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Background

Membrane Computing (P systems)

Membrane computing, formally
intfroduced by Paun, aims at abstracting
computing models from the structure
and the functioning of living cells, as
well as from the way that cells are
organized in tissues or higher order
structures.

Cell-like P system

Tissue-like P system

i

" Neural-like P system
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Jiménez. Fault diagnosis of electric power systems based on fuzzy reasoning spiking
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Fault diagnosis of transmission networks

Applications of in fault diagnosis of transmission networks

Applications of spiking neural P systems in fault diagnosis of transmission networks

Considering
meteorological factors

9 nemory spixing we SpiKing meteorological factors for transmission
systems considering measurement neural P systems with self-updating rules

tampering attacks considering biological apoptosis mechanism networks based on P systems
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A fault diagnosis method for power transmission networks based on

considering biological apoptosis mechanism

€ Wei Liu, Tao Wang*, Tianlei. Zang, Zhu Huang, Jun Wang, Tao Huang, XiaoGuang Wei, Chuan Li. A fault
diagnosis method for power transmission networks based on spiking neural P systems with self-updating
rules considering biological apoptosis mechanism. Complexity, 2020, Article ID: 2462647.
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(a) 0; is the real number in [—1, 1], representing the pulse value in g;.
(b) 4; represents the firing threshold of &;. According to the characteristics of fault diagnosis of smart grids, the thresh- .
threshold ?

olds of all neurons are set to 0. _
Power grid is not attacked

(c) c is a natural number, indicating the number of historical memory events. Its value is determined by the types of
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A novel fault diagnosis method of smart grids based on

considering measurement tampering attacks

€ Tao Wang*, Wei Liu, Luis Valencia-Cabrera, Peng Wang, Xiaoguang Wei, Tianlei Zang. A novel fault
diagnosis method of smart grids based on memory spiking neural P systems considering measurement
tampering attacks, Information Sciences, 2022, 596: 520-536.




Fault diagnosis of transmission networks

(4) inout C {1,...,m} represent the sets of input and output neurons, respectively. It is
worth nuting that an input neuron corresponds to a protection device (i.e., a protective rel':zy
or a circuit breaker) of a suspicious fault transmission line. Initial pulse values of input
neurons represent the correction values of fusion results of action information of corresponding

Definition 1. A spiking neural P system considering the meteorological living environment
(mleSNPS) with a degree of m > 1 is a tuple

IT=(0,01,...,0m syn,in, out,x) ically, input weights beginning from input neurons are set as 0.5, while the others are protection devices and temporal order information. An output newron is associated with a
where set as 1. This is because an r'nput neuron corresponds toa pfOfE’CHOH device (i.e., a suspicious fault transmission line, and its pulse value denotes the fault confidence level of the
(1) O = {a}isaset of singleton alphabets, and a denotes a spike. protective relay or a circuit breaker). Usually, the two kinds of protection devices play corReBpONding séction:

(5) &k = (7,8, f,p) indicates the meteorological living environment of input neurons, where

