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Introduction

Spiking Neural Networks (SNNs) and Spiking Neural P Systems
(SNPSs) are advanced computational models

Inspired by biological processes of the human brain

Use discrete spikes to transmit information between neurons

Offer more energy-efficient and biologically plausible approach
compared to traditional neural networks

Particularly well-suited for resource-constrained environments
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Biological Inspiration

In biological systems, neurons communicate by emitting electrical
signals known as spikes

Spikes are transmitted through synapses

This mechanism allows neurons to influence the activity of neighbor
neurons

A spike generated by one neuron can be transmitted as input to
another

Traditional ANNs often demand high computational power and are
difficult to scale
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Why SNNs and SNPSs?

Energy Efficiency

Significantly reduced energy consumption

Sparse, asynchronous operation

Neurons can spike independently without all components being active

Biological Plausibility

More realistic modeling of neural communication

Temporal dynamics of neural activity

Synaptic plasticity for learning and adaptation
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Spiking Neural Networks - Overview

Unlike conventional ANNs that rely on continuous activation values

SNNs transmit discrete spikes over time

Capture temporal dynamics of neural activity

Neuron’s action potential determined by a threshold

When threshold exceeded, triggers emission of a spike

More efficient information encoding based on timing and frequency of
spikes
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SNN Formal Definition

A Spiking Neural Network is formally defined as:

Finite set V of spiking neurons

Set E ⊆ V × V of synapses

Weight Wu,v ≥ 0 for each synapse (u, v) ∈ E

Response function su,v : R+ → R
Threshold function θv : R+ → R+ for each neuron v ∈ V
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SNN Components

Input Neurons

Subset Vinput ⊂ V

Firing times provided externally

Not determined by the model

Output Neurons

Subset Voutput ⊂ V

Firing times constitute network output

Hidden Neurons

All other neurons v ∈ V \ Vinput

Firing times determined by model rules
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Stochastic SNNs

Biological neurons don’t always fire deterministically

Stochastic version models this uncertainty

Difference Pv (t)− θv (t − t ′) determines firing probability

Neuron may not fire even when Pv (t)− θv (t − t ′) > 0

May fire spontaneously when Pv (t)− θv (t − t ′) < 0

Doesn’t significantly impact computational properties
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Spiking Neural P Systems - Overview

Combine principles of SNNs with membrane computing

Set of neurons arranged as nodes in directed graph

Each neuron can contain any number of spikes (denoted by symbol a)

Can fire under specific conditions based on internal spike count

Spikes travel along graph arcs (synapses) to connected neurons

System evolves from initial configuration according to defined rules
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SNPS Formal Definition

A Spiking Neural P system of degree m ≥ 1:

Π = (O, σ1, . . . , σm, syn, i0)

Where:

1 O = {a} is the singleton alphabet (spike)

2 σ1, . . . , σm are neurons: σi = (ni ,Ri )

3 syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses)

4 i0 ∈ {1, 2, . . . ,m} indicates output neuron
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SNPS Rules

Spiking Rules

E/ac → ak ; d where:

E is regular expression over {a}
c, k ≥ 1 and d ≥ 0

Consumes c spikes, produces k spikes with delay d

Forgetting Rules

as → λ where:

s ≥ 1

Can only be applied if neuron contains exactly s spikes

No spiking rules are enabled

Removes all s spikes
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SNPS Operation

Operates synchronously with global discrete clock

Spiking rule enabled when neuron contains n spikes such that
an ∈ L(E ) and n ≥ c

When fired: consumes c spikes, prepares k spikes for delivery with
delay d

During delay: neuron enters refractory period (closed to incoming
spikes)

Rule Application Principles

1 Sequentiality at neuron level: Only one rule per neuron

2 Maximal parallelism at system level: All enabled neurons fire
simultaneously
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SNPS Configuration and Computation

