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Summary. The study of efficient methods to deduce fluxes of biological reactions, by
starting from experimental data, is necessary to understand the dynamics of a metabolic
model, but it is also a central issue in systems biology. In this paper we report some
partial results and related open problems regarding the efficient computation of regulation
fluxes in metabolic P systems. By means of Log-gain theory the system dynamics can be
linearized, in such a way to be described by a recurrence equations system, of which we
point out a few algebraic properties, involving covering problems.

1 Introduction

Since their first introduction [14], P systems have been widely investigated
in the framework of formal language theory as innovative compartmentalized
multiset rewriting systems [15], and different variants of them were analyzed
along with their computational power (for a complete list of references, see
http://ppage.psystems.eu/). Although they were originally introduced as com-
putational models, their biologically inspired structure and functioning, together
with their feasibility as models of cellular and biomolecular processes, turned out to
be a widely applicable modeling technique in several domains, including medicine
(for immunological processes [6], and cellular tissue healing [5]), economics [16],
linguistics and computer science (computer graphics, cryptography, approximate
solutions to optimization problems) [4], and, of course, biology (for mechanosen-
sitive channels [1], respiration in bacteria, photosynthesis, the protein kinase C
activation [3]).

The intent to employ multiset processing in the compartmentalized framework
provided by cell-like or tissue-like membrane structures in order to study real
biological systems is nowadays vividly pursued, along with variants of P systems
enriched with several other features, usually inspired by biology [2]. An important
aspect in modeling biological reactions by rewriting rules was a thorough study of
the rule application strategy [7], since the traditional nondeterministic maximally
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parallel way seemed to be not enough realistic. Along this recent more applicative
trend, a body of research is focused on the modeling of metabolisms, where the
main interest is devoted to the molecular reactions transforming matter rather
than to the biochemicals distribution and coordination in compartments. Metabolic
P systems have been introduced [8, 10] as mono-membrane multiset rewriting
grammars, where rules are regulated by specific functions. The goal is to control
the matter transformation of a reactor by means of rules whose strength and
application depend on the objects population concentration.

Reactions are specified along with dynamical fluxes, and each flux denotes the
ability of the corresponding rule to compete against other rules in capturing part
of the population on which it is applied [10]. This new strategy of rule application
was inspired by real ‘metabolic reactions’, and it seems to lead multiset based
computing towards interesting simulations of biological processes, such as com-
plex oscillations [11], the mitotic cycle [3] and the non-photochemical quenching
phenomenon [12]. Overall, a new way to observe the evolution rules of a system
reproducing a metabolic reaction was proposed. Indeed, since the application of
every rule changes the relative amounts of reacting substances, it was enforced
that such quantities influence the reactivity of the rules in a way that their appli-
cation depends on the current substances concentration, as it normally happens in
biochemical phenomena. A simulator (named MetaPlab) applying evolution rules
with this strategy has been developed, and employed to simulate several biological
processes (it may be downloaded from the website mplab.sci.univr.it/, where
also several references are reported).

Before entering in more technical details, let us discuss a few other substantial
(for modeling purposes) differences which have been introduced by metabolic P
systems with respect to traditional membrane systems.

P systems are traditionally organized in a way that their evolution is syn-
chronous, i.e., a global clock triggers the production of new symbols inside all
membranes. In principle, one may try to increase the granularity of a P system in
order to obtain fine-grained sequences of transitions, then consider the trajectories
described by these sequences, and this description would be as accurate as fine the
granularity of the P system is. In practice, it is likely that the desired granularity
is obtained by adding auxiliary symbols or priority constraints in the system, to
form (sometimes complex) priority relationships for the rewriting rules [6]. As a
matter of fact, P systems do not provide tools for controling the resolution of the
observation of intermediate states, and they are better suited to model a process as
a sequence of “snapshots”, each one being taken when no more rewriting rules can
be applied. With Metabolic P systems instead, one assumes the a priori choice
of a time interval τ , between consecutive observation instants, that depends on
the macroscopic level at which considering the dynamics of the biological system.
The flux values (also called reaction units) are computed according to the chosen
observation granularity.