(2) y,..., 0 are neurons, which consist of two classes, i.e., rule neurons and proposition neurons. an equally important role in computation. . : ; S o .
I ducti le, whil it . z - e . o (a) -y isa real number in [0,1] representing the failure risk value of a suspicious transmis-
A rule neuron corresponds to a fuzzy fault production rule, wittle @ Proposcion Neuron is (d)  Ajisareal numberin [0, 1], which indicates the firing (spiking) threshold of the neuron. sion line considering meteorological factors.
associated with a proposition in the rule. Each neuron ¢; (i = 1,...,m) is of the form In this paper, A; = 0.2 [13]; (b) & isareal number in (0,1) representing the weight of vy in input parameters of a fault
(8;,c;, @;, Ay, 1), where (e) r; represents theﬁring rule OfUi, R theform O_fE/ﬂH _y aﬁ, where both 0 and diagnosis model. Its zfalu_e is set according to the Vmﬂuence degree of a meteorological
(a) 0 isareal number in [0,1], which denotes the pulse value of the neuron. ; n : o LI SN GT SR
®) i ] heri [O‘I] ] ich i it h 5 ,5 are real numbers in [0, 1]? E= {ﬂ , 02> /11'} denotes fheﬁrmg condition Df ri. The (c)  f denotes the firing threshold of an eliminating rule of the meteorological living
f; ;S;r;;ﬁs;;’:: :; :;’M ’fhe:::: 3 Se’; :Zi::; Le ‘:;ﬁ;:‘;g m:;tm ;1‘;‘;;?; mfy’;‘;:gfo f); ;;'? fire rule can be applied if and only if it receives at least n spikes with potential value environment. In this paper, f is set as 0.5 according to ewem;{s& ’
' i=W 1 € ) : ; : (d)  pexpresses an eliminating rule, whose firing condition is E = {~ < f}, meaning that
zzy production rule corresponding to o;; == N i T i i 2 . ik rule p can be applied if and only if y < f. Afterwards, the influence of meteorological
v production rul oonding b 0 > A;. When different types of neurons execute the firing rules, their pulse values are P i iy .
(c) @; = (W1, .. ., W) expresses the input weight vector of o, where wy_; (k=1,...,N; updated in different manners, which is explained in detail following Definition 1. factors on the transmission line will not be considered in the diagnosis model; i.e., the
is set as 0.5 or 1, representing the weight value of o; from its k-th presynaptic neuron; (3) syn C {1,...,m} x {1,...,m} denotes the directional-weighted synaptic connection be- influence of meteorological factors on a line fault will not be taken into account in
N WAl fiber denofing i Hitiibier ofs s At eiid gt Heiow o S ecff- o TT. ok i : 0 1 i the subsequent diagnosis process. Otherwise, the rule p cannot be executed. In this
L5 ! Yap & P! tween neurons in T1, where i # j forall (i,j) € syn (1 <i,j < m). case, the influence of meteorological factors on the fault should be considered in the

diagnosis process; that is, the fault risk value 7y should be one of the input parameters
of the diagnosis model.
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@ Xiaotian Chen, Tao Wang*, Ruixuan Ying, Zhibo Cao. A fault diagnosis method considering meteorological
factors for transmission networks based on P systems. Entropy, 2021, 23(8), Article ID: 1008.




Fault diagnosis of transmission networks

Applications of in fault diagnosis of transmission networks

Applications of Cell-like P systems in fault diagnosis of transmission networks

] A fault diagnosis method for power systems } 1 A fault diagnosis method considering weather factor
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Fault diagnosis of transmission networks

Definition 1: An TTPS of degree m =1 is atuple, i.e.:
I1=(0,0,,....6,.E,T,D,syn.i,)
where:
(1) O is a non-empty alphabet whose element is
called object;
2) o, =(w

0-R,) or o, =(w

0-R5), 1=i<m, is the
i " tissue cell, and m is the number of tissue cells. The
TTPS-based fault diagnosis model includes two
types of tissue cells, namely. real cells and virtual

cells (VC), whose forms are o =(w,.R ) and

o, =(w,,
(@ wy,
alphabet O;
(b) R, =(i.x/ A.j) is the transport rule of real cells,
where x is the object inthe cell /. A is the object in the
cell j and is an empty string. The object x inthe cell 7

will be passed to the empty string A in the cell j after

R,) . respectively, where:

denotes the initial object value on the

the rule is executed;

(c) R,=(E,e/ A,VC) is the transport rule of VC,
indicating main protection rejection or circuit breaker
rejection; e is the object in the tissue fluid environment
E | and A isthe object in VC. The object e in the tissue
fluid environment £ will be passed to the empty string
A in VC after the rule is executed.

(3) E =le.....e,} is the liquid environment of tissue
cells (called tissue fluid environment), where
e, €O (1<i<n) indicates the objects in £, and »n is
the number of the objects. If there is no direct channel
for exchanging information between two tissue cells,
then the environment can be used as an indirect channel
to exchange messages. Consequently. when a real tissue
cell does not satisfy the transport rule R, . it will
perform the transport rule (i,x/ A, E) ., where x is the
object in the cell 7, A isthe objectin £ . The object x
in the cell / will be passed to the empty string A in E
after the rule is executed:

(4) T ={7(t,,)|o,=c} is the time-point constraint

of tissue cells, where 7(z_)=[¢ .t'] represents the

time-point occurrence of the cell o, in the interval

[Af;.A ]
(3) D= {D(ar.,aj)lo',,a’. 1S o-} is the time-distance

constraint of tissue cells, where D(o-,,crj ) — [N;NJ
represents the time-distance between the occurrence of

the cells o, and o, In the interval [A;;,At; Z

(6) syn= {1,....m}={l,....m} denotes the connection
channel between tissues cells in Il , where 7= j for
all (i, )esyvn(l <i,j<=m).

