
Decision Trees for Obtaining Active Rules in
Transition P Systems

Juan Alberto de Frutos, Luis Fernández, Fernando Arroyo

Dpto. de Lenguajes, Proyectos y Sistemas Informáticos
Escuela Unversitaria de Informática - Universidad Politécnica de Madrid
Crta. de Valencia Km. 7 - 28031 Madrid - Spain
{jafrutos, setillo, farroyo}@eui.upm.es

Summary. The aim of this work is to reduce the time that a membrane spends in
working out the active rules subset in every evolution step. With this purpose, it is
proposed carrying out a previous static analysis over the Transition P system, obtaning
a decision tree with the collected information. In such a way that active rules subset will
be determined as a classification problem. It will be shown advantages of incorporating
decision trees for this task, and also an analysis of suitability in some architectures
proposed to implement Transition P systems. Specifically, architectures based on a cluster
of computers and microcontrollers.

1 Introduction

Membrane Computing was introduced by Gh. Păun in [8], as a new branch of
natural computing, inspired on living cells. Membrane systems establish a formal
framework in which a simplified model of cells constitutes a computational device.
Starting from a basic model, Transition P Systems, many different variants have
been considered; and many of them have been proved to be, in computational
power, equivalent to the Turing Machine. A Transition P System evolves through
transitions between two consecutive configurations that are determined by the
membrane structure and multisets present inside membranes. It can be considered
two sequential phases in every transition step: application of evolution rules inside
membranes, and communication among membranes in the system. The present
work is focused on optimizing the first one.

The first task in application of evolution rules inside a membrane phase is to
determine whether each rule is active or not. The subset of active rules will be
applied subsequently in a maximal parallel and non deterministic way. There are
many papers in which the main goal is to improve the internal parallelism of the
membrane, in such a way that several active rules can be applied simultaneously.
However, as regards optimization of the process of obtaining active rules, only the
work carried out by Fernández et al. [4] can be mentioned. The main goal of the

Decision Trees for Obtaining Active Rules in Transition P Systems 211

present work is to propose decision trees as an optimized solution for determining
active rules in some architectures.

Architectures based on a cluster of computers connected by a local net
[9], [3], [10], [1] and [2]. Each computer houses several membranes, reaching a cer-
tain degree of parallelism. We want to point out the analysis carried out in [10] in
which Tejedor et al. try particularly to tackle the bottleneck communication prob-
lem, proposing an architecture that avoids communication collisions and reduces
the number and lenght of external communications. They conclude that ”if it is
possible to make that application time be N faster times [...] the number of mem-
branes that would be run in a processor would be multiplied by

√
N , the number

of required processors would be divided by the same factor and the time required
to perform an evolution step would improve approximately with the same factor√
N”. The goal of the present work fits just in this context, we will try to reduce

the application time inside a membrane.
Architectures based on microcontrollers. This line of implementing P

systems has been proposed by Gutierrez et al. in [6] and [7]. It consists in a low
cost hardware based on microcontrollers PIC16F88 that making use of external
memory modules is able to solve the problem of small capacity of storage in these
devices. It means a flexible solution due to microcontrollers allow to be software
programmed. Figure 1 contains a picture with a real implementation. The repre-
sented microcontroller has been adapted to perform membrane execution. Besides,
it has been designed to be connected up to with 254 additional microcontrollers.

Fig. 1. Circuit with a microcontroller PIC16F88 for implementing P systems.

2 Conditions for an evolution rule to be active

An evolution rule in membrane i can be applied in an evolution step if it fulfils
three requisites: useful, applicable and active. A rule rj is useful if all targets are
adjacent to membrane i and not inhibited. A useful rule rj is applicable if its
antecedent is included in the multiset of membrane i. Finally, an applicable rule
rj is active if there is no other applicable rule with higher priority.

212 J.A. de Frutos, L. Fernández, F. Arroyo

The usefulness state concept for determining useful rules is going to be an
important issue for the present paper. It was introduced in [5]. This state allows
any membrane to know the set of child membranes with which communication is
feasible, that is to say, adjacent and not inhibited membranes. This set of child
membranes constitute the membrane context, which changes dynamically as mem-
branes are dissolved or inhibited in the P system. The set of usefulness states for a
membrane i in a Transition P system can be obtained statically at analysis time,
as it is detailed in [5].