Configuration

Ct = ⟨k1/t1, . . . , km/tm⟩ where:
ki : number of spikes in neuron σi

ti ≥ 0: remaining refractory period (ti = 0 means open)

Computation

Sequence of transitions between configurations

Starts from initial state

Halts when all neurons are open and no rules enabled

Deterministic if regular expressions of rules have disjoint languages
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SNN Applications Overview

Despite training challenges, SNNs have found applications in:

Image Recognition: MNIST dataset, character recognition

Pattern Classification: Various datasets and problems

Medical Applications: Diagnostics and analysis

Robot Control: Autonomous systems

Neuromorphic Hardware: Specialized computing platforms
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Early SNN Applications

MNIST Dataset Recognition

Spike-driven synaptic plasticity with integrate-and-fire neurons

2000 input neurons for pattern classification

300 classes of preprocessed LaTeX characters

NIST character dataset subset

Unsupervised Learning

Linear encoder/decoder with sparse non-linearity

Generates ”stroke detectors” for handwritten digits

Produces Gabor-like filters for natural images

Achieved lower error rate than best previous MNIST results
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Advanced SNN Applications

Temporal Coding

Each neuron fires exactly one spike per stimulus

Firing order encodes information

Test accuracy: 97.4% on MNIST, 99.2% on Caltech Face/Motorbike

Center-Surround Structure

Inspired by retinal receptive fields

Integrate-and-Fire neuron model

Iris dataset: 96.33% accuracy with 60 input neurons

MNIST: 90.5% accuracy with 600 input neurons
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COVID-19 Detection with SNNs - Motivation

Research Challenge

Automated diagnosis of COVID-19 from chest X-rays

Need for energy-efficient solutions for resource-constrained devices

Real-time processing requirements in healthcare settings

Why SNNs for Medical Imaging?

Suitable for IoT and edge computing applications

Potential implementation on compact neuromorphic hardware (Intel
Loihi)

Biologically plausible computational model

Significant reduction in energy consumption vs traditional ANNs
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Dataset and Preprocessing

Extensive and Augmented COVID-19 Dataset

Total: 8,734 chest X-rays from multiple public sources

3,728 COVID-19 positive cases

5,006 non-COVID cases

Publicly available under CC BY 4.0 license

Preprocessing Steps

Images resized to 256×256 pixels

Converted to grayscale

Pixel standardization (divided by 255)

Split: 70% training, 14% validation, 16% test
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Proposed Convolutional SNN Architecture

Network Design Principles

Emphasis on simplicity for easy implementation

Minimalistic design maximizing performance

Reduced computational overhead

Optimized for neuromorphic hardware deployment

Architecture Components

Three convolutional layers (3×3 filters: 8, 64, 128)

One max-pooling layer (4×4, stride 2)

Three fully connected layers (128, 64, 8 neurons)

Final layer: 2 neurons + softmax for classification

Activation: Spiking ReLU function
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Training Methodology

Implementation Framework

Implemented using Nengo framework

Spike frequency treated as continuous variable for optimization

Hybrid approach: forward computation as frequencies

Gradient-based optimization despite discrete spike nature

Training Parameters

Optimizer: Adam with categorical cross-entropy loss

Training: 20 epochs, batch size 32

Validation set used to prevent overfitting

Final evaluation on unseen test set
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Classification Results

Performance Metrics

Accuracy: 95%

Sensitivity: 93.6% (correct COVID-19 identification)

Specificity: 96% (correct non-COVID classification)

Key Findings

Competitive performance with traditional ANNs

Results comparable to complex deep learning architectures

High discriminative ability between COVID-19 and non-COVID cases
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Energy Consumption Analysis

Energy per Inference (Joules)

CPU (Intel i7-4960X): 1.43 × 10−1 J/inference

GPU (Nvidia GTX Titan Black): 5.00 × 10−1 J/inference

SNN on CPU: 3.53 × 10−2 J/inference

Neuromorphic Hardware (Intel Loihi): Significant further reduction

Energy Efficiency Gains

∼14× less energy than DNNs on GPU

∼4× less energy than DNNs on CPU

Maintains competitive accuracy (95%)