In metabolic P systems rules are obviously global and not compartmentalized,
and the environment changes are taken into account by the fluxes associated to
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reactions. The state, on which reaction units depend, is given by both the value
of some magnitudes, called parameters, which can influence the reactions (e.g.,
temperature and pressure) and by the amount of the substances inside the sys-
tem. Some distinction between matter and not matter is fundamental to study
metabolic processes, and the idea of considering parameters as elements of the
system different from metabolic substrates, and having their own evolution, is
new of metabolic P systems. Nevertheless, some similar ideas were formalized in
the context of membrane systems, by means of promoters and inhibitors, that are
respectively permitting and forbidding objects associated to regions, modeling the
chemicals in the cell that, while supporting or forbidding certain reactions, can
separately evolve, in parallel with the chemicals involved in the reactions [4]. Fi-
nally, we would like to emphasize that the approach of modeling by metabolic
P systems assumes a novel perspective, by considering the rules only as matter
transformation reactions rather than precise molecular interactions. The search of
fluxes is therefore aimed at designing a model of the observed macroscopic reality
with respect to the abstract transformations one has assumed, and it is different
from the parameter (or rate) estimation typically studied in systems biology, even
in the framework of membrane systems [17].

In the next section the problem we tackle is framed, after a brief introduction
to MP systems and the Log-gain theory [9], specifically devised for them. A few
results are reported in the third section, while a last section about open problems
and ongoing work concludes the paper.

2 Framing of the problem

An MP system is completely specified by: i) m reactions, ii) m corresponding
flux regulation functions, iii) n substances, which are the elements transformed by
reactions, and their initial values, iv) k parameters, which are arguments (beside
substances) of flux regulation functions, and v) k parameter evolution functions.

We assume m > n (more rules than substances), as it realistically happens in
biochemical systems. A few examples are given by the following protein-protein in-
teraction networks: Ito (yeast) has 8868 known interactions among 3280 proteins,
Giot (Drosophila) has 4780 known interactions among 4679 proteins, and Li (C.
elegans) has 5534 known interactions among 3024 proteins, and by the following
bacterial metabolic networks: Wolbachia pipientis has 8128 interactions over 2100
genes, S. enterica has 13309 interactions over 3717 genes, R. felis has 6966 inter-
actions over 2062 genes, and A. phagocytophilum has 7924 over 2056 genes. By a
more abstract perspective, we observe that since usually each metabolic reaction
transforms few substances, in the case m ≤ n we would have a scarce competition
for substances among the rules, and the interaction system would be not interest-
ing to analyze. Finally, the problem we are going to describe would be just not so
significant from an algebraic viewpoint. The number k of parameters instead, has
no relationship with m and n, as it just represents the sensitivity of the system to
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the environment (parameters are internal or external controling variables which
somehow affect the system functioning).

A state S is an Rn+k vector (reporting the current amounts of substances
and parameters), while each rule rj (with j = 1, . . . ,m) having some of the n
substances as substrates and some as products, is associated to a couple of Rn

vectors (r−j , r
+
j ) (one of which possibly null), reporting the substance quantities

respectively occurring in the premise and in the consequence of rj . As an instance,
we might have a system Q with three substances {a, b, c}, two parameters {v, w}
which values evolve according with their own function vector (fv(i), fw(i)), for
i ∈ N, and four rules

r1 : ab→ aa, r2 : bcc→ a, r3 : ac→ λ, r4 : abc→ bb.

The reactions respectively correspond to the vector couples:

(r−1 , r
+
1 ) = ((1, 1, 0), (2, 0, 0)), (r−2 , r

+
2 ) = ((0, 1, 2), (1, 0, 0)),

(r−3 , r
+
3 ) = ((1, 0, 1), (0, 0, 0)), (r−4 , r

+
4 ) = ((1, 1, 1), (0, 2, 0)).

Furthermore, four (one for each rule) flux regulation functions may be given,
defined on R5 and having values in R, in order to have the fluxes u1, u2, u3, u4,
associated respectively to the rules.

There are a couple of features to point out when dealing with metabolic rules r.
One is the activation substrate (that is, how many units of substrate are necessary
in order that the rule be applied), given by the vector r−, and the other one is
the effect of the rule application, given by r+ − r−. This last vector gives the
biochemical balance due to the application of the rule, that is how much of each
substance was either consumed or produced. For example, in the above rule r4, we
need to have all u4 units of a, u4 units of b and u4 units of c to activate the rule
(i.e., to be able to apply the rule), while the rule effectively producing u4 of b and
consuming u4 of a and of c. Of course, in cases of no substance production (as it
is for r3 in the example), the activation and the consumption of the rule coincide.