Fig. 2. An example of transition P system

Figure 2 represents an example of a Transition P system. Only rules associated
to membrane 1 are detailed. Symbol δ in membranes 2, 4 and 6 represents the
possibility of these membranes to be dissolved by application of some rules inside
them. The symbol τ represents the possibility of inhibition for membranes 2 and
6 by the same cause. Usefulness states for membrane 1, together with their corre-
sponding contexts, are depicted in first and second columns of table 1. Futhermore,
it can be obtained statically the set of useful rules from a given usefulness state
qi. Third and fourth columns in table 1 represent useful rules for every usefulness
state.

Usefulness state Context Useful rules Useful rules when permeable

q0 (1001) {2, 3} r1, r2, r5 r3

q1 (0111) {4, 5, 3} r2, r4, r5

q2 (0011) {5, 3} r2, r5

q3 (0001) {3} r2, r5

Table 1. Usefulness states for membrane 1

Decision Trees for Obtaining Active Rules in Transition P Systems 213

Usefulness states are proposed to be encoded in [5] by means of the total
context of a membrane, defined as the set of all membranes that eventually
can become children of that membrane. For instance, in our example of figure
1, TC(1) = {2, 4, 5, 3}. Each one of the usefulness states for a membrane i is en-
coded by TC(i), depending on its context, with binary logic. Thus, the usefulness
state q0, that represents the context {2,3}, is encoded as 1001.

3 Decision trees for active rules

A decision tree is a tool that allows to determine the class which one element
belongs to, depending on the values of some attributes or properties of the element.
Each non-leaf node of a decision tree corresponds to an input attribute, and each
arc to a possible value of that attribute. A leaf node corresponds to the expected
value of the output attribute, that is to say, the element classification. An element
is classified by starting at the root node of the decision tree, testing the attribute
specified by this node and moving down the tree branch corresponding to the value
of the attribute. This process is repeated until a leaf node is reached. There are
a lot of algorithms to generate decision trees. Specifically ID3 is an outstanding
algorithm belonging to TDIDT family (Top-Down Induction of Decision Trees).

Fernández et al. in [4] proposed incorporating decision trees in the calculus of
evolution rules applicability. They reach an important reduction of the number of
checks necessary for determining the applicable rules subset. The present work,
supporting in usefulness states analysis, tries to extend those decision trees, in
such a way that conditions for usefulness and priorities among rules will be also
taken into account. The decision tree for a membrane will classify the state of that
membrane in every evolution step, determining the current active rules subset.

3.1 Attributes

The set of attributes Ai is established as properties necessary to define a state or
situation of the membrane i in the P System. Specifically, the set Ai consists of
the following attributes:

1. Necessary attributes to set up the usefulness state of membrane i. Thus, there
will be one attribute for each membrane belonging to membrane i total context.
The associated value will be true if the represented child membrane belongs
to the current usefulness state.

Ai ⊃ {a ≡ mj | j ∈ TC(i)}

2. One attribute more to determine inhibition in the permeability state of mem-
brane i. The value true corresponds with membrane inhibition.

Ai ⊃ {a ≡ I}

214 J.A. de Frutos, L. Fernández, F. Arroyo

3. Furthermore, as proposed in [4], we consider attributes for applicability of
rules. These attributes represent the set of weight checks between objects from
the membrane multiset and objects from antecedents of evolution rules. Nei-
ther repetitions nor checks with zero are considered.

Ai ⊃ {a ≡ |ω|u ≥ k | |input(r)|u = k ∧ k 6= 0 ∀u ∈ U}

Where |ω|u represents the weight of the symbol u in ω (multiset of membrane
i); and |input(r)|u is the weight of the symbol u in the antecedent of r.