Ideal for battery-powered and edge devices
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Comparison with State-of-the-Art

Comparison with ANNs

Network AUC

VGG-16 0.95
CB-STM-RENet 0.99
DarkNet 0.97
ResNet 0.96
Proposed SNN 0.988

Key Advantages

Comparable accuracy to best ANNs

Significantly lower energy consumption

Simpler architecture enabling compact hardware deployment

Suitable for resource-constrained environments

Claudio Zandron (Università Milano-Bicocca, Italy)Spiking Neural Networks, Spiking Neural P Systems, and Their Application 24 / 42



Recent SNN Developments

Neuromorphic Hardware

Advanced platforms foster SNN research

Complex classification tasks

Robot control applications

Medical applications

Performance Characteristics

Results close to traditional ANNs

Significantly lower energy consumption

Non-linear neural spiking networks explored

Effective for temporal information processing
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SNPS Applications Overview

SNPSs have diverse applications across multiple domains:

Classification Tasks: Multi-class, high-dimensional problems

Medical Imaging: Brain tumor detection, organ segmentation

Power Systems: Microgrid management, energy distribution

Language Processing: Dialect recognition, letter recognition

Graph Theory: Node classification in large networks

Cybersecurity: Malware detection, threat classification

Federated Learning: Decentralized machine learning
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SNPS Classification Applications

Layered SNPS with Supervised Learning

Multi-layer network structure

Evaluated on UCI machine learning repository

MNIST dataset experiments

Demonstrated effectiveness for classification problems

Advantages

Energy-efficient properties

Sparse and asynchronous activity

Neurons active only when accumulating enough spikes

Many neurons remain inactive, reducing energy consumption
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SNPS Medical Applications

Brain Tumor Detection

Magnetic Resonance Imaging (MRI) analysis

Threshold segmentation approach based on SNPSs

Results comparable to (sometimes better than) optimization
algorithms

Other Medical Tasks

Organ segmentation using deep dynamic spiking neural P systems

Cancer gene selection with adaptive optimization

Survival time prediction for glioblastoma patients

Various medical diagnostics applications
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SNPS Microgrid Management

Distributed Energy Systems

Fuzzy spiking neural systems for coordinated control

Optimizes energy distribution across interconnected microgrids

Improves efficiency and stability

Enhanced Framework

Integration of autapses in SNPS model

More adaptive control of multi-microgrid systems

Better energy management

Real-time decision-making in dynamic power networks
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SNPS Language Processing

Chinese Dialect Tone Recognition

Gated SNPSs applied to tone recognition

High accuracy in recognizing tonal variations

Outperformed traditional machine learning methods

English Letter Recognition

Adaptive optimization SNPSs

Effective classification of handwritten letters

Complex pattern recognition in natural language processing domain
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SNPS Graph Theory Applications

Node Classification

Hierarchical SNPSs with weighted connections

Graph-based node classification problems

Exploits temporal dynamics of spiking neurons

Performance

Efficiently processes large-scale graph data

High accuracy in node classification

Applications in network analysis and social media analytics

Handles inherently interconnected data
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SNPS Cybersecurity Applications

Cyber-SNPSs

Detection of malicious activities

Malware and phishing attack classification

Superior performance in detecting cyber threats

Advantages

Fewer training epochs required

Higher accuracy than traditional ML approaches

Fast and accurate threat detection

Enhanced security for digital infrastructures
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SNPS Federated Learning

Layered SNPSs in Federated Learning

Decentralized machine learning paradigm

Faster convergence than other federated learning algorithms

Higher accuracy achieved

Privacy-preserving machine learning

Benefits

Data processed locally on decentralized devices

Protects sensitive information

Efficient learning across distributed networks

Attractive solution for privacy-preserving ML
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Modular Spiking Neural P Systems - Motivation

