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Summary. Reconstruction of signal transduction network models based on incomplete
information about network structure and dynamical behaviour is a major challenge in
current systems biology. In particular, interactions within signalling networks are fre-
quently characterised by partially unknown protein phosphorylation and dephosphory-
lation cascades at a submolecular description level. For prediction of promising network
candidates, reverse engineering techniques typically enumerate the reaction search space.
Considering an underlying amount of phosphorylation sites, this implies a potentially
exponential number of individual reactions in conjunction with corresponding protein
activation states. To manage the computational complexity, we extend P systems with
string-objects by a subclass for protein representation able to process wild-carded to-
gether with specific information about protein binding domains and their ligands. This
variety of reactants works together with assigned term-rewriting mechanisms derived
from discretised reaction kinetics. We exemplify the descriptional capability and flexibil-
ity of the framework by discussing model candidates for the circadian clock formed by the
KaiABC oscillator found in the cyanobacterium Synechococcus elongatus. A simulation
study of its dynamical behaviour demonstrates effects of superpositioned protein abun-
dance courses based on regular expressions corresponding to dedicated protein activation
states.

1 Introduction

Biological signalling networks have been identified to exhibit a universal capability
to process information [14, 17]. They can be viewed as complex computational de-
vices of the cell, triggering and directing responses to external stimuli. It turns out
that successive formation or decomposition of protein complexes in conjunction
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with domain-specific protein binding (as during phosphorylation by kinases) plays
a central role in biological signal transduction based on submolecular assembly
[1]. In this context, resulting biomolecules act as information carriers of astonish-
ing storage capacity and structural plasticity. For example, the tumor suppressor
protein p53 is equipped with 27 phosphorylation sites [3]. It could theoretically
assume up to 227 = 34, 217, 728 different activation states. Having in mind that
each of these states is able to form an individual constituent of a reaction net-
work incorporating all distinguishable states of up to several hundred interacting
proteins, the potential dimension of those protein signalling networks is obvious.

In a typical scenario of exploring coupled intracellular modules – functional net-
work units – the present knowledge on involved constituents and topology lacks
some detailed information with regard to comprising the entirety of individual
molecular interactions. Hence, an integrative setup, prediction, and reconstruction
of network model candidates based on incomplete data is a challenging task in
systems biology since it requires unconventional techniques to cope with the com-
binatorial complexity of exhaustive search within the underlying reaction space
[15]. A variety of reverse engineering approaches emerged to tackle enumerative
reaction network reconstruction at different levels of abstraction (cf. [10, 16]).

While the steady-state behaviour might be sufficient to characterise a
metabolic network (cf. [12]), the function of a protein signalling network de-
pends heavily on its temporal evolution [26]. Oscillators based on phosphoryla-
tion/dephosphorylation cycles represent significant examples [20, 22, 27]. Thus,
the aspect of dynamical behaviour should be reflected in the choice of the preferred
modelling approach. For that purpose, ordinary differential equations (ODEs) de-
rived from appropriate kinetics are commonly employed. Since this method usually
assumes each individual protein activation state to act as a separate species, it
easily leads to an exponential growth of the number of distinct ODEs (addressed
amongst others in [7]). An opportunity to temporarily unify several activation
states by one dedicated species could be a keystone to overcome this insufficiency.

Inspired by this initial idea, we propose a P systems framework able to spec-
ify proteins together with relevant properties by string-objects. In contrast to
species names in ODEs, phenotypic information about a protein is represented by
a character string. Each individual protein property is allowed to be marked as
present, absent, or arbitrary. In the latter case, placeholders known from regu-
lar expressions denote unassigned protein properties. Consequently, reaction rules
may also contain placeholders processed by a matching relation for association
of available particles to reactants given within rules. Furthermore, our P systems
framework combines the ability to manage specific string-objects with discretised
reaction kinetics. Incomplete information about protein activation states can be
handled by setting placeholders if required. While they enable a unification of
several activation states when specifying a protein on the one hand, placeholders
contribute to trace the variety of potential effects by embedding wild-cards into
reaction rules on the other hand. Thus, a bottom-up strategy for the modelling
of signalling networks by successive knowledge integration can benefit from the
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proposed framework. Along with intermediate results coming from simulation of
a partially wild-carded system, synergies between wetlab experimental setup and
model refinement considering structural dynamics might emerge. Inclusion of re-
action kinetics into the formalism of P systems was explained in [18] exemplified
by metabolic networks, supplemented by signalling and gene regulatory networks
[13]. A previous formulation of periodic and quasi-periodic processes based on
symbol objects without inner structure is given in [5]. The BioNetGen framework
[6] allows handling of string pattern to constitute species. However, its expressive
capability of reaction kinetics excludes stoichiometry.