(7) i, €{l....n} indicates the output cell set. It

1s worth noting that an output cell i1s marked as
a suspected faulty component.
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® Kequan Zhou, Tao Wang*, Xiaotian Chen, Quanlin Leng. A Fault Diagnosis Method for Power Systems Based on

Temporal Tissue-like P Systems, Protection and Control of Modern Power Systems, 2023, accept




Fault diagnosis of transmission networks

Definition 1. Formal definition of cpTPS:
1=(0,8,N,syn,i,,i,,)

(1) O is a non-empty alphabet (its elements are
called objects),

(2) 6=[6,.....6,] denotes the cell population in the
system and n is the total number of cell populations.
Cell population 4, 18 denoted  as
0, =(W,. R, Ry, 64, Oy, SCH), Where:

(a) w,, denotes the initial object on O |

(b) R, represents a transit rule for a cell population
of the form (e,x/A,f) , where x and A represent
objects in cell population e and cell population [ ,

respectively, and 4 is an empty string. Upon execution
of the rule, the object x in cell population e will be
passed to the empty string A in cell population f;

(c) R, denotes a lysis rule for a cell population of
the form [a],[b], —[c], . where a@,b,c denotes an

object in cell population e, cell population f° and cell
population k , respectively. Upon execution of the rule,
object a in cell population e and object b in cell
population [ are jointly dissolved into object ¢ in cell
population & ;

(d) &, denotes the j th cell in the k th cell
population, 1<k<n 1< j<m , where n is the total
number of cell populations, and m is the total number of
cells in the & th cell population. In addition, when the
k th cell population is the output cell population of a line,
the total number of cells in this cell population is s, and

each cell corresponds to a line in the target grid. cpTPS
fault diagnosis model has a cell modulation rule of

[5LJ,8T o (551] . where 5{,} denotes the object value of

the jth cell in the k th cell population at the moment 7 .

A7 is the auxiliary object of the confidence level at the
moment of action, 5:,] denotes the modulated object

value of the j th cell in the k th cell population at the

moment T';

(e) senc {l....m}x{l,...m} denotes the anchoring
connection relationship of cells within the & th cell
population, where cells form a stable, ordered cell
population by anchoring connections between them:;

(3) N=(r,X h) denotes the weather survival
microenvironment of the output cell population, ie..
tissue fluid, where 7 is a real number on [0,1], which
denotes the weather factor risk value of the transmission
line, & denotes the fault matching degree of the
transmission line considering weather factor, and based
on expert experience, A takes the value of 0.2 or 0 in
this paper; when the dispatch center only receives the
protective relay action signal or circuit breaker action
signal, & takes the value of 0.2; otherwise, A=0. &

denotes the infiltration rule of the output cell group tissue
fluid, and its trigger condition 1s H > H, | indicating

that the rule can be executed when and only when the
weather risk level [ is higher than the higher risk, i,
the influence of weather factors on transmission grid line
faults will be considered in the subsequent transmission
grid fault diagnosis process. At this time, the weather
factor risk value and the fault matching degree of the
weather factor will be used as one of the input
parameters of the diagnostic model;

(4) sync{l,...nyx{l,...n} indicates the state of

connection  between  cell  populations,  where
interconnected  cell  populations can  exchange
information;

(5) iy, 1, €{l,...n} denotes the set of input cell
populations and output cell populations.
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Fault diagnosis of transmission networks

Applications of in fault diagnosis of transmission networks

Applications of membrane optimization algorithms in fault diagnosis of transmission networks
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A multi-objective optimization fault diagnosis method for
power grids based on multi-source information

Fault diagnosis for power grids under disaster weather
based on a random self-regulating algorithm
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Convergence comparison graph

