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Summary. Inspired by the growth of dendritic trees in biological neurons, we introduce
spiking neural P systems with budding rules. By applying these rules in a maximally
parallel way, a spiking neural P system can exponentially increase the size of its synapse
graph in a polynomial number of computation steps. Such a possibility can be exploited
to efficiently solve computationally difficult problems in deterministic polynomial time,
as it is shown in this paper for the NP-complete decision problem sat.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [5] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems can also be viewed as an evolution of P systems
[19, 16] corresponding to a shift from cell-like to neural-like architectures. We re-
call that this biological background has already led to several models in the area
of neural computation, e.g., see [13, 14, 4].
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In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cells. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use some of its rules then one
of such rules must be used. The rule to be applied is nondeterministically chosen.
Thus, the rules are used in a sequential manner in each neuron, but neurons
function in parallel with each other. Observe that, as usually happens in membrane
computing, a global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized. When a cell sends out spikes
it becomes “closed” (inactive) for a specified period of time, that reflects the
refractory period of biological neurons. During this period, the neuron does not
accept new inputs and cannot “fire” (that is, emit spikes). Another important
feature of biological neurons is that the length of the axon may cause a time
delay before a spike reaches its target. In SN P systems this delay is modeled by
associating a delay parameter to each rule which occurs in the system. If no firing
rule can be applied in a neuron, there may be the possibility to apply a forgetting
rule, that removes from the neuron a predefined number of spikes.

The computational efficiency of SN P systems has been recently investigated in
a series of works [2, 6, 9, 11, 10]. In [12] it has been proved that a deterministic SN
P system of polynomial size cannot solve an NP-complete problem in a polynomial
time, unless P=NP. Hence, under the assumption that P 6= NP, efficient solutions
to NP-complete problems cannot be obtained without introducing features which
enhance the efficiency, such as pre-computed resources, ways to exponentially grow
the workspace during the computation, nondeterminism, and so on. Indeed, in
the framework of SN P systems, most of the solutions to computationally hard
problems exploit the power of nondeterminism [11, 10, 12] or use pre-computed
resources of exponential size [2, 6, 9, 7].

The possibility of using SN P systems to solve computationally hard problems
by using some (possibly exponentially large) pre-computed resources has been first
presented in [6], that contains a description of a uniform family of SN P systems
with pre-computed resources of exponential size that solves all the instances of the
NP-complete decision problem sat in a polynomial time. In the present paper we
complement the study exposed in [6], by describing an SN P system that first builds
the necessary resources (by exponentially increasing its workspace in a polynomial
time), and then uses such resources to solve the sat problem. To this purpose,
we extend the SN P systems given in [6] by introducing neuron budding rules. We
show that SN P systems with budding rules can grow an exponential size synapse
graph in a time which is polynomial with respect to the size of the instances of
the problem we want to solve. Then, the systems themselves can be used to solve
such instances. All the systems we will propose work in a deterministic way.
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The biological motivation for the mechanism that we use to expand the synapse
graph of SN P systems comes from the growth of dendritic trees in biological
neurons [20]. It is known that the human brain is made up of about 100 billion
cells. Almost all brain cells are formed before birth. Dendrites (from the Greek,
“tree”) are the branched projections of a neuron. The point at which the dendrites
of a cell come into contact with the dendrites of another cell is where the miracle
of information transfer (communication) occurs. Brain cells can grow as many as
one billion of dendrite connections – a universe of touch points. The greater the
number of dendrites, the more information can be processed. Dendrites grow as
a result of stimulation from and interaction with their environment. With limited
stimulation there is limited growth; with no stimulation, dendrites actually retreat
and disappear. The microscope photographs illustrated in Figure 1 show actual
dendrite development. Dendrites begin to emerge from a single neuron (brain cell)
and develop into a cluster of touch points seeking to connect with dendrites from
other cells.

In the framework of SN P systems, the dendrite connection points are modelled
as abstract neurons, while the branches of dendrite trees are modelled as abstract
synapses. A new connection between dendrites coming from two different neuron
cells is understood as a newly created synapse. In this way, new neurons and
new synapses can be produced during the growth of a dendrite tree. The formal
definition of neuron budding rule and its semantics will be given in Section 2.

Fig. 1. A growing neuron: a. dendrites begin to emerge from a single neuron, b. dendrites
developed into a cluster of touch points; c. Ramon y Cajal, Santiago. Classical drawing:
Purkinje cell; d. newborn neuron dendrites, e. three months later. Photos from Tag Toys
[20]
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2 SN P systems with budding rules

A spiking neural P system with budding rules, of initial degree m ≥ 1, is a construct
of the form

Π = (O, Σ, H, syn, R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {σ1, σ2, . . . , σm} is a finite set of initial neurons;
3. H is a finite set of labels for neurons;
4. syn ⊆ H ×H is a finite set of synapses, with (i, i) 6∈ syn for i ∈ H;
5. R is a finite set of developmental rules, of the following forms:

(1) neuron budding rule x[ ] i → y[ ] j , where x ∈ {(k, i), (i, k), λ}, y ∈
{(i, j), (j, i), λ}, i, j, k ∈ H, i 6= k, i 6= j;

(2) extended firing (also called spiking) rule [E/ac → ap; d] i, where i ∈ H, E
is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0 are integer numbers,
with the restriction c ≥ p.