The paper is organised in two main sections: Firstly, we define the P sys-
tems framework ΠCSM (Cell Signalling Module) with emphasis on the combination
of reaction kinetics and wild-carded representation of proteins as string-objects.
Matching strategies accomplish the handling of incomplete information. In order
to provide formalisms to select reactants for rule-based rewriting, we adopt the
strategy of loose matching [13]. It is expressed by a relation between strings form-
ing objects and strings acting as patterns in rewriting rules. The loose matching
checks whether there is at least one common wild-card free representation for both
strings. So, it is intended to generate a maximal variety of potential effects. A more
general matching approach able to find patterns common to a set of strings has
been specified by the Angluin pattern language [2]. In order to enable detailed
studies on the temporal evolution of the system, we replace the maximally paral-
lel rewriting from the original framework [23] with a mechanism that is based on
reaction kinetics. For each rewriting rule, the number of applications per turn is
given by a kinetic function, depending on the current configuration of the system.
This way, a deterministic system evolution is obtained. The formal system defini-
tion is followed by a comprehensive application scenario: Section 3 demonstrates
the suitability of the framework for discussing model candidates of the circadian
clock formed by the KaiABC oscillator found in cyanobacterium Synechococcus
elongatus. Since the detailed mechanism of this biochemical oscillation is partially
unknown, various models have been developed recently e.g. [8, 19, 29]. We show
their integration into the P systems framework ΠCSM in terms of an intersecting
superposition of consistent elements flanked by wild-carded completion. A simula-
tion study of the dynamical system’s behaviour discloses effects of superpositioned
protein abundance courses based on regular expressions corresponding to dedicated
protein activation states.

2 System Description

Multiset Prerequisites

Let A be an arbitrary set and N the set of natural numbers including zero. P(A)
denotes the power set of A. A multiset over A is a mapping F : A −→ N ∪ {∞}.
F (a), also denoted as [a]F , specifies the multiplicity of a ∈ A in F . Multisets can be
written as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .}
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since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F ) ⊆ A of F is defined
by supp(F ) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | =

∑
a∈A F (a). Let

F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1.
The intersection F1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sum F1 ] F2 = {(a, F (a)) | a ∈ A ∧ F (a) = F1(a) + F2(a)}, and the
multiset difference F1 ª F2 = {(a, F (a)) | a ∈ A ∧ F (a) = max(F1(a)− F2(a), 0)}
form multiset operations. Multiplication of a multiset F = {(a, F (a)) | a ∈ A}
with a scalar c, denoted c · F , is defined by {(a, c · F (a)) | a ∈ A}. The term
〈A〉 = {F : A −→ N ∪ {∞}} describes the set of all multisets over A.

Definition of System Components

A P system for a cell signalling module (CSM) is a construct

ΠCSM = (V, V ′, R1, . . . , Rr, f1, . . . , fr, A, C,∆τ)

where V and V ′ are two alphabets (not necessarily disjoint); without loss of gen-
erality #,¬, * /∈ V ∪ V ′. The regular set

S = V + · ({#} · ((V ′)+ ∪ {¬} · (V ′)+ ∪ {*}))∗

describes the syntax for string-objects. The leftmost substring from V + holds
the protein identifier, followed by a finite number of protein property substrings
from (V ′)+ which are separated by #. For example, consider the string-object
C:D#p#*#¬q identifying protein (complex) C:D with specified property p, a
second arbitrary property (*), and without property q. Each protein property
substring expresses a specific additional information about the protein, for instance
whether it is activated by carrying a ligand at a certain binding site. Two kinds
of meta symbols are allowed. The symbol ¬ excludes the subsequent property but
permits all other properties at this substring position. The placeholder * stands for
an arbitrary (also unknown or unspecified) protein property substring. This way,
uncertainty about the properties of proteins can be explicitly expressed. String-
objects can be dynamically processed by reaction rules:

Ri ∈ 〈S〉 × 〈S〉 is a reaction rule composed of two finite multisets
fi : 〈S〉 −→ N is a function corresponding to kinetics of reaction Ri

A ∈ 〈S〉 is a multiset of axioms representing the initial molec. configuration
C ∈ R+ spatial capacity of the module (vessel or compartment)

∆τ ∈ R+ time discretisation interval

We explain the system evolution of ΠCSM within three consecutive subsec-
tions. Based on the specification of the system configuration, we define an iteration
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scheme that updates this configuration from time t to time t + 1. The update in-
cludes processing of reactions given by the rules Ri (i = 1, . . . , r). For this purpose,
an appropriate matching between wild-carded strings representing reactants and
those stated in the current configuration is required. Then, a reaction is executed
by removing the multiset of matching reactants from the current configuration
followed by adding the corresponding products. In order to consider kinetic is-
sues, each reaction can be multiply processed. Therefore, the number of turns is
provided by the function fi.