We propose a novel fault
diagnosis method based on a
random self-regulating algorithm.
To comprehensively and
efficiently use the fault alarm
information, self-test information
of protection devices and weather
data, three types of self-
regulating trust factors are
designed to avoid the subjectivity
of empirical weights and improve
the fault tolerance and diagnostic
accuracy of analytic models.
Moreover, a bionic self-regulating
function based on the solution
and control matrices is proposed
to establish the random self-
regulating algorithm.
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Fault diagnosis of transmission networks

Fault diagnosis for power grids under disaster weather based on a random self-regulating algorithm

Start Random Self -regulating Algorithm
Input parameters of the random self-regulating algorithm include H, m, p§ and
Initialize Tnazxgens Where p;? represents the selection probability of each element of the matrix
= B, 1’42 gen represents the maximum number of iterations of the algorithm.
Caleulate the minimum value In this paper, p¢ is set as (.5. Besides, several important variables are involved
of objective function . K )
T in the algorithm, such as B;, fg,, B,__,, B,.,. G,,, and A, where B; (B; =
Update the contemporary optimal, contemporary worst (bi‘] y bL?, cee bi,’!ﬂ. )) I'eprescl'lts the ?,"t.h SOlution vector in B, fBi l‘epl‘esel'lts the flmC-
0 i solutions base ctiol =T+ . . .
e e =3 tion value of B;, B,__, represents contemporary optimal solution, B, , represents the
e = contemporary worst solution and G,_, represents the global worst solution; A rep-
| R ity ot s smore i | resents the increment operator of each element in P, i.e., the increment operator of
control matrix P - . - - .
| T | guiding probability. The output of random self-regulating algorithm is Gy, which
BRI Ws wtion probaiiiy P w0 represent the global optimal solution. The steps of random self-regulating algorithm
hypercube density probability Pye based on the - . - :
| e ek i e i | are described as follows, whose flowchart is shown in Fig. 2.
matrix B
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Fault diagnosis of transmission networks

A multi-objective optimization fault diagnosis method for power grids based on multi-source information

Multi-objective spiking neural P systems optimization algorithm

Firstly, the formal definition of subsystem Il in the multi-objective spiking neural P
systems optimization algorithm (MOSNPSOA) is introduced, as shown below.

In=(0, \‘5|,..., 5ﬂ+1' syn, out)

Input self-test information,
alarm information and electrical
quantity information

No where:
(1) O=la} isasingle-letter set, a isa pulse;

Yes i
Is the protection

device self-test alarm

(2) oy,.., 0,5, Isneurons in system [I1.Neurons o,,, and o,., provide impulses to the
system, and both have the same form and function, represented as @,,,=0,.,=(1,{a—>a}) ;

Yes No Neuron o (1< j<n)is represented as o, =(l, R_‘f, P;) . where Rf - {r:}, r}-z} is the set of

Is the protection

device alarm message rules, and r and r’ are the ignition and forgetting rules, respectively, represented as

1 F

"}I ={a—a} and r_f ={la—> 4}, P = {p_: pf} is a selection probability expression for the

ignition rule and the forgetting rule, and satisfies p} + pﬁ =1

Does the alarm
message meet the timing
constraints

Does the alarm No
message match electrical (3) sm= {(u, 1'}|{] csusn+ha(v=n+2)viu=n+2)a(v=n+ 1)} represents synapses
characteristics

between neurons.
(4) out= {cr,,.... cr,,} 1s the set of output neurons, and subsystem [T outputs a binary pulse

A 4
Correction of Protection device string consisting of "0" and "1" through neuron o, ( j=1,.... n).
protection device P alarm messages |[€ [ mmm m e -
alarm messages remain unchanged

Main signal
bank

Communication
signal bank

Game
chooser

Impulse signal
matrix

Output correction alarm
messages

Alarm information correction module flow chart

spiking neural P systems optimization algorithm
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Fault diagnosis of distribution networks

A Hierarchical fault location method for distribution networks based on intuitionistic fuzzy spiking neural P systems

We propose a hierarchical fault location method for distribution networks based on intuitionistic fuzzy spiking neural P system. With the continuous expansion of the

distribution network scale, the goal is to improve the fault tolerance and rapidity of fault location algorithm and simplify the fault location method of distribution

networks with distributed power supply.