6. in, out ∈ H indicate the input and the output neurons of Π.

Note that the definition of SN P systems with budding rules is slightly different
from the usual definition of SN P systems given in the literature, where the neurons
that occur in the system are explicitly listed as σi = (ni, Ri), 1 ≤ i ≤ m, where
Ri is the set of rules associated with neuron σi, and ni is the number of spikes it
contains in the initial configuration of the system. First of all, only the structure
of the system is given in our definition; the presence of spikes (if any) in the
initial configuration is specified at the beginning of each computation. Further, i
is considered as the label of neuron σi. In SN P systems with budding rules it is
possible to create new neurons in the course of a computation; hence the system
may contain, in a given configuration, several neurons that are labelled with the
same element of H. Nonetheless, with a slight abuse of notation in what follows
we will refer to any neuron having the label i ∈ H by calling it σi.

Considering the budding rule x[ ]
i
→ y[ ]

j
, its left hand side describes the

neuron σi with a synapse x connected with one of its neighbouring neurons, to
which the rule is supposed to be applied. The right hand side describes the result
of the rule application, that is, the newly created neuron σj and synapse y. Note
that for the sake of simplicity, in the rule notation we omit to repeat the contents
of the left hand side of the rule in the right hand side. We say that the rule is
restricted because only one neighbouring neuron is considered in each side of the
rule.

A budding rule can be applied only if the neighbourhood of the associated
neuron is exactly as described in the left hand side of the rule, in other words,
x = X where X is the current set of synapses of neuron σi. As a result of the rule
application, a new neuron σj and a synapse y are established, provided that they
do not already exist; if a neuron with label j already exists in the system but no
synapse of type y exists, then only the synaptic connection y between the neurons
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σi and σj is established; no new neuron with label j is budded. We stress here
that the application of budding rules does not depend on the spikes contained
into the neuron. Budding rules are applied in a maximally parallel way: if the
neighbourhood of neuron σi enables several budding rules, then all these rules are
applied in parallel; as a result, several new neurons and synapses are produced
(which corresponds to have several branches at a touch point in the dendrite
tree). Note that the way of using neuron budding rules is different with respect
to the usual way in which P systems with active membranes use cell division or
cell creation rules, where at most one of these rules can be applied inside each
membrane during a computation step.

Extended firing rules are defined as usually done in SN P systems. If an ex-
tended firing rule [E/ac → ap; d]

i
has E = ac, then we will write it in the simplified

form [ac → ap; d] i; similarly, if a rule [E/ac → ap; d] i has d = 0, then we can sim-
ply write it as [E/ac → ap] i; hence, if a rule [E/ac → ap; d] i has E = ac and
d = 0, then we can write [ac → ap]

i
. A rule [E/ac → ap]

i
with p = 0 is written

in the form [E/ac → λ]
i

and is called an extended forgetting rule. Rules of the
types [E/ac → a; d]

i
and [ac → λ]

i
are said to be standard. However, even in this

case we do not require that if a forgetting rule is enabled then no firing rules are
also enabled at the same time in the same neuron, as it happens in standard SN
P systems.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

In each time unit, if a neuron σi can use one of its rules, then a rule from R
must be used. If the neighbourhood of neuron σi enables several budding rules,
then all these rules are applied in parallel. If several spiking rules are enabled in
neuron σi, then only one of them is nondeterministically chosen. If both spiking
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rules and budding rules are enabled in the same computation step, then one type
of rules is nondeterministically chosen. When a neuron budding rule is applied, at
this step the associated neuron is closed, and thus it cannot receive spikes. In the
next step, the neurons obtained by budding will be open.

The configuration of the system is described by its topology structure, the num-
ber of spikes associated with each neuron, and the state of each neuron (open or
closed). We emphasize that the system introduced here contains no spikes in the
initial configuration. Using the rules as described above, one can define transitions
among configurations. Any sequence of transitions starting in the initial configu-
ration is called a computation. A computation halts if it reaches a configuration
where all the neurons are open and no rule can be used.

In what follows, we give an example to make the application of budding rules
transparent. Neither spiking nor forgetting rules are used.

An example. Let Π1 be an SN P system with budding rules, whose initial topo-
logical structure (composed by a single neuron σ1) is shown in the left hand side
of Figure 2. Let Π1 contain the following six budding rules:

a. λ[ ]1 → (1, 2)[ ]2,
b. (1, 2)[ ]2 → (3, 2)[ ]3,
c. (1, 2)[ ]

2
→ (2, 4)[ ]

4
,

d. (2, 3)[ ]
3
→ (3, 5)[ ]

5
,

e. (2, 4)[ ]
4
→ (4, 6)[ ]

6
,

f. (4, 6)[ ]6 → (6, 3)[ ]3.