Dynamical System Behaviour

A P system of the form ΠCSM evolves by successive progression of its configuration
Lt ∈ 〈S〉 at discrete points in time t ∈ N for what we assume a global clock. Two
consecutive dates t and t + 1 specify a time span ∆τ (discretisation interval). A
system step at time t consists of two modification stages per reaction 1, . . . , r.
Firstly, the multiset of reactants is determined and removed from Lt. Afterwards,
the corresponding multiset of products is added. To cope with conflicts that can
occur if the available amount of reactants cannot satisfy all matching reactions,
we prioritise the reaction rules by their index: R1 > R2 > . . . > Rr. Thus, we keep
determinism of the system evolution and enable mass conservation.

L0 = L0,0 = A

Lt,1 =
{

Lt,0 ª Reactantst,1 ] Productst,1 if Reactantst,1 ⊆ Lt,0

Lt,0 otherwise

Lt,2 =
{

Lt,1 ª Reactantst,2 ] Productst,2 if Reactantst,2 ⊆ Lt,1

Lt,1 otherwise
...

Lt+1 = Lt,r =
{

Lt,r−1 ª Reactantst,r ] Productst,r if Reactantst,r ⊆ Lt,r−1

Lt,r−1 otherwise

Let Rj = (Aj , Bj) ∈ 〈S〉 × 〈S〉 be a reaction rule with supp(Aj) = {a1, . . . , ap}
and supp(Bj) = {b1, . . . , bq}. In terms of a chemical denotation, it can be written
as

Aj(a1) a1 + . . . + Aj(ap) ap −→ Bj(b1) b1 + . . . + Bj(bq) bq

where Aj(a1), . . . , Aj(ap) represent stoichiometric factors of reactants a1, . . . , ap,
and Bj(b1), . . . , Bj(bq) stoichiometric factors of products b1, . . . , bq, respectively.
All reactant strings that match to the pattern ak are provided by a dedicated
relation Match(ak) (see next subsection for definition). A combination of reactant
strings from Lt matching the left hand side of Rj forms a multiset of string-
objects used to apply the reaction once. Since the kinetic law, described by the
corresponding scalar function fj , returns the number of applications of reaction
rule Rj within one step, the multiset of string-objects extracted from Lt to act as
reactants for Rj can be written as Reactantst,j :
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Reactantst,j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fj
({(e1,∞), . . . , (ep,∞)} ∩ Lt,j−1

) ·
{
(e1, Aj(a1)), . . . , (ep, Aj(ap))

}

Accordingly, the multiset of products resulting from reaction rule Rj is determined
by the multiset Productsj(t):

Productst,j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fj
({(e1,∞), . . . , (ep,∞)} ∩ Lt,j−1

) ·
{
(b1, Bj(b1)), . . . , (bq, Bj(bq))

}

Matching

Let the regular set S be a syntax description for string-objects. In the symmetric
relation Match, two string-objects match iff there is at least one common rep-
resentation without wild-cards. This loose strategy requires a minimum degree of
similarity between objects with incomplete information. Uncertainty is interpreted
as arbitrary replacements within the search space given by S.

Match ⊆ S × S

Match =
⋃

m∈N
{(p#p1#p2 . . . #pm, s#s1#s2 . . . #sm) | (p = s) ∧

∀j ∈ {1, . . . ,m} : [(pj = sj) ∨ (pj = *) ∨ (sj = *) ∨
((pj = ¬q) ∧ (sj 6= q)) ∨ ((sj = ¬q) ∧ (pj 6= q))]}

Matching of a single string-object w ∈ S to the entire set S is defined by

Match(w) = {s ∈ S | (w, s) ∈ Match}
Consequently, we define the matching of a language L ⊆ S by the function

Match : P(S) −→ P(S) with

Match(L) =
⋃

w∈L

Match(w).

Discrete Reaction Kinetics

Within the P systems framework ΠCSM, we formulate reaction kinetics by specifi-
cation of scalar functions fj attached to corresponding reactions Rj (j = 1, . . . , r).
Each scalar function converts the current configuration Lt, a multiset of string-
objects, into the number of turns for application of rewriting rule Rj :

fj(Lt) =

kj

∏

∀α∈Match(Aj)∩Match(Lt) : (Rj=(Aj ,Bj))

f̂(Lt(α))|Match(Aj)∩{(α,∞)}|

 (1)
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whereas the auxiliary term α passes through all string-objects present in Lt which
also form reactants in Rj . The multiplicity Lt(α) of occurrences of α acts as argu-
ment for a kinetic law f̂(Lt(α)). Examples adopted from mass-action, Michaelis-
Menten, and Hill kinetics are shown in Figure 1.