An intuitionistic fuzzy reasoning spiking neural P system is formally defined as
follows

[1=(0,0.&,v, syn,in,out) (4)
where:

(1) O={a} is the set of single letters, a represents a neural pulse.

2) o= {O’l,...,O'm} is the set of m perceptual neurons in the system, denoted
o =0.r)1<i<m.,{=¢&...£, is the set of n perceptual neurons in the system,
denoted g = (JJ,rJ,RI ),1 < j<n, where:

(1) @€ indicates the impulse value, or potential value, within the perceptive
neuron. It is of the form @ =(u,7).x 20,7, 20, which indicates the perceptive
neuron's certainty and uncertainty, respectively, and 0<g +py, <1 .1 and 1,

represent the firing rules of the perception and execution neurons, respectively, which
are formally consistent as FE/ a’ > a” | where 0 and [ are the set of

intuitionistic fuzzy numbers (u,.7,).4, 20,7, 20 , 0<pu, +y, <1 . E=a"

indicates the ignition condition, meaning that the neuron can only execute this
ignition rule if and only if it receives at least & pulses. Otherwise, this ignition rule
cannot be executed.

(i) &, indicates the impulse value inside the actuating neuron, which is of the

form & =(u.7)), H 20,7,20 , and 0<p, +y,<1. R. indicates the set of

7
optimization rules for executing neuron impulse values of the form

- {f; ()=
1, (r)=ar

neuron impulse values is optimized by a Gaussian function to make the computation
result more convergent to the ideal final value. fw( y) indicates the uncertainty of

, where f () indicates that the certainty of executing

the execution neuron, which is optimized according to the probability factor of the

fault spreading direction & , where « = , Num indicates the number of actual

Num
fault spreading directions, so the optimization equation of the uncertainty can also be
expressedas  f, (y) = .
Num

(3) S, is the set of synaptic activation thresholds, and S, = {s,' . s,'} . 85,8

indicate the activation thresholds of real and imaginary synapses of a neuron,
respectively. For both real and virtual synapses, a synapse is in an activated state
when the value of the impulse transmitted at the synapse is greater than or equal to the
activation threshold ( #" =1,n" =1 ). Note that when no impulse is transmitted at the
real synapse, the virtual synapse is in an inhibitory state ( ' =0 ), and the value of the
impulse cannot be transmitted even if the presynaptic neuron of the virtual synapse
satisfies the ignition rule.

(4) sync{l,...m}x{l,..,m} indicates a directed synaptic connectivity relation
between neurons, for all (7,7)esyn, 1<i,j<m having i# j.

(5) in,out = {1,...,m} indicate the set of input and output neurons, respectively.

I/ Network E> Outer equivalent |:> Outer layer \

| partitioning model solution |

Network topology |:>| : <:| Fault monitoring
information : I information

| inner layer <j Inner equivalent |

\ ( Output results j<:| [ solution J model /’

\

Solution flowchart




Fault diagnosis of distribution networks

A Hierarchical fault location method for distribution networks based on intuitionistic fuzzy spiking neural P systems

We propose a hierarchical fault location method for distribution networks based on intuitionistic fuzzy spiking neural P system. With the continuous expansion of the

distribution network scale, the goal is to improve the fault tolerance and rapidity of fault location algorithm and simplify the fault location method of distribution
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networks with distributed power supply.
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Fault diagnosis of distribution

networks

2.1 Spiking Neural P Systems with Excitatory and
Inhibitory Synapses

An SNPS with excitatory and inhibitory synapses
(SNPSEI) of degree m =1 1isa construct of:
H0,0,.0,...,06, syn.in.out)
where
(1)O=1{a} is a set of singleton alphabets, and a
denotes a spike.