In the initial configuration, neuron σ1 has no neighbourhood and only rule a.
is enabled. The application of rule a. produces a new neuron σ2 with a synapse
(1,2) connecting it with σ1. Now both neurons σ1 and σ2 have a neighbourhood
(each one being the neighbourhood of the other), since a synaptic connection exists
between them. In this circumstance, rule a. is disabled while rules b. and c. are
enabled and may be applied in parallel to neuron σ2. When these two rules are
applied two new neurons σ3 and σ4 are created, with the associated synapses (3,2)
and (2,4). In the resulting configuration, rules b. and c. are disabled since now
neuron σ2 has three neighbours. At this step only rule e. can be applied to neuron
σ4, producing a new neuron σ6 with a synaptic connection (4,6). Note that at this
step rule d. was not enabled as the synapse of neuron σ3 is (3,2), instead of (2,3) as
required by the rule. Now only rule f. is enabled, which creates only the synapse
(6,3) because neuron σ3 already exists. From now on no rule is enabled, and thus
the computation halts.

3 SN P systems solving sat

Let us now consider the NP-complete decision problem sat [8, p. 39]. The in-
stances of sat depend upon two parameters: the number n of variables, and the
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Fig. 2. Evolution of the structure of the SN P system Π1, as the effect of the application
of budding rules

number m of clauses. We recall that a clause is a disjunction of literals, occur-
rences of xi or ¬xi, built on a given set X = {x1, x2, . . . , xn} of Boolean variables.
Without loss of generality, we can avoid the clauses in which the same literal is
repeated or both the literals xi and ¬xi, for any 1 ≤ i ≤ n, occur. In this way, a
clause can be seen as a set of at most n literals. An assignment of the variables
x1, x2, . . . , xn is a mapping a : X → {0, 1} that associates to each variable a truth
value. The number of all possible assignments to the variables of X is 2n. We say
that an assignment satisfies the clause C if, assigned the truth values to all the
variables which occur in C, the evaluation of C (considered as a Boolean formula)
gives 1 (true) as a result.

We can now formally state the sat problem as follows.

Problem 1. Name: sat.

• Instance: a set C = {C1, C2, . . . , Cm} of clauses, built on a finite set {x1, x2,
. . . , xn} of Boolean variables.

• Question: is there an assignment to the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Equivalently, we can say that an instance of sat is a propositional formula
γn = C1∧C2∧· · ·∧Cm, expressed in the conjunctive normal form as a conjunction
of m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. With a little abuse of notation, from now on we will denote
by sat(n,m) the set of instances of sat which have n variables and m clauses.

In [6], a uniform family {ΠSAT (〈n,m〉)}n,m∈N of SN P systems was built such
that for all n,m ∈ N the system ΠSAT (〈n, m〉) solves all the instances of sat(n,m)
in a number of steps which is quadratic in n and linear in m. Here 〈n,m〉 denotes
the natural number obtained by applying the Cantor bijection to the pair (n,m) of
natural numbers; so doing, the family of P systems depends upon one parameter
instead of two. We assume that the reader is familiar with the construction given
in [6]; for his convenience, here we summarize the structure and functioning of the
system ΠSAT (〈n,m〉). In the next section, we are going to build such a system by
means of budding rules.

Because the construction is uniform, we need a way to encode any given in-
stance γn of sat(n,m). As stated above, each clause Ci of γn can be seen as a
disjunction of at most n literals, and thus for each j ∈ {1, 2, . . . , m} either xj
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Fig. 3. A SN P system structure devoted to solve all the instances of sat(n, m)

occurs in Ci, or ¬xj occurs, or none of them occurs. In order to distinguish these
three situations we define the spike variables αij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, as
variables whose values are amounts of spikes, and we assign to them the following
values:

αij =





a if xj occurs in Ci

a2 if ¬xj occurs in Ci

λ otherwise
(1)

So doing, clause Ci will be represented by the sequence αi1αi2 · · ·αin of
spike variables; in order to represent the entire formula γn we just concate-
nate the representations of the single clauses, thus obtaining the sequence
α11α12 · · ·α1nα21α22 · · ·α2n · · ·αm1αm2 · · ·αmn. As an example, the representa-
tion of γ3 = (x1 ∨ ¬x2) ∧ (x1 ∨ x3) is the sequence aa2λaλa.