We call stoichiometric matrix R, the (n × m)-dimensional matrix formed by
the vectors r+ − r−, for every rule r, disposed according to some prefixed order
(which is not relevant). In the example above, the order is given by the index of
the rules, and we have

R =

 1 1 −1 −1
−1 −1 0 1

0 −2 −1 −1

 . (1)

The stoichiometric matrix is assumed to have maximal rank, as it is the case in
our example. If we would have any row linearly dependent on the others, we could
delete it (together with the corresponding substance in the system, as studying its
dynamics would be not meaningful), and reset the whole system with the remaining
substances (we newly say n) and the corresponding n ×m stoichiometric matrix
(having full rank, after the eventual iteration of this procedure).

Analogously, the activation matrix A is formed by the vectors r−, and for the
example above we have:
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A =

1 0 1 1
1 1 0 1
0 2 1 1

 .

The dynamics of a metabolic P system is given by both the evolution of param-
eters, according to their laws, and by the evolution of the vector X of substances,
ruled by the following recurrence n-equations system [10] (where × denotes the
ordinary matrix product and i the discrete instant of time):

X[i+ 1] = R× U [i] +X[i]. (2)

By considering U [i] as the unknown vector, the linear system (2) (called ADA
for “Avogadro and Dalton Action” [10]) has infinite solutions, as the number n
of equations is usually smaller than the number m of variables (should we have
the case m ≤ n, from an algebraic point of view there would be no problem to
eventually solve the system or figure out if there is not any solution).

In [9] the Log-gain theory was developed to design an MP model from observa-
tion experimental data, that is, to deduce the MP regulation fluxes from temporal
series of the substances. From an algebraic viewpoint, such a theory provides us
with other m equations and other n variables, that can be added to the ADA
system (2) in order to obtain an n+m equations system univocally solvable.

According to the simplest formulation of this theory, given a number of obser-
vation steps (at a specified time interval τ), and the corresponding time series of
the observed states of a real metabolic system (with an assumed stoichiometry),
the relative variations of any reaction flux uj of the rule rj : αj → βj (j = 1, . . . ,m)
is the sum of the relative variations of the reactants (i.e., the substances occurring
in αj), apart of some error pj , which is introduced as a variable of the system.
We denote with P the m-dimensional vector of such variables, called reaction off-
sets [9], that is, the errors introduced in the log-gain approximations of fluxes.
Furthermore, we denote with Lg(U [i]) the m-dimentional vector of relative fluc-
tuations, that is (uj [i+1]−uj [i]

uj [i]
| j = 1, . . . ,m), for any i ∈ N. Analogously Lg(X[i])

and Lg(S[i]) are the vectors of relative fluctuations respectively of substances and
of both substances and parameters.

In formal terms, the m+n equations system we want to solve (in order to find
the vector U[i+1]) is {

Lg(U [i]) = B × Lg(X[i]) + C · P
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (3)

where B is a (m×n)-dimentional boolean matrix selecting, by matrix product, the
reactants for each reaction, and C is an m-dimensional boolean vector selecting,
by entrywise product1, only n of the m offsets (that are n unknowns of the system,
besides the m fluxes).

1 For two matrices A and B having the same dimensions, the Schur product C = A ·B
is entrywise defined as Cij = Aij ·Bij .
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According to a more general formulation of the Log-gain theory [9], the relative
variations of any reaction flux uj of the rule rj : αj → βj (j = 1, . . . ,m) is the sum
of the relative variations of its tuners, which are both the substances (including
the reactants) and the parameters which influence the reaction rj . In this general
case, the system (3) to solve becomes{

Lg(U [i]) = B? × Lg(S[i]) + C · P
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (4)

where B? is an m× (n+k)-dimentional boolean matrix selecting, by matrix prod-
uct, the tuners for each reaction.

3 A few results

Given an MP system of substances {x1, . . . , xn} and rules {r1, . . . , rm}, R(x) is
defined as the set of all rules involving x either as a reactant or as a product.
A set R0 of n rules is called covering set if R(x) ∩ R0 6= ∅ for any substance x.
Consequently, the boolean vector C from the system (3), if selecting offsets of
rules of a covering set, is called covering vector.