As every possible membrane situation will be considered with an instance, the
amount of instances in the training data for a membrane i is the following:

|Ei| = |Qi| ∗
∏
u∈U

(|Cu
i |+ 1)

where |Qi| is the number of usefulness states for membrane i, and |Cu
i | is the

number of different checks with symbol u in any rule antecedent of membrane
i, that is to say, attributes with the form |w|u ≥ k. Besides, if membrane i has
inhibiting capability, this value has to be multiplied by 2 in order to consider
attribute I.

Fig. 3. Instances of membrane 1 for ID3 algorithm

Coming back to the example of P system introduced in figure 1, attributes for
membrane 1 are the following:

• As TC(1) = {2, 4, 5, 3}, four attributes are needed: m2, m4, m5, m3.
• As membrane 1 has inhibiting capability, an attribute I has to be included.
• Finally, the different checks for applicability in evolution rules are the following:
|w|a ≥ 4, |w|a ≥ 2, |w|b ≥ 5, |w|b ≥ 2 and |w|b ≥ 1.

Decision Trees for Obtaining Active Rules in Transition P Systems 215

The resulting training data for membrane 1 are shown in figure 3. As example,
1001Ia2b5 represents the instance in which usefulness state is 1001, permeability
state is inhibited, the amount of objects a is at least 2, but not more than 4, and
finally, the amount of objects b is at least 5.

3.2 Classification

Each instance is classified into the corresponding set of active rules, as it is shown
in figure 3. This task is carried out at analysis time as follows:

• Firstly, useful rules are obtained from the usefulness state and the permeability
state (table 1). For instance, 1001Ia2b5 corresponds with the set of useful rules
{r1, r2, r5}.

• Secondly, attributes related to checks of objects weights in multiset determine
the applicability property of every useful rule, as it is detailed in [4]. For in-
stance, 1001Ia2b5 corresponds with the set of applicable rules {r1, r2, r5}, due
to every useful rule is also applicable.

• Lastly, priorities among rules have to be considered in order to get the active
rules subset, which implies to determine the maximal over the priority relation
of the applicable rules subset. With this aim, we have to work out a transitivity
matrix (M) expressing the priority relation. Then the maximal is obtained as
follows:

C = Max(Applicable) = Applicable ∧ ¬(Applicable ∗M)

Following with our example 1001Ia2b5, two priorities are defined for mem-
brane 1: r1 > r3 and r3 > r5, which determine a transitivity matrix M .
If we represent the applicable rules subset with binary logic as 11001, then
C = Max(11001) = (11001) ∧ ¬((11001) ∗M) = 11000, representing
{r1, r2}.

Therefore, all instances are available at analysis time. Thus ID3 algorithm can
be applied obtaining a decision tree. Specifically, decision tree corresponding to
membrane 1 of our example is depicted in figure 4.

Such decision tree can be easily software implemented. Besides, as computation
of active rules is a process performed inside every membrane in every evolution
step, we propose optimizing it with an assembly language. Anyway, this sofware
is a suitable solution for architectures based on a cluster of processors, such as [9],
[10], [1] and [2], in which each membrane evolves in a single process. Such process
would contain the software obtained for the decision tree. As regards architectures
based on microcontrollers PIC16F88, decision trees solution fits properly, due to
microcontrollers can be software programmed. More precisely, in [7] Gutierrez et
al. made use of the microchip MPLAB IDE integrated environment, in which the
tool MPASM allows to work with assembly code. An additional advantage is the
avoidance of the transitivity matrix, which is important due to the problem of
scarce memory for data in microcontrollers.

216 J.A. de Frutos, L. Fernández, F. Arroyo

Fig. 4. Decision tree obtained by ID3 algorithm for membrane 1

4 Analysis of results and conclusions

Now, we are going to compare decision trees as proposed here with classical so-
lutions for obtaining active rules, which consist of three sequential algorithms,
determining useful, applicable and active evolution rules respectively. Table 2 sum-
marizes the results obtained in this comparison, where |R| represents the number
of evolution rules in the membrane, |TC| is the length of the membrane total
context, |U | is the amount of symbols in the alphabet and |Cu

i | is the number of
different checks for applicability.