The system structure is composed of n + 5 layers, as illustrated in Figure 3.
The first layer (numbered by 0) is used to insert into the system the representation
of the instance of sat(n,m) to be solved, encoded as stated above. Note that
each layer from 1 to n contains two times the neurons contained in the previous
layer. In this way we obtain in the n-th layer 2n copies of a subsystem which is
a sequence of n neurons; each subsystem is bijectively associated to one of the
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possible assignments to the variables x1, x2, . . . , xn. The neurons that occur in
each subsystem are of two types: f and t. The type of a neuron indicates that
the corresponding Boolean variable is assigned with the Boolean value t(rue) or
f(alse), respectively. These subsystems, together with the so called generator, have
a very specific function in the overall SN P system: to test (in parallel) all possible
assignments against a given clause.

The assignment is performed by sending 3 spikes to all the neurons labelled
with t, and 4 spikes to all the neurons labelled with f . This means that neurons
e in the generator will have three synapses going to neurons t and four synapses
towards neurons f . All these spikes arrive every n computation steps, when the
spikes indicated by the spike variables αij that correspond to a clause of γn are
contained into the subsystems of layer n. This process is started by putting one
spike in neuron s at the beginning of the computation. The delay associated with
the rule contained in neuron s allows to send the first spikes from neurons e to
neurons t and f exactly when the first clause is contained in layer n.

Recall our encoding of literals in the clauses (1): we have 0 spikes if the variable
does not occur in the clause, 1 spike if it occurs non negated, and 2 spikes if it
occurs negated. These spikes are added with those representing the assignments,

Table 1. Number of spikes resulting from the assignment in the neurons of layer n, and
its effect on the truth value of the clause

and the possible results are illustrated in Table 1. From this table we can see that if
a neuron labelled with t receives a total number of 4 spikes then the corresponding
variable occurs non negated in the clause and is assigned the truth value true; we
can immediately conclude that the clause is satisfied, and thus the neuron sends
one spike towards the next layer. Similarly, if a neuron labelled with f receives 6
spikes then the corresponding variable occurs negated in the clause and is assigned
the truth value false; also in this case we can immediately conclude that the clause
is satisfied, and the neuron signals this event by sending one spike towards the next
layer. In all the other cases we cannot conclude anything on the truth value of the
clause, and thus no spike is emitted.
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All the spikes which are emitted by neurons t and f are propagated through
the neurons that compose layer n, until they reach the corresponding neuron σ1

in layer n + 1. Such a neuron is designed to make neuron σ2 (in layer n + 2)
retain only one spike from those received by layer n. Hence, those assignments
that satisfy the clause produce a single spike in the corresponding neuron σ2; such
a spike is accumulated in the associated neuron σ3 (in layer n + 3), that operates
like a counter. When the first clause of γn has been processed, the second enters
into the system (in n steps) and takes place in the subsystems; then all possible
assignments are tested against this clause, and so on for all the clauses. When all
the m clauses of γn have been processed, neurons σ3 in layer n + 3 contain each
the number of clauses which are satisfied by the corresponding assignment. The
neurons that contain m spikes fire, sending one spike to neuron σout, thus signalling
that their corresponding assignment satisfies all the clauses of the instance. Neuron
σout operates like an or gate: it fires if and only if it contains at least one spike,
that is, if and only if at least one of the assignments satisfies all the clauses of γn.
Further technical details will be presented in the last part of the next section.

4 A uniform solution to sat by SN P systems with budding
rules

In this section we show that the pre-computed structures which are used in [6] to
solve the instances of sat(n,m) can be built in a polynomial time by SN P systems
with budding rules. The SN P system with budding rules that we are going to
define is composed of two subsystems: a first subsystem builds the structure of
a second subsystem, that solves the instances of sat(n,m) as described in the
previous section. For the sake of simplicity, we avoid to use the neuron budding
and the spiking rules at the same time in each subsystem.

Formally, the SN P system with budding rules is defined as

Π = (O,Σ, H, syn,R, soma, out)

where:

1. O = {a} is the singleton alphabet;
2. Σ = {σi | i ∈ H0} is the set of initial neurons;
3. H is a finite set of labels for neurons, and

H ⊇ H0 = {soma, out, e0, e1, e2, e3, b1, b2, b3, c, s, +,−} is the set of labels for
the neurons initially given;

4. syn ⊆ H ×H is a finite set of synapses, with (i, i) /∈ syn for i ∈ H), and
syn ⊇ syn0 = {(e, ei) | 0 ≤ i ≤ 3, e ∈ {+,−}} ∪ {(e0, bi) | 1 ≤ i ≤ 3} ∪
{(b3, c), (s, +), (+,−), (−, +), λ} is the set of synapses initially in use;

5. soma and out are the labels for the input and output neuron, respectively;
6. R is a set of neuron budding and extended spiking rules defined as follows.
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Fig. 4. The initial topological structure (newly born dendrite) of the SN P system Π:
the input (soma) and the output (out) neurons, and the generator

Building the system structure.

The system initially contains an input neuron σsoma, an output neuron σout, and
a sub-structure G (named the generator) which is composed of the set of neurons
specified in Σ and the set of synapses from syn0, arranged as illustrated in Figure
4.

The generator is governed only by neuron budding rules, and is controlled by
the labels of budding neurons and by the synapses created during the computation.
The system construction algorithm consists of two phases:

A. Generation of the dendritic-tree sub-structure (the layers from 0 to n in Figure
3) and assignment of the truth values to the n Boolean variables. The process
starts from the initial neuron σsoma (the root node) and produces 2n neurons
in n steps. The label of each neuron in layer n encodes an associated truth
assignment.

B. Completion of the network structure. The neurons in the n-th layer of the
system establish connections with the generator, according to the truth assign-
ments represented in those neurons. The structure is then further expanded by
three layers, and finally all the neurons in the last layer are connected with the
output neuron σout.

Let us now describe in depth each of these phases.

Phase A. In this phase of computation, the dendritic tree (which is a complete
binary tree) is generated in n steps by applying budding rules of type a1), described
below, starting from an initial neuron σsoma. The dendritic tree generation process
is controlled by the labels of the neurons as well as by the synapses generated so far.
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It is worth to note that, since the truth assignments associated with the neurons in
n-th layer are encoded in the labels of those neurons, also the truth assignments to
the variables x1, x2, . . . , xn are generated during the construction of the dendritic
tree.

The label of a neuron σc in layer i is a sequence of the form

c = (i, x(p)
i ) = (i, xi(1) = p) = (i, p, xk2, . . . , xii),

with p ∈ {t, f}, where the first entry (i) indicates the number of layer, while x
(p)
i is

a subsequence of length i formed by the Boolean values t and f that have been gen-
erated up to now, that represents a truth assignment to the variables x1, x2, . . . , xi.
The component p in x

(p)
i indicates that the first entry of the subsequence is exactly

p.
An almost complete structure of the SN P system that solves the instances of

sat(2,m) is illustrated in Figure 5. It is worth to follow its construction.

Fig. 5. An almost complete structure (maturated dendrite tree) of the P system for
solving the instances of sat(2, m). The neuron budding rules used in each computation
step are indicated by their labels in the corresponding neurons. Some of the spiking rules
are also indicated
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a1) (c(i,xi−1), c(i,xi))[ ]
c(i,xi)

→ (c(i,xi), c(i+1,p,xi))[ ]
c(i+1,p,xi)

,

0 ≤ i ≤ n− 1, p ∈ {t, f}, xi ∈ {t, f}i, (c(−1,x−1), c(0,x0)) = λ, c(0,λ) = soma.
The computation starts by applying two rules of type a1), for i = 0, to the
input neuron σcsoma

. These two rules are:

[ ]
csoma

→ (csoma, c(1,t))[ ]
c(1,t)

, and [ ]
csoma

→ (csoma, c(1,f))[ ]
c(1,f)

,

where (csoma, c(1,t)), (csoma, c(1,f)) ∈ syn.
The left hand side of each rule (where λ ∈ syn0 is omitted) requires that its
interaction environment be empty, i.e., no synapse exists connected to neuron
σcsoma

. As the left hand sides of both these rules are the same, and satisfy the
constraints posed on the interaction environment of neuron σcsoma

, they are
applied simultaneously. As a result, two new neurons are budded: σc(1,t) , with
a synapse (csoma, c(1,t)) coming from the father neuron, and σc(1,f) , connected
with the father neuron by a synapse (csoma, c(1,f)). The symbols t and f in the
neuron labels indicate the truth values true and false, respectively, and can
be regarded as the two truth assignments (t) and (f) of length 1 for a single
Boolean variable x1. The first layer of the dendritic tree is thus established, and
rules of type a1) cannot be applied anymore, since the interaction environment
of neuron σcsoma

has changed.
At the second computation step (i = 1), the following two rules are enabled
and can be applied to each of the newly created neurons:

(csoma, c(1,t))[ ]
c(1,t)

→ (c(1,t), c(2,f,t))[ ]
c(2,f,t)

,

(csoma, c(1,t))[ ]
c(1,t)

→ (c(1,t), c(2,t,t))[ ]
c(2,t,t)

for σc(1,t) , and

(csoma, c(1,f))[ ]
c(1,f)

→ (c(1,f), c(2,t,f))[ ]
c(2,t,f)

,

(csoma, c(1,f))[ ]c(1,f)
→ (c(1,f), c(2,f,f))[ ]c(2,f,f)

for σc(1,f) . The former pair of rules yields to two new neurons having label
c(2,f,t) and c(2,t,t), respectively; the synapses specified in these rules are budded
from the neuron labelled with c(1,t). The latter pair of rules generates two
neurons with labels c(2,f,f) and c(2,t,f), respectively; the synapses mentioned
in these rules go from the neuron labelled with c(1,f) to the newly created
neurons. In the meanwhile the truth assignments (f, t), (t, t), (f, f), (t, f), for
the Boolean variables x1 and x2, are generated at each leaf node, as illustrated
in Figure 5. Since the interaction environment of neurons σc(1,t) and σc(1,f) has
changed, the rules applied in this step cannot be applied anymore to these
neurons.
By continuing in this way, by applying the budding rules of type a1) in a
maximally parallel way for n computation steps, a complete binary tree of
depth n having 2n leaves (hence an exponentially large workspace) is built. The
label of each leaf node encodes a truth assignment of length n, hence all possible
truth assignments for the Boolean variables x1, x2, . . . , xn are generated.
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Phase B. The pre-computation to construct the SN P system structure continues
until it converges to the output neuron in a further few steps. The main goal of this
part of the construction algorithm is to design the substructure which is devoted
to test the satisfiability of the clauses of the instance γn of sat(n,m) given as
input against all possible truth assignments, and to determine whether there exist
some assignments that satisfy all the clauses of γn.

The substructure is composed of 2n subsystems, each being a sequence of n
neurons σc(j,xn) , 1 ≤ j ≤ n, including the leaf nodes of the dendritic tree. A sub-
sequence xn = (xn1, xn2, . . . , xnn) ∈ {t, f}n in a neuron label c(j,xn) represents a
truth assignment, and we can abstractly assign a pair (j, xn(j)) to a neuron σc(j,xn)

as its identity. Thus each subsystem represents a truth assignment formed by its
neurons’ identities. As stated above, a neuron with identification (j1, x(j1) = t)
has 3 synapses coming from the generator module, whereas a neuron with identity
(j2, x(j2) = f) is connected with the generator by means of 4 synapses. As we will
see, these connections are used to perform assignments to the Boolean variables
x1, x2, . . . , xn that compose γn, and to check which assignments satisfy the clause
of γn currently under consideration.

For instance, the case in which n = 2 is described in Figure 5, where 22 = 4
different truth assignments of length 2 have been generated for the two Boolean
variables x1 and x2. The first subsystem is composed of two neurons having labels
c(2,f,t) and c(1,f,t), respectively. The former is associated with the Boolean value
false, as x2 = (f, t) and x2(2) = f , while the latter is associated with true, as
x2(1) = t; altogether they form the truth assignment (f, t). The other subsystems
are similar, and are associated with the truth assignments (t, t), (f, f) and (t, f).
One can see that the four truth assignments are well distinguished from each other
by the layer structure of the four subsystems.

To build the substructure of n layers mentioned above, from now on two rules
of types a2) and a3) are applied simultaneously to a same neuron for n− 1 steps.
The first rule creates a new neuron with an associated synapse, while the second
rule creates 3 or 4 synapses to the generator block. The same process occurs during
the n-th step, by means of the rules of types a3) and a4); note that in this step
the rules of type a2) cannot be applied anymore.

a2) (c(n+1−j,xn), c(n−j,xn))[ ]c(n−j,xn)
→ (c(n−j,xn), c(n−1−j,xn))[ ]c(n−1−j,xn)

,
p ∈ {t, f}, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ n,
c
(k,0,x

(p)
k )

= c(k−1,n,xk−1), x
(p)
k = (p, xk−1) ∈ {t, f}k.

a3) (c(n+1−j,xn), c(n−j,xn))[ ]c(n−j,xn(j+1)=p)
→ (c(n−j,xn(j+1)=p), ei)[ ]ei

,
0 ≤ j ≤ n, p ∈ {t, f} and s ≤ i ≤ 3, where s = 1 if p = t, and s = 0 if p = f ,
c(n,0,xn) = c(n−1,n,xn).
We are now in the (n + 1)-th step of the computation. When j = 0, both
rules of types a2) and a3) are applicable to each neuron σc(n,xn) of layer n.
The former rules generate neurons σc(n−1,xn) with a synapse (c(n,xn), c(n−1,xn)).
The latter type of rules creates three synapses to all neurons of type σc(n,xn(1)=t)

coming from the neurons σcei
, 1 ≤ i ≤ 3, and four synapses to the neurons
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σc(n,xn(1)=f) coming from the four neurons σcei
, 0 ≤ i ≤ 3, of the generator

block. The neuron budding rules of type a2) and the synapse creation rules of
type a3) are applied simultaneously to the same neurons (leaf nodes) in layer
n in the following n − 1 steps, since their interaction environments coincide.
The effect of the application of these rules is the production of neurons having
connections with the generator block.
So doing, 2n subsystems, each one composed of a sequence of n neurons, are
generated starting from layer n. In each subsystem, every neuron correspond-
ing to the Boolean value true (xn(j) = t) is connected with the generator
block by means of three synapses, while the neurons that correspond to the
Boolean value false (xn(j) = f) are connected with the generator block by
four synapses.
From the (2n + 1)-th step of the computation on, no interaction environment
of any neuron in the system allow to activate the rules of type a2). Hence these
rules cannot be applied, but the computation continues with the next types of
rules.

a4) (c(2,xn), c(1,xn))[ ]
c(1,xn)

→ (c(1,xn), c1)[ ]
c1

.
The rules of type a4) can be applied in parallel to the leaf nodes (neurons)
of layer n; they produce the neurons σc1 forming the (n + 1)-th layer and,
meanwhile, the rules of type a3) create synapses from these neurons to the
generator block.

a5) (c(1,xn), c1)[ ]
c1
→ (c1, c2)[ ]

c2
,

a6) (c(1,xn), c1)[ ]
c1
→ (bi, c1)[ ]

bi
, 1 ≤ i ≤ 3.

While the rules of type a5) are applied to the neurons σc1 and bud neurons
σc2 , the rules of type a6) are also applied and create three synapses coming
from the neurons σbi , 1 ≤ i ≤ 3, to each neuron σc1 . In this way, layer n + 2
is formed.

a7) (c1, c2)[ ]
c2
→ (c2, c3)[ ]

c3
,

a8) (c1, c2)[ ]
c2
→ (c, c2)[ ]

c
.

The rules of types a7) and a8) apply simultaneously to every neuron σ2 having
a synapse (c1, c2). As a result, a new neuron σc3 is budded with a connection
(c, c2) coming from neuron σc. All the neurons σc2 in the same layer are sub-
jected to the same effect, since the rules are applied in the maximally parallel
way.

a9) (c2, c3)[ ]c3
→ (c3, out)[ ]out.

The pre-computation of the SN P system structure is completed by forming
the connections from the neurons σc3 to the output neuron σout, by means of
the rules of type a9). These rule are applied in the maximally parallel way to
all the neurons in layer n + 3.

Summarizing, phases A and B build an empty (that is, containing no spikes)
structure of an SN P system, that can be used to solve all the instances of sat(n,m)
in a linear (with respect to n) number of computation steps. The size of the
structure is exponential with respect to n.
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Solving sat (Phase C).

Given an instance γn of sat(n,m), we first encode it as a sequence of spike vari-
ables, as explained in Section 3, equation (1). Then, the computation of the system
may start. The sequence of spikes encoding γn is introduced in the system, using
neuron σsoma. Let us see at what spiking rules are used to compute the solution,
with a brief description for each.

c1) [a → a]
c(i,xi)

; [a2 → a2]
c(i,xi)

0 ≤ i ≤ n, xi ∈ {t, f}i, c(0,x0) = soma,
c2) [a → a; n− 1]

s
.

We insert 0, 1 or 2 spikes into the system by rule c1) using the input neuron
σsoma, according to the value of the spike variable αij we are considering in the
representation of γn. In the meanwhile we insert a single spike a into neuron
σs, to fire once the rule c2), thus activating the generator block.

Each spike, encoding a spike variable inserted into the input neuron, is dupli-
cated and transmitted to the next layer of neurons. This duplication is performed
n times, until 2n replicated copies of the spike are placed in the leaf nodes (in layer
n) of the dendritic tree.

c3) [a → a]
ei

; 0 ≤ i ≤ 3,
[a → a; n− 1]

+
; [a → a; n− 1]−.

These are the spiking rules of the generator block. Each n steps, the generator
provides 3 and 4 spikes, respectively, to the neurons of layer n associated with
the truth values t and f . This is made in order to test the satisfiability of a
clause which has propagated through the layers of the dendritic tree, by check-
ing it against all possible truth assignments to the variables x1, x2, . . . , xn.

In another n steps, the 2n copies of the clause of γn take place in the corresponding
subsystems located in layers from n+1 to 2n, where the satisfiability of the clause
against all possible truth assignments is tested. For this purpose, the spike-truth
values a4 and a3 are assigned from the generator to the spike-variables of the clause,
according to the truth assignments represented by the neurons that compose the
subsystems. In fact, recall that in each subsystem every neuron corresponding to
the Boolean value true (xn(j) = t) is connected with the generator block by means
of three synapses, while the neurons that correspond to the Boolean value false
(xn(j) = f) are connected with the generator by means of four synapses. The
satisfiability is then checked by means of the rules of types c4) and c5) residing in
the neurons.

c4) [a → a] tt
; [a3 → λ] tt

; [a2 → a2] t1
;

[a4 → a]
tt

; [a5 → λ]
tt

; [a2 → a]
t0

;
tt = c(j,xn(j)=t), 1 ≤ j ≤ n,
t1 = c(j,xn(j)=t), 2 ≤ j ≤ n,
t0 = c(1,xn(n)=t), xn ∈ {t, f}n.
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These are the spiking rules that reside in the neurons of layer n, associated
with the Boolean value true (in Figure 5 n = 2, σc(2,t,f) stands for false while
σc(1,t,f) stands for true). The rules a2 → a2, a2 → a, and a → a are used to
transmit the spike variables a, a2 along the subsystems. Once a clause Ci is
ready to be tested for satisfiability, each neuron associated with true contains
either one spike (a), two spikes (a2) or is empty (λ). As a spike variable a
represents the occurrence of a Boolean variable xj in Ci, to which a true value
(a3) sent by the generator is assigned, resulting in a yes answer (a4), then
it passes to the neuron σc1 along the subsystem as an indication that Ci is
satisfied by a truth assignment in which the Boolean variable xj is true. On
the other hand, if the Boolean value true (a3) is assigned to a spike variable
that represents the occurrence of ¬xj in Ci (a2) or the fact that xj does not
occur in Ci (λ), then in these cases the answer is no, which is computed by
the rules a3 → λ and a5 → λ.