(2)o,,0,,....0, are neurons in the system, and each
neuron o,(1<i<m) is of the form o, =(e,.x.R).
where:

(a)e, e {—=10.1} 1s the quantity of electric charges
carried by the spike in neuron o, ;

(b)x, €{0,1} 1s the firing threshold value of neuron
o, and

()R ={r,r.r,} isa finite set of rules in neuron o,
which are as follows:

e . E=(a z2x)/a" —a" is a firing rule, where
a™ denotes the spike that 1s consumed for executing the
firing rule. £e{0,1} denotes the quantity of electric

charges carried by the newly produced spike. It means that
if and only if the quantity of the electric charges in neuron
o, satisfies the firing condition @, =k, ., then the firing

rule can be executed. After that, the spike g™ is consumed
and anew spike a“ is produced and sent to all the synapses
connected to neuron ¢, . It is worth noting that the
transmission of quantity of electric charges does not
consume time in the system, ie., the spike immediately
reaches the connected synapses.

e n E=(a <x)/a" > A is a forgetting rule,
where A 1sa null character indicating that no new electric
charge is generated. If the quantity of electric charge
satisfies a, <k , then the forgetting rule will be executed
and no new electric charge is generated.

neurons, respectively. If a pre-excitatory neuron meets its
firing condition, then the corresponding excitatory synapses
will work. Likewise, the neurons before and afier the
inhibitory  synapses are called pre-inhibitory and
post-inhibitory neurons, respectively. If and only if the
quantity of electric charges carried by the spike in a
pre-inhibitory neuron equals 0, then the corresponding
inhibitory synapses will work.

e 1, .1=11,.4] denotes the set of synapses, where 7,

and E denote excitatory and inhibitory synapses,
respectively. The neurons berore and after the excitatory
synapses are called pre-excitatory and post-excitatory

(3)smc {2, .m}x{.2, .m} denotesthe connection
relation between neurons, where (i, j)esyn, 1<i,j<m
with = j.

(4)in,out = {1,2,....,m} represent the sets of input and
output neurons, respectively.

L - £

@K

i "
. Teh
b b -
£
P fma G @ &= minfe,, @, ..o
= . b) (]
a"lx 2x)a £
. 0
ar
.

a'(a <n) A

fa)

e=aAa . Aay
ahe, =(a,na)u(@nE)

£=max o, &y, 0 )
i) ieh

Fig. 1 Graphical representation of neurons. (a) Proposition

neuron, (b) general rule neuron, (c) and rule neuron, (d)
xnor rule neuron, and (e) or rule neuron,

A fault segment location method for distribution networks based on spiking neural P systems

and bayesian estimation

€ Yi Wang, Tao Wang*, Liyuan Liu. A fault segment location method for distribution networks based on spiking neural P
systems and Bayesian estimation, Protection and Control of Modern Power Systems, 2023, 8(1), Article ID 47.
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Identify and comect distorted Yes
information based on contradiction ———
principle

Determine the faulty segment via
revised mformation sequence

Begn
|
Decouple the complex: distribution
network structure into several single
branch networks

cB, S S N i 5, 8§ 5 €8 -
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Accuracy simulation results under 100 failures
of this method

Schematic diagram of single branch network

No
Yes

Wentify suspected faulty single branches
viacircwt breaker sionals and build
SNPSEL-based models i
| branch ircu
Execute the matrix reasoning lgorithm to
obtain the nital st O, of fault location
results

l

No

Verify and correct above Iocation results
based on Bayesian estimation

l
\—. Output location results

l_—

End

Simulation Single Single fault ~ Double Do:\f:ﬁ:?”

requireme fault average fault solu Tign
nts accuracy  solving time  accuracy time

Simdlation 1059 0012485  100%  0.01404s

results

SNPSETI

Flow chart of fault location method for
distribution networks based on SNPSEI

and Bayesian Estimation

Decoupling into four single branch network schematic

We propose a fault segment location method
based on spiking neural P systems and
Bayesian estimation for distribution networks
with distributed generation. First, the
decoupled single-branch networks are modeled
by SNPS with excitatory and inhibitory
synapses (SNPSEIs) and then their matrix
reasoning algorithms are employed for
segment initial localization. After that, if the
initial localization result set is not empty,
Bayesian estimation will be used to verify and
correct the initial localization result;
otherwise, the contradiction principle will be
used to identify and correct the distortion
information and derive the final location
results.

A fault segment location method for distribution networks based on spiking neural P systems

and bayesian estimation

€ Yi Wang, Tao Wang*, Liyuan Liu. A fault segment location method for distribution networks based on spiking neural P

systems and Bayesian estimation, Protection and Control of Modern Power Systems, 2023, 8(1), Article ID 47.
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Optimal operation of integrated energy systems

A Low-carbon Operation Optimization Method of Electric-thermal-gas Regional Integrated Energy Systems Based
on Adaptive Single-objective Continuous Optimization Spiking Neural P Systems
v" We propose a novel low-carbon operation optimization method of electric-thermal-gas regional integrated energy systems. To enhance the low-
carbon operation capacity of regional integrated energy systems, a coordinated operation framework is presented, which includes carbon capture
devices, the power to gas equipment, the combined heat and power equipment, and a multi-energy storage system. To solve the high-dimensional
constraint imbalance problem in the optimization process, an adaptive single-objective continuous optimization spiking neural P system is designed,
based on which the low-carbon operation optimization method of regional integrated energy systems is proposed.

A. Adaptive Single-objective Continuous Optimization
Spiking Neural P System

Definition 1: An adaptive single-objective continuous
optimization spiking neural P system (ASCOSNPS) of degree
m>1 isatuple

I1=0(8;;:::8,:6)
where

(N S, =(0,0,,....0,,.5yn,1,,),1<I<m
i-th subsystem, where

(1) O={a} represents a singleton alphabet (a represents

represents the

aspike, O represents a set of spikes);
(i) 9=0,UQ represents a neuron set,

9, ={0,....0,}

neurons and Q. =1{0,,,.0,.,}

where
represents the set of pulse-generating
represents the set of
pulse-supplying neurons. Each pulse-generating neuron o; is
of the form (6.,R.,P),1<i<n, where

(a) 0. represents the potential value of spikes contained in

g;,

(b)y R'={a’” ->a”} represents the firing rule of o, ,

where its execution will consume a spike a” and generate a
new pulse at the same time, denoted as al

(c) P, represents the rule excitation operator in o, ;

(1) Both o,
supplier of spikes to o,....0,.

(v) sm={E,N|({(1<i<n+)A(j=n+2))v((i=n+2)
A (J=n+1))}
between neurons;

) Ly =610,
neurons, 1.e., the output i1s a spike train formed by
concatenating the outputs of o,,....0,:

(2) G represents an adaptive director, which is used to
adaptively adjust the size of rule excitation operators in the
neuron o,

and o,,, work as the step-by-step

represents the directional synaptic connection

represents a finite set of output




Optimal operation of integrated energy systems
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Framework of electric-thermal-gas regional integrated . .
m f ~ynermal-g 9 9 Chemical reaction process of P26.
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Energy dispatch results

Optimization results of ASCOSNPS, GA and QPSO

Natural gas - S Carbon reduction Consumption
Algorithms purchased COzcaE tured/ COZe;rLlsswns Rggg"z:f;z?;‘:;e/; f capacity ofETG- rate of wind
/kWh 9 9 P ° RIES/% power/%
ASCOSNPS 3754.98 969.80 933.75 4.50% 50.95% 100%
GA 3242.21 1205.13 1174.56 2.99% 50.64% 100%
QPSO 4129.76 548.95 810.77 0.05% 40.37% 87.76%




Optimal operation of integrated energy systems

Multi guidance operational optimization of regional integrated energy systems considering fault effect propagation
v" We propose a new energy framework and its corresponding optimization algorithm, in which the carbon storage device is
added to the framework to consider the deep utilization of CO,, and which considers a multi guidance optimization study of

integrated regional energy sources in terms of reliability, economy and low carbon dimensions. Finally, the results of the
analysis show that the proposed method can take into account the multiple characteristics of the target area.

A.  Adaptive multi guidance spiking newral P system firing conditions, when neuron o, receives a pulse with

Definition 1: Adaptive multi guidance spiking neural P pulse value @, ,the neuron o, triggers the firing, generating
system (AMGSNPS) is defined formally as follows.

M=(s S .G) a new pulse with pulse value S, and sending it backwards.
m | E Rt R 1.}

" (c) P represents the regular excitation operator in neuron
WNETE »
(1) S, =(0.0,.....05,,.9m.1,,).1<I<m denoting the "f{j | ) : o of ik
N V) 0,,.,.0,,., Work as a step by step supplier of spikes
I-th subsystem, where Anln=dmed

(i) O=1{a} represents a singleton alphabet ( a represents a © -

spike. O represents a set of spike). (a) 0,,,,,0,,., Will simultaneously execute the firing
(i) 0={Q,.0,:.0.} represents a neuron set, rulesand supply pulses to each other.

where Q,,={0,.....0,} represents the set of 1-st class guided () i, amppticaprisesio g;.

. ={(i, H|((1<i<2n+1 i =2n+2
pulse-generating neurons, Q,,={0,,,,....0,,} represents the {\_r) . om={ENI(A<i<n+DA(S ! "‘ )
set of 2-st class guided pulse-generating neurons A =2RL A =T l) g T ool
Q. ={G,,1.02,.,)  represents the set of pulse supply SYnaptic connection between neurons. ‘

(viy 1, =10y,...,0,....,0,,| represents a finite set of
neurons.
(i) o,=(0.R,P),1<i<2n represents the i-th pulse- Output neurons, i.e., the output is a spike train formed by
generating neuron, where concatenating the outputs of o,.....0, .

(a) O, represents the potential value of spikes contained (2) G={g.g,} represents adaptive multi-guides for

ino,. adaptively regulating the size of regular excitation operators in

(b) R represents the firing rule of o, , Firing rules neurons o, , where g, regulaing P in Q, ., g

shaped like E/a” — a” . where E ={a,6 =0} represents regulating P in Q,,.




Optimal operation of integrated energy systems
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Virus machines in power systems

Definition of a basic Virus Machine

Definition 1 A Virus Machine II of degree (p,q), with p > 1,q > 1, is a tuple
(Fa H: I: DH: DI: GC: MNyy.e..yNp, Z‘1:: hout):r where:

— I' = {v} is the singleton alphabet;

— H=1{hy,...,hy} and I = {i1,...,i,} are ordered sets such that v¢ HUI
and HNI = 0;

— Dy = (HU{hyw}, Err,wyr) is a weighted directed graph, where Ex C H X
(H U{hout}), (h,h) & Eg for each h € H, out-degree(hoyt) = 0, and wg is
a mapping from Eg onto IN\ {0} (the set of positive integer numbers);

— Dy = (I, Er,wy) is a weighted directed graph, where Er C I x I, wr is a
mapping from Er onto IN\ {0} and, for each vertex i; € I, the out-degree of
i1; 18 less than or equal to 2;

— Go = (Vo, Ec¢) is an undirected bipartite graph, where Vo = I U Eg, being
{I,Ey} the partition associated with it (i.e., all edges go between the two
sets I and Eg ). In addition, for each vertex i; € I, the degree of i; in G¢
s less than or equal to 1;

—~m;eN(1<3<p) and, € I;

— hout &€ T U{v} and hoyt is denoted by hg in the case that hoy ¢ H.

® CMC16, Basic Virus Machines, 2015

Structure of a Virus Machine




Virus machines in power systems

How to use the virus machine in power systems? Just an idea ! ! !

® Using virus machine to express fault production rules

Take a Bus for example:

Ry(e;=AH): (py operates) () (all or partial CB trips)
— B fails
Ra(ey = VH) : (py operates) () (CB, trips) — B fails.

Fault production rules of a Bus

Fault diagnosis model of bus B1 based on an FRSN P system




Virus machines in power system

Structure diagram of the power system fault production

y : rule virus machine model
Fault diagnosis model of bus B1 based on an

FRSN P system

€ Combine the modules of the virus machine: take the output value as the input to the host
@ The input is O and 1, indicates the closing and opening of protection relays and circuit breakers
@ Hosts represent protection relays and circuit breakers




Virus machines in power system

Questions:

@ Is there the possibility of using directly a binary encoding of the input?

® Is there the possibility of one instruction connecting multiple channels?

$

More applications: such as the intelligent operation and maintenance of
distributed photovoltaic power stations




Thanks for your attention!

wangatao2005@163.com