As a first result, we observe that any set of n linearly independent rules
is a covering. In fact, if we look at the n columns of the stoichiometric matrix,
corresponding to n prefixed linearly independent rules, they cannot show a null
row (otherwise they would be not linearly independent), then any substance
(which corresponds to a row) is involved by at least one of the prefixed rules, and
this implies they form a covering set. Let us recall here that a set of n linearly
independent rules always exists, because the stoichiometric matrix R (which
columns are represented by the rules) is assumed to have maximal rank.

As a second result, the system (3) may be seen as{
U [i+ 1]− C · U [i] · P [i+ 1] = (B × Lg(X[i])) · U [i] + U [i]
R× U [i+ 1] = X[i+ 2]−X[i+ 1] (5)

More interestingly, system (5) may be transformed in another one (see equation
(6)) computing the same flux values U by applying a time constant block matrix in
each step. The idea underlying this algebraic manipulation is to change the “fake”
variables of the system (i.e., those introduced by Log-gain theory in order to be
able to solve the linear system (2)), from the m-dimensional vector P [i + 1] into
the n-dimensional vector Z[i+1] obtained by taking the n non-null components of

C ·U [i] ·P [i+ 1]. Hence, if we consider as a variable the vector
(
U [i+ 1]
Z[i+ 1]

)
rather

than
(
U [i+ 1]
P [i+ 1]

)
we get the following normalized system
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Im G
R On

)
×
(
U [i+ 1]
Z[i+ 1]

)
=
(

(B × Lg(X[i])) · U [i] + U [i]
X[i+ 2]−X[i+ 1]

)
(6)

where Im is the identity matrix of dimension m, On is the null matrix of
dimension n, R is the stoichiometric matrix, and G is an (m × n)-dimensional
boolean matrix, called covering matrix, such that each column has exactly one non-
null element and the sum of the first h columns (for any h = 1, . . . , n) coincide with
the covering vector C in its first components containing h ones. In other words, if
the non-null components of C are j1, j2, . . . , jn, then the non-null components of
the corresponding covering matrix G are (j1, 1), (j2, 2), . . . , (jn, n).

The systems (5) and (6) are equivalent on the first m components of the un-
known vector to compute (i.e., the fluxes we are looking for), because it holds that
G× Z[i+ 1] = C · U [i] · P [i+ 1].

Let us see all of this on the example Q introduced in the previous section. In
the stoichiometric matrix R reported in (1), one can verify that R0 = {r1, r2, r3}
is a covering set. Then the 7× 7 system (6) to solve is(

I4 G
R O3

)
×
(
U [i+ 1]
Z[i+ 1]

)
=
(

(B × (LgX[i])) · U [i] + U [i]
X[i+ 2]−X[i+ 1]

)

where G =


1 0 0
0 1 0
0 0 1
0 0 0

, B =


1 1 0
0 1 1
1 0 1
1 1 1

, and LgX[i] =

Lg(a[i])
Lg(b[i])
Lg(c[i])

.

System (6) is a normalized form of the general problem (of finding
a linear system to compute the system fluxes), that has been helpful to perform
fast and efficient computations for our simulations. Indeed, we do not need to
compute the matrix at every computational step as for the system (3), but just
once, and the blockwise matrix product can be easily performed by involving
operations only on the submatrices.

As a third important result, we can see that, if the matrix G is defined
by a linearly independent covering, then the system (6) has a unique

solution. To prove this fact, it is enough to show that the matrix N =
(
Im G
R On

)
has a non-null determinant. Indeed, since it can be written in the following form(

Im G
R On

)
=
(
Im Om×n

R In

)
×
(

Im G
On×m −R×G

)
then, det(N ) = −det(R × G). This implies an even stronger result, that is,

the system (6) is univocally solvable if and only if G corresponds to a linearly
independent covering.

Since in our recurrence system we are assuming to know the fluxes computed
at the previous step, the reader could wonder about the value of the fluxes at
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the initial observation step. There exists a heuristic algorithm to estimate it, by
evaluating, along with few steps of observation, how much of each substance is
necessary to activate the first evolution step [13].

As a last result, we would like to point out that, the systems (3) and (4) are
equivalent (that is, they give the same fluxes), for any C corresponding
to a linearly independent covering, if the rows of B? corresponding to
the zero components of C · P have the last k components equal to zero
and coincide with the related rows of B in their first n components. In
other words, the solution U of the systems (3) and (4) is the same if the fluxes
of the non-covered rules are assumed to depend only on the reactants of the rule.
Analogously, the solution does not chance if the covered rules have log-gains of the
fluxes given by the sum of log-gains not only of the reactants, but also of other
elements (substances or parameters).