Kinetics Activation Repression

Mass-Action
(no saturation)

reactant conc.

re
a
c
. 
ra

te

v

[Z]
f̂([Z]) = [Z] −

Michaelis-Menten
(saturation)

reactant conc.

re
a
c
. 
ra

te

v

[Z]
f̂([Z]) = [Z]

Θ+[Z]
reactant conc. [Z]

re
a
c
. 
ra

te

v

f̂([Z]) =
(
1− [Z]

Θ+[Z]

)

Higher-Order Hill
(saturation)

reactant conc. [Z]

re
a
c
. 
ra

te

v

f̂([Z]) = [Z]n

Θ+[Z]n
reactant conc. [Z]

re
a
c
. 
ra

te

v

f̂([Z]) =
(
1− [Z]n

Θ+[Z]n

)

Fig. 1. Overview of several widely used kinetic laws f̂([Z]) dependent on reactant con-
centration [Z]. Parameters: threshold Θ ∈ R+, Hill coefficient n ∈ N+

Relations to ODE-Based Reaction Kinetics

For a reaction system with a total number of n species (i = 1, . . . , n) and r reactions
(j = 1, . . . , r)

a1,jZ1 + a2,jZ2 + . . . + an,jZn
k̂j−→ b1,jZ1 + b2,jZ2 + . . . + bn,jZn

the corresponding ODEs

d [Zi]
d t

=
r∑

j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])al,j

)
with i = 1, . . . , n. (2)

describe the temporal systems behaviour by consideration of stoichiometric co-
efficients ai,j ∈ N (reactants) and bi,j ∈ N (products) as well as a kinetic law
f̂j([Zi]) : R+ → R+ that maps a species concentration [Zi] into an effective reac-
tion rate [9]. All initial concentrations [Zi](0) ∈ R+, i = 1, . . . , n are allowed to be
set according to the needs of the reaction system.

A species concentration [Zi] := zi

C is defined as fraction of its molecular amount
zi = supp({(Zi, zi)}) with respect to the spatial system capacity C ∈ R+.
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A correspondence between the reaction rate kj (employed in ΠCSM by function
fj attached to reaction Rj) and the kinetic constant k̂j utilised in ODE (2) can be
obtained by the Euler method of integrating differential equations. Discretisation
of (2) with respect to time and concentration value results in:

zi,t+1−zi,t

C

∆τ
=

r∑
j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])
al,j

)

zi,t+1 − zi,t = C ·∆τ ·
r∑

j=1

(
k̂j · (bi,j − ai,j) ·

n∏

l=1

f̂j([Zl])
al,j

)

By setting kj = k̂j · C ·∆τ , we obtain:

zi,t+1 − zi,t = k1(bi,1 − ai,1)

n∏

l=1

f̂1([Zl])
al,1 + . . . + kr(bi,r − ai,r)

n∏

l=1

f̂r([Zl])
al,r

Replacing kj · f̂j([Zl])al,j by the discretised (and hence approximated) scalar func-
tion fj(Lt) from Equation (1) leads to:

zi,t+1 − zi,t ≈ (bi,1 − ai,1) · f1(Lt) + . . . + (bi,r − ai,r) · fr(Lt)

Since the stoichiometric coefficients ai,j and bi,j of each reaction Rj = (Aj , Bj)
in ΠCSM are expressed by multisets Aj (reactants) and Bj (products), we write:

zi,t+1 − zi,t = (B1(bi)−A1(ai)) · f1(Lt) + . . . + (Br(bi)−Ar(ai)) · fr(Lt)

From that, we achieve the update scheme for species Zi present in Lt with zi,t

copies at time t by processing reaction Rj :

zi,t+1 = zi,t −Aj(Zi) · fj(Lt) + Bj(Zi) · fj(Lt)

By extension from a single species to the entire configuration along with inclusion
of matching, we finally yield

Lt+1,j = Lt,j ª Reactantst,j ] Productst,j

in accordance to the iteration scheme for ΠCSM evolution. The conversion of
thresholds Θ occurring in Michaelis-Menten or Hill terms from the ODE approach
into the ΠCSM framework can be done by parameter fitting or regression that
maps the concentration-based gradient into an amount-based counterpart.

3 The KaiABC Oscillator – A Circadian Clock

Biological Background

Circadian rhythms embody an interesting biological phenomenon that can be seen
as a widespread property of life. The coordination of biological activities into daily
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cycles provides an important advantage for the fitness of diverse organisms [4, 25].
Based on self-sustained biochemical oscillations, circadian clocks are characterised
by a period of approximately 24h that persists under constant conditions (like con-
stant darkness or constant light). Their ability for compensation of temperature in
the physiological range enables then to maintain the period in case of environmen-
tal changes. Furthermore, circadian clocks can be entrained. This property allows
a gradual reset of the underlying oscillatory system for adjustment by exposure to
external stimuli like light/dark or temperature cycles. A variety of metabolic, cell
signalling, and gene regulatory processes is synchronised or controlled by circadian
clocks. Chemically, they utilise an individual cycling reaction scheme including one
or more feedback loops. Most of the circadian clocks comprise gene transcription
and translation feedback loops [24].

KaiA

KaiAKaiA

KaiA

KaiA

KaiB

KaiB

KaiB

KaiB

P

P

P

P

P
P

P
P

P
P

P

P

P

P

P

P

P

P

P

P

?

successive dephosphorylation

successive phosphorylation

Fig. 2. Reaction cycle of the KaiABC oscillator characterised by four phases and in-
complete information about interphase feedback loops, arranged from descriptions of the
oscillatory mechanism given in [11, 20]. A corresponding minimal model of the four-phase
cycle has been proposed in [4].