Challenge: Multi-Class Image Classification

Classification problems with hundreds or thousands of classes

High structural complexity of networks

Need for efficient approaches to handle variable quality images

Solution: Modular Approach

Divide general problem into smaller sub-problems

Each module specializes in learning one specific class

Multiple instances of same learning module in system

Energy-efficient variant of SNNs suitable for small neuron counts
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Oxford Flowers 102 Dataset

Dataset Characteristics

8,189 images of flowers from 102 UK species

RGB images with variable quality

40 to 258 images per class

Large variations: scale, pose, lighting conditions

Dataset Challenges

Classes with large intra-class variations

Similar classes difficult to distinguish

Subjects not always centered

Different image shapes and resolutions

Split: 1020 training, 6149 test, 1020 validation
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MSNP System Architecture

System Structure

102 independent learning modules (one per flower class)

Each module connected to entire dataset

Learns only positive examples of assigned class

Other images treated as negative examples

Three-Layer Module Design

1 Input layer: Receives and transmits encoded spikes

2 Distinguish layer: Separates spikes encoding 0 from 1

3 Encoding layer: Stores learned information via created synapses
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Encoding and Learning Process

Spike Encoding

RGB values (0-255) mapped to binary using threshold δ

Values < δ mapped to a (one spike)

Values ≥ δ mapped to a2 (two spikes)

Images converted to vectors for parallel processing

Learning Mechanism

Positive examples: Create synapses to encoding layer

Negative examples: Remove existing synapses

Neurons in encoding layer activate circularly

One reading of training set completes learning

No synapse strengthening/weakening required
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MSNP Classification Results

Performance Metrics

Best weighted accuracy: 85% (class 1, RGB images)

Accuracy range across all classes: 51.7% to 94.9%

Mean accuracy: 68.5% (RGB), 60.9% (grayscale)

150×150 resolution with 0.6 downscaling factor optimal

Performance Distribution (RGB)

30 classes: 50-60% accuracy

28 classes: 60-70% accuracy

25 classes: 70-80% accuracy

16 classes: 80-90% accuracy

3 classes: >90% accuracy
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Impact of Image Quality on Performance

Factors Affecting Accuracy

Poor performance causes:
Non-centered subjects
Excessive background visible
Subject not shown in entirety
Significant pose variations
Mostly cropped subjects

High Performance Conditions

Centered subjects with similar poses

Good quality images with clear subjects

Minimal background interference

Consistent presentation across class images
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SNNs vs SNPSs Comparison

Similarities

Both are third-generation neural networks

Rely on spike-based communication

Energy-efficient properties

Adaptability and computational capability

Simulate biological processes with high fidelity

Key Differences

SNPSs: Grounded in formal language-theoretic framework

SNNs: Primarily inspired by biological systems

SNNs: Support various encoding schemes for continuous
inputs/outputs

SNPSs: Encode information through spike numbers or discrete delays
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Conclusions

Key Achievements

SNNs and SNPSs represent significant advancements in neural
computation

More biologically plausible than traditional ANNs

Demonstrated effectiveness across diverse application domains

Energy-efficient and computationally capable

Impact and Promise

Enhance artificial intelligence capabilities

Provide insights into human brain processes

Promising tools for resource-constrained environments

Open exciting opportunities for biologically inspired computing

Potential for revolutionary advances in neuromorphic computing
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Challenges and Future Research

Current Challenges

Development of training algorithms for SNNs and SNPSs

Discrete nature of spikes complicates learning

Integration into broader computational frameworks

Future Research Directions

Improving training methods addressing discrete spike nature

Advancing neuromorphic hardware to exploit full potential

Exploring hybrid models combining SNNs and SNPSs strengths

Applications in cryptography and fault detection

New insights into human brain computational processes
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