To prove this, once we have chosen a linearly independent covering R0, we
arrange the rules of the system according to an order which disposes first the rules
of the covering and then the others, so that the stoichiometric matrix R has the
first n columns corresponding to the vectors r+− r−, for the rules r ∈ R0, and the
others to the vectors r+−r−, for r /∈ R0. We denote this feature with the blockwise
stoichiometrix matrix R = (R0 R1), where R0 is an n × n matrix, while R1 is an
n × (m − n) matrix. The vectors U = (U0, U1), C = (C0, C1), and P = (P0, P1)
turn out to be arranged consistently, while C0 having all the components equal to
one and C1 being an (m− n)-dimensional null vector. Namely, in the system (4),

B? =
(
B?

0

B?
1

)
where B?

0 is a n × (n + k) boolean matrix selecting the tuners of

each reaction from the matrix R0, and B?
1 is an (m− n)× (n+ k) boolean matrix

selecting the tuners of the reactions from R1. Under our hypothesis, if B =
(
B0

B1

)
,

with B0 and B1 respectively n × n and (m − n) × n-dimensional matrices, then
B?

1 = (B1 O(m−n)×k).
If we consider the system (4) in its reformulation (5), we can seeU0[i+ 1] = ((B?

0 × Lg(S[i])) + 1 + C0 · P0[i+ 1]) · U0[i]
U1[i+ 1] = ((B?

1 × Lg(S[i])) + 1 + C1 · P1[i+ 1]) · U1[i]
R0 × U0[i+ 1] = X[i+ 2]−X[i+ 1]−R1 × U1[i+ 1]

(7)

At this point, we can just notice that, from the second equation (since C1 is a
null vector and we know the vectors Lg(S[i]) and U [i]) we deduce (equivalently in
the two systems (3) and (4))

U1[i+ 1] = (B?
1 × Lg(S[i])) · U1[i] + U1[i] = (B1 × Lg(X[i])) · U1[i] + U1[i].

On the other hand, since R0 has a non-null determinant, the third equation
of system (7) has a unique solution for U0 (fluxes of covered rules), and it does
not depend on the matrix B0 but only on U1[i+ 1]. The matrix B0 indeed selects
only reactants for each rule of the covering R0, while here we get the same values
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for both U0 and U1 even if there is only B?
0 involved (by the first equation of the

system (7)).
At this point, we can easily see that an even stronger results holds (and it

can be similarly proved): the system (4) gives the same values for the fluxes, by
keeping constant the choice of the tuners for the non-covered rules, and arbitrarirly
modifying the choice of the set of tuners for the covered rules. This observation
points out the importance of the covering choice: one essentially selects the rules
which are not so important for the dynamics, because it does not really matter
which are the substances or parameters which affect them.

An interesting consequence is that the m fluxes can be computed simply solving
the m equations system given by{

Lg(Y [i]) = B? × Lg(S[i])
R× U [i+ 1] = X[i+ 2]−X[i+ 1]

where B? is an (m−n)× (n+ k)-dimentional boolean matrix selecting, by matrix
product, the tuners for each non-covered reaction, and Lg(Y [i]) is the vector of
relative fluctuations of the m− n fluxes corresponding to the non-covered rules.

4 Future work

Along the results presented in this paper, MP systems clearly give an exciting
connection between linear algebra and rewriting rules, especially those covering
substances transformed within a metabolic system, with several facets that require
further research. What linear independence of rules means in terms of the biological
dynamics, and what in terms of formal rewriting systems? As one of the referees
observed, “it would be interesting to determine the meaning of linear independence
of rules in the frameworks of both biology and rewriting P systems”.

In order to compute fluxes of MP systems, that need to be positive in order
rules be applied, it is still not clear which would be the choice of a good covering
(among the linearly independent ones). Namely, it seems that conditions on our
data may be found that guarantee the positivity of the system fluxes.

Other similarly interesting problems could be outlined if we consider the cov-
ering set composed by rules involving all the substances only along their premises.
A new formulation of our problem would replace the stoichiometric matrix R with
the activation matrix A, and it would be interesting to investigate the “more re-
strictive” conditions we should have from the data to guarantee a “correct” (i.e.,
with positive fluxes) biological dynamics.
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