c5) [a → a]ff
; [a4 → λ]ff

; [a2 → a2]f1
;

[a5 → λ]
ff

; [a6 → a]
ff

; [a2 → a]
f0

;
ff = c(j,xn(j)=f), 1 ≤ j ≤ n,
f1 = c(j,xn(j)=f), 2 ≤ j ≤ n,
f0 = c(1,xn(n)=f), xn ∈ {t, f}n.
These are the spiking rules that reside in the neurons of layer n, associated
with the Boolean value false. The functioning of these rules is similar to that
of rules c4).

c6) [a → a; n− 1]bi
; 1 ≤ i ≤ 3,

[a2/a → a]
c1

; [a3 → λ]
c1

;
[a4 → a]c1

; [a5 → a]c1
.

Whether an assignment satisfies or not the clause under consideration, is
checked by a combined functioning of the neurons with label 1 in layer n + 1
and the neurons with label bi, 1 ≤ i ≤ 3, in the generator.

c7) [a → λ]
c2

; [a2 → a]
c2

;
[a → a]c.
With a combined action of neuron σc, neuron σc2 sends a spike to neuron σc3

if and only if the corresponding assignment satisfies the clause under consid-
eration.

c8) [am → a]
c3

;
[a+/a → a]

out
.

Neurons with label c3 count how many clauses of the instance γn are satisfied
by the corresponding truth assignments. If one of these neurons get m spikes,
then it fires. Hence the number of spikes that reach neuron out is the number
of assignments that satisfy all the clauses of γn. The output neuron fires if
it contains at least one spike, thus signalling that the problem has a positive
solution; otherwise, there is no assignment that satisfies the instance γn.
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This stage of computation ends at the (nm+n+4)-th step. The entire computation
of the system thus halts in at most nm + n + 5 computation steps, hence in a
polynomial time with respect to n and m.

In conclusion, we obtained a deterministic, polynomial time and uniform solu-
tion to sat(n,m) in the framework of SN P systems.

5 Conclusions and directions for future research

In the present paper we proposed a way to solve the NP-complete decision problem
sat in a polynomial time with respect to the number n of Boolean variables
and the number m of clauses that compose the instances of sat being solved.
Specifically, we introduced SN P systems with neuron budding rules, a new feature
that enhances the efficiency of SN P systems by allowing them to generate an
exponential size synapse graph (regarded as the workspace of the system) in a
polynomial time with respect to n.

Neuron budding rules drive the mechanism of neuron production and synapse
creation, according to the interaction of neurons with their neighbourhoods (de-
scribed by the synapses that connect them to other neurons). We have shown that
a very restricted type of neuron budding rules, involving one or two synapses (ac-
tually, when two synapses are involved, they appear one in each side of the rule)
is sufficient to solve the sat problem. The solution is computed in two stages: the
first phase builds an exponential size SN P system that contains no spikes; then,
this SN P system is fed with the instance of sat to be solved (encoded in an ap-
propriate way) and the answer is computed. The system works in the deterministic
and maximally parallel manner.

The idea of producing new neurons in SN P systems is not new: already in
[15] neurons are generated by division. However, both biological motivation and
mathematical formal definition are different: neuron budding in this paper depends
on the connections (structure) with other neurons, while neuron division depends
on the number of spikes occurring inside the neurons (that is, the contents); hence
they are two different ways to increase the workspace of SN P systems.

An open question is whether SN P systems with budding rules can be used to
efficiently solve other computationally difficult problems, such as numerical NP-
complete problems and PSPACE-complete problems.

SN P systems with neuron budding rules can be extended by introducing more
general rules, which in some sense capture the dynamic interaction of neurons
with their neighbourhood. One possible form of such general rules is as follows:
Ai[ ] iBi → Cj [ ] jDj , where Ai, Bi and Cj , Dj are the sets of synapses coming to
and going out from, respectively, the specified neurons σi and σj . Clearly, in such
general rules, more than one synapses can be involved in the neighbourhood of the
considered neuron.
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15. L. Pan, Gh. Păun, M. J. Pérez-Jiménez: Spiking neural P systems with neuron

division and budding. Seventh Brainstormin Week on Membrane Computing, (R.
Gutiérrez-Escudero, M.A. Gutiérrez-Naranjo, Gh. Păun, I. Pérez-Hurtado, A. Riscos-
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