
An Overview of P-Lingua 2.0

Manuel Garćıa-Quismondo, Rosa Gutiérrez-Escudero, Ignacio Pérez-Hurtado,
Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
mangarfer2@alum.us.es, {rgutierrez,perezh,marper,ariscosn}@us.es

Summary. P–Lingua is a programming language for membrane computing which aims
to be a standard to define P systems. In order to implement this idea, a Java library
called pLinguaCore has been developed as a software framework for cell–like P systems.
It is able to handle input files (either in XML or in P–Lingua format) defining P systems
from a number of different cell–like P system models. Moreover, the library includes
several built–in simulators for each supported model. For the sake of software portability,
pLinguaCore can export a P system definition to any convenient output format (currently
XML and binary formats are available). This software is not a closed product, but it can
be extended to accept new input or output formats and also new models or simulators.

The term P–Lingua 2.0 refers to the software package consisting of the above men-
tioned library together with a user interface called pLinguaPlugin (more details can be
found at http://www.p-lingua.org).

Finally, in order to illustrate the software, this paper includes an application using
pLinguaCore for describing and simulating ecosystems by means of P systems.

1 Introduction

The initial definition of a membrane system as a computing device, introduced by
Gh. Păun [14], can be interpreted as a flexible and general framework. Indeed, a
large number of different models have been defined and investigated in the area: P
systems with symport/antiport rules, with active membranes, with probabilistic
rules, etc. There were some attempts to establish a common formalization covering
most of the existing models (see e.g. [5]), but the membrane computing community
is still using specific syntax and semantics depending on the model they work with.

Each model displays characteristic semantic constraints that determine the
way in which rules are applied. Hence, the need for software simulators capable
of taking into account different scenarios when simulating P system computations
comes to the fore. Moreover, simulators have to precisely define the specific P
system that is to be simulated. Along this paper, the term simulator input will

An Overview of P-Lingua 2.0 241

be used to refer to the definition (on a text file) of the P system to be simulated.
One approach to implement the simulators input could be defining a specific input
file format for each simulator. Nevertheless, this approach would require a great
redundant effort. A second approach could be to standardize the simulator input,
so all simulators need to process inputs specified in the same format. These two
approaches raise up a trade-off: On the one hand, specific simulator inputs could
be defined in a more straightforward way, as the used format is closer to the P
system features to simulate. On the other hand, although the latter approach
involves analyzing different P systems and models to develop a standard format,
there is no need to develop completely a new simulator every time a new P system
should be simulated, as it is possible to use a common software library in order
to parse the standard input format. Moreover, users would not have to learn a
new input format every time they use a different simulator and would not need
to change the way to specify P systems which need to be simulated every time
they move on to another model, as they would keep on using the standard input
format.

This second approach is the one considered in P–Lingua project, a program-
ming language whose first version, presented in [3], is able to define P systems
within the active membrane P system model with division rules. The authors also
provide software tools for compilation, simulation and debug tasks.

As P–Lingua is intended to become a standard for P systems definition, it
should also consider other models. At the current stage, P–Lingua can define P
systems within a number of different cell–like models: active membrane P systems
with membrane division rules or membrane creation rules, transition P systems,
symport/antiport P systems, stochastic P systems and probabilistic P systems.
Each model follows semantics restrictions, which define several constraints for
the rules (number of objects on each side, whether membrane creation and/or
membrane division are allowed, and so on), and which indicate the way rules are
applied on configurations.

A Java [22] library called pLinguaCore has been developed as a software frame-
work for cell–like P systems. It includes parsers to handle input files (either in XML
or in P–Lingua format), and furthermore the parsers check possible programming
errors (both lexical/syntactical and semantical).

The library includes several built–in simulators to generate P system compu-
tations for the supported models, and it can export several output file formats to
represent P systems (at the current stage, XML and binary file formats) in order
to get interoperability between different software environments.

The term P–Lingua 2.0 refers to the software framework under GNU GPL li-
cense [21] consisting of the above mentioned library together with a user interface
called pLinguaPlugin. It is not a closed software because developers with knowl-
edge of Java can include new components to the library: new supported models,
built–in simulators for the supported models, parsers to process new input file
formats and generators for new output file formats. In order to facilitate those
tasks, a website for users and developers of P–Lingua 2.0 [24] has been created. It

242 M. Garćıa-Quismondo et al.

contains technical information about standard programming methods to expand
the pLinguaCore library. These methods have been used on all the existent com-
ponents. The website also contains a download section, tutorials, user manuals,
information about projects using P–Lingua, and other useful stuff.

Furthermore, pLinguaCore is not a stand–alone product, it is created to be
used inside other software applications. In order to illustrate this idea, the paper
includes an application using pLinguaCore for describing and simulating ecosys-
tems by means of P systems.

2 Models

2.1 Contemplating New models

The library pLinguaCore is able to accept input files (either in P–Lingua or XML
file formats) that define P systems within the supported models. As mentioned in
the Introduction, Java developers can include new models to the library by using
standard programming methods, easing the task. The current supported models
are enumerated below.

2.2 Transition P system model

The basic P systems were introduced in [14] by Gh. Păun.
A transition P system of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, (R1, ρ1), . . . , (Rq, ρq), io), where:

• Γ is an alphabet whose elements are called objects.
• L is a finite set of labels.
• µ is a membrane structure consisting of q membranes with the membranes

(and hence the regions, the space between a membrane and the immediately
inner membranes, if any) injectively labelled with elements of L; as usual, we
represent the membrane structures by strings of matching labelled parentheses.

• Mi, 1 ≤ i ≤ q, are strings which represent multisets over Γ associated with
the q membranes of µ.

