, · · · , m, embedded in the skin membrane 0,
contain multisets of objects and evolution rules. In the computing process, all ele-
mentary membranes may be merged into one min for information communication
and the merged membrane min may be divided into the same number of elemen-
tary membranes 1, 2, · · · ,m. The pseudocode algorithm of RQEPS is presented in
Fig. 3 and the detailed description is as follows.

EAs 

(RQEA) 

EAs 

(RQEA) 

EAs 

(RQEA) 

0

1 2 

m

……

communication 

min

0

EAs 

(RQEA) 

EAs 

(RQEA) 

EAs 

(RQEA) 
…… 

0

1 2

m

merge divide 

skin membrane elementary membrane region 

Fig. 2. The structure of RQEPS

(i) The membrane structure [0[1]1, [2]2,· · · ,[m]m]0 is considered, in which the
skin membrane S0 contains m elementary membranes. The initial multisets:

S0 = λ,
S1 = p1p2 · · · pn1 , n1 ≤ pop,
S2 = pn1+1pn1+2 · · · pn2 , n1 + n2 ≤ pop,
· · ·

Sm = pn(m−1)+1pn(m−1)+2 · · · pnm , n1 + n2 + · · ·+ nm ≤ pop,
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Begin 

(i) Initializing the membrane structure; % gen=0; 

While (not termination condition) do

(ii)    Performing RQEA in all elementary membranes;

(iii)    Merging all elementary membranes into one and

 performing communication rules; 

(iv)    Dividing the merged membrane; 

       gen=gen+1; 

End while 

End begin 

Fig. 3. Pseudocode algorithm for RQEPS

where pop is the dimension of the population, and pi, 1 ≤ i ≤ pop, is a Q-bit
individual of length n, which is represented as

pt
i =

[
αi1|αi2| · · · |αin

βi1|βi2| · · · |βin

]
, (5)

where αij , βij are random numbers ranged from 0 to 1, and |αij |2 + |βij |2 = 1,
(i = 1, 2, · · · , pop, j = 1, 2, · · · , n).

(ii) The RQEA is performed in all elementary membranes. The pseudocode
algorithm for RQEA is shown in Fig. 4, and the detailed description is as follows.

a) Set the iterations for each elementary membranes; 

For i=1: m do

t=0; 

b)    Generate R(t) by observing P(t);

c)  Evaluate R(t) and store the best solution among R(t);

  While (not termination condition) do

         t=t+1; 

d)     Update P(t) using Q-gates; 

e)       Make R(t) by observing the states of P(t);

f)     Evaluate R(t) and store the best solution among R(t);

       End while 

End for 

Fig. 4. Pseudocode algorithm for RQEA

a) The evolutionary generation ti for RQEA in the ith elementary membrane
is set to a uniformly random integer.

b) The states R(t) in P (t) are observed, where R(t) = {at
1, a

t
2, · · · , at

n}, and at
i

(i = 1, 2, · · · , n) is an observed state of an individual pt
i (i = 1, 2, · · · , n). at

i is a
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real number of length n, that is at
i=b1b2 · · · bn, where bt

j (j = 1, 2, · · · , n) is a real
number between 0 and 1. The observed states R(t) are generated in probabilistic
way. For instance, as for the probability amplitude [α, β] of a Q-bit, a random
number r in the range [0, 1] is generated. If r < 0.5, the corresponding observed
value is set to |α|2, otherwise, the value is set to |β|2.

c) Each individual is evaluated to give a measure of its fitness, and the best
individual is stored. The fitness is evaluated to adapt the specific problem. In this
paper, the fitness function is chosen as |〈Ritem, gγitem〉gγitem |, shown in Fig. 1.

d) In this step, the Q-bit individuals in P (t) are updated by using quantum-
inspired gates (Q-gates). A Q-gate is given by

G =
[
cos θ − sin θ
sin θ cos θ

]
, (6)

where θ is the Q-gate rotation angle, and is defined as θ = k · f(α, β), where the
value of k is chosen as [23]

k = 0.1πe−t/ti , (7)

and f(α, β) are shown in Table 1.
The steps e) and f) are similar to steps b) and c), respectively.

Table 1. Look-up table of function f(α, β)[24], where sign is a symbolic function

f(α, β)

ξ1 > 0 ξ2 > 0 |ξ1| ≥ |ξ2| |ξ1| < |ξ2|
True Ture +1 -1

True False sign(α1, α2)

False True −sign(α1, α2)

False False sign(α1, α2) −sign(α1, α2)

ξ1, ξ2 = 0 or π/2 ±1

(iii) Except for the skin membrane, all elementary membranes are merged into
one min, and consequently the objects of all elementary membranes enter the mem-
brane min. Subsequently, the communication rules are performed in the membrane
min, that is, a copy of the best element Pbest, selected in merged membrane, is
sent out to the skin membrane. The recombination operation conducted in the
merged membrane is used to exchange the information among individuals, which
is shown in Fig. 5, where pi and pj are any arbitrary two individuals in min and
p′i and p′j are the recombined individuals.