Surprisingly, the prokaryotic cyanobacterium Synechococcus elongatus was dis-
covered to carry a post-translational circadian clock even functioning in vitro [27].
Three key clock proteins KaiA, KaiB, and KaiC with known atomic structure
could be identified [21]. KaiC as the focal protein rhythmically oscillates between
hypophosphorylated and hyperphosphorylated forms [22]. The spatial structure of
KaiC represents a homohexamer shaped as a “double doughnut” with 6 phosphory-
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lation twin sites at the interfaces between monomeric subunits. Presence of the sup-
plementary protein KaiA specifically enhances KaiC phosphorylation while KaiBC
complex formation activates KaiC dephosphorylation [20]. The KaiABC circadian
oscillator appears as a reaction cycle consisting of four consecutive phases [11], see
Figure 2: KaiAC complex formation releasing KaiB, successive KaiAC phospho-
rylation, KaiABC complex formation, and successive KaiABC dephosphorylation
in conjunction with KaiA dissociation. Each of these phases takes approximately
6h. There is some evidence for further interactions between the aforementioned
protein complexes and intermediate products in terms of negative feedback loops
stabilising the oscillation. However, the detailed mechanism is still unclear and
gives room for hypotheses reflected in a couple of model candidates [4]. A current
study raises the question whether clock-protein expression could still be involved
in its general function [28].

Review of Modelling Approaches

In this section, we briefly compare three current model candidates [8, 19, 29] be-
yond a minimal model [4] able to capture the dynamical behaviour of the KaiABC
oscillator in accordance with wetlab experimental data. Assumptions on unknown
parts of the oscillator mechanism result from empirical studies. Here, an underlying
reaction network topology is hypothesised and afterwards filled with appropriate
parameter values obtained by fitting using an exhaustive search.

KaiA sequestration has been suggested in [8]. The resulting model identifies a
total number of 15 interacting species where C0, . . . , C6 correspond to the amount
of phosphorylated monomeric subunits within KaiC. Accordingly, BC0, . . . , BC6

are species names for complex KaiBC. B indicates KaiB. KaiA is assumed to
be sequestered by the KaiC/KaiBC complexes and hence not modelled explicitly.
Instead, it is interpreted as an inhibiting factor causing negative feedback loops.
See Figure 3 A for the reaction network topology.

Following the idea of a quick KaiC monomer shuffle, in [29] a network topology
containing 54 dedicated species is proposed. There are two categories of species
marked as “tense” (T ) for those employed in the phosphorylation phase and “re-
laxed” (R) for the dephosphorylation phase. Indexes attached to T and R ranging
from 0 to 6 comprise the number of currently phosphorylated monomeric subunits
while association of KaiA and/or KaiB complexes is denoted by concatenation of
A or B to the species names. Figure 3 B illustrates the network topology by usage
of dashed arrows for monomer shuffle.

A different description has been introduced in [19] managing on 7 species (by
neglecting intermediate products of protein degradation). Inspired by the insight
that distinction of two states is sufficient to obtain robust oscillations of KaiC
phosphorylation, a cascade of elementary cell signalling motifs is proposed. In
this two-stage scenario, three phosphates from species KaiC can be added and
removed per stage by catalysts KaiA and KaiAB, respectively. Additionally, the
model formulates the complex formation of KaiAB which is catalysed by the three-
fold phosphorylated protein PKaiC. Vice versa, its decomposition is supported by



308 T. Hinze et al.

C 1

C 2

C 3

C 4

C 5

C 6

C 0BC 0

BC 1

BC 2

BC 3

BC 4

BC 5

BC 6

ABT 0

ABT 1

ABT 2

ABT 3

ABT 4

ABT 5

ABT 6

AT 0

AT 1

AT 2

AT 3

AT 4

AT 5

AT 6

T 0

T 1

T 2

T 3

T 4

T 5

T 6

ABR 1

ABR 2

ABR 3

ABR 4

ABR 5

ABR 6

AR 1

AR 2

AR 3

AR 4

AR 5

AR 6

R 1

R 0

R 2

R 3

R 4

R 5

R 6

BR 1

BR 2

BR 3

BR 4

BR 5

BR 6

BR 0 BAR 0

BAR 1

BAR 2

BAR 3

BAR 4

BAR 5

BAR 6

A B

C

B

B

KaiC PKaiC PPKaiC
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KaiBi

Fig. 3. Comparison of KaiABC oscillator network topologies adapted from [8] (A), [29]
(B), and [19] (C). Dashed lines indicate relevant feedback loops for sustained oscillation.

the six-fold phosphorylated protein PPKaiC. Decay reactions for each protein
complete the model candidate’s network topology, see Figure 3 C.