Useful rules Applicable rules Active rules

Classical Algorithms O(n) O(n) O(n2) + O(n)
n = |R| ∗ (|TC|+ 1) n = |R| ∗ |U | n = |R|

Decision tree O(n)
n = |TC|+ 1 +

∑
u∈U

|Cu
i |

Table 2. Complexity order of algorithms for obtaining active rules

From this comparison, we conclude that decision tree solution performs a fewer
number of operations than classical solutions. Additionally, we have applied both
kind of solutions to a set of published P systems and results confirm our conclusion.
Specifically, the total amount of operations in decision trees vary from 11,32% to
21,21% of the total amount of operations in classical algorithms.

As regards memory requirements, we have to point out some remarks. A deci-
sion tree handicap is the need to keep a different code for every membrane. On the
other hand, a decision tree advantage is the avoidance of the transitivity matrix.
Finally, we have to mention that decision trees could grow up significantly when
the number of attributes is high. Then, depending on the implementation archi-
tecture, memory space could be insufficient for decision trees and consecuently

Decision Trees for Obtaining Active Rules in Transition P Systems 217

classical algorithms had to be chosen. Anyway, as decision tree is obtained at
analysis time, the best solution can be determined at that time.

As conclusion, decision tree solution is significantly more efficient than classical
solutions for determining active rules. Moreover, some architectures for implement-
ing P systems can get profit from this proposal, such as architectures based on
a cluster of computers and architectures based on microcontrollers. Finally, ac-
cording with the work carried out by Tejedor et al. in [10], this solution means
improvements on some architectures proposed to tackle the communication bot-
tleneck problem, such as reduction of the total time of an evolution step, increase
of the number of membranes that could run on a processor and reduction of the
number of processors.

References

1. G. Bravo, L. Fernández, F. Arroyo. J. Tejedor, Master Slave Distributed Architec-
ture for Membrane Systems Implementation, 8th WSEAS Int. Conf. on Evolutionary
Computing (EC’07), June 2007, Vancouver, Canada.

2. G. Bravo, L. Fernández, F. Arroyo, M. A. Pea, Hierarchical Master-Slave Architecture
for Membrane Systems Implementation, 13th Int. Symposium on Artificial Life and
Robotics (AROB ’08), Feb 2008, Beppu, Oitia (Japan).

3. G.Ciobanu, W. Guo, P Systems Running on a Cluster of Computers. Workshop on
Membrane Computing (Gh. Păun, G. Rozemberg, A. Salomaa Eds.),2004, LNCS
2933, Springer, 123-139

4. L. Fernández, F. Arroyo, I. Garćıa, G. Bravo, Decision Trees for Applicability of
Evolution Rules in Transition P Systems, Fourth Intern. Conf. Information Research
and Applications (i. TECH 2006) June 2006, Varna, Bulgary.

5. J. A. Frutos, L. Fernández, F. Arroyo, G. Bravo, Static Analysis of Usefulness States
in Transition P Systems, Fifth International Conference, Information Research and
Applications (I.TECH 2007), June 2007, Varna, Bulgary. 174-182.

6. A. Gutierrez, L. Fernández, F. Arroyo, V. Mart́ınez, A Design of a Hardware Ar-
chitecture based on Microcontrollers for the Implementation of Membrane Systems,
SYNASC 2006, Timisoara.

7. A. Gutierrez, L. Fernández, F. Arroyo, S. Alonso, Hardware and Software Architecture
for Implementing Membrane Systems: A Case of Study to Transition P Systems, The
DNA Inter. Meeting on DNA Computing (DNA13), June 2007, Memphis, USA.

8. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61(1), 2000, 108-143.

9. A. Syropoulos, E.G. Mamatas, P.C. Alliomes, K.T. Sotiriades, A Distributed Simula-
tion of P Systems. Workshop on Membrane Computing, Tarragona, Spain, 455-460.

10. J. Tejedor, L. Fernández, F. Arroyo, G.Bravo, An Architecture for Attacking the
Bottleneck Communication in P Systems, 12th Int. Symposium on Artificial Life and
Robotics, Jan 2007, Beppu, Oita, Japan, 500-505.