(iv) The membrane min is divided into the same structure with the m ele-
mentary membranes. In the process of division, the copies of objects p1p2 · · · pn1



An Improved Membrane Algorithm for Time-Frequency Atom Decomposition 361

22

2 2

2
2

2
2

... ...... ...

... ... ... ...

... ... ... ...

... ... ...

i i jh ini i ih in

i i

i i ih in i i jh in

j j jh jn j j ih jn

j j

j j jh jn j j

p p

p p
...ih jn

Fig. 5. The recombination operation

are sent into the membrane S1; the copies of objects pn1+1pn1+2 · · · pn2 are sent
into the membrane S2 and the rest may be deduced by analogy. Finally, the copy
of Pbest is sent from the skin membrane to each compartment to determine the
Q-gate rotation angle at the next generation.

RQEPS is an improved algorithm of the QEPS [22]. The differences between
these two approaches are as follows.

(a) They use different observation rules: binary-observation rules in QEPS
[22] vs. real-observation rules in RQEPS. In RQEPS, a quantum-inspired state,
corresponding to an optimization variable, observed by a real-observation rule
is a real-valued number. But an optimization variable in QEPS needs several
quantum-inspired states, which correspond with a string of binary bits in the
binary-observation process. Without encoding and decoding processes, the real-
observation rule is more suitable for solving numerical optimization problems.

(b) Preliminary use of membrane fusion and division is considered in RQEPS.
(c) Recombination operations are employed in merged membrane to exchange

the information among individuals.

4 Experimental Results

In this section, how to choose the number m of elementary membranes will be first
discussed by using a linear frequency-modulated radar emitter signal with 10 dB
signal-to-noise rate (SNR), shown in Fig. 6. And then the comparative experiments
are carried out on the signal to demonstrate the effectiveness and applicability of
the introduced method.

4.1 Parameter Setting

In this subsection, experiments on the noised signal are carried out to investigate
the effects of the number m of elementary membranes on the performance of
RQEPS for TFAD. Experimental environment is chosen as: the maximal number
of iterations item is set to 30 as the termination condition of TFAD. The time-
frequency atom uses Gabor function

gγ(t) =
1√
s
g(

t− u

s
) cos(vt + w), (8)
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Fig. 6. A radar emitter signal

where the index γ = (s, u, v, w) is a set of parameters and s, u, v, w are scale,
translation, frequency and phase, respectively. They are discretized as follows: γ =
(aj , paj∆u, ka−j∆ξ, i∆w) , a = 2,∆u = 1/2, ∆ξ = π, ∆w = π/6, 0 < j < log2 N ,
0 ≤ p ≤ N2−j+1, 0 ≤ k < 2j+1, 0 ≤ i ≤ 12, where N is the length of the signal f
[12].

In RQEPS, the population size pop is set to 10. The parameter m varies
from 2 to 10. According to the investigation of the effect of the parameter ti
(i = 1, 2, · · · ,m) on the QEPS performances in [22], the RQEA’s iteration ti is
set to a uniformly random integer ranged from 1 to 9. The number n of a Q-bit
individual and the maximal evolutionary generation gen are set to 4 and 40, re-
spectively. These experiments are carried out on the computer with 1.5 GHz CPU,
768 MB EMS memory and 80GB hard disk using the software MATLAB 7.1. The
experimental results over 30 runs as the number of elementary membranes are
shown in Fig. 7, which illustrates that the elapsed time, the mean best and the
variance best of the correlation ratio Cr between the original signal f and the
restored signal fres. The correlation ratio Cr of f and fres is defined as [25]

Cr =
〈f, fres〉

||f || · ||fres|| , (9)
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The experimental results in Fig. 7(a) and 7(b) show that the mean and the
variance of the best correlation ratio Cr show a broad range of variability with
respect to the number of different elementary membranes, but the best results are
obtained in two cases including 2 elementary membranes. As shown in Fig.7(c), the
elapsed time has a steady increase with the number of the elementary membranes.
Thus, to obtain the balance between the elapsed time and the correlation ratio,
the number of elementary membranes could be assigned as 2.
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Fig. 7. Experimental results with different elementary membranes

4.2 Comparative Experiments

To verify the validity of RQEPS, the noised signal above is used to conduct the
experiments with the same computer, in which bQEA [6], GrA [12] and QEPS
[22][11] are brought into comparisons with RQEPS.