• Ri, 1 ≤ i ≤ q, are finite sets of evolution rules over Γ , associated with the
membranes of µ. An evolution rule is of the form u → v, where u is a string
over Γ and v = v′ or v = v′δ, being v′ a string over Γ × ({here, out} ∪ {inj :
1 ≤ j ≤ q}).

• ρi, 1 ≤ i ≤ q, are strict partial orders over Ri.
• io, 1 ≤ io ≤ q, is the label of an elementary membrane (the output membrane).

The objects to evolve in a step and the rules by which they evolve are chosen
in a non–deterministic manner, but in such a way that in each region we have
a maximally parallel application of rules. This means that we assign objects to

An Overview of P-Lingua 2.0 243

rules, non–deterministically choosing the rules and the objects assigned to each
rule, but in such a way that after this assignation no further rule can be applied
to the remaining objects.

2.3 Symport/antiport P system model

Symport/antiport rules were incorporated in the framework of P systems in [13].
A P system with symport/antiport rules of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, E,R1, . . . , Rq, io),where:

• Γ is the alphabet of objects,
• L is the finite set of labels for membranes (in general, one uses natural numbers

as labels), µ is the membrane structure (of degree q ≥ 1), with the membranes
labelled in a one-to-one manner with elements of L,

• M1, . . . ,Mq are strings over Γ representing the multisets of objects present in
the q compartments of µ in the initial configuration of the system.

• E ⊆ Γ is the set of objects supposed to appear in the environment in arbitrarily
many copies.

• Ri, 1 ≤ i ≤ q, are finite sets of rules associated with the q membranes of µ. The
rules can be of two types (by Γ+ we denote the set of all non-empty strings
over Γ , with λ denoting the empty string):
– Symport rules, of the form (x, in) or (x, out), where x ∈ Γ+. When using

such a rule, the objects specified by x enter or exit, respectively, the mem-
brane with which the rule is associated. In this way, objects are sent to or
imported from the surrounding region – which is the environment in the
case of the skin membrane.

– Antiport rules, of the form (x, out; y, in), where x, y ∈ Γ+. When using such
a rule for a membrane i, the objects specified by x exit the membrane and
those specified by y enter from the region surrounding membrane i; this is
the environment in the case of the skin membrane.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

The rules are used in the non-deterministic maximally parallel manner, stan-
dard in membrane computing.

2.4 Active membranes P system model

With membrane division rules

P systems with membrane division were introduced in [15], and in this model the
number of membranes can increase exponentially in polynomial time. Next, we de-
fine P systems with active membranes using 2-division for elementary membranes,

244 M. Garćıa-Quismondo et al.

with polarizations, but without cooperation and without priorities (and without
permitting the change of membrane labels by means of any rule).
A P system with active membranes using 2-division for elementary membranes of
degree q ≥ 1 is a tuple Π = (Γ,L, µ,M1, . . . ,Mq, R, io), where:

• Γ is an alphabet of symbol-objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure, of m membranes, labelled (not necessarily in a

one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the q regions of µ.
• R is a finite set of rules, of the following forms:

(a) [a→ ω]αh for h ∈ L,α ∈ {+,−, 0}, a ∈ Γ , ω ∈ Γ ∗: This is an object evolu-
tion rule, associated with a membrane labelled with h and depending on the
polarization of that membrane, but not directly involving the membrane.

(b) a []α1
h → [b]α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object from the
region immediately outside a membrane labelled with h is introduced in this
membrane, possibly transformed into another object, and, simultaneously,
the polarization of the membrane can be changed.

(c) [a]α1
h → b []α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object is sent out
from membrane labelled with h to the region immediately outside, possibly
transformed into another object, and, simultaneously, the polarity of the
membrane can be changed.

(d) [a]αh → b for h ∈ L, α ∈ {+,−, 0}, a, b ∈ Γ : A membrane labelled with h is
dissolved in reaction with an object. The skin is never dissolved.

(e) [a]α1
h → [b]α2

h [c]α3
h for h ∈ L, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ : An

elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and the polarities.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must do it (with the restrictions below indicated).

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules of
type (a), then we suppose that the evolution rules of type (a) are used before
division is produced. Of course, this process takes only one step.

• The rules associated with membranes labelled by h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

An Overview of P-Lingua 2.0 245

With membrane creation rules

Membrane creation rules were first considered in [9], [10].
A P system with membrane creation of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, R, io), where:

• Γ is the alphabet of objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure consisting of q membranes labelled (not necessarily

in a one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the q regions of µ.
• R is a finite set of rules of the following forms:

(a) [a→ v]h where h ∈ L, a ∈ Γ , and v is a string over Γ describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ L, a, b ∈ Γ . These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(c) [a]h → []h b where h ∈ L, a, b ∈ Γ . These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ L, a, b ∈ Γ . These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in the
rule can be modified.

(e) [a → [v]h2]h1 where h1, h2 ∈ L, a ∈ Γ , and v is a string over Γ describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside the mem-
brane of the object which triggers the rule and has associated an initial
multiset and a label.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

Rules are applied according to the following principles:

• Rules from (a) to (d) are used as usual in the framework of membrane compu-
ting, that is, in a maximally parallel way. In one step, each object in a mem-
brane can only be used for applying one rule (non-deterministically chosen
when there are several possibilities), but any object which can evolve by a rule
of any form must do it (with the restrictions below indicated).

• Rules of type (e) are used also in a maximally parallel way. Each object a in
a membrane labelled with h1 produces a new membrane with label h2 placing
in it the multiset of objects described by the string v.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

246 M. Garćıa-Quismondo et al.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, independently of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously. The exception are the rules of type (d) since a membrane can be
dissolved only once.

2.5 Probabilistic P system model

A probabilistic approach in the framework of P systems was first considered by A.
Obtulowicz in [12].
A probabilistic P system of degree q ≥ 1 is a tuple

Π = (Γ, µ,M1, . . . ,Mq, R, {cr}r∈R, io), where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet).
• µ is a membrane structure, consisting of q membranes, labeled 1, 2, . . . , q. The

skin membrane is labeled by 0. We also associate electrical charges with mem-
branes from the set {0,+,−}, neutral and positive.

• M1, . . . ,Mq are strings over Γ , describing the multisets of objects initially
placed in the q regions of µ.

• R is a finite set of evolution rules. An evolution rule associated with the mem-
brane labelled by i is of the form r : u[v]αi

cr−→u′[v′]βi , where u, v, u′, v′ are
a multiset over Γ , α, β ∈ {0,+,−} and cr is a real number between 0 and 1
associated with the rule such that:
– for each u, v ∈ M(Γ), h ∈ H and α ∈ {0,+}, if r1, . . . , rt are the rules

whose left–hand side is u[v]αh , then
∑t
j=1 crj

= 1
• io ∈ L is the label of a membrane of µ, which indicates the output region of

the system.

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system); that is, all membranes and the application
of all rules are synchronized.

The q-tuple of multisets of objects present at any moment in the q regions of
the system constitutes the configuration of the system at that moment. The tuple
(M1, . . . ,Mq) is the initial configuration of the system.

We can pass from one configuration to another one by using the rules from R
as follows: at each transition step, the rules to be applied are selected according to
the probabilities assigned to them, all applicable rules are simultaneously applied,
and all occurrences of the left–hand side of the rules are consumed, as usual. Rules
with the same left–hand side and whose right–hand side has the same polarization
can be applied simultaneously.

An Overview of P-Lingua 2.0 247

2.6 Stochastic P System model

The original motivation of P systems was not to provide a comprehensive and accu-
rate model of the living cell, but to imitate the computational nature of operations
that take place in cell membranes. Most P system models have been proved to be
Turing complete and computationally efficient, in the sense that they can solve
computationally hard problems in polynomial time, by trading time for space.
Most research in P systems focus on complexity classes and computational power.

However, P systems have been used recently to model biological phenomena
very successfully. Models of oscillatory systems [4], signal transduction [18], gene
regulation control [16], quorum sensing [17] and metapopulations [19] have been
presented.

We introduce in this section the specification of stochastic P systems, that
constitute the framework for modelling biological phenomena.
A stochastic P system of degree q ≥ 1 is a tuple

Π = (Γ,L, µ,M1, . . . ,Mq, Rl1 , . . . , Rlm), where:

• Γ is a finite alphabet of symbols representing objects.
• L = {l1, . . . , lm} is a finite alphabet of symbols representing labels for the

membranes.
• µ is a membrane structure containing q ≥ 1 membranes identified in a one to

one manner with values in {1, . . . , q} and labelled with elements from L.
• Mi = (li, wi, si), for each 1 ≤ i ≤ q, initial configuration of the membrane i,

li ∈ L is the label, wi ∈ Γ ∗ is a finite multiset of objects and si is a finite set
of strings over Γ .

• Rlt = {rlt1 , . . . , r
lt
klt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting rules

associated with membranes of label lt ∈ L. Rules are of one of the following
two forms:
– Multiset rewriting rules:

rltj : u[w]l
c

lt
j−→ u′[w′]l

with u,w, u′, w′ ∈ Γ ∗ some finite multisets of objects and l a label from L. A
multiset of objects, u is represented as u = a1 + · · ·+am, with a1, . . . , am ∈
Γ . The empty multiset will be denoted by λ and we will write on instead

of
n︷ ︸︸ ︷

o+ · · ·+ o. The multiset u placed outside of the membrane labelled with
l and the multiset w placed inside of that membrane are simultaneously
replaced with a multiset u′ and w′ respectively.

– String rewriting rules:

rltj : [u1+s1; . . . ;up+sp]l
c

lt
j−→ [u′1+s′1,1+· · ·+s′1,i1 ; . . . ;u′p+s′p,1+· · ·+s′p,ip]

248 M. Garćıa-Quismondo et al.

A string s is represented as s = 〈o1.o2. · · · .oj〉, where o1, o2, . . . , oj ∈ Γ .
Each multiset of objects uj and string sj , 1 ≤ j ≤ p, are replaced by a
multiset of objects u′j and strings s′j,1, . . . , sj,ij .

A constant cltj is associated with each rule and will be referred to as stochastic
constant and is needed to calculate the propensity of the rule according to the
current context of the membrane to which this rule corresponds.

Rules in stochastic P systems model biochemical reactions. The propensity aj
of a reaction Rj is defined so that ajdt represents the probability that Rj will
occur in the infinitesimal time interval [t, t+ dt] [7].

Applications of the rules and the semantics of stochastic P systems can vary,
depending on which algorithm is used to simulate the model. At the present stage,
two algorithms have been implemented and integrated as simulators within the
pLinguaCore library. They will be discussed in Section 3.2.

3 Simulators

3.1 Contemplating new simulators

In [3], only one simulator was implemented, since there was only one model to
simulate. However, as new models have been included, new simulators have been
developed inside the pLinguaCore library, providing at least one simulator for each
supported model.

All the current simulators can step backwards, but this option should be set
before the simulation starts.

The library also takes into account the existence of different simulation algo-
rithms for the same model and provides means for selecting a simulator among
the ones which are suitable to simulate the P system, by checking its model.

Next, simulation algorithms for Stochastic and Probabilistic P systems are
explained, but pLinguaCore integrates simulators for all supported models.

3.2 Simulators for Stochastic P Systems

In the original approach to membrane computing P systems evolve in a non-
deterministic and maximally parallel manner (that is, all the objects in every
membrane that can evolve by a rule must do it [14]). When trying to simulate
biological phenomena, like living cells, the classical non-deterministic and maxi-
mally parallel approach is not valid anymore. First, biochemical reactions, which
are modeled by rules, occur at a specific rate (determined by the propensity of
the rule), therefore they can not be selected in an arbitrary and non-deterministic
way. Second, in the classical approach all time step are equal and this does not
represent the time evolution of a real cell system.

The strategies to replace the original approach are based on Gillespie’s Theory
of Stochastic Kinetics [7]. As mentioned in Section 2.6, a constant cltj is associated

An Overview of P-Lingua 2.0 249

to each rule. This provides P systems with a stochastic extension. The constant
cltj depends on the physical properties of the molecules involved in the reaction
modeled by the rule and other physical parameters of the system and it represents
the probability per time unit that the reaction takes place. Also, it is used to
calculate the propensity of each rule which determines the probability and time
needed to apply the rule.

Two different algorithms based on the principles stated above have been cur-
rently implemented and integrated in pLinguaCore.

Multicompartimental Gillespie Algorithm

The Gillespie [7] algorithm or SSA (Stochastic Simulation Algorithm) was devel-
oped for a single, well-mixed and fixed volume/compartment. P systems generally
contain several compartments or membranes. For that reason, an adaptation of
this algorithm was presented in [20] and it can be applied in the different regions
defined by the compartmentalised structure of a P system model. The next rule
to be applied in each compartment and the waiting time for this application is
computed using a local Gillespie algorithm. The Multicompartimental Gillespie
Algorithm can be broadly summarized as follows:

Repeat until a prefixed simulation time is reached:

1. Calculate for each membrane i, 1 ≤ i ≤ m and for each rule rj ∈ Rli the
propensity, aj , by multiplying the stochastic constant clij associated to rj by
the number of distinct possible combinations of the objects and substrings
present of the left-side of the rule with respect to the current contents of
membranes involved in the rule.

2. Compute the sum of all propensities

a0 =
m∑
i=1

∑
rj∈Rli

aj

3. Generate two random numbers r1 and r2 from the uniform distribution in the
unit interval and select τi and ji according to

τi =
1
a0

ln(
1
r1

)

ji = the smallest integer satisfying
ji∑
j=1

aj > r2a0

In this way, we choose τi according to an exponential distribution with param-
eter a0.

4. The next rule to be applied is rji and the waiting time for this rule is τi. As
a result of the application of this rule, the state of one or two compartments
may be changed and has to be updated.

250 M. Garćıa-Quismondo et al.

Multicompartimental Next Reaction Method

The Gillespie Algorithm is an exact numerical simulation method appropiate for
systems with a small number of reactions, since it takes time proportional to the
number of reactions (i.e., the number of rules). An exact algorithm which is also
efficient is presented in [6], the Next Reaction Method. It uses only a single random
number per simulation event (instead of two) and takes time proportional to the
logarithm of the number of reactions. We have adapted this algorithm to make it
compartimental.

The idea of this method is to be extremely sensitive in recalculating aj and ti,
recalculate them only if they change. In order to do that, a data structure called
dependency graph [6] is introduced.

Let r : u[v]l
c−→ u′[v′]l be a given rule with propensity ar and let the parent

membrane of l be labelled with l′. We define the following sets:

• DependsOn(ar) = {(b, t) : b is an object or string whose quantity affect the
value
ar and t = l if b ∈ v and t = l′ if b ∈ u}
Generally, DependsOn(ar) = {(b, l) : b ∈ v} ∪ {(b, l′) : b ∈ u}

• Affects(r) = {(b, t) : b is an object or string whose quantity is changed when
the rule
r is excuted and t = l if b ∈ v ∨ b ∈ v′ and t = l′ if b ∈ u ∨ b ∈ u′}
Generally, Affects(r) = {(b, l) : b ∈ v ∨ b ∈ v′} ∪ {(b, l′) : b ∈ u ∨ b ∈ u′}

Definition 1. Given a set of rules R = Rl1 ∪ · · · ∪ Rlm , the dependency graph is
a directed graph G = (V,E), with vertex set V = R and edge set E = {(vi, vj) :
Affects(vi) ∩DependsOn(avj

) 6= ∅}

In this way, if there exists an edge (vi, vj) ∈ E and vi is executed, as some ob-
jects affected by this execution are involved in the calculation of avj , this propensity
would have to be recalculated. The dependency graph depends only on the rules
of the system and is static, so it is built only once.

The times τi, that represent the waiting time for each rule to be applied, are
stored in an indexed priority queue. This data structure, discussed in detail in [6],
has nice properties: finding the minimum element takes constant time, the number
of nodes is the number of rules |R|, because of the indexing scheme it is possible to
find any arbitrary reaction in constant time and finally, the operation of updating
a node (only when τi is changed, which we can detect using to the dependency
graph) takes log |R| operations.

The Multicompartimental Next Reaction Method can be broadly summarized
as follows:

1. Build the dependency graph, calculate the propensity ar for every rule r ∈ R
and generate τi for every rule according to an exponential distribution with
parameter ar. All the values τr are stored in a priority queue. Set t← 0 (this
is the global time of the system).

An Overview of P-Lingua 2.0 251

2. Get the minimum τµ from the priority queue, t ← t + τµ. Execute the rule
rµ (this is the next rule scheduled to be executed, because its waiting time is
least).

3. For each edge (µ, α) in the dependency graph recalculate and update the
propensity aα and
• if α 6= µ, set

τα ←
aα,old(τα − τµ)

aα,new
+ τµ

• if α = µ, generate a random number r1, according to an exponential dis-
tribution with parameter aµ and set τµ ← τµ + r1

Update the node in the indexed priority queue that holds τα.
4. Go to 2 and repeat until a prefixed simulation time is reached.

Both Multicompartimental Gillespie Algorithm and Multicompartimental Next
Reaction Method are the core of the Direct Stochastic Simulator and Efficient
Stochastic Simulator, respectively. One of them, which can be chosen in runtime,
will be executed when compiling and simulating a P-Lingua file that starts with
@model<stochastic>. See Section 4.1 for more details about the syntax.

3.3 Simulators for Probabilistic P Systems

Two different simulation algorithms have been created in this paper and integrates
within the pLinguaCore library for the Probabilistic P system model. The first one
is called Uniform Random Distribution Algorithm. The second one gives a better
efficiency by using the binomial distribution, and it is called Binomial Random
Distribution Algorithm.

Uniform Random Distribution Algorithm

Next, we describe how this algorithm determines the applicability of the rules to
a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt

. In order to determine how these rules are applied to a give config-
uration, we proceed as follows:
– It is computed the greatest number N so that uN appears in the father

membrane of i and vN appears in membrane i.
– N random numbers x such that 0 ≤ x < 1 are generated.
– For each k (1 ≤ k ≤ t) let nk be the amount of numbers generated belonging

to interval [
∑k−1
j=0 crj

,
∑k
j=0 crj

) (assuming that cr0 = 0).
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

252 M. Garćıa-Quismondo et al.

Binomial Random Distribution Algorithm

Next, we describe how this algorithm determines the applicability of the rules to
a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt

. In order to determine how these rules are applied to a give config-
uration, we proceed as follows:

(c))Let F (N, p) a function that returns a discrete random number within the bi-
nomial distribution B(N, p)
– It is computed the greatest number N so that uN appears in the father

membrane of i and vN appears in membrane i.
– let d = 1
– For each k (1 ≤ k ≤ t− 1) do
· let crk

be crk

d
· let nk be F (N, crk

)
· let N be N − nk
· let q be 1− crk

· let d be d ∗ q
– let nt be N
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

4 Formats

As well as models and simulators, new file formats to define P systems have been
included in P-Lingua 2.0. Although XML format and P–Lingua format were in-
cluded on the first version of the software [3], those formats have been upgraded
to allow representation of P systems which have cell-like structure. As P–Lingua
2.0 provides backwards compatibility, all valid actions in the first version are still
valid. Furthermore, a new format has been included: the binary format (suitable
for the forthcoming Nvidia CUDA simulator [11]).

Formats are classified in two sorts: Input formats (whose files can be read by
pLinguaCore) and Output formats (whose files can be generated by pLingua-
Core). Some formats may belong to both categories.

One format which is worth showing up is the P–Lingua format. This input
format allows to specify P systems in a very intuitive, friendly and straightforward
way. Another asset to bear in mind is that the parser for P–Lingua inside the
pLinguaCore library is capable of locating errors on files specified on this format.

An Overview of P-Lingua 2.0 253

4.1 P-Lingua format

In the version of P-Lingua presented in [3] only P systems with active membranes
and division rules were considered and therefore, possible to be defined in the P-
Lingua language. New models have been added and consequently the syntax has
been modified and extended, in order to support them. The current syntax of the
P-Lingua language is defined as follows.

Valid identifiers
We say that a sequence of characters forms a valid identifier if it does

not begin with a numeric character and it is composed by characters from the
following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels, alphabet objects and strings.

The following text strings are reserved words in the language: def, call,
@mu, @ms, @model, @lambda, @d, let, @inf, @debug, main, -->, # and
they cannot be used as valid identifiers.

Variables
Four kind of variables are permitted in P-Lingua: Global variables, Local

variables, indexes, Parameters.
Variables are used to store numeric values and their names are valid identifiers.

We use 64 bits (signed) in double precision.

Global variables definition
Global variables must be declared out of any program module and they can be
accessed from all of the program modules (see 4.1). The name of a global variable
global variable name must be a valid identifier. The syntax to define a global
variable is the following:

global_variable_name = numeric_expression;

Local variables definition
Local variables can only be accessed from the module in which they were declared
and they must only be defined inside module definitions. The name of a local
variable local variable name must be a valid identifier. The syntax to define a
local variable is the following:

let local_variable_name = numeric_expression;

Indexes and parameters can be consider local variables used in 4.1 and 4.1 respec-
tively. Identifiers for electrical charges

254 M. Garćıa-Quismondo et al.

In P-Lingua, we can consider electrical charges by using the + and - symbols
for positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

Membrane labels
There are three ways of writing membrane labels in P-Lingua: the first one is

just a natural number; the second one is to denote the label as a valid identifier and
the third one is by numeric expressions that represent natural numbers between
brackets.

Numeric expressions
Numeric expressions can be written by using * (multiplication), / (division),

% (module), + (addition), - (subtraction) and ^ (potence) operators with integer
or real numbers and/or variables, along with the use of parentheses. It is possible
to write numbers by using exponential notation. For example, 3 ∗ 10−5 is written
3e-5.

Objects The objects of the alphabet of a P system are written using valid identi-
fiers, and the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es
are written as x{i,2*n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-
ample, x2n+1

i is written as x{i}*(2*n+1).

Strings Strings are enclosed between < and > and made by concatenating valid
identifiers with the character ., that is <identifier1.identifierN>. For
example, <cap.RNAP.op>.

Substrings Substrings are used in string rewriting rules and the syntax is similar
to strings, but it is possible to use the character ? to represent any arbitrary
sequence of valid identifiers concatenated by .. The empty sequence is included. For
example, <cap.?.NAP.op> is a substring of the string <cap.op.op.op.NAP.op>
and of the string <cap.NAP.op>.

Model specification As this programming language supports more than one
model, it is necessary to specify in the beginning of the file which is the model of
the P system defined. Not each type of rule is allowed in every model, for example,
membrane creation rules are not permitted in P systems with symport/antiport
rules. The built-in compiler of P-Lingua detects such error. Models are specified
by using @model<model name> and at this stage, the allowed models are:

@model<membrane_division>
@model<membrane_creation>
@model<transition_psystem>
@model<probabilistic_psystem>
@model<stochastic_psystem>
@model<symport_antiport_psystem>

An Overview of P-Lingua 2.0 255

Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [8]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{
sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.
The parameters must be valid identifiers and cannot appear repeated. It is possible
to define a module without parameters. Parameters have a numerical value that
is assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the output file.

In P-Lingua there are sentences to define the membrane structure of a P system,
to specify multisets, to define rules, to define variables and to call to other modules.
Next, let us see how such sentences are written.

Module calls
In P-Lingua, modules are executed by using calls. The format of an sentence

that calls a module for some specific values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is a numeric expression or a variable.

Definition of the initial membrane structure of a P system
In order to define the initial membrane structure of a P system, the following

sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:

1. [[]02]01 ≡ @mu = [[]’2]’1

2. [[]0b []−c]+a ≡ @mu = +[[]’b, -[]’c]’a

256 M. Garćıa-Quismondo et al.

Definition of multisets
The next sentence defines the initial multiset associated to the membrane la-

belled by label.

@ms(label) = list of objects;

where label is a membrane label and list of objects is a comma-separated list
of objects. The character # is used to represent an empty multiset.

If a stochastic P system is being defined (that is, the file starts with
@model<stochastic>), strings are also permitted in the initial content of a mem-
brane:

@ms(label) = list of objects and strings;

list of objects and strings is a comma-separated list of objects and/or
strings.

Union of multisets
P-Lingua allows to define the union of two multisets (recall that the input

multiset is “added” to the initial multiset of the input membrane) by using a
sentence with the following format.

@ms(label) += list of objects;

For stochastic P systems, it would be

@ms(label) += list of objects and strings;

Definition of rules
The definition of rules has been significantly extended in this version of P-

Lingua. A general rule is defined as follow (most elements are optional):

u[v[w1]α1
h1
. . . [wn]αn

hn
]αh

k−→ x[y[z1]β1
h1
. . . [zn]βn

hn
]βh[s]γh

where u, v, w1, . . . , wn, x, y, z1, . . . , zn are multisets of objects or strings,
h, h1, . . . , hn are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are electrical charges and k
is a numerical value.

The P-Lingua sintax for such a rule is:

uα[vα1[w1]’h1. . .αn[wN]’hN]’h --> xβ[yβ1[z1]’h1. . .βn[zN]’hN]’h γ[s]’h :: k

where u, v, w1. . . wN, x, y, z1. . . zN, s are comma-separated list of objects or
strings (it is possible to use the character # in order to represent the empty mul-
tiset), h,h1,..., hN are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are identifiers for
electrical charges and k is a numeric expression.

As mentioned before, not each type of rule is permitted in every model. Below
we enumerate the possible types of rules, classified by the model in which they are
allowed.

@model<mebrane division>

An Overview of P-Lingua 2.0 257

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a []αh → [b]βh is given
next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[]βh is
given next:

α[a]’h --> β[]b

4. The format to define division rules of type [a]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

@model<membrane creation>

1. Rules 1, 2, 3 and 5 of @model<membrane division> can be defined in this
model, with the same format.

2. The format to define membrane creation rules of type [a]αh → [[b]βh1
]αh is given

next:

α[a]’h --> α[β[b]’h1]’h

@model<transition psystem>

1. The format to define evolution rules of type [u[u1]h1 , . . . , [uN]hN
→

v[v1]h1 , . . . , [vN]hN
, λ]h is given next:

[u [u1]’h1 . . . [uN]’hN --> v [v1]’h1, . . . [vN]’hN, @d]’h

@d is a new keyword representing the containing membrane is marked to dis-
solved.

@model<symport antiport psystem>

1. The format to define symmetric communication rules of type a[b]αh → b[a]αh is
given next:

αa[b]’h --> βb[a]’h

@model<probabilistic psystem>

1. The format to define rules of type u[v]αh
p−→ u1[v1]βh is given next:

uα[v]’h --> u1β[v1]’h::p

@model<stochastic psystem>

258 M. Garćıa-Quismondo et al.

1. The format to define multiset rewriting rules of type u[v]h
c−→ u1[v1]h is given

next:

u[v]’h --> u1[v1]’h::c

2. The format to define string rewriting rules of type [u+s]h
c−→ [v+r]h is given

next:

[u,s]’h --> [v,r]’h::c

• α, β and γ are identifiers for electrical charges.
• a, b and c are objects of the alphabet.
• u, u1, v, v1, . . . , vN are comma-separated lists of objects that represents

a multiset.
• s and r are comma-separated lists of substrings.
• h, h1, . . . , hN are labels.
• p and c are real numeric expressions. The result of evaluating p must be between

0 and 1, and the result of evaluating c must be greater or equal than 0.

Some examples:

• [xi,1 → r4i,1]+2 ≡ +[x{i,1} --> r{i,1}*4]’2

• dk[]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]

• [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}

• [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]

• [a]−2 → b ≡ -[a]’2 --> b

• Yi,j []2
ki,8−→ [Bki,12]2 ≡ Y{i,j}[]’2 --> [B*k{i,12}]’2::k{i,8}

• [RNAP+ < cap.ω.op >]m
c−→ [< cap.ω.RNAP.op >]m ≡

[RNAP,<cap.?.op>]’m --> [<cap.?.RNAP.op>]’m::c

Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the following
format:

sentence : range1, ..., rangeN, restriction1, ...,
restrictionN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and range1, ..., rangeN is a comma-separated list of ranges with the for-
mat:

min value <= index <= max value

An Overview of P-Lingua 2.0 259

where min value and max value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

And restriction1, ..., restrictionN are optional restrictions for the in-
dexes values which the next syntax:

value1 <> value2

where value1 and value2 are numeric expressions, integer numbers or variables.
The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n, i 6= j ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n,i<>j;

Inclusion of comments The programs in P-Lingua can be commented by writing
phrases into the text strings /* and */. Inclusion of debug information Each

rule sentence can optionally include a debug message which will be presented every
time the rule is executed by the simulator. The syntax to write a debug message
associated to a rule definition is defined as follows:

rule definition @debug ‘‘debug message"

5 Command-line tools

P-Lingua 1.0 provided command-line tools for simulating P systems and compiling
files which specify P systems [3]. In P-Lingua 2.0, the command-line tool general
syntax has changed but, as it provides backwards compatibility, all valid actions
in P-Lingua 1.0 are still valid in P-Lingua 2.0, as well.

5.1 Compilation command-line tool

The command-line tool general syntax for compiling input files is defined as follows:

plingua [-input format] input file [-output format]
output file [-v verbosity level] [-h]

The command header plingua reports the system to compile the P system
specified on a file to a file specified on another, whereas the file input file contains
the program that we want to be compiled, and output file is the name of the
file that is generated [3]. Optional arguments are in square brackets:

• The option -input format defines the format followed by input file, which
should be an input format.

260 M. Garćıa-Quismondo et al.

• At this stage, valid input formats are:
– P-Lingua
– XML

• If no input format is set, the P-Lingua format is assumed.
• The option -output format defines the format followed by output file, which

should be an output format.
• At this stage, valid output formats are:

– XML
– bin

• If no input format is set, the XML format is assumed by default.
• The option -v verbosity level is a number between 0 and 5 indicating the level

of detail of the messages shown during the compilation process [3].
• The option -h displays some help information [3].

5.2 Simulation command-line tool

The simulations are launched from the command line as follows:

plingua sim [-input format] input file -o output file [-v
verbosity level] [-h] [-to timeout] [-st steps] [-mode
simulatorID] [-a] [-b]

The command header plingua sim reports the system to simulate the P system
specified on a file, whereas input xml is an XML document where a P system is
formatted on, and output file is the name of the file where the report about the
simulated computation will be saved [3]. Optional arguments are in brackets:

• The option -input format defines the format followed by input file, which
should be an input format.

• The option -v verbosity level is a number between 0 and 5 indicating the level
of detail of the messages shown during the compilation process [3]. If no value
is specified, by default it is 3.

• The option -h displays some help information [3].
• The option -to sets a timeout for the simulation defined in timeout (in mil-

liseconds), so when the time out has elapsed the simulation is halted. If the
simulation has reached a halting configuration before the time out has elapsed
this option has no effect.

• The option -st sets a maximum number of steps the simulation can take
(defined in steps), so when the time out has elapsed the simulation comes to
a halt. If the simulation has reached a halting configuration or the time out
has elapsed (in case the option -to is set) before the specified number of steps
have been taken this option has no effect.

• The option -mode sets the specific simulator to simulate the P system (defined
in simulatorID). This option reports an error in case the simulator defined by
simulatorID is not a valid simulator for the P system model.

An Overview of P-Lingua 2.0 261

• The option -a defines if the simulation can take alternative steps. This option
reports an error if the simulator does not support alternative steps.

• The option -b defines if the simulation can step backwards. As every simulator
supports stepping backwards, this option does not report errors.

6 pLinguaCore

pLinguaCore c© is a JAVA library which performs all functions supported by P-
Lingua 2.0, that is, models definition, simulators and formats. This library reports
the rules and membrane structure read from a file where a P system is defined,
detects errors in the file, reports them. And, if the P system is defined in P-Lingua
language, locates the error on the file. This library performs simulations by using
the simulators implemented as well as taking into account all options defined. It
reports the simulation process, by displaying the current configuration as text and
reporting the elapsed time. Eventually, this library translates files, which define
a P system, between formats, for instance, from P-Lingua language format to
binary format. For more information and library documentation, please browse
the P-Lingua website [24]. This library is free software published under GNU GPL
license [21], so everyone who is interested can change and distribute this library
respecting the license conditions.

7 A tool for simulating ecosystems based on P-Lingua

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe
that feeds almost exclusively on bone remains of wild and domestic ungulates. In
[1], it is presented a first model of an ecosystem related to the Bearded Vulture
in the Pyrenees (NE Spain), by using probabilistic P systems where the inherent
stochasticity and uncertainty in ecosystems are captured by using probabilistic
strategies. In order to validate experimentally the designed P system (see figure 1)
the authors have developed a simulator that allows them to analyze the evolution
of the ecosystem under different initial conditions. That software application is
focused on a particular P system, specifically, the initial model of the ecosystem
presented in [1]. With the aim of improving the model, the authors are adding in-
gredients to it, such as new species and a more complex behaviour for the animals.
In this sense, a second version of the model is presented in [2].

A new GPL [21] licensed JAVA application with a friendly user-interface sit-
ting on the pLinguaCore library has been developed. This application provides a
flexible way to check, validate and improve computational models of ecosystem
based on P systems instead of designing new software tools each time new ingre-
dients are added to the models. Furthermore, it is possible to change the initial
parameters of the modelled ecosystem in order to make the virtual experiments
suggested by experts (see figure 2). These experiments will provide results that

262 M. Garćıa-Quismondo et al.

can be interpreted in terms of hypotheses. Finally, some of these hypotheses will
be selected by the experts in order to be checked in real experiments.

REALLIFE PROCESS
(e.g. an ecosystem)

DATA

Carrying out
 studies/experimets

MODEL VALIDATION VALIDATED
MODEL

Inspiration

Inspiration

Run virtual
experiments

Simulator

Fail

Success

Compare results

Fig. 1. Validation proccess

VALIDATED
MODEL

Run virtual
experiments

Simulator

HYPOTHESES FILTER REAL
 EXPERIMENTS

NEW
KNOWLEDGE

Expert

SELECTED
HYPOTHESES

Suggest
virtual
experiments

Check results

Fig. 2. Virtual experimentation

An Overview of P-Lingua 2.0 263

8 Conclusions and future work

Creating a programming language to specify P systems is an important task in
order to facilitate the development of software applications for membrane comput-
ing.

In [3], P-Lingua was presented as a programming language to define active
membrane P systems with division rules. The present paper extends that lan-
guage to other models: transition P systems, symport/antiport P systems, active
membrane P systems with division or creation rules, probabilistic P systems and
stochastic P systems.

We have developed a JAVA library (pLinguaCore) that implements several
simulators for each mentioned model and defines different formats to encode P
systems, like the P-Lingua one or a new binary format. This library can be ex-
panded to define new models, simulators and formats.

It is possible to select different algorithms to simulate a P system, for example,
there are two different algorithms for stochastic P systems. The library can be
used inside other software applications, in this sense, we present a tool for virtual
experimentation of ecosystems.

An internet website [24] is available to download the applications, libraries
and source-code, as well as provide information about the P-Lingua project. In
addition, this site aims to be a meeting point for users and developers through the
use of web-tools such as forums.

The syntax of P-Lingua language is standard enough for specifying several
different models of cell–like P systems. However, a new version is necessary in
order to specify tissue P systems and this will be aim of a future work.

Although P-Lingua 2.0 provides a way to simulate and compile P systems,
command-line tools are usually not user-friendly. It means it is not easy and intu-
itive to use them. For this purpose, a new user interface called pLinguaPlugin has
been developed. This one is integrated into the Eclipse platform [23], so it makes
the most of Eclipse’s capabilities to provide a framework for translating, devel-
oping and testing P systems. It aims to be user-friendly and useful for P system
researchers.

Acknowledgement

The authors acknowledge the support of the project TIN2006–13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of
the Junta de Andalućıa under grant TIC04200.

References

1. M. Cardona, M.A. Colomer, M.J. Pérez–Jiménez, D. Sanuy and A. Margalida. Mod-
eling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. LNCS 5391,
137–156, 2009

264 M. Garćıa-Quismondo et al.

2. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez–Hurtado, M.J. Pérez–Jiménez,
D. Sanuy. P System based model of an ecosystem of the Scavenger Birds. In this
volume.

3. D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. A P-lingua
programming environment for Membrane Computing, Proceedings of the 9th Work-
shop on Membrane Computing, 155–172, 2008.

4. F. Fontana, L. Bianco and V. Manca. P Systems and the Modelling fo Biochemical
Oscillations, Membrane Computing, Sixth international Workshop, WMC6, Vienna,
Austria, LNCS 3850, 199–208, 2005.

5. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems, LNCS
4860, 271–284, 2007.

6. M.A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical Sys-
tems with Many Species and Many Channels, J. Phys. Chem., 104, 1876–1889, 2000.

7. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions, J. Phys.
Chem., 81, 2340–2361, 1977.

8. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a program-
ming language in cellular computing. LNCS 123, 93–110 2005.

9. M. Ito, C. Mart́ın–Vide, Gh. Păun. A characterization of Parikh sets of ET0L lan-
guages in terms of P systems. In Words, semigroups and transducers (M- Ito, Gh.
Păun, S. Yu, eds.), 239–254, Word Scientific, Singapore 2001.

10. M. Madhu, K. Krithivasan. P systems with membrane creation: Universality and
efficiency. LNCS 2055, 276–287, 2001.

11. M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–Jiménez, J.M. Cecilia, G.D.
Guerrero, J.M. Garćıa. Simulation of Recognizer P Systems by using Manycore
GPUs. In this volume.

12. A. Obtulowicz. Probabilistic P systems. Lecture Notes in Computer Science, 2597,
377–387, 2002.

13. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3, 295–305, 2002.

14. Gh. Păun. Computing with Membranes, Journal of Computer and System Sciences
61(1) 108–143, 2000.

15. Gh. Păun. P systems with active membranes. Journal of Automata, Languages and
Combinatorics, 6, 1, 75–90, 2001.

16. M.J. Pérez–Jiménez, F.J. Romero–Campero. Modelling Gene Expression Control
using P systems: The Lac Operon, a case study. BioSystems, 91, 438–457, 2008.

17. M.J. Pérez–Jiménez, F.J. Romero–Campero. A model of the Quorum Sensing System
in Vibrio Fischeri using P systems. Artificial Life, 14, 95–109, 2008.

18. M.J. Pérez–Jiménez, F.J. Romero–Campero. P Systems, a new computational mod-
elling tool for systems biology. Transactions on Computational Systems Biology VI,
LNBI, 4220, 176–197, 2006.

19. D. Pescini, D. Besozzi, G. Mauri and C. Zandron. Dynamical probabilistic P systems.
International Journal of Foundations of Computer Science, 17(1), 183–195, 2006.

20. F.J. Romero–Campero. P Systems, a Computational Modelling Framework for Sys-
tems Biology, Doctoral Thesis, University of Seville, Department of Computer Science
and Artificial Intelligence, 2008.

21. The GNU General Public License: http://www.gnu.org/copyleft/gpl.html
22. Java web page: http://www.java.com/
23. The Eclipse Project: http://www.eclipse.org
24. The P-Lingua website: http://www.p-lingua.org

	An Overview of P-Lingua 2.0
	Manuel García-Quismondo, Rosa Gutiérrez-Escudero, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez

