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Summary. In addition to the maximally parallel transition mode used from the begin-
ning in the area of membrane computing, many other transition modes for (tissue) P
systems have been investigated since then. In this paper we consider (tissue) P systems
with hybrid transition modes where each set of a partitioning of the whole set of rules
may work in a different transition mode in a first level and all partitions of rules work to-
gether at a (second) level of the whole system on the current configuration in a maximally
parallel way. With all partitions of noncooperative rules working in the maximally par-
allel mode, we obtain a characterization of Parikh sets of ET0L-languages, whereas with
hybrid systems with either the partitions working in the maximally parallel as well as in
the = 1-mode or with all partitions working in the = 1-mode we can simulate catalytic
or purely catalytic P systems, respectively, thus obtaining computational completeness.

1 Introduction

In the original model of P systems introduced as membrane systems by Gh. Păun
(see [6], [12]), the objects evolve in a hierarchical membrane structure; in tissue
P systems, for example considered by Gh. Păun, T. Yokomori, and Y. Sakakibara
in [15] and by R. Freund, Gh. Păun, and M.J. Pérez-Jiménez in [8], the cells com-
municate within an arbitrary graph topology. The maximally parallel transition
mode was not only used in the original model of membrane systems, but then
also in many variants of P systems and tissue P systems investigated during the
last decade. Rather recently several new transition modes for P systems and tis-
sue P systems have been introduced and investigated, for example, the sequential
and the asynchronous transition mode as well as the minimally parallel transition
mode (see [3]) and the k-bounded minimally parallel transition mode (see [10]).
In [9], a formal framework for (tissue) P systems capturing the formal features
of these transition modes was developed, based on a general model of membrane
systems as a collection of interacting cells containing multisets of objects (compare
with the models of networks of cells as discussed in [1] and networks of language
processors as considered in [4]). In this paper we consider partitionings of the rule
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set with each partition being equipped with its own transition mode – which may
not only be the transition modes usually considered in the area of P systems as the
maximally parallel mode, but also modes well known from the area of grammar
systems (e.g., see [5]) as the = k, ≤ k, and the ≥ k modes for k ≥ 1. A multiset of
rules to be applied to a given configuration is composed from a multiset of rules
from each partition working in the corresponding transition mode on a suitable
partitioning of the objects in the underlying configuration.

The rest of this paper is organized as follows: In the second section, well-known
definitions and notions are recalled. In the next section, we explain our general
model of tissue P systems with hybrid transition modes and give some illustrative
examples in the succeeding section. A characterization of the Parikh sets of ET0L-
languages by tissue P systems with all partitions working in the maximally parallel
transition mode is shown in the fourth section. In the fifth section, we establish
some results on computational completeness by showing how catalytic P systems
and purely catalytic P systems can be simulated by tissue P systems where one
partition works in the maximally parallel mode and all the others in the = 1-mode
and by tissue P systems where all partitions work in the = 1-mode, respectively.
A short summary concludes the paper.

2 Preliminaries

We recall some of the notions and the notations we use (see [14] for elements of
formal language theory) as in [10].

Let V be a (finite) alphabet; then V ∗ is the set of all strings over V , and V + =
V ∗−{λ} where λ denotes the empty string. RE, REG (RE (T ), REG (T )) denote
the families of recursively enumerable and regular languages (over the alphabet
T ), respectively. For any family of string languages F , PsF denotes the family
of Parikh sets of languages from F . By N we denote the set of all non-negative
integers, by Nk the set of all vectors of non-negative integers. In the following,
we will not distinguish between NRE, which coincides with PsRE ({a}), and
RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a mapping
M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of occurrences of
a in M . The size of the multiset M is |M | =

∑
a∈V M (a). A multiset M over V

can also be represented by any string x that contains exactly M (ai) symbols ai
for all 1 ≤ i ≤ k, e.g., by a

M(a1)
1 ...a

M(ak)
k . The set of all finite multisets over the

set V is denoted by 〈V,N〉.
Throughout the rest of the paper, we will not distinguish between a multiset

from 〈V,N〉 and its representation by a string over V containing the corresponding
number of each symbol.

An ET0L system is a construct G = (V, T,w, P1, . . . , Pm), m ≥ 1, where V
is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗ is the axiom, and Pi,
1 ≤ i ≤ m, are finite sets of rules (tables) of noncooperative rules over V of the
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form a→ x. In a derivation step, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L (G), consists of all the strings over T which can be generated in this way when
starting from w. An ET0L system with only one table is called an E0L system. By
E0L and ET0L we denote the families of languages generated by E0L systems and
ET0L systems, respectively. It is known from [14] that CF ⊂ E0L ⊂ ET0L ⊂ CS,
with CF being the family of context-free languages and CS being the family of
context-sensitive languages. The corresponding families of sets of (vectors of) non-
negative integers are denoted by XCF , XE0L, XET0L, and XCS, respectively,
with X ∈ {N,Ps}.

A register machine is a construct M = (n,B, l0, lh, I), where n is the number
of registers, B is a set of instruction labels, l0 is the start label, lh is the halt label
(assigned to HALT only), and I is a set of instructions of the following forms:

• li : (ADD(r), lj , lk) add 1 to register r, and then go to one of the instructions
labeled by lj and lk, non-deterministically chosen;

• li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract 1
from it and go to the instruction labeled by lj , otherwise go to the instruction
labeled by lk;

• lh : HALT the halt instruction.

A register machine M generates a set N(M) of natural numbers in the following
way: start with the instruction labeled by l0, with all registers being empty, and
proceed to apply instructions as indicated by the labels and by the contents of the
registers. If we reach the HALT instruction, then the number stored at that time in
register 1 is taken into N(M). It is known (e.g., see [11]) that in this way we can
compute all recursively enumerable sets of natural numbers even with only three
registers, where the first one is never decremented.

3 Networks of Cells

In this section we consider membrane systems as a collection of interacting cells
containing multisets of objects like in [1] and [9]. For an introduction to the area
of membrane computing we refer the interested reader to the monograph [13], the
actual state of the art can be seen in the web [17].

Definition 1. A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, i0, R) where

1. n is the number of cells;
2. V is a (finite) alphabet;
3. w = (w1, . . . , wn) where wi ∈ 〈V,N〉, for all 1 ≤ i ≤ n, is the multiset initially

associated to cell i;
4. i0, 1 ≤ i0 ≤ n, is the output cell;
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5. R is a finite set of rules of the form X → Y where X = (x1, . . . , xn), Y =
(y1, . . . , yn), with xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are vectors of multisets over V .
We will also use the notation

(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n)

for a rule X → Y .

A network of cells consists of n cells, numbered from 1 to n, that contain
multisets of objects over V ; initially cell i contains wi. A configuration C of Π is
an n-tuple of multisets over V (u1, . . . , un); the initial configuration of Π, C0, is
described by w, i.e., C0 = w = (w1, . . . , wn). Cells can interact with each other by
means of the rules in R. The application of a rule

(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n)

means rewriting objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n.
A rule is called noncooperative if it is of the form (a, i) → (y1, 1) . . . (yn, n) with
a ∈ V .

The set of all multisets of rules applicable to C is denoted by Appl (Π,C) (a
procedural algorithm how to obtain Appl (Π,C) is described in [9]).

We now consider a partition of R into disjoint subsets R1 to Rh, h ≥ 1. Usually,
this partition of R may coincide with a specific assignment of the rules to the cells,
yet in this paper we do not restrict ourselves to such a constraint, but allow the
rule sets R1 to Rh to be working on arbitrary cells. For any multiset of rules R′

containing rules from a set of rules R, we define ‖R′‖ to be the number of rules in
R′.

For the specific transition modes used for the subsets of rules Rj to be defined
in the following, we consider the subsystems

Πj = (n, V, w, i0, Rj) .

The selection of multisets of rules from Rj , 1 ≤ j ≤ h, applicable to a configu-
ration C has to be a specific subset of Appl (Πj , C); for the transition mode ϑ,
the selection of multisets of rules applicable to a configuration C is denoted by
Appl (Πj , C, ϑ). In contrast to the transition modes usually considered in the area
of P systems as the asynchronous and the sequential mode, we also define some
more general variants well known from the area of grammar systems (e.g., see [5])
as the derivation modes = k, ≥ k, ≤ k for k ≥ 1.

Definition 2. For the transition mode (∆k) with ∆ ∈ {=,≤,≥},

Appl (Πj , C,∆k) = {R′ | R′ ∈ Appl (Πj , C) and ‖R′‖∆k} .

The asynchronous transition mode (asyn) with

Appl (Πj , C, asyn) = Appl (Πj , C)
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is the special case of the transition mode ∆k with ∆k being equal to ≥ 1, i.e., in
fact there are no particular restrictions on the multisets of rules applicable to C.

The sequential transition mode (sequ) with

Appl (Πj , C, sequ) = {R′ | R′ ∈ Appl (Πj , C) and ‖R′‖ = 1}

is the special case of the transition mode ∆k with ∆k being equal to = 1, i.e.,
every multiset of rules R′ ∈ Appl (Πj , C, sequ) has size 1.

The transition mode considered in the area of P systems from the beginning is
the maximally parallel transition mode where we only select multisets of rules R′

that are not extensible, i.e., there is no other multiset of rules R′′ % R′ applicable
to C.

Definition 3. For the maximally parallel transition mode (max),

Appl (Πj , C,max) = {R′ | R′ ∈ Appl (Πj , C) and there is
no R′′ ∈ Appl (Πj , C) with R′′ % R′} .

Based on these transition modes for the partitions of rules Rj , we now are able
to define a network of cells with hybrid transition modes as follows:

Definition 4. A network of cells with hybrid transition modes of degree n ≥ 1, in
the following also called tissue P system (with hybrid transition modes) of degree
n ≥ 1, is a construct

Π = (n, V, w, i0, R, (R1, α1) , . . . , (Rh, αh)) where

1. (n, V, w, i0, R) is a network of cells of degree n;
2. R1, . . . , Rh is a partition of R into disjoint subsets R1 to Rh and the αj ,

1 ≤ j ≤ h, are the transition modes assigned to the corresponding partitions
of rules Rj.

Based on the transition modes of the partitions Rj , we now can define how to
obtain a next configuration from a given one in the whole system Π by applying
in a maximally parallel way an applicable multiset of rules consisting of multisets
of rules from the Rj each of those applied in the respective transition mode:

Definition 5. Given a configuration C of Π, we non-deterministically choose a
partition Rj1 and try to apply it; if this is not possible, we just continue with non-
deterministically choosing another partition Rj2 ; if we are able to apply Rj1 in
the corresponding transition mode αj1 with using a multiset of rules R′j1 , we mark
the objects affected by doing that and continue with non-deterministically choosing
another partition Rj2 then being to be applied to a configuration not containing
the objects marked for being used with the rules from R′j1 . We continue with the
same algorithm as for Rj1 eventually marking objects to be used with a multiset
of rules R′j2 , etc. In sum, we obtain a multiset of rules R′ to be applied to C
as the union of the multisets of rules R′jm constructed by the algorithm described
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above. The result of the transition step from the configuration C with applying R′

is the configuration Apply (Π,C,R′), and we also write C =⇒Π C ′. The reflexive
and transitive closure of the transition relation =⇒Π is denoted by =⇒∗Π ; if n
transition steps take place, we write =⇒n

Π for n ≥ 0.

Definition 6. A computation in a network of cells with hybrid transition modes
Π starts with the initial configuration C0 = w and continues with transition steps
as defined above. It is called successful if we reach a configuration C to which no
partition Rj can be applied with respect to the transition mode αj anymore (we
also say that the computation halts).

Definition 7. As the results of halting computations we take the Parikh vectors
or numbers of objects in the specified output cell i0. The set of results of all com-
putations then is denoted by X (Π) with X ∈ {Ps,N}.

We shall use the notation XOmhhtPn (ϑ) [parameters for rules] with X ∈
{Ps,N} to denote the family of sets of Parikh vectors (Ps) and natural numbers
(N), respectively, generated by tissue P systems Π of the form

(n′, V, w, i0, R, (R1, α1) , . . . , (Rh′ , αh′))

with n′ ≤ n, |V | ≤ m, h′ ≤ h, and ∪hj=1 {αj} ⊆ ϑ (ϑ contains the allowed transition
modes); the parameters for rules describe the specific features of the rules in R. If
any of the parameters n, m, and h is unbounded, we replace it by ∗.

4 Examples

As a first example, we construct a tissue P system with one cell initially containing
two symbols a and two sets of rules each of them containing one rule affecting the
symbol a using eventually different transition modes:

Example 1. Let

Π = (1, {a} , aa, 1, P1 ∪ P2, (P1, α1) , (P2, α2))

where P1 = {a→ b} and P2 = {a→ c}. We now consider the results of computa-
tions in this tissue P system with different transition modes α1 and α2:

• α1 and α2 both are = 1: both the rule in P1 and the rule in P2 are applied
exactly once, no matter which partition we choose first to be applied, i.e.,
aa =⇒Π bc; hence, the result is bc.

• α1 and α2 both are max: recall that the transition modes of the rule sets do not
take into account the rules in other rule sets, so both Pi try to apply their own
rule twice. This conflict is solved in a non-deterministic way, i.e., aa =⇒Π1

bb
or aa =⇒Π2

cc; hence, the results are bb, cc.
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• α1 and α2 both are ≥ 1: the rules in Pi are applied either once or twice. If the
rule from each set is only applied once, we have a similar situation as before
when using the transition mode = 1. If one or both sets attempt to apply their
own rule twice, a conflict arises which is solved in a non-deterministic way.
Thus, the result set is the union of the result sets considered in the cases = 1
and max, i.e., {bc, bb, cc}.

• α1 is = 1, α2 is ≥ 1: as before, yet we do not have to consider the case that
the rule in P1 is applied twice. Therefore, the result set is {bc, cc}.

• α1 is = 1, α2 is max: the conflict is solved by non-deterministically choosing to
execute the rule in P2 in a maximally parallel way thus consuming all symbols
a before trying to execute the rule in P1 (which then fails, as no symbol a is
left) or else to execute P1 before P2 (resulting in one a transformed to b and
one a transformed to c). This yields the same result set as in the case before
({bc, cc}).

• α1 is ≥ 1, α2 is max: P1 and P2 conflict either with respect to one symbol (if
the rule in the partition chosen first is applied only once) or over both symbols
(if it is applied twice). If the conflict arises with respect to one symbol, the
conflict resolution yields {bc, cc}; otherwise, as in the case when α1 and α2

both are max, the results are bb, cc. The set of all possible computation results
thus is the union of both cases, i.e., {bc, bb, cc}.

Usually, with only taking results from halting computations and using the
maximally parallel transition mode without partitioning the rule set R, with non-
cooperative rules it is not possible to generate sets like

{
a2n | n ≥ 0

}
(compare

with the results established in [2], where the variant of unconditional halting was
used instead, i.e., the results were taken in every computation step). As the fol-
lowing example shows, such sets can easily obtained with specific partitions of
non-cooperative rules all of them working in the maximally parallel transition
mode:

Example 2. Consider the tissue P system (of degree 1)

Π = (1, {a, b} , b, 1, P1 ∪ P2, (P1,max) , (P2,max))

with P1 = {b→ bb} and P2 = {b→ a}. As elaborated in the previous example,
we can either apply b → bb OR b → a in a maximally parallel way, but not mix
both rules. Hence, as long as we apply P1 in the maximally parallel mode, in each
transition step we double the number of objects b. As soon as we choose to apply
P2 in the maximally parallel mode, the computation comes to an end yielding a2n

for some n ≥ 0, i.e., b =⇒n
Π b2

n

=⇒Π a2n

, hence, X (Π) =
{
a2n | n ≥ 0

}
with

X ∈ {Ps,N}.



Hybrid Transition Modes in (Tissue) P Systems 235

5 Characterization of ET0L

In this section we show that tissue P systems with all partitions (of noncooperative
rules) working in the maximally parallel transition mode exactly yield the (Parikh
sets of) ET0L-languages.

Theorem 1. PsET0L = PsO∗h∗tPn ({max}) [noncoop] for all n ≥ 1.

Proof. We first show PsET0L ⊇ PsO∗h∗tP∗ ({max}) [noncoop]. Let

Π = (n, V, w, i0, R, (R1,max) , . . . , (Rh,max))

be a tissue P system with hybrid transition modes with all partitions working in
the max-mode. We first observe that an object a from V in the cell m, 1 ≤ m ≤ n,
can be represented as a new symbol (a,m). Hence, in the ET0L-system

G = (V ′, T, w′, P1, . . . , Pd, Pf )

simulating Π, we take T = V and V ′ = V ′′ ∪ V ∪ {#} with

V ′′ = {(a,m) | a ∈ V, 1 ≤ m ≤ n} .

In the axiom w′, every symbol a in cell m is represented as the new symbol (a,m).
Observe that a noncooperative rule

(a, i)→ (y1, 1) . . . (yn, n)

can also be written as

(a, i)→ (y1,1, 1) . . . (y1,d1 , 1) . . . (yn,1, 1) . . . (yn,dn , n)

where all yi,j are objects from V and in that way can just be considered as a pure
context-free rule over V ′′.

For every sequence of partitions l = 〈R′1, . . . , R′h〉 such that {R′1, . . . , R′h} =
{R1, . . . , Rh}, we now construct a table Pl for G as follows:

Pl :=
{
x→ x | x ∈ V ′, x 6= y for all rules y → v in ∪hi=1 Ri

}
;

for i = 1 to h do
begin
R

′′

i := {x→ w | x→ w ∈ R′i and x 6= y for all rules y → v in Pl};
Pl := Pl ∪R

′′

i

end

As all partitions work in the max-mode, a partition applied first consumes all
objects for which it has suitable rules. Finally, to fulfill the completeness condition
for symbols usually required in the area of Lindenmayer systems, we have added
unit rules a → a for all objects not affected by the rule sets R1, . . . , Rh. In that
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way, one transition step in Π with using a multiset of rules marking the objects in
the underlying configuration according to the sequence of partitions 〈R′1, . . . , R′h〉
exactly corresponds with an application of the table Pl in G. To extract the termi-
nal configurations, we have to guarantee that no rule from ∪hi=1Ri can be applied
anymore (they are projected on the trap symbol #) and project the symbols (a, i0)
from the output membrane to the terminal symbols a, which is accomplished by
the final table

Pf :=
{
x→ # | x ∈ V ′′ for some rule x→ v in ∪hi=1 Ri

}
∪ {#→ #}

∪ {(a, i)→ λ | a ∈ V, i 6= i0 and there is no rule (a, i)→ v in Ri}
∪ {(a, i0)→ a | a ∈ V and there is no rule (a, i0)→ v in Ri0} .

We now show the inclusionPsET0L ⊆ PsO∗h∗tP1 ({max}) [noncoop] .
LetG = (V, T, w, P1, . . . , Pn) be an ET0L-system. Then we construct the equiv-

alent tissue P system with only one cell and n+ 2 partitions all of them working
in the maximally parallel mode

Π = (1, V ∪ T ′ ∪ {#} , h (w) , 1, R, (R1,max) , . . . , (Rn+2,max))

as follows:
The renaming homomorphism h : V → (V − T ) ∪ T ′ is defined by h (a) = a

for a ∈ V − T and h (a) = a′ for a ∈ T . Then we simply define Ri = h (Pi) for
1 ≤ i ≤ n, i.e., in all rules we replace every terminal symbol a from T by its
primed version a′. If G has produced a terminal multiset, then Π should stop with
yielding the same result, which is accomplished by applying the partition

Rn+1 = {a′ → a | a ∈ T} ∪ {x→ # | x ∈ V − T} ;

if the terminating rule set Rn+1 is applied while objects from V −T are still present,
trap symbols # are generated, which causes a non-terminating computation in
Π because of the partition Rn+2 = {#→ #}. These observations conclude the
proof. �

6 Simulation of (Purely) Catalytic P Systems and
Computational Completeness

Membrane systems with catalytic rules were already defined in the original paper of
Gh. Păun (see [12]), but used together with noncooperative rules. In the notations
of this paper, a noncooperative rule is of the form (a, i)→ (y1, 1) . . . (yn, n), and a
catalytic rule is of the form (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) where c is from a
distinguished subset C ⊂ V such that in all rules – noncooperative rules (noncoop)
and catalytic rules (cat) of the whole system – the yi are from (V − C)∗ and the
symbols a are from (V − C).

A catalytic tissue P system can be written as a tissue P system with hybrid
transition modes for rule partitions
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Π = (n, V, C,w, i0, R, (R,max))

where the single rule set R works in the maximally parallel transition mode and
the rules are noncooperative rules and catalytic rules. If all rules in R are catalytic
ones, such a system is called purely catalytic. We have to point out that in the
following we shall assume that each catalyst can appear only once in the whole
system; as catalysts cannot move from one cell to another one, this assumption is
no restriction of generality. Moreover, we recall the fact that in the catalytic tissue
P systems as defined above we allow arbitrary connections between cells, whereas
in the original variant of catalytic P systems, the connection graph is restricted
to a tree. As a technical detail we mention that catalysts appearing in the output
cell are not taken into account when extracting the results of a computation.

By XOmCktPn [cat] (XOmCktPn [pcat]) with X ∈ {Ps,N} we denote the fam-
ily of sets of Parikh vectors (Ps) and natural numbers (N), respectively, generated
by (purely) catalytic tissue P systems of the form (n′, V, C,w, i0, R, (R,max)) with
n′ ≤ n, |V | ≤ m, and |C| ≤ k. If any of the parameters n, m, and k is unbounded,
we replace it by ∗.

We now show that catalytic tissue P systems can be simulated by tissue P
systems with hybrid transition modes for rule partitions using the maximally par-
allel transition mode for one partition and the = 1-mode for all other partitions
of rules:

Theorem 2. XOmCktPn [cat] ⊆ XOmhk+1tPn ({max,= 1}) [noncoop] for X ∈
{Ps,N} and all natural numbers m, k, and n.

Proof. Let Π = (n, V, C,w, i0, R, (R,max)) be a catalytic tissue P system with
n cells. Then we construct an equivalent tissue P system with hybrid transition
modes for rule partitions Π ′ as follows:

Π ′ = (n, V, w, i0, R, (R1,= 1) , . . . , (Rk,= 1) , (Rk+1,max))

where, for C = {cj | 1 ≤ j ≤ k},

Rj = {(a, i)→ (y1, 1) . . . (yn, n) | (cj , i) (a, i)→ (cj , i) (y1, 1) . . . (yn, n) ∈ R}

for 1 ≤ j ≤ k and Rk+1 = R − ∪kj=1Rj . For each catalyst cj , the catalytic rules
involving cj form the partition Rj , from which at most one rule can be taken in
any transition step, i.e., the Rj , 1 ≤ j ≤ k, are combined with the = 1-mode, and
the remaining noncooperative rules from R are collected in Rk+1 and used in the
max-mode. The equivalence of the systems Π ′ and Π immediately follows from
the definition of the respective transition modes and the resulting transitions in
these systems. �

From the proof of the preceding theorem, we immediately infer the following
result for purely catalytic tissue P systems:
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Corollary 1. For X ∈ {Ps,N} and all natural numbers m, k, and n,

XOmCktPn [pcat] ⊆ XOmhktPn ({= 1}) [noncoop] .

In [7] it was shown that only three catalysts are sufficient in one cell, using
only catalytic rules with the maximally parallel transition mode, to generate any
recursively enumerable set of natural numbers. Hence, by showing that (tissue) P
systems with purely catalytic rules working in the maximally parallel transition
mode can be considered as tissue P systems with partitions of corresponding non-
cooperative rules working in the = 1-mode when partitioning the rule set for the
single cell with respect to the catalysts, we obtain the interesting result that in
this case we get a characterization of the recursively enumerable sets of natural
numbers by using only noncooperative rules (in fact, this partitioning replaces the
use of the catalysts). In sum, from Theorem 2 and Corollary 1 and the results from
[7] we obtain the following result showing computational completeness for tissue
P systems with hybrid transition modes for rule partitions:

Theorem 3. NRE = NO∗h3tP1 ({= 1}) [noncoop]
NO∗h3tP1 ({max,= 1}) [noncoop] .

We mention that the = 1 mode in any case can be replaced by the ≤ 1-mode
which immediately follows from the definition of the respective transition modes.
Moreover, having the partitions working in the = 1-mode on the first level and
using maximal parallelism on the second level of the whole system corresponds
with the min1 transition mode as introduced in [10] - this min1 transition mode
forces to take exactly one rule or zero rules from each partition into an applicable
multiset of rules in such a way that no rule from a partition not yet considered
could be added. Hence, the result of Theorem 3 directly follows from the results
proved in [7] in the same way as shown in [10] for the min1 transition mode. From
the proof of Theorem 2 and the results proved in [7], also the following general
computational completeness results for tissue P systems with hybrid transition
modes for rule partitions follow:

Theorem 4. For X ∈ {Ps,N},

XRE = XO∗h∗tP1 ({= 1}) [noncoop]
XO∗h∗tP1 ({max,= 1}) [noncoop] .

7 Summary

In this paper we have introduced tissue P systems with hybrid transition modes for
rule partitions. With noncooperative rules as well as with the maximally parallel
transition mode for all partitions, we obtain a characterization of the extended
tabled Lindenmayer systems, whereas with the = 1-mode for 3 partitions or with
the = 1-mode for 2 partitions and the maximally parallel transition mode for



Hybrid Transition Modes in (Tissue) P Systems 239

one partition we already are able to generate any recursively enumerable set of
natural numbers. As for (purely) catalytic P systems, the descriptional complexity,
especially with respect to the number of partitions, of tissue P systems with hybrid
transition modes for rule partitions able to generate any recursively enumerable
set of (vectors of) natural numbers remains as a challenge for future research.

References

1. F. Bernardini, M. Gheorghe, N. Margenstern, S. Verlan, Networks of cells and Petri
nets, in: M. A. Gutiérrez-Naranjo et al. eds., Proc. Fifth Brainstorming Week on
Membrane Computing, Sevilla, 2007, 33–62.

2. M. Beyreder, R. Freund, Membrane systems using noncooperative rules with un-
conditional halting, in: D. W. Corne et al. eds., Membrane Computing - 9th Intern.
Workshop, Revised Selected and Invited Papers, LNCS 5391, Springer, 2009, 129–136

3. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez, P systems with minimal paral-
lelism, Theoretical Computer Science 378 (1) (2007), 117–130.

4. E. Csuhaj-Varjú, Networks of language processors, Current Trends in Theoretical
Computer Science (2001), 771–790.

5. E. Csuhaj-Varjú, J. Dessow, J. Kelemen, Gh. Păun, Grammar Systems: A Grammat-
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6. J. Dassow, Gh. Păun, On the power of membrane computing, Journal of Universal
Computer Science 5 (2) (1999), 33–49.
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