In bQEA, population size pop, the number n of binary bits and the maximal
evolutionary generation g are set to 10, 40 and 200, respectively. In QEPS, accord-
ing to [11], the number m of elementary membranes is set to 9; the number n of
binary bits is set to 40. In RQEPS, according to the experiments discussed in the
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above subsection, the number m of elementary membranes is set to 2; the number
n of a Q-bit individual is set to 4. In both RQEPS and QEPS, the parameter ti
(i = 1, 2, · · · , m) is set to a uniformly random integer ranged from 1 to 9; the
population size pop and the maximal evolutionary generation gen are set to 10
and 40, respectively. In all algorithms, the maximal number of iterations item is
set to 30 as the termination condition of TFAD. Experimental results are shown
in Fig. 8 to Fig. 11, Table 2, Table 3 and Table 4.
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Fig. 8. Experimental results obtained by bQEA
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Fig. 9. Experimental results obtained by GrA
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Fig. 10. Experimental results obtained by QEPS
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Fig. 11. Experimental results obtained by RQEPS

Table 2 lists the parameters of the 30 Gabor atoms. Fig. 8 to Fig. 11 show the
restored signals using the 30 decomposed time-frequency atoms and their time-
frequency distributions of the 30 time-frequency atoms which are obtained by
bQEA, GrA, QEPS and RQEPS, respectively. As shown in Fig.6 and Fig. 8 to
Fig.11, it can be seen that the time-frequency distribution obtained by RQEPS is
nearly identical with that of the original radar emitter signals, and the correlation
ratio is the highest which reaches 0.9801, while the correlation ratio obtained by
GrA is only 0.9668, which illustrates that RQEPS is more suitable for decomposing
a signal into time-frequency atoms than bQEA, GrA and QEPS, in terms of search
capability.

The experimental results over 30 runs are shown in Table 3 and Table 4. From
Table 3, it can be seen that RQEPS gains the mean of the best correlation ratio Cr

0.9706, which is better than 0.9670, 0.9668 and 0.9505 obtained by QEPS, GrA and
bQEA, respectively. Moreover, the computing time of RQEPS is 36.4061, 2.2441,
and 2.1766 times as small as that of GrA, QEPS and bQEA. If the experiments
are conducted in a parallel-distributed way on several machines, the computing
time could be greatly reduced.
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Table 2. Parameters of 30 atoms of a noised LFM radar emitter signal

1 2 3 4 5 6 7 8 9 10

s 19.63 22.71 26.83 43.94 29.27 28.97 28.41 33.70 33.25 12.32

u 99.43 136.29 209.41 55.67 177.86 22.28 237.06 76.69 157.50 6.46

v 1.31 1.63 3.89 0.85 2.05 0.57 2.68 1.00 1.85 5.67

w 3.71 3.51 4.64 5.08 4.15 3.06 4.37 2.17 2.45 1.56

11 12 13 14 15 16 17 18 19 20

s 33.87 34.51 90.38 1.73 31.82 10.29 10.29 31.73 22.65 12.32

u 120.19 193.4 45.05 0.19 49.52 80.16 224.93 251.23 100.67 196.40

v 4.85 2.20 5.36 4.40 0.68 1.14 3.77 3.42 1.50 3.95

w 3.91 2.87 4.09 3.99 0.75 3.46 3.21 0.05 3.63 4.24

21 22 23 24 25 26 27 28 29 30

s 13.42 25.77 8.12 15.26 25.39 12.92 9.10 17.11 6.33 28.53

u 181.09 37.99 5.28 100.34 122.04 45.84 81.22 152.62 132.19 243.11

v 2.07 0.59 0.02 4.23 1.84 2.41 5.78 1.38 5.85 0.52

w 1.61 3.21 0.58 1.45 2.27 2.91 1.87 4.08 2.72 3.92

Table 3. Performance comparisons of bQEA, GrA, QEPS and RQEPS

Correlation ratio Cr Computing time per

Mean Var run (Second)

bQEA 0.9505 7.2387e-5 43.25

GrA 0.9668 1.1476e-31 723.39

QEPS 0.9670 1.2400e-5 44.59

RQEPS 0.9706 7.0583e-6 19.87

Table 4. Results of parametric statistical test t-test

Control Algorithm bQEA GrA QEPS

RQEPS 8.0113e-18 1.1684e-10 4.7336e-05

In table 4, a parametric statistical analysis t-test is applied to analyse whether
there is a significant difference over one optimization problem between two algo-
rithms [4]. We employ a 95% confidence Student t-test. The t-test results in Table 4
are far smaller than the level of significance 0.05, which implies that RQEPS really
outperforms the QEPS, GrA and bQEA by introducing the active membranes with
mergence and division operations, real-observation and recombination operations.
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5 Conclusions

This paper proposes an improved membrane algorithm (RQEPS), by combining
the framework and evolution rules of P systems with RQEA. RQEPS is charac-
terized by active membranes with fusion and division membranes to strengthen
the information communication among individuals and decrease the computa-
tional complexity, respectively, the evolutionary rules in RQEA and transforma-
tion/communication like-rules in P systems to evolve the system. The TFAD of
noised radar emitter signals is considered as an application example to test the ef-
fectiveness and practicality of the introduced method. Experimental results show
that RQEPS performs better than QEPS, GrA and bQEA, in terms of search
capability and convergent speed.

The possible interplay between evolutionary algorithms and membrane com-
puting represents a challenging and promising research topic. This paper intro-
duces RQEA into P systems to solve time-frequency atom decomposition. However,
how to select evolutionary algorithms within elementary membranes and commu-
nication rules in the merged membrane to solve different complex problems, in
order to obtain more efficient methods, is an ongoing and challenging issue.
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