Conversion to the ΠCSM Framework

We demonstrate a conversion of the core oscillator extracted from different model
candidates into the P systems framework ΠCSM. The capability of this algebraic
approach is to cope with a potential combinatorial complexity of protein states,
shown by formulating reaction and transduction rules using placeholders (∗) for
arbitrary or unknown molecular constituents.

Each of the six KaiC monomeric subunits is said to be phosphorylated iff both
phosphorylation sites are saturated. Theoretically, the KaiABC protein complex
could induce a maximum of 28 = 256 potential states. This amount results from the
general assumption that each monomeric subunit is able to be individually phos-
phorylated or dephosphorylated in combination with present or absent association
of KaiA and KaiB, respectively. In terms of a distinction of 8 binary digits from
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these molecular configurations, a full network of 2 · (256
2

)
= 65, 280 bi-molecular

reactions could be spanned. Since KaiC turns out to be a highly symmetric homo-
hexamer, the individual monomeric subunits cannot be distinguished in practice.
Instead, the number of attached phosphates is utilised that varies in a seven-stage
range from 0 up to 6. In addition to the combinatorial variety caused by present
or absent association of KaiA and KaiB, KaiABC possess 7 · 4 = 28 states from a
biochemical point of view.

For the P systems description, we identify a module for the cycling reaction
scheme sketched in Figure 2. Key proteins KaiA, KaiB, and KaiC resulting from
expression of corresponding genes are assumed to be present in the module ab
initio. Considering the core oscillator, 17 reaction rules along with loose matching
correspond to the four-phase reaction cycle. Successive KaiC phosphorylation in
the presence of KaiA is expressed by rules R1 to R6 followed by successive de-
phosphorylation in the presence of KaiB within rules R7 to R12. Finally, R13 and
R14 formulate inhibiting KaiA/KaiB exchange acting as negative feedback loops,
and R15 up to R17 reflect protein degradation. A kinetic function f is attached to
each reaction rule that follows from discretised Michaelis-Menten kinetic laws in
concert with linear mass-action kinetics for protein degradation.

ΠKaiABC = (V, V ′, R1, . . . , R17, f1, . . . , f17, A, C, ∆τ)

V = {C} ∪ ....................identifier of the focal protein KaiC

{A, B}....................identifiers of proteins KaiA and KaiB

V ′ = {A, B} ∪ ................KaiA, KaiB within a complex associated to KaiC

{0, 1, 2, 3, 4, 5, 6}.....number of attached phosphates

R1 = C#¬A#B#0 + A −→ C#A#¬B#1 + B

R2 = C#A# ∗#1 + A −→ C#A# ∗#2 + A

R3 = C#A# ∗#2 + A −→ C#A# ∗#3 + A

R4 = C#A# ∗#3 + A −→ C#A# ∗#4 + A

R5 = C#A# ∗#4 + A −→ C#A# ∗#5 + A

R6 = C#A#¬B#5 + B −→ C#¬A#B#6 + A

R7 = C# ∗#B#6 + B −→ C# ∗#B#5 + B

R8 = C# ∗#B#5 + B −→ C# ∗#B#4 + B

R9 = C# ∗#B#4 + B −→ C# ∗#B#3 + B

R10 = C# ∗#B#3 + B −→ C# ∗#B#2 + B

R11 = C# ∗#B#2 + B −→ C# ∗#B#1 + B

R12 = C# ∗#B#1 + B −→ C# ∗#B#0 + B

R13 = C#¬A#B#∗+ A −→ C#A#¬B#∗+ B

R14 = C#A#¬B#∗+ B −→ C#¬A#B#∗+ A

R15 = A −→ ∅
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R16 = B −→ ∅
R17 = C# ∗# ∗#∗ −→ ∅

f1(Lt) =

⌊
k1 · Lt(C#¬A#B#0)

Θ1,1 + Lt(C#¬A#B#0)
· Lt(A)

Θ1,2 + Lt(A)

⌋

f2(Lt) =

⌊
k2 · Lt(C#A# ∗#1)

Θ2,1 + Lt(C#A# ∗#1)
· Lt(A)

Θ2,2 + Lt(A)

⌋

f3(Lt) =

⌊
k3 · Lt(C#A# ∗#2)

Θ3,1 + Lt(C#A# ∗#2)
· Lt(A)

Θ3,2 + Lt(A)

⌋

f4(Lt) =

⌊
k4 · Lt(C#A# ∗#3)

Θ4,1 + Lt(C#A# ∗#3)
· Lt(A)

Θ4,2 + Lt(A)

⌋

f5(Lt) =

⌊
k5 · Lt(C#A# ∗#4)

Θ5,1 + Lt(C#A# ∗#4)
· Lt(A)

Θ5,2 + Lt(A)

⌋

f6(Lt) =

⌊
k6 · Lt(C#A#¬B#5)

Θ6,1 + Lt(C#A#¬B#5)
· Lt(B)

Θ6,2 + Lt(B)

⌋

f7(Lt) =

⌊
k7 · Lt(C# ∗#B#6)

Θ7,1 + Lt(C# ∗#B#6)
· Lt(B)

Θ7,2 + Lt(B)

⌋

f8(Lt) =

⌊
k8 · Lt(C# ∗#B#5)

Θ8,1 + Lt(C# ∗#B#5)
· Lt(B)

Θ8,2 + Lt(B)

⌋

f9(Lt) =

⌊
k9 · Lt(C# ∗#B#4)

Θ9,1 + Lt(C# ∗#B#4)
· Lt(B)

Θ9,2 + Lt(B)

⌋

f10(Lt) =

⌊
k10 · Lt(C# ∗#B#3)

Θ10,1 + Lt(C# ∗#B#3)
· Lt(B)

Θ10,2 + Lt(B)

⌋

f11(Lt) =

⌊
k11 · Lt(C# ∗#B#2)

Θ11,1 + Lt(C# ∗#B#2)
· Lt(B)

Θ11,2 + Lt(B)

⌋

f12(Lt) =

⌊
k12 · Lt(C# ∗#B#1)

Θ12,1 + Lt(C# ∗#B#1)
· Lt(B)

Θ12,2 + Lt(B)

⌋

f13(Lt) =

⌊
k13 ·

(
1− Lt(C#¬A#B#∗)

Θ13,1 + Lt(C#¬A#B#∗)
)
·
(

1− Lt(A)

Θ13,2 + Lt(A)

)⌋

f14(Lt) =

⌊
k14 ·

(
1− Lt(C#A#¬B#∗)

Θ14,1 + Lt(C#A#¬B#∗)
)
·
(

1− Lt(B)

Θ14,2 + Lt(B)

)⌋

f15(Lt) = k15 · Lt(A)

f16(Lt) = k16 · Lt(B)

f17(Lt) = k17 · Lt(C# ∗# ∗#∗)

A ∈ 〈{C# ∗# ∗#∗}〉

Simulation Case Study

Using the KaiABC circadian oscillator we conducted a simulation case study to
demonstrate the practicability of the modelling approach addressed before. The
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reaction scheme formulated by the P system ΠKaiABC exhibits a high degree of
symmetry among its constituents. The main reaction cycle is composed of 12
consecutive feedforward reactions flanked by widespread negative feedback loops.
They affect each intermediate product within the reaction cycle following the in-
tention of an inhibiting KaiA/KaiB exchange independent of the phosphorylation
state.

For simulation of the dynamical behaviour of ΠKaiABC , we empirically param-
eterise and initialise the system in a symmetric way to obtain phase-shifted protein
abundance courses which stably oscillate with a period of approximately 24 hours.
To avoid a transient oscillation phase, the initial amounts of protein constituents
were set directly at the discrete limit cycle. This constraint is reflected in the
following multiset of axioms:

A = {(C#¬A#B#0, 470), (C#A#¬B#1, 351), (C#A#¬B#2, 198),
(C#A#¬B#3, 135), (C#A#¬B#4, 148), (C#A#¬B#5, 210),
(C#¬A#B#6, 282), (C#¬A#B#5, 364), (C#¬A#B#4, 463),
(C#¬A#B#3, 541), (C#¬A#B#2, 586), (C#¬A#B#1, 571),
(A, 2520), (B, 2520)}

Each KaiC protein within the pattern C# ∗# ∗#∗ keeps an average amount of
360 copies (arbitrarily chosen).
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Fig. 4. Temporal courses of 12 specific KaiABC subproducts representing the process
status of the reaction cycle. Kinetic parameters and initial amounts adjusted in a way to
obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Figure 4 shows the corresponding individual protein abundance courses re-
sulting from following parameter setting for the discrete iteration scheme: Θi,1 =
79.2, Θi,2 = 554.4, k̂i = 360.0 for i ∈ {1, . . . , 12}; Θi,1 = 64.8, Θi,2 = 453.6, k̂i =
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412.8 for i ∈ {13, 14}, and k̂15 = k̂16 = 508.1, k̂17 = 254.6; C = 1.2, ∆τ = 0.05.
The iteration scheme for system evolution was implemented in the programming
language C to obtain the course data.
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Fig. 5. Temporal courses of KaiABC subproducts subsumed by their level of phospho-
rylation ranging from 0 to 6. Kinetic parameters and initial amounts adjusted in a way
to obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Based on the individual protein abundance courses depicted in Figure 4, Fig-
ure 5 illustrates the effect of subsuming KaiABC subproducts according to their
number of attached phosphates ranging from 0 to 6. Association of KaiA and KaiB
is neglected here resulting in consideration of regular expressions C# ∗# ∗#i for
i = 0, . . . , 6. The simulation shows that medium phosphorylation levels possess
smaller amplitudes than minor or major phosphorylation levels. Due to symmetry
reasons, KaiABC subproducts carrying three phosphates double the frequency of
oscillation. Hence, the reaction system is able to act as a scaler. This feature could
be useful to control downstream processes at a subcircadian granularity.

Classification of KaiABC subproducts with regard to association of KaiA and
KaiB leads to simulation results depicted in Figure 6. As expected, both courses
proceed in opposite direction emphasising the mutually exclusive association of
KaiA and KaiB to KaiC.

Further simulation studies could explore the effects of different temperatures
to the network behaviour. To this end, modified forms of Arrhenius terms based on
the Boltzmann constant instead of the universal gas constant might be utilised to
replace each reaction parameter kj . In this way, a possible capability of tempera-
ture compensation or entrainment is investigable and can be applied to fine-tuning
of the model.
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Fig. 6. Temporal courses of KaiABC subproducts separated into two groups by associ-
ation of KaiA resp. KaiB to KaiC. Kinetic parameters and initial amounts adjusted in a
way to obtain a period of ≈ 24 hours and symmetry among individual oscillations.

Extensions of the System

In this section, we address specialties of the different modelling approaches
[8, 19, 29] in the context of their conversion into the P systems framework by
additional wild-carded reactions. Each of these reactions subsumes a variety of in-
dividually interacting components that form feedback loops capable of stabilising
or destabilising the oscillating behaviour of the whole system. Kinetic laws within
system extensions also employ discretised Michaelis-Menten kinetics for enzymatic
processes and linear mass-action kinetics for protein degradation.

Premature dissociation or association of KaiA or KaiB can destabilise the oscil-
latory behaviour by damping effects. In contrast, spontaneous dephosphorylation
and monomer shuffle amplify the influence of feedbacks within the reaction system.
This makes the network behaviour more sensitive to slight parameter changes.
Toggling KaiB between an active and an inactive form as well as inhibition of
KaiC phosphorylation catalysed by KaiB is able to break the symmetry among
the reaction cycle.

Premature KaiA association [29]:

A + C#¬A# ∗#∗ −→ C#A# ∗#∗
Premature KaiA dissociation [29]:

C#A# ∗#∗ −→ A + C#¬A# ∗#∗
Premature KaiB association [29]:

B + C# ∗#¬B#∗ −→ C# ∗#B#∗
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Premature KaiB dissociation [29]:

C# ∗#B#∗ −→ B + C# ∗#¬B#∗

Spontaneous dephosphorylation [8, 29]:

C# ∗# ∗#6 −→ C# ∗# ∗#5
C# ∗# ∗#5 −→ C# ∗# ∗#4
C# ∗# ∗#4 −→ C# ∗# ∗#3
C# ∗# ∗#3 −→ C# ∗# ∗#2
C# ∗# ∗#2 −→ C# ∗# ∗#1
C# ∗# ∗#1 −→ C# ∗# ∗#0

Monomer shuffle in absence of KaiA and KaiB [29]:

C#¬A#¬B#∗ −→ C#¬A#¬B#∗

Toggling KaiB between active and inactive form [19]: A new species Bi is intro-
duced that denotes KaiB in its inactive form. KaiC in its partial or complete
phosphorylated state then catalyses the toggling reactions.

B + C# ∗# ∗#3 −→ Bi + C# ∗# ∗#3
Bi + C# ∗# ∗#6 −→ B + C# ∗# ∗#6

Inhibition of KaiC phosphorylation [8]: Here, the additional string-object
C# ∗#B#i, i ∈ {0, . . . , 3} acts as an inhibiting factor for phosphorylating
reactions R1, . . . , R6.

4 Conclusions

Coping with incomplete information about protein activation states can be seen
as a challenging task in systems biology. Particularly, the number of individual
protein interactions that can potentially occur grows exponentially with regard to
the number of binding sites for activation. In order to conduct exhaustive studies
about the variety of potential behavioural scenarios of an entire network that
includes unknown parts, all corresponding subnetworks covering these unknown
parts have to be considered. Incorporation of regular expressions for representation
of proteins and their activation states enables usage of placeholder symbols to
express arbitraryness or uncertainty about components within those states. In
this way, a wild-carded representation may subsume a combinatorial variety of
individual activation states.

Accordingly, the proposed P systems framework ΠCSM intends to combine
advantages of processing regular expressions that represent molecular entities with
the corresponding dynamical behaviour of an entire reaction network resulting
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from superpositioning of individual molecular abundance courses. To this end,
we have integrated string-objects into a deterministic framework able to emulate
discretised forms of reaction kinetics in concert with dedicated matching strategies
in order to identify reactants from the current system configuration. A simulation
study of the KaiABC oscillator demonstrates the practicability of this approach.

From an algebraic point of view, oscillations that occur in structural or config-
ural dynamics of P systems can be detected using a backtracking mechanism along
with the temporal system evolution: By monitoring the overall configurations over
time, a derivation tree is obtained. Stable oscillations appear as recurring, but non-
adjacent overall configurations along a path through the derivation tree. Equipping
P systems analysis tools with such a backtracking mechanism is a promising idea
for futural